JP2002022101A - Saturated steam generating device - Google Patents

Saturated steam generating device

Info

Publication number
JP2002022101A
JP2002022101A JP2000210413A JP2000210413A JP2002022101A JP 2002022101 A JP2002022101 A JP 2002022101A JP 2000210413 A JP2000210413 A JP 2000210413A JP 2000210413 A JP2000210413 A JP 2000210413A JP 2002022101 A JP2002022101 A JP 2002022101A
Authority
JP
Japan
Prior art keywords
heat storage
saturated steam
tank
steam
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000210413A
Other languages
Japanese (ja)
Inventor
Koichi Tokutake
孝一 徳武
Takashi Kugue
隆志 久々江
Takami Miyasaka
隆美 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENSOKU KK
Chiyoda Manufacturing Corp
Original Assignee
DENSOKU KK
Chiyoda Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENSOKU KK, Chiyoda Manufacturing Corp filed Critical DENSOKU KK
Priority to JP2000210413A priority Critical patent/JP2002022101A/en
Priority to PCT/JP2001/005991 priority patent/WO2002004860A1/en
Priority to CNB018125476A priority patent/CN1249375C/en
Priority to US10/332,482 priority patent/US7079759B2/en
Priority to EP01947967A priority patent/EP1300630A4/en
Priority to AU2001269504A priority patent/AU2001269504A1/en
Priority to KR10-2003-7000280A priority patent/KR20030014430A/en
Publication of JP2002022101A publication Critical patent/JP2002022101A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a saturated steam generating device which is provided with a heating source that generates saturated steam by heating stored water and can be reduced in size. SOLUTION: This saturated steam generating device generates saturated steam by heating water with superheated steam obtained by superheating water in a heat transfer tube 16 inserted into a thermal storage tank 10. In the tank 10, an electric heater 44 which heats a solid thermal storage material and a liquid thermal storage material and the heat transfer tube 16 are provided in a thermal storage section filled up with the solid and liquid thermal storage materials. The saturated steam generating device is also provided with a saturated steam generating tank 12 which generates the saturated steam by heating the stored water 22 by using the superheated steam obtained through the heat transfer tube 16 as the heating source.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は飽和水蒸気発生装置
に関し、更に詳細には過熱水蒸気を加熱源に用いて飽和
水蒸気を発生する飽和水蒸気発生装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a saturated steam generator, and more particularly to a saturated steam generator that generates saturated steam using superheated steam as a heating source.

【0002】[0002]

【従来の技術】病院等では治療に用いられた包帯、メ
ス、鉗子、手術着等の被滅菌物の滅菌には、通常、被滅
菌物が収容された滅菌室を飽和水蒸気によって加圧して
所定の圧力・温度とした状態を一定時間保持する蒸気滅
菌方法が採用されている。かかる蒸気滅菌方法に使用さ
れる蒸気滅菌装置のうち、大量に被滅菌物に滅菌を施す
ことのできる大型の蒸気滅菌装置には、通常、病院等に
備えられた大型ボイラーから飽和水蒸気が供給される。
しかし、大型ボイラーから供給される飽和水蒸気が被滅
菌部の滅菌に不適当な場合、或いは蒸気滅菌装置の設置
によって大型ボイラーの飽和水蒸気の供給能力を超える
場合には、蒸気滅菌装置毎に飽和水蒸気発生装置を設置
することが必要となる。例えば、特開平9−28552
7号公報には、精密濾過、脱イオン処理等の水処理が施
された純水を蒸発させて得た純水飽和水蒸気(以下、単
に純水蒸気と称することがある)を滅菌室に供給すべ
く、純水蒸気を発生する飽和水蒸気発生装置を具備する
蒸気滅菌装置が提案されている。
2. Description of the Related Art In a hospital or the like, sterilization of an object to be sterilized such as a bandage, a scalpel, forceps or surgical gown used for treatment is usually performed by pressurizing a sterilization chamber accommodating the object with saturated steam. A steam sterilization method is employed in which the pressure and temperature are maintained for a certain period of time. Of the steam sterilizers used in such a steam sterilization method, a large steam sterilizer capable of sterilizing a large amount of an object to be sterilized is usually supplied with saturated steam from a large boiler provided in a hospital or the like. You.
However, if the saturated steam supplied from the large boiler is inappropriate for sterilizing the part to be sterilized, or if the installation of the steam sterilizer exceeds the saturated steam supply capacity of the large boiler, the saturated steam is supplied to each steam sterilizer. It is necessary to install a generator. For example, Japanese Patent Application Laid-Open No. 9-28552
In Japanese Patent Publication No. 7 (JP-A-7), pure water saturated steam (hereinafter sometimes simply referred to as pure steam) obtained by evaporating pure water subjected to water treatment such as microfiltration and deionization is supplied to a sterilization chamber. Therefore, a steam sterilizer having a saturated steam generator for generating pure steam has been proposed.

【0003】この特許公報に掲載された蒸気滅菌装置を
図9に示す。図9において、蒸気滅菌装置の本体部10
0は、被滅菌物を収容する滅菌室102が形成された内
筒104と、内筒104の外側に形成された外筒106
と、内筒104と外筒106との間に形成されたジャケ
ット部108とから構成される。かかる図9に示す蒸気
滅菌装置には、水供給配管112によって供給された純
水を蒸発させて純水蒸気を発生させる蒸気発生装置11
0が設けられている。この蒸気発生装置110では、純
水を蒸発させる熱源として用いられている蒸気は、大型
ボイラーで発生した水蒸気であって、蒸気配管120か
ら制御弁118、蒸気滅菌装置のジャケット部108、
及び配管119を経由して供給される。ジャケット部1
08に供給された蒸気は、内筒104の加温に用いられ
る。かかる蒸気発生装置110によって発生した純水蒸
気は、制御弁114が途中に設けられた純水蒸気供給配
管116を介して本体部100の滅菌室102に直接供
給される。滅菌室102に供給されて被滅菌物を加熱し
て滅菌を施した純水蒸気は、排出配管122及び制御弁
126が設けられた配管124を経由して排気される。
更に、滅菌室102が大気圧まで低下したとき、制御弁
114、126を閉じると共に、水封式真空ポンプ13
0を駆動して真空配管132に設けられた制御弁128
を開にして滅菌室102を真空状態とする。滅菌の際
に、純水蒸気の凝縮水に濡れた被滅菌物を乾燥するため
である。真空状態とされた滅菌室102を大気圧に戻し
て滅菌が施された被滅菌物を取り出す際には、フィルタ
ー134及び制御弁136が設けられた配管138を経
由して清浄な空気を滅菌室102に供給する。尚、水封
式真空ポンプ130には、純水蒸気等を吸引して蒸発等
によって喪失した封水は配管131を経由して供給され
る。
FIG. 9 shows a steam sterilizer disclosed in this patent publication. In FIG. 9, the main body 10 of the steam sterilizer is shown.
0 denotes an inner cylinder 104 in which a sterilization chamber 102 for accommodating an object to be sterilized is formed, and an outer cylinder 106 formed outside the inner cylinder 104.
And a jacket 108 formed between the inner cylinder 104 and the outer cylinder 106. The steam sterilizer shown in FIG. 9 includes a steam generator 11 for evaporating pure water supplied through a water supply pipe 112 to generate pure steam.
0 is provided. In the steam generator 110, the steam used as a heat source for evaporating pure water is steam generated by a large boiler, and is supplied from a steam pipe 120 to a control valve 118, a jacket section 108 of a steam sterilizer,
And via a pipe 119. Jacket part 1
The steam supplied to 08 is used for heating the inner cylinder 104. Pure steam generated by the steam generator 110 is directly supplied to the sterilization chamber 102 of the main body 100 via a pure steam supply pipe 116 provided with a control valve 114 in the middle. Pure steam supplied to the sterilization chamber 102 and sterilized by heating the material to be sterilized is exhausted through a discharge pipe 122 and a pipe 124 provided with a control valve 126.
Further, when the sterilization chamber 102 is reduced to the atmospheric pressure, the control valves 114 and 126 are closed and the water ring vacuum pump 13 is closed.
0 to control valve 128 provided in vacuum pipe 132
Is opened to put the sterilization chamber 102 in a vacuum state. This is for drying the object to be sterilized wetted with the condensed water of pure steam during the sterilization. When the sterilized chamber 102 in the vacuum state is returned to the atmospheric pressure and the sterilized object is taken out, clean air is removed from the sterilized chamber via a pipe 138 provided with a filter 134 and a control valve 136. 102. The water sealed vacuum pump 130 is supplied with the sealed water lost through evaporation or the like by sucking pure steam or the like via a pipe 131.

【0004】[0004]

【発明が解決しようとする課題】図9に示す蒸気滅菌装
置によれば、滅菌に用いる水蒸気として、純水を蒸発し
て得た純水蒸気を用いている。このため、大型ボイラで
発生した飽和水蒸気、つまり水処理剤が配合された水を
加熱して得た飽和水蒸気を滅菌用として使用しないた
め、水処理剤等が被滅菌物に付着するおそれを解消でき
る。しかし、図9に示す蒸気滅菌装置には、純水を蒸発
する蒸気発生装置110を新たに装着することが必要で
あるが、この蒸気発生装置110は大型化するため、図
9の蒸気滅菌装置の全体も大型化する。すなわち、蒸気
発生装置110の加熱源としては、ジャケット108を
通過して温度が低下した飽和水蒸気を用いているため、
加熱源としての飽和水蒸気と蒸純水蒸気との温度差を充
分に大きくとれない。このため、蒸気発生装置110の
ヒータの伝熱面積を大とすることを要し、蒸気発生装置
110が大型化する。一方、大型ボイラーから過熱蒸気
を取り出し、蒸気発生装置110の加熱源に用いること
によって、加熱源としての過熱蒸気と純水蒸気との温度
差を充分に大きくできるが、過熱蒸気を取り出すことは
大型ボイラーの熱効率を低下するため適当ではない。ま
た、蒸気発生装置110の加熱源として大型ボイラーで
発生した水蒸気を用いることは、蒸気発生装置110
は、依然として大型ボイラーに従属した状態であって、
大型ボイラーの負荷を何等軽減することにならず、却っ
て大型ボイラーの負荷を増大することにもなる。そこ
で、本発明の課題は、貯留水を加熱して飽和水蒸気を発
生する加熱源を具備し且つ小型化し得る飽和水蒸気発生
装置を提供することにある。
According to the steam sterilizer shown in FIG. 9, pure steam obtained by evaporating pure water is used as steam for sterilization. For this reason, the saturated steam generated in the large boiler, that is, the saturated steam obtained by heating the water containing the water treatment agent is not used for sterilization, thereby eliminating the possibility that the water treatment agent or the like adheres to the material to be sterilized. it can. However, the steam sterilizer shown in FIG. 9 needs to be newly provided with a steam generator 110 for evaporating pure water. However, since the steam generator 110 becomes large, the steam sterilizer shown in FIG. Will also be larger. That is, as the heating source of the steam generator 110, saturated steam whose temperature has been reduced after passing through the jacket 108 is used.
The temperature difference between saturated steam as the heating source and pure steam cannot be made sufficiently large. Therefore, it is necessary to increase the heat transfer area of the heater of the steam generator 110, and the steam generator 110 becomes larger. On the other hand, by taking out superheated steam from the large boiler and using it as a heating source of the steam generator 110, the temperature difference between the superheated steam as the heating source and pure steam can be made sufficiently large. Is not suitable because it lowers the thermal efficiency. Also, the use of steam generated by a large boiler as a heating source of the steam
Is still subordinate to a large boiler,
This does not reduce the load on the large boiler at all, but rather increases the load on the large boiler. Therefore, an object of the present invention is to provide a saturated steam generator that includes a heating source that generates saturated steam by heating stored water and that can be downsized.

【0005】本発明者等は前記課題を解決すべく検討し
た結果、特開2000−97498号公報において提案
された蓄熱槽によって加熱されて得た過熱水蒸気を、蒸
気発生装置の加熱源に用いることによって、大型ボイラ
ーで発生した水蒸気を用いることなく飽和水蒸気を発生
することができ、且つ蒸気発生装置の小型化を図ること
ができることを見出し、本発明に到達した。すなわち、
本発明は、蓄熱槽中に挿通された伝熱管で過熱されて得
られた過熱蒸気によって水を加熱して飽和水蒸気を発生
する飽和水蒸気発生装置であって、該蓄熱槽には、固体
蓄熱材と液体蓄熱材とが充填されて成る蓄熱部内に、前
記固体蓄熱材及び液体蓄熱材を加熱するヒータと前記伝
熱管とが配設され、且つ前記伝熱管を通過して得られた
過熱水蒸気を加熱源に用い、貯留された貯留水を加熱し
て飽和水蒸気を発生する飽和水蒸気発生槽が設けられて
いることを特徴とする飽和水蒸気発生装置にある。
The present inventors have studied to solve the above-mentioned problems, and as a result, have found that superheated steam obtained by heating with a heat storage tank proposed in JP-A-2000-97498 is used as a heating source of a steam generator. As a result, the inventors have found that saturated steam can be generated without using steam generated in a large boiler, and the steam generator can be downsized. That is,
The present invention is a saturated steam generator that generates saturated steam by heating water with superheated steam obtained by being superheated by a heat transfer tube inserted into a heat storage tank, wherein the heat storage tank includes a solid heat storage material. And a heat storage unit filled with a liquid heat storage material, a heater for heating the solid heat storage material and the liquid heat storage material, and the heat transfer tube are provided, and the superheated steam obtained by passing through the heat transfer tube is provided. A saturated steam generation device is provided with a saturated steam generation tank that is used as a heating source and that heats stored water to generate saturated steam.

【0006】かかる本発明において、蓄熱部内に充填さ
れた固体蓄熱材として、粒径の異なる固体蓄熱材を用
い、前記蓄熱部内に、大粒径の固体蓄熱材の間隙に小粒
径の固体蓄熱材が入り込むように充填すると共に、前記
固体蓄熱材の間隙に液体蓄熱材を充填することによっ
て、蓄熱部内の単位体積当りの固体蓄熱材と液体蓄熱材
との充填密度を大とすることができ、蓄熱部内に蓄熱さ
れる熱量も大とすることができる。この固体蓄熱材とし
ては、マグネシア、マグネタイト、シリカ及びアルミナ
から選ばれた一種又は二種以上の粒体を好適に用いるこ
とができ、液体蓄熱材としては、硝酸塩を好適に用いる
ことができる。かかる固体蓄熱材と液体蓄熱材とを加熱
するヒータとしては、電気ヒータを用いることによっ
て、蓄熱材の蓄熱に低コストの深夜電気を用いることが
でき、クリーンで且つ安価な飽和水蒸気を得ることがで
きる。更に、飽和水蒸気発生槽に供給する供給水を貯め
る水供給槽を設け、且つ前記水供給槽内の供給水を加熱
する加熱源として、前記飽和水蒸気発生槽で加熱源に用
いた過熱水蒸気のドレンを用いることができるように、
前記飽和水蒸気発生槽から水供給槽に至るドレン配管を
設けることによって、昇温された供給水を飽和水蒸気発
生槽に供給でき、更に安価な飽和水蒸気を得ることがで
きる。また、飽和水蒸気発生槽を、蓄熱槽から供給され
た過熱水蒸気を加熱源とする加熱ヒータによって貯留水
が加熱されて飽和水蒸気を発生する蒸発槽と、前記蒸発
槽に連通されて蒸発槽の貯留水のレベルを検出する検出
手段が設けられたレベル検出槽とから構成することによ
って、蒸発槽の加熱水レベルのコントロールを容易に行
うことができる。尚、飽和水蒸気発生槽に発生した飽和
水蒸気中のドレンを取り除くドレン除去手段を設けるこ
とにより、ドレンが除去された飽和水蒸気を得ることが
できる。
In the present invention, solid heat storage materials having different particle diameters are used as the solid heat storage material filled in the heat storage portion, and the solid heat storage material having the small particle size is provided in the gap between the large particle size solid heat storage materials. By filling the material so that the material enters, and filling the gap between the solid heat storage materials with the liquid heat storage material, it is possible to increase the packing density of the solid heat storage material and the liquid heat storage material per unit volume in the heat storage unit. Also, the amount of heat stored in the heat storage unit can be increased. As the solid heat storage material, one or two or more particles selected from magnesia, magnetite, silica, and alumina can be suitably used, and as the liquid heat storage material, nitrate can be suitably used. By using an electric heater as a heater for heating the solid heat storage material and the liquid heat storage material, low-cost midnight electricity can be used for heat storage of the heat storage material, and clean and inexpensive saturated steam can be obtained. it can. Further, a water supply tank for storing supply water to be supplied to the saturated steam generation tank is provided, and a drain of superheated steam used as a heating source in the saturated steam generation tank is provided as a heating source for heating the supply water in the water supply tank. So that you can use
By providing a drain pipe from the saturated steam generation tank to the water supply tank, the heated water can be supplied to the saturated steam generation tank, and more inexpensive saturated steam can be obtained. Further, the saturated steam generating tank is provided with an evaporating tank in which stored water is heated by a heating heater using superheated steam supplied from the heat storage tank as a heating source to generate saturated steam, and a storage in the evaporating tank which is communicated with the evaporating tank. By comprising a level detecting tank provided with a detecting means for detecting the level of water, the level of the heated water in the evaporating tank can be easily controlled. By providing a drain removing means for removing drain in the saturated steam generated in the saturated steam generating tank, it is possible to obtain saturated steam from which drain is removed.

【0007】本発明に係る飽和水蒸気発生装置に用いる
蓄熱槽の蓄熱部に、固体蓄熱材と液体蓄熱材とから成る
蓄熱材を高密度に充填することによって、蓄熱部内に蓄
熱できる蓄熱量及び熱伝導を向上できる。このため、蓄
熱部内にヒータの加熱に因り充分な熱量を蓄熱できる結
果、蓄熱材を加熱するヒータが休止していても、蓄熱材
に蓄熱された熱が伝熱管に供給され、伝熱管内に供給さ
れた水を直ちに過熱水蒸気とすることができる。更に、
かかる蓄熱槽によって得られた過熱水蒸気を飽和水蒸気
発生槽に貯留された貯留水の加熱源に用いるため、過熱
水蒸気と飽和水蒸気との温度差を充分に確保でき、飽和
水蒸気発生槽の貯留水を加熱するヒータの伝熱面積を、
飽和水蒸気を加熱源に用いる場合に比較して小さくでき
る結果、飽和水蒸気発生装置の小型化を図ることがで
き、且つ休止状態から飽和水蒸気を短時間で発生するこ
とができる。
[0007] The heat storage portion of the heat storage tank used in the saturated steam generator according to the present invention is filled with a heat storage material composed of a solid heat storage material and a liquid heat storage material at a high density, so that the heat storage amount and heat that can be stored in the heat storage portion. Conduction can be improved. As a result, a sufficient amount of heat can be stored in the heat storage unit due to the heating of the heater. As a result, even when the heater that heats the heat storage material is inactive, the heat stored in the heat storage material is supplied to the heat transfer tube, and the heat is transferred into the heat transfer tube. The supplied water can be immediately turned into superheated steam. Furthermore,
Since the superheated steam obtained by such a heat storage tank is used as a heating source of the stored water stored in the saturated steam generation tank, the temperature difference between the superheated steam and the saturated steam can be sufficiently ensured, and the stored water in the saturated steam generation tank can be used. The heat transfer area of the heater to be heated is
As a result, the saturated steam can be reduced in size as compared with the case of using the saturated steam as the heating source. As a result, the size of the saturated steam generator can be reduced, and the saturated steam can be generated in a short period of time from the rest state.

【0008】[0008]

【発明の実施の形態】本発明に係る飽和水蒸気発生装置
の一例を示す略線図を図1に示す。図1に示す飽和水蒸
気発生装置は、蓄熱槽10と飽和水蒸気発生槽12とか
ら成る。この蓄熱槽10には、伝熱管16が配設されて
おり、伝熱管16の端部の一方にポンプ14により水が
供給され、他方の端部から過熱水蒸気が取り出される。
伝熱管16の他方の端部から取り出された過熱水蒸気
は、飽和水蒸気発生槽12を構成する蒸発槽18内に設
けられた加熱ヒータ20に導かれ、蒸発槽18に貯留さ
れている貯留水22を加熱して飽和水蒸気を発生しつつ
凝縮する。凝縮した過熱水蒸気のドレンは、ドレントラ
ップ24によって水蒸気と分離されてドレン配管26に
よって系外に排出される。ここで、ポンプ14によって
伝熱管16に供給する水としては、伝熱管16及び加熱
ヒータ20のスケールを防止する観点からマグネシウム
やカルシウム等のイオンをイオン交換樹脂等で除去した
処理水を供給することが好ましい。
FIG. 1 is a schematic diagram showing an example of a saturated steam generator according to the present invention. The saturated steam generator shown in FIG. 1 includes a heat storage tank 10 and a saturated steam generation tank 12. A heat transfer tube 16 is provided in the heat storage tank 10. Water is supplied to one end of the heat transfer tube 16 by a pump 14, and superheated steam is taken out from the other end.
The superheated steam taken out from the other end of the heat transfer tube 16 is guided to a heater 20 provided in an evaporation tank 18 constituting the saturated steam generation tank 12 and stored water 22 stored in the evaporation tank 18. Is heated to condense while generating saturated steam. The drain of the condensed superheated steam is separated from the steam by the drain trap 24 and discharged out of the system by the drain pipe 26. Here, as the water supplied to the heat transfer tube 16 by the pump 14, from the viewpoint of preventing the scale of the heat transfer tube 16 and the heater 20, treated water from which ions such as magnesium and calcium have been removed with an ion exchange resin or the like is supplied. Is preferred.

【0009】また、飽和蒸気を発生する蒸発槽18に
は、所定量の貯留水22を貯留しておくことが必要であ
るが、蒸発槽18の貯留水22の液面は泡等で乱れてお
り、蒸発槽18の平均的な貯留水22のレベルを検出す
ることは困難である。このため、図1に示す飽和水蒸気
装置では、蒸発槽18に連通配管25,25によって気
相及び液相に連通されて蒸発槽18の貯留水22のレベ
ルを検出する検出手段が設けられたレベル検出槽28を
設けている。このレベル検出槽28では、蒸発槽18に
貯留された貯留水22の液面の乱れは平均化されてお
り、貯留水22のレベルを容易に検出できる。図1に示
すレベル検出槽28に用いた検出手段は、フロート式液
面検出計30であり、貯留水22のレベルが低下する
と、フロート式液面検出計30のフロートが低下して純
水供給配管32の供給口が開くとと共に、純水供給配管
32に設けられたポンプ34が駆動されて純水がレベル
検出槽28に供給される。一方、供給された純水によっ
て貯留水22のレベルが一定値まで上昇すると、フロー
ト式液面検出計30のフロートが上昇して純水供給配管
32の供給口と閉じると共に、ポンプ34の駆動を停止
する。尚、レベル検出槽28を上下方向に移動可能に設
けることによって、蒸発槽18の貯留水22のレベル
を、加熱ヒータ20の熱交換効率が最も良好なレベルに
調整できる。
Further, it is necessary to store a predetermined amount of stored water 22 in the evaporating tank 18 that generates saturated steam. However, the liquid level of the stored water 22 in the evaporating tank 18 is disturbed by bubbles or the like. Therefore, it is difficult to detect the average level of the stored water 22 in the evaporating tank 18. For this reason, in the saturated steam apparatus shown in FIG. A detection tank 28 is provided. In the level detection tank 28, the turbulence of the liquid level of the stored water 22 stored in the evaporation tank 18 is averaged, and the level of the stored water 22 can be easily detected. The detection means used in the level detection tank 28 shown in FIG. 1 is a float type liquid level detector 30. When the level of the stored water 22 decreases, the float of the float type liquid level detector 30 decreases to supply pure water. When the supply port of the pipe 32 is opened, a pump 34 provided in the pure water supply pipe 32 is driven to supply pure water to the level detection tank 28. On the other hand, when the level of the stored water 22 rises to a certain value due to the supplied pure water, the float of the float type liquid level detector 30 rises, closes the supply port of the pure water supply pipe 32, and drives the pump 34. Stop. By providing the level detection tank 28 so as to be movable in the vertical direction, the level of the stored water 22 in the evaporation tank 18 can be adjusted to a level at which the heat exchange efficiency of the heater 20 is the best.

【0010】また、蒸発槽18で発生した純水飽和水蒸
気(以下、単に純水蒸気と称することがある)は、水蒸
気取出配管36から取り出され、飽和水蒸気中のドレン
を取り除くドレン除去手段としてのサイクロン38に供
給される。サイクロン38によってドレンが除去された
純水蒸気は、供給配管40によってユーザーに供給され
る。この純水蒸気には、大型ボイラーによって発生させ
た飽和水蒸気の如く、水処理剤が含まれておらず蒸気滅
菌用として好適に使用できる。ここで、レベル検出槽2
8に供給される純水としては、精密濾過、脱イオン処理
等の水処理が施されて得られた純水を用いることができ
る。
Further, pure water saturated steam (hereinafter, may be simply referred to as pure steam) generated in the evaporating tank 18 is taken out from a steam extracting pipe 36, and a cyclone as a drain removing means for removing drain in the saturated steam. 38. The pure steam from which the drain has been removed by the cyclone 38 is supplied to the user through the supply pipe 40. This pure steam does not contain a water treatment agent like saturated steam generated by a large boiler and can be suitably used for steam sterilization. Here, the level detection tank 2
As pure water supplied to 8, pure water obtained by performing a water treatment such as microfiltration and deionization treatment can be used.

【0011】図1に示す飽和水蒸気発生装置で用いる蓄
熱槽10は、図2に示す構造のものである。図2に示す
蓄熱槽10は、個体蓄熱材と液体蓄熱材とが混合された
蓄熱材が充填されて成る蓄熱部42内に、蓄熱材を加熱
する電気ヒータ44とポンプ14によって水が供給され
る伝熱管16とが配設されている。更に、この蓄熱部4
2は、その外周面が断熱材46によって覆われており、
蓄熱部42からの放熱を防止している。かかる蓄熱部4
2に充填された蓄熱材には、粒径の異なる固体蓄熱材と
液体蓄熱材とが用いられ、粒径の異なる固体蓄熱材が、
大粒径の固体蓄熱材の間隙に小粒径の固体蓄熱材が入り
込むように充填されており、大粒径の固体蓄熱材と小粒
径の固体蓄熱材との間隙に液体蓄熱材が充填されてい
る。かかる蓄熱部42における蓄熱材の充填の状態を図
3に示す。図3(a)は、大粒径の固体蓄熱材48aと
小粒径の固体蓄熱材48bとの粒径が二種類の固体蓄熱
材と液体蓄熱材50とが充填された状態であって、大粒
径の固体蓄熱材48aの間隙に小粒径の固体蓄熱材48
bが入り込んで充填され、固体蓄熱材48a,48bの
間隙には液体蓄熱材50が充填されている。
The heat storage tank 10 used in the saturated steam generator shown in FIG. 1 has the structure shown in FIG. In the heat storage tank 10 shown in FIG. 2, water is supplied by an electric heater 44 for heating the heat storage material and a pump 14 into a heat storage section 42 filled with a heat storage material in which a solid heat storage material and a liquid heat storage material are mixed. A heat transfer tube 16 is provided. Further, the heat storage unit 4
2 has its outer peripheral surface covered with a heat insulating material 46,
Heat radiation from the heat storage section 42 is prevented. Such a heat storage unit 4
As the heat storage material filled in 2, a solid heat storage material and a liquid heat storage material having different particle sizes are used.
The liquid heat storage material is filled so that the small-diameter solid heat storage material enters the gap between the large-diameter solid heat storage material and the gap between the large-diameter solid heat storage material and the small-diameter solid heat storage material. Have been. FIG. 3 shows a state in which the heat storage material is filled in the heat storage unit 42. FIG. 3A shows a state in which the solid heat storage material 48a having a large particle diameter and the solid heat storage material 48b having a small particle diameter have two types of solid heat storage material and a liquid heat storage material 50 filled therein. The small-diameter solid heat storage material 48 is provided between the large-diameter solid heat storage material 48a.
The liquid heat storage material 50 is filled in the gap between the solid heat storage materials 48a and 48b.

【0012】また、図3(b)は、粒径が三種類の固体
蓄熱材と液体蓄熱材50とが充填された蓄熱部42の状
態を示す。この固体蓄熱材は、大粒径の固体蓄熱材48
a、小粒径の固体蓄熱材48b及び固体蓄熱材48a,
48bの中間の粒径である中粒径の固体蓄熱材48cか
ら成り、大粒径の固体蓄熱材48aの間隙に中粒径の固
体蓄熱材48cが入り込んで充填されていると共に、固
体蓄熱材48a,48cの間隙に小粒径の固体蓄熱材4
8bが入り込むように充填されている。更に、充填され
た固体蓄熱材48a,48b,48cの間隙には、液体
蓄熱材50が充填されている。この様に、図3(a)
(b)に示す様に、粒径の異なる固体蓄熱材が、大粒径
の固体蓄熱材の間隙に小粒径の固体蓄熱材が入り込むよ
うに充填され、且つ固体蓄熱材の間隙に液体蓄熱材が充
填されている蓄熱部42では、固体蓄熱材と液体蓄熱材
との充填密度を、実質的に同一粒径の固体蓄熱材と液体
蓄熱材との充填密度に比較して向上でき、蓄熱量及び伝
熱管12への熱伝導を向上できる。
FIG. 3B shows a state of the heat storage section 42 filled with a solid heat storage material having three particle sizes and a liquid heat storage material 50. This solid heat storage material has a large particle size solid heat storage material 48.
a, a small particle size solid heat storage material 48b and a solid heat storage material 48a,
48b, a medium heat storage material 48c having a medium particle diameter intermediate between the solid heat storage materials 48c. A small-diameter solid heat storage material 4 is provided between the gaps 48a and 48c.
8b. Further, the gap between the filled solid heat storage materials 48a, 48b, 48c is filled with a liquid heat storage material 50. Thus, FIG.
As shown in (b), solid heat storage materials having different particle diameters are filled so that small-diameter solid heat storage materials enter gaps between large-diameter solid heat storage materials, and liquid heat storage materials are filled in gaps between the solid heat storage materials. In the heat storage section 42 filled with the material, the packing density of the solid heat storage material and the liquid heat storage material can be improved as compared with the packing density of the solid heat storage material and the liquid heat storage material having substantially the same particle size. The amount and heat conduction to the heat transfer tube 12 can be improved.

【0013】図3(a)(b)に示す固体蓄熱材として
は、マグネシア、マグネタイト、シリカ及びアルミナか
ら選ばれた一種又は二種以上の粒体を好適に用いること
ができ、液体蓄熱材としては、硝酸塩を好適に用いるこ
とができる。硝酸塩は、室温では固体であるが、142
℃以上では溶融して液体となる。ここで、固体蓄熱材と
しての粒径7〜10mmの大粒径マグネシア及び粒径1
mm以下の小粒径マグネシアから成るマグネシア180
0kgと、液体蓄熱材としての硝酸塩370kgとを充
填して蓄熱部42を形成した。蓄熱部42を形成する蓄
熱材の組成は、大粒径マグネシア55%、小粒径マグネ
シア25%、及び硝酸塩20%である。かかる蓄熱部4
2に、27kWの電気ヒータ44と伝熱面積が3.4m
2となるように伝熱管16を挿入し、且つ蓄熱部42を
断熱材46で取り囲み蓄熱槽10を形成した。この断熱
材46としては、主成分が酸化ケイ素と酸化チタンから
成る微細多孔構造の厚さ50mmの断熱材を用いた。形
成した蓄熱槽10は、幅830mm、横1200mm、
高さ1900mmのサイズで且つ重さ3000kgのも
のであった。
As the solid heat storage material shown in FIGS. 3 (a) and 3 (b), one or two or more kinds of particles selected from magnesia, magnetite, silica and alumina can be suitably used. Is preferably a nitrate. Nitrate is solid at room temperature,
Above ° C, it melts and becomes liquid. Here, a large particle size magnesia having a particle size of 7 to 10 mm as a solid heat storage material and a particle size of 1
magnesia 180 comprising magnesia with a small particle size of less than 1 mm
0 kg and 370 kg of nitrate as a liquid heat storage material were filled to form the heat storage section 42. The composition of the heat storage material forming the heat storage section 42 is 55% of large-diameter magnesia, 25% of small-diameter magnesia, and 20% of nitrate. Such a heat storage unit 4
Second, a 27 kW electric heater 44 and a heat transfer area of 3.4 m
The heat transfer tube 16 was inserted so as to be 2 and the heat storage portion 42 was surrounded by the heat insulating material 46 to form the heat storage tank 10. As the heat insulating material 46, a heat insulating material having a microporous structure having a thickness of 50 mm and composed mainly of silicon oxide and titanium oxide was used. The formed heat storage tank 10 has a width of 830 mm, a width of 1200 mm,
It had a height of 1900 mm and a weight of 3000 kg.

【0014】次いで、形成した蓄熱槽10の電気ヒータ
44に夜間10時間ほど通電した後、伝熱管16の出口
圧力が0.5MPaとなる様に、ポンプ14によって伝
熱管16の入口に水を連続供給し、伝熱管16の出口か
ら吐出される蒸気温度及び蓄熱材温度を調査した。その
結果を図4に示す。図4において、蓄熱材温度の曲線A
は伝熱管16の入口近傍の蓄熱材温度曲線、曲線Bは伝
熱管16の中間近傍の蓄熱材温度曲線、及び曲線Cは伝
熱管16の出口近傍の蓄熱材温度曲線を各々示す。ま
た、発生蒸気温度とは、伝熱管16の出口から吐出され
る蒸気温度である。更に、伝熱管16の出口から吐出さ
れる蒸気温度と伝熱管16に供給される水量とから出熱
量を計算し、出熱量の経時変化を図4に併せて示した。
図4から明らかな様に、蓄熱槽10の蓄熱材は、電気ヒ
ータ44の加熱によって500℃もの高温に加熱されて
おり、伝熱管16から吐出される水蒸気も500℃の過
熱水蒸気である。しかも、500℃の過熱水蒸気を連続
して4時間ほど吐出することができる。吐出される過熱
水蒸気の温度が500℃以下に低下しても、依然として
過熱水蒸気を吐出することができ、過熱水蒸気を連続し
て8時間以上も吐出することができる。その結果、出熱
量は出熱開始から7時間30分程度まで安定していた。
Then, after energizing the electric heater 44 of the formed heat storage tank 10 for about 10 hours at night, water is continuously supplied to the inlet of the heat transfer tube 16 by the pump 14 so that the outlet pressure of the heat transfer tube 16 becomes 0.5 MPa. The temperature of the steam supplied and discharged from the outlet of the heat transfer tube 16 and the temperature of the heat storage material were investigated. FIG. 4 shows the results. In FIG. 4, curve A of the heat storage material temperature is shown.
Represents a heat storage material temperature curve near the inlet of the heat transfer tube 16, curve B represents a heat storage material temperature curve near the middle of the heat transfer tube 16, and curve C represents a heat storage material temperature curve near the outlet of the heat transfer tube 16. The generated steam temperature is the temperature of the steam discharged from the outlet of the heat transfer tube 16. Further, the amount of heat output was calculated from the steam temperature discharged from the outlet of the heat transfer tube 16 and the amount of water supplied to the heat transfer tube 16, and the change over time of the heat output is also shown in FIG.
As is clear from FIG. 4, the heat storage material of the heat storage tank 10 is heated to as high as 500 ° C. by the heating of the electric heater 44, and the steam discharged from the heat transfer tube 16 is also superheated steam of 500 ° C. In addition, superheated steam at 500 ° C. can be continuously discharged for about 4 hours. Even if the temperature of the discharged superheated steam drops to 500 ° C. or lower, the superheated steam can still be discharged, and the superheated steam can be continuously discharged for 8 hours or more. As a result, the heat output was stable until about 7 hours 30 minutes from the start of heat output.

【0015】このことは、蓄熱材の温度も、出熱開始と
共に伝熱管12の入口近傍が低下し、出熱開始から2時
間30分経過後に伝熱管12の中央部近傍が低下し始
め、5時間経過後に伝熱管12の出口近郷が低下し始め
ることからも理解される。つまり、蓄熱部24内に蓄熱
された熱の取り出し箇所が、出熱に伴って伝熱管12の
入口近傍の蓄熱材から出口近傍の蓄熱材へと順次移動し
ているため、伝熱管12から吐出される過熱蒸気の温度
及び出熱量を安定化できる。また、電気ヒータ44を用
いることによって、クリーンなエネルギーである電気に
よって蓄熱材を加熱でき、且つ低コストな深夜電力によ
って蓄熱材を加熱できるため、クリーンで且つ安価な過
熱水蒸気を得ることができる。ここで、過熱水蒸気を連
続して8時間以上も吐出することができる通常のボイラ
ー、つまり重油等の燃料を炊くボイラーでは、燃料タン
ク、燃料配管、空気ダクト、排ガスダクト等の付属設備
を必要とし、そのサイズが極めて大きくなる。この点、
図2に示す蓄熱槽では、電気ヒータ44を蓄熱材の加熱
ヒータとして採用するため、燃料タンク等の付属設備を
不用とすることができ、蓄熱槽を極めてコンパクトとす
ることができる。
This means that the temperature of the heat storage material also decreases near the inlet of the heat transfer tube 12 with the start of heat output, and begins to decrease near the center of the heat transfer tube 12 two and a half hours after the start of heat output. It can also be understood from the fact that the area near the exit of the heat transfer tube 12 starts to decrease after a lapse of time. In other words, since the location where the heat stored in the heat storage unit 24 is taken out is sequentially moved from the heat storage material near the inlet of the heat transfer tube 12 to the heat storage material near the outlet due to the heat output, the heat is discharged from the heat transfer tube 12. The temperature of the superheated steam and the amount of heat output can be stabilized. In addition, by using the electric heater 44, the heat storage material can be heated by electricity, which is clean energy, and the heat storage material can be heated by low-cost late-night power, so that clean and inexpensive superheated steam can be obtained. Here, a normal boiler that can continuously discharge superheated steam for 8 hours or more, that is, a boiler that cooks fuel such as heavy oil, requires additional equipment such as a fuel tank, a fuel pipe, an air duct, and an exhaust gas duct. , Its size becomes extremely large. In this regard,
In the heat storage tank shown in FIG. 2, since the electric heater 44 is employed as a heater for the heat storage material, it is possible to eliminate the need for additional equipment such as a fuel tank and to make the heat storage tank extremely compact.

【0016】ところで、蓄熱槽10の伝熱管17の出口
から吐出される過熱水蒸気に水を滴下し調湿を施して飽
和水蒸気とすることも理論的には可能であるが、調湿が
困難であり、特に飽和水蒸気の使用量が短時間で変動す
る場合には、極めて困難である。この点、図1に示す飽
和水蒸気発生装置では、蓄熱槽10の伝熱管17の出口
から吐出される過熱水蒸気を飽和水蒸気発生槽12の蒸
発槽18内に設けた加熱ヒータ20に導き、蒸発槽18
の純水から成る貯留水22を加熱する加熱源として用い
て飽和水蒸気を発生するため、飽和水蒸気の使用量が短
時間で変動する機器に安定して飽和水蒸気を供給でき
る。この様に、飽和水蒸気の使用量が短時間で変動する
機器としての蒸気滅菌装置に図1に示す飽和水蒸気発生
装置を用いた例を図5に示す。
Incidentally, it is theoretically possible to add water to the superheated steam discharged from the outlet of the heat transfer tube 17 of the heat storage tank 10 and perform humidity control to obtain saturated steam, but it is difficult to control the humidity. Yes, especially when the amount of saturated steam used fluctuates in a short time. In this regard, in the saturated steam generator shown in FIG. 1, the superheated steam discharged from the outlet of the heat transfer tube 17 of the heat storage tank 10 is guided to the heater 20 provided in the evaporation tank 18 of the saturated steam generation tank 12, and 18
Since saturated steam is generated by using the storage water 22 made of pure water as a heating source for heating, the saturated steam can be stably supplied to equipment in which the usage of the saturated steam fluctuates in a short time. FIG. 5 shows an example in which the saturated steam generator shown in FIG. 1 is used in a steam sterilizer as a device in which the usage amount of saturated steam fluctuates in a short time.

【0017】図5に示す蒸気滅菌装置の本体部50は、
被滅菌物を収容する滅菌室52が形成された内筒54
と、内筒54の外側に形成された外筒56と、内筒54
と外筒56との間に形成されたジャケット部58とから
構成される。かかる図5に示す蒸気滅菌装置では、大型
ボイラーで発生した水蒸気が、制御弁60が設けられた
蒸気配管62を経由してジャケット部58に供給され、
内筒54の加温のみに用いられる。内筒54の加温に用
いられて凝縮したドレンは、排出配管64のドレントラ
ップ66を経由して系外に排出される。また、滅菌室5
2に大気が吸引されるように、フィルター68及び制御
弁70が設けられた配管72が滅菌室52に連結されて
おり、この配管72の制御弁70と滅菌室52との間
に、図1に示す飽和水蒸気発生装置の供給配管40が連
結されており、供給配管40に設けられた制御弁74を
開放することによって、滅菌室52内に純水飽和水蒸気
(純水蒸気)を直接供給できる。滅菌室52に供給され
て被滅菌物を加熱して滅菌を施した水蒸気のドレンは排
出配管76及びドレントラップ78を経由して排出さ
れ、滅菌室52内の水蒸気はドレントラップ78をバイ
パスする制御弁80を経由して排気される。更に、滅菌
室52が大気圧まで低下したとき、制御弁80を閉じる
と共に、水封式真空ポンプ82駆動して真空配管84に
設けられた制御弁86を開にして滅菌室52を真空状態
とする。滅菌の際に、純水蒸気の凝縮水に濡れた被滅菌
物を乾燥するためである。真空状態とされた滅菌室52
を大気圧に戻して滅菌が施された被滅菌物を取り出す際
には、制御弁70を開きフィルター68を経由して清浄
な空気を滅菌室52に供給する。尚、水封式真空ポンプ
82には、滅菌室52内の水蒸気等を吸引して蒸発等に
よって喪失した封水は配管88を経由して供給される。
The main body 50 of the steam sterilizer shown in FIG.
An inner cylinder 54 in which a sterilization chamber 52 for storing an object to be sterilized is formed.
An outer cylinder 56 formed outside the inner cylinder 54;
And a jacket portion 58 formed between the outer cylinder 56 and the outer cylinder 56. In the steam sterilizer shown in FIG. 5, the steam generated by the large boiler is supplied to the jacket portion 58 via the steam pipe 62 provided with the control valve 60,
It is used only for heating the inner cylinder 54. The drain used to heat the inner cylinder 54 and condensed is discharged out of the system via a drain trap 66 of a discharge pipe 64. In addition, sterilization room 5
A pipe 72 provided with a filter 68 and a control valve 70 is connected to the sterilization chamber 52 so that the atmosphere is sucked into the sterilization chamber 52. And a control valve 74 provided on the supply pipe 40 is opened, so that pure water saturated steam (pure steam) can be directly supplied into the sterilization chamber 52. The drain of the steam supplied to the sterilization chamber 52 and sterilized by heating the object to be sterilized is discharged through the discharge pipe 76 and the drain trap 78, and the steam in the sterilization chamber 52 is controlled to bypass the drain trap 78. Air is exhausted via the valve 80. Further, when the sterilization chamber 52 is reduced to the atmospheric pressure, the control valve 80 is closed, and the water-ring vacuum pump 82 is driven to open the control valve 86 provided in the vacuum pipe 84 so that the sterilization chamber 52 is brought into a vacuum state. I do. This is for drying the object to be sterilized wetted with the condensed water of pure steam during the sterilization. Sterilization chamber 52 in a vacuum state
When the pressure is returned to the atmospheric pressure and the object to be sterilized is taken out, the control valve 70 is opened and clean air is supplied to the sterilization chamber 52 via the filter 68. The water sealed vacuum pump 82 is supplied with the sealed water lost through evaporation or the like by sucking water vapor or the like in the sterilization chamber 52 via a pipe 88.

【0018】図5に示す蒸気滅菌装置を用いた被滅菌物
の蒸気滅菌行程を、図6に示す滅菌室52の内圧の経時
変化によって説明する。蒸気滅菌工程は、滅菌室52の
内圧の経時変化を示し、蒸気滅菌の一サイクルは、コン
ディショニング(真空)行程、滅菌行程、排気行程、乾
燥行程、及び完了行程の各行程から成る。先ず、被滅菌
物が収納された滅菌室52を気密状態とした後、コンデ
ィショニング(真空)行程に入る。このコンディショニ
ング(真空)行程では、大型ボイラーから供給される蒸
気を制御弁60を開いてジャケット部58に導入して滅
菌室52を加熱し、水封式真空ポンプ82を駆動すると
共に、制御弁86を開いて滅菌室52内の空気を排気し
て真空状態とする。次いで、蒸発槽18で発生して水蒸
気取出配管36から取り出され、サイクロン38によっ
てドレンを取り除かれた純水蒸気を、制御弁74を開い
て滅菌室52内に給蒸し、滅菌室52の圧力を上昇させ
て被滅菌物を加温する。
The process of steam sterilization of an object to be sterilized using the steam sterilizer shown in FIG. 5 will be described with reference to the change over time in the internal pressure of the sterilization chamber 52 shown in FIG. The steam sterilization process indicates a change with time in the internal pressure of the sterilization chamber 52, and one cycle of the steam sterilization includes a conditioning (vacuum) process, a sterilization process, an exhaust process, a drying process, and a completion process. First, after the sterilization chamber 52 in which the object to be sterilized is stored is made airtight, a conditioning (vacuum) process is started. In this conditioning (vacuum) process, the steam supplied from the large boiler is introduced into the jacket 58 by opening the control valve 60 to heat the sterilization chamber 52, drive the water ring vacuum pump 82, and control the valve 86. Is opened, and the air in the sterilization chamber 52 is evacuated to a vacuum state. Next, the control valve 74 is opened to supply the pure steam generated in the evaporating tank 18, taken out from the steam taking-out pipe 36, and drained by the cyclone 38 into the sterilization chamber 52 by opening the control valve 74, and the pressure in the sterilization chamber 52 is increased. Then, the material to be sterilized is heated.

【0019】更に、制御弁80を開いて滅菌室52を加
圧する水蒸気を放出して大気圧とした後、水封式真空ポ
ンプ82を駆動すると共に、制御弁86を開いて真空状
態とする。その後、再度、真空状態の滅菌室52に純水
蒸気を給蒸する給蒸―排気の操作を複数回繰り返し、被
滅菌物を充分に加温する。このコンディショニング(真
空)行程は、被滅菌物の内部の空気を確実に排除し、後
述する様に、滅菌室12に給蒸して被滅菌物を滅菌温度
に加温する際に、被滅菌物の内部温度も表面温度と同程
度に昇温させるためである。かかるコンディショニング
(真空)行程で被滅菌物を充分に加温した後、滅菌室5
2に、制御弁74を開き純水蒸気を給蒸して所定圧力ま
で昇圧した後、滅菌室52を所定の圧力・温度で所定時
間保持する。かかる保持によって、滅菌室52内の被滅
菌物に付着していた細菌等を滅菌することができる。
Further, after the control valve 80 is opened to release the steam for pressurizing the sterilization chamber 52 to atmospheric pressure, the water ring vacuum pump 82 is driven, and the control valve 86 is opened to establish a vacuum state. Thereafter, the operation of supplying and exhausting steam, which supplies pure steam to the sterilization chamber 52 in a vacuum state, is repeated a plurality of times to sufficiently heat the object to be sterilized. This conditioning (vacuum) step ensures that the air inside the object to be sterilized is eliminated, and as described later, when the object to be sterilized is heated to the sterilization temperature by supplying steam to the sterilization chamber 12, as described later. This is for increasing the internal temperature to the same level as the surface temperature. After sufficiently heating the object to be sterilized in such a conditioning (vacuum) process, the sterilization chamber 5
In step 2, after opening the control valve 74 and feeding pure steam to increase the pressure to a predetermined pressure, the sterilization chamber 52 is maintained at a predetermined pressure and temperature for a predetermined time. By such holding, bacteria and the like adhering to the object to be sterilized in the sterilization chamber 52 can be sterilized.

【0020】その後、滅菌室52を所定圧力に加圧して
いた加圧蒸気を、制御弁80を開いて排気した後、滅菌
行程で濡れた被滅菌物を乾燥する乾燥行程に入る。この
乾燥行程では、加圧蒸気が排気されて大気圧となった滅
菌室52内を、制御弁8を開き(制御弁80を閉)且つ
水封式真空ポンプ82を駆動することによって、滅菌室
52を真空状態として被滅菌物の水分を蒸発する。但
し、水分の蒸発に伴い被滅菌物の温度が低下するため、
被滅菌物から水分を蒸発し易くすべく、加温された清浄
な空気を制御弁70を開いて滅菌室52内に導入し、滅
菌室52内を大気圧近傍まで昇圧して被滅菌物を昇温す
る。更に、昇温した被滅菌物を乾燥すべく、再度、滅菌
室52内を真空状態とした後、加温された清浄な空気を
供給する操作を複数回繰り返し、被滅菌物を充分に乾燥
する。被滅菌物の乾燥が不充分の場合は、被滅菌物を滅
菌室52から取り出したとき、空気中の細菌等が被滅菌
物に付着して増殖を始めるおそれがあるためである。か
かる乾燥行程が完了した際に、滅菌室52内に制御弁7
0を開いて清浄な空気を導入して滅菌を完了する。尚、
ジャケット部58への水蒸気は、蒸気滅菌の各行程を通
じて供給されており、常に滅菌室52を加温している。
Thereafter, the control valve 80 is opened to evacuate the pressurized steam that has pressurized the sterilization chamber 52 to a predetermined pressure, and then the process enters a drying process for drying the material to be sterilized wet in the sterilization process. In this drying process, the control valve 8 is opened (the control valve 80 is closed) and the water-sealed vacuum pump 82 is driven in the sterilization chamber 52 in which the pressurized steam is exhausted to the atmospheric pressure. 52 is evacuated to evaporate the moisture of the object to be sterilized. However, since the temperature of the object to be sterilized decreases with the evaporation of water,
In order to facilitate evaporation of moisture from the object to be sterilized, heated clean air is introduced into the sterilization chamber 52 by opening the control valve 70, and the inside of the sterilization chamber 52 is pressurized to near atmospheric pressure to remove the object to be sterilized. Raise the temperature. Further, in order to dry the heated object to be dried, the sterilizing chamber 52 is again evacuated to a vacuum state, and then the operation of supplying heated clean air is repeated a plurality of times to sufficiently dry the object to be sterilized. . This is because, if the material to be sterilized is not sufficiently dried, when the material to be sterilized is taken out of the sterilization chamber 52, bacteria in the air may adhere to the material to be sterilized and start growing. When the drying process is completed, the control valve 7 is placed in the sterilization chamber 52.
Open 0 and introduce clean air to complete sterilization. still,
The steam to the jacket portion 58 is supplied through each process of steam sterilization, and always heats the sterilization chamber 52.

【0021】図6に示す滅菌室52の内圧の経時変化か
ら明らかな様に、コンディショニング(真空)行程及び
滅菌工程では、純水蒸気を間欠的に滅菌室52に給蒸し
ているが、蓄熱槽10を具備する飽和水蒸気発生装置か
らの純水蒸気の給蒸速度等には何等問題はなかった。し
かも、この飽和水蒸気発生装置は、コンパクトであるた
め、蒸気滅菌装置の本体50の背面側や側面等に容易に
装着できる。また、滅菌室52に大型ボイラーから供給
される水蒸気を用いている従来の蒸気滅菌装置でも、図
1に示す飽和水蒸気発生装置を容易に設置でき、滅菌室
52に純水蒸気を供給できる。
As is clear from the change over time in the internal pressure of the sterilization chamber 52 shown in FIG. 6, pure steam is intermittently supplied to the sterilization chamber 52 during the conditioning (vacuum) step and the sterilization step. There was no problem in the feed rate of pure steam from the saturated steam generator having the above. Moreover, since the saturated steam generator is compact, it can be easily mounted on the back side or side face of the main body 50 of the steam sterilizer. Further, even with a conventional steam sterilizer using steam supplied from a large boiler into the sterilization chamber 52, the saturated steam generator shown in FIG. 1 can be easily installed, and pure steam can be supplied to the sterilization chamber 52.

【0022】以上、述べてきた図1及び図5に示す飽和
水蒸気発生装置では、純水をポンプ34によって蒸発槽
18に連結されたレベル検出槽28に供給されている
が、図7に示す様に、予め暖められた純水をレベル検出
槽28に供給することによって、蒸発槽18での飽和水
蒸気の発生に必要な熱量を減少でき好ましい。図7に示
す飽和水蒸気発生装置では、蒸発槽18に純水を供給す
る水供給槽90内に加熱ヒータ92を設け、蒸発槽18
の貯留水22を加熱して凝縮した過熱水蒸気のドレンを
ドレントラップ24及びドレン配管26を経由して加熱
ヒータ92に供給し、水供給槽90内の純水を加熱す
る。加熱された純水は、ポンプ34によってレベル検出
槽28に供給する。また、図1、図5及び図7において
は、蓄熱槽10の伝熱管16に供給される水とレベル検
出槽28に供給される純水とは異なる種類の水であった
が、伝熱管16に供給する水を純水とすると、図8に示
す様に、同一の水供給槽90から蓄熱槽10の伝熱管1
6及びレベル検出槽28に供給できる。この様に、伝熱
槽10の伝熱管16及びレベル検出槽28に純水を供給
すると、蒸発槽18内に設けられた加熱ヒータ20の下
方側にドレン及び過熱水蒸気の一部を抜き出す抜出配管
96を設け、過熱水蒸気及びそのドレンの一部を直接蒸
発槽18の貯留水22中に吹き込むことができ、熱効率
上好ましい。更に、ドレン配管26にドレントラップ2
4から排出されたドレンは、水供給槽90に戻すことが
でき、水供給槽90内の純水の加熱及び循環再利用を図
ることができる。加熱された純水を蓄熱槽10の伝熱管
16に供給することによって、高温に加熱されている伝
熱管16に低温の純水を供給することに因る熱ショック
の緩和を図ることもできる。
In the saturated steam generating apparatus shown in FIGS. 1 and 5 described above, pure water is supplied to the level detecting tank 28 connected to the evaporating tank 18 by the pump 34, as shown in FIG. In addition, it is preferable to supply the pre-warmed pure water to the level detection tank 28 so that the amount of heat required for generating saturated steam in the evaporation tank 18 can be reduced. In the saturated steam generator shown in FIG. 7, a heater 92 is provided in a water supply tank 90 for supplying pure water to the evaporating tank 18.
Is supplied to the heater 92 via the drain trap 24 and the drain pipe 26 to heat the pure water in the water supply tank 90. The heated pure water is supplied to the level detection tank 28 by the pump 34. Although the water supplied to the heat transfer tube 16 of the heat storage tank 10 and the pure water supplied to the level detection tank 28 are different types of water in FIGS. Assuming that pure water is supplied to the heat transfer pipe 90 from the same water supply tank 90 as shown in FIG.
6 and the level detection tank 28. As described above, when pure water is supplied to the heat transfer tube 16 and the level detection tank 28 of the heat transfer tank 10, the drain and a part of the superheated steam are extracted below the heater 20 provided in the evaporation tank 18. A pipe 96 is provided, and a part of the superheated steam and its drain can be directly blown into the stored water 22 of the evaporation tank 18, which is preferable in terms of thermal efficiency. Further, the drain trap 26 is connected to the drain pipe 26.
The drain discharged from 4 can be returned to the water supply tank 90, so that the pure water in the water supply tank 90 can be heated and circulated and reused. By supplying the heated pure water to the heat transfer tubes 16 of the heat storage tank 10, the heat shock caused by supplying the low-temperature pure water to the heat transfer tubes 16 heated to a high temperature can be alleviated.

【0023】以上の説明では、蓄熱部42内には、粒径
の異なる固体蓄熱材を充填し、大粒径の固体蓄熱材の間
隙に小粒径の固体蓄熱材が入り込むように充填すると共
に、固体蓄熱材の間隙に液体蓄熱材を充填しているが、
飽和水蒸気発生量が少なく蓄熱槽10の蓄熱量も少なく
て済む場合は、実質的に同一粒径の固体蓄熱材と液体蓄
熱材とを蓄熱部42に充填してもよい。また、図1、図
5、図7及び図8では、純水をレベル検出槽28に供給
しているが、純水蒸気を供給することが必要でない場合
には、水道水等をイオン交換樹脂等で処理してマグネシ
ウムやカルシウム等のイオンを除去した処理水を用いる
ことによって、加熱ヒータ20のスケール発生に起因す
る伝熱効率の低下等を防止できる。更に、図1に示す飽
和水蒸気発生装置は、蒸気滅菌装置の他にドライクリー
ニング用仕上機に供給する飽和水蒸気の供給装置にも使
用できる。或いは、飽和水蒸気使用量が変動する装置用
のみならず、所定時間・所定量の飽和水蒸気を連続して
使用する場合にも、図1に示す飽和水蒸気発生装置を使
用できる。尚、蓄熱槽10の蓄熱材を加熱するヒータと
して、電気ヒータ44を用いているが、例えばプラント
からの高温排ガスやボイラーからの排蒸気等を利用した
ヒータであってもよい。
In the above description, the heat storage section 42 is filled with solid heat storage materials having different particle diameters, so that the solid heat storage material having a small particle diameter enters the gap between the solid heat storage materials having a large particle diameter. , The gap between the solid heat storage material is filled with liquid heat storage material,
When the amount of generated steam is small and the amount of heat stored in the heat storage tank 10 is small, the heat storage section 42 may be filled with a solid heat storage material and a liquid heat storage material having substantially the same particle diameter. In FIGS. 1, 5, 7 and 8, pure water is supplied to the level detecting tank 28. However, when it is not necessary to supply pure steam, tap water or the like is replaced with an ion exchange resin or the like. By using the treated water from which ions such as magnesium and calcium have been removed by treating with water, it is possible to prevent a decrease in heat transfer efficiency due to scale generation of the heater 20 and the like. Further, the saturated steam generator shown in FIG. 1 can be used not only as a steam sterilizer but also as a device for supplying saturated steam to be supplied to a finisher for dry cleaning. Alternatively, the saturated steam generator shown in FIG. 1 can be used not only for a device in which the amount of saturated steam used fluctuates, but also in a case where saturated steam for a predetermined time and a predetermined amount is continuously used. Although the electric heater 44 is used as a heater for heating the heat storage material in the heat storage tank 10, a heater using, for example, high-temperature exhaust gas from a plant or steam discharged from a boiler may be used.

【0024】[0024]

【発明の効果】本発明に係る飽和水蒸気発生装置は、貯
留水を加熱して飽和水蒸気を発生する加熱源を具備し且
つ小型化し得る飽和水蒸気発生装置である。その結果、
従来の大型ボイラーとは別個に飽和水蒸気を生成するこ
とができ、大型ボイラーの能力限界であっても、更に飽
和水蒸気を消費する機器を増設できる。
The saturated steam generator according to the present invention comprises a heating source for heating the stored water to generate saturated steam and can be downsized. as a result,
Saturated steam can be generated separately from the conventional large boiler, and even if the capacity of the large boiler is limited, equipment that consumes saturated steam can be added.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る飽和水蒸気発生装置の一例を説明
する略線図である。
FIG. 1 is a schematic diagram illustrating an example of a saturated steam generator according to the present invention.

【図2】図1に用いられている蓄熱槽10の構造を説明
するための断面図である。
FIG. 2 is a cross-sectional view for explaining the structure of a heat storage tank 10 used in FIG.

【図3】蓄熱部42における蓄熱材の充填の状態を説明
する説明図である。
FIG. 3 is an explanatory diagram illustrating a state in which a heat storage material is filled in a heat storage unit 42.

【図4】図2に示す蓄熱槽10の出力特性の経時変化を
示すグラフである。
FIG. 4 is a graph showing a change over time in output characteristics of the heat storage tank 10 shown in FIG.

【図5】図1に示す飽和水蒸気発生装置を具備する蒸気
滅菌装置を説明する略線図である。
FIG. 5 is a schematic diagram illustrating a steam sterilizer having the saturated steam generator shown in FIG.

【図6】図5に示す蒸気滅菌装置を用いた被滅菌物の蒸
気滅菌行程を説明する説明図である。
FIG. 6 is an explanatory diagram illustrating a steam sterilization process of an object to be sterilized using the steam sterilizer shown in FIG.

【図7】本発明に係る飽和水蒸気発生装置の他の例を説
明する略線図である。
FIG. 7 is a schematic diagram illustrating another example of the saturated steam generator according to the present invention.

【図8】本発明に係る飽和水蒸気発生装置の他の例を説
明する略線図である。
FIG. 8 is a schematic diagram illustrating another example of the saturated steam generator according to the present invention.

【図9】従来の蒸気滅菌装置を説明する略線図である。FIG. 9 is a schematic diagram illustrating a conventional steam sterilizer.

【符号の説明】[Explanation of symbols]

10 蓄熱槽 12 飽和水蒸気発生槽 16 伝熱管 18 蒸発槽 20 加熱ヒータ 22 貯留水 24 ドレントラップ 25 連通配管 26 ドレン配管 28 レベル検出槽 30 フロート式液面検出計 40 飽和水蒸気の供給配管 42 蓄熱部 44 電気ヒータ 48a,48b,48c 固体蓄熱材 50 液体蓄熱材 DESCRIPTION OF SYMBOLS 10 Heat storage tank 12 Saturated steam generation tank 16 Heat transfer tube 18 Evaporation tank 20 Heater 22 Storage water 24 Drain trap 25 Communication pipe 26 Drain pipe 28 Level detection tank 30 Float type liquid level detector 40 Saturated steam supply pipe 42 Heat storage section 44 Electric heater 48a, 48b, 48c Solid heat storage material 50 Liquid heat storage material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久々江 隆志 富山県富山市八日町100番地 株式会社で んそく内 (72)発明者 宮坂 隆美 長野県更埴市大字鋳物師屋75番地5 株式 会社千代田製作所内 Fターム(参考) 4C058 AA12 BB05 DD12 EE16 JJ26 JJ30  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takashi Kukue 100, Yokamachi, Toyama, Toyama Pref. F term (reference) 4C058 AA12 BB05 DD12 EE16 JJ26 JJ30

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 蓄熱槽中に挿通された伝熱管で過熱され
て得られた過熱蒸気によって水を加熱して飽和水蒸気を
発生する飽和水蒸気発生装置であって、 該蓄熱槽には、固体蓄熱材と液体蓄熱材とが充填されて
成る蓄熱部内に、前記固体蓄熱材及び液体蓄熱材を加熱
するヒータと前記伝熱管とが配設され、 且つ前記伝熱管を通過して得られた過熱水蒸気を加熱源
に用い、貯留された貯留水を加熱して飽和水蒸気を発生
する飽和水蒸気発生槽が設けられていることを特徴とす
る飽和水蒸気発生装置。
1. A saturated steam generator for generating saturated steam by heating water with superheated steam obtained by being superheated by a heat transfer tube inserted into a heat storage tank, wherein the heat storage tank includes a solid heat storage A heater for heating the solid heat storage material and the liquid heat storage material and the heat transfer tube are provided in a heat storage unit filled with a material and a liquid heat storage material, and superheated steam obtained by passing through the heat transfer tube A saturated steam generation apparatus characterized in that a saturated steam generation tank for generating saturated steam by heating stored water is provided by using a steam as a heating source.
【請求項2】 蓄熱部内に充填された固体蓄熱材が、粒
径の異なる固体蓄熱材から成り、前記蓄熱部内には、大
粒径の固体蓄熱材の間隙に小粒径の固体蓄熱材が入り込
むように充填されていると共に、前記固体蓄熱材の間隙
に液体蓄熱材が充填されている請求項1記載の飽和水蒸
気発生装置。
2. The solid heat storage material filled in the heat storage unit is made of solid heat storage materials having different particle diameters, and the small heat storage material has a small particle size in a gap between the large particle size solid heat storage materials in the heat storage unit. 2. The saturated steam generator according to claim 1, wherein the saturated heat generating material is filled so as to enter and a gap between the solid heat storing materials is filled with a liquid heat storing material.
【請求項3】 固体蓄熱材が、マグネシア、マグネタイ
ト、シリカ及びアルミナから選ばれた一種又は二種以上
の粒体である請求項1又は請求項2記載の飽和水蒸気発
生装置。
3. The saturated steam generator according to claim 1, wherein the solid heat storage material is one or more particles selected from magnesia, magnetite, silica and alumina.
【請求項4】 液体蓄熱材が、硝酸塩である請求項1〜
3のいずれか一項記載の飽和水蒸気発生装置。
4. The liquid heat storage material is a nitrate.
4. The saturated steam generator according to claim 3.
【請求項5】 蓄熱材を加熱するヒータが、電気ヒータ
である請求項1〜4のいずれか一項記載の飽和水蒸気発
生装置。
5. The saturated steam generator according to claim 1, wherein the heater for heating the heat storage material is an electric heater.
【請求項6】 飽和水蒸気発生槽で発生した飽和水蒸気
中のドレンを取り除くドレン除去手段が設けられている
請求項1〜5のいずれか一項記載の飽和水蒸気発生装
置。
6. The saturated steam generator according to claim 1, further comprising a drain removing means for removing drain in the saturated steam generated in the saturated steam generating tank.
【請求項7】 飽和水蒸気発生槽が、蓄熱槽から供給さ
れた過熱水蒸気を加熱源とする加熱ヒータによって貯留
水が加熱されて飽和水蒸気を発生する蒸発槽と、前記蒸
発槽に連通されて蒸発槽の貯留水のレベルを検出する検
出手段が設けられたレベル検出槽とから成る請求項1〜
6のいずれか一項記載の飽和水蒸気発生装置。
7. A saturated steam generating tank is provided with an evaporating tank in which stored water is heated by a heating heater using superheated steam supplied from the heat storage tank as a heating source to generate saturated steam, and the saturated tank is connected to the evaporating tank to evaporate. A level detecting tank provided with a detecting means for detecting the level of the stored water in the tank.
7. The saturated steam generator according to claim 6.
【請求項8】 飽和水蒸気発生槽に供給する供給水を貯
留する水供給槽が設けられ、且つ前記水供給槽内の供給
水を加熱する加熱源として、前記飽和水蒸気発生槽で加
熱源に用いられた過熱水蒸気のドレンが用いられるよう
に、前記飽和水蒸気発生槽から水供給槽に至るドレン配
管が設けられている請求項1〜7のいずれか一項記載の
飽和水蒸気発生装置。
8. A water supply tank for storing supply water to be supplied to the saturated steam generation tank is provided, and a heating source for heating the supply water in the water supply tank is used as a heating source in the saturated steam generation tank. The saturated steam generator according to any one of claims 1 to 7, wherein a drain pipe is provided from the saturated steam generation tank to the water supply tank so that the drain of the superheated steam is used.
JP2000210413A 2000-07-11 2000-07-11 Saturated steam generating device Pending JP2002022101A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000210413A JP2002022101A (en) 2000-07-11 2000-07-11 Saturated steam generating device
PCT/JP2001/005991 WO2002004860A1 (en) 2000-07-11 2001-07-10 Saturated steam generator, steam sterilizer, and steam sterilization method
CNB018125476A CN1249375C (en) 2000-07-11 2001-07-10 Saturated steam generator, steam sterilizer, and steam sterilizing method
US10/332,482 US7079759B2 (en) 2000-07-11 2001-07-10 Saturated steam generator, steam sterilizer, and steam sterilization method
EP01947967A EP1300630A4 (en) 2000-07-11 2001-07-10 Saturated steam generator, steam sterilizer, and steam sterilization method
AU2001269504A AU2001269504A1 (en) 2000-07-11 2001-07-10 Saturated steam generator, steam sterilizer, and steam sterilization method
KR10-2003-7000280A KR20030014430A (en) 2000-07-11 2001-07-10 Saturated steam generator, steam sterilizer, and steam sterilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000210413A JP2002022101A (en) 2000-07-11 2000-07-11 Saturated steam generating device

Publications (1)

Publication Number Publication Date
JP2002022101A true JP2002022101A (en) 2002-01-23

Family

ID=18706687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000210413A Pending JP2002022101A (en) 2000-07-11 2000-07-11 Saturated steam generating device

Country Status (1)

Country Link
JP (1) JP2002022101A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002017825A (en) * 2000-07-11 2002-01-22 Chiyoda Manufacturing Co Ltd Steam sterilizing device
JP2003205019A (en) * 2002-01-10 2003-07-22 Chiyoda Manufacturing Co Ltd Steam sterilization system
WO2006057523A1 (en) * 2004-11-26 2006-06-01 Human Meditek Co., Ltd. Hydrogen peroxide vapor sterilizer and sterilizing methods using the same
CN101995171A (en) * 2010-10-27 2011-03-30 江苏科技大学 Self-adaptive superheated steam saturer
US8168132B2 (en) 2006-07-07 2012-05-01 Scican Ltd. Apparatus and method for drying instruments using superheated steam

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162503A (en) * 1979-06-06 1980-12-17 Hitachi Ltd Pressure accumulator
JPH03282101A (en) * 1990-03-30 1991-12-12 Babcock Hitachi Kk Steam generating device
JPH04139301A (en) * 1990-09-29 1992-05-13 Hisaka Works Ltd Food-use pure steam generator
JPH09285527A (en) * 1996-04-25 1997-11-04 Miura Co Ltd Steam sterilizer
JP2000097498A (en) * 1998-09-25 2000-04-04 Hokuriku Electric Power Co Inc:The High temperature heat storage tank

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162503A (en) * 1979-06-06 1980-12-17 Hitachi Ltd Pressure accumulator
JPH03282101A (en) * 1990-03-30 1991-12-12 Babcock Hitachi Kk Steam generating device
JPH04139301A (en) * 1990-09-29 1992-05-13 Hisaka Works Ltd Food-use pure steam generator
JPH09285527A (en) * 1996-04-25 1997-11-04 Miura Co Ltd Steam sterilizer
JP2000097498A (en) * 1998-09-25 2000-04-04 Hokuriku Electric Power Co Inc:The High temperature heat storage tank

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002017825A (en) * 2000-07-11 2002-01-22 Chiyoda Manufacturing Co Ltd Steam sterilizing device
JP4538136B2 (en) * 2000-07-11 2010-09-08 サクラ精機株式会社 Steam sterilizer
JP2003205019A (en) * 2002-01-10 2003-07-22 Chiyoda Manufacturing Co Ltd Steam sterilization system
WO2006057523A1 (en) * 2004-11-26 2006-06-01 Human Meditek Co., Ltd. Hydrogen peroxide vapor sterilizer and sterilizing methods using the same
US8168132B2 (en) 2006-07-07 2012-05-01 Scican Ltd. Apparatus and method for drying instruments using superheated steam
CN101995171A (en) * 2010-10-27 2011-03-30 江苏科技大学 Self-adaptive superheated steam saturer

Similar Documents

Publication Publication Date Title
WO2002004860A1 (en) Saturated steam generator, steam sterilizer, and steam sterilization method
JP4097717B2 (en) Plasma enhanced vacuum sterilization method, plasma enhanced vacuum exhaust method, and plasma enhanced vacuum drying method
JP5932967B2 (en) Steam sterilizer
JP4538136B2 (en) Steam sterilizer
JP2002022101A (en) Saturated steam generating device
JP4674011B2 (en) Saturated steam generator
EP2739317B1 (en) Steam sterilizer
JP2001190642A (en) Steam sterilizing device
KR100386012B1 (en) sterilizer for medical appliance
JP3763786B2 (en) Steam sterilization system
JP4489887B2 (en) Medical treatment equipment
JP3620875B2 (en) Operation method of steam sterilizer
JP4021735B2 (en) Sterilizer
JP2002035090A (en) Steam sterilizing method and device
JP4452390B2 (en) Clean steam generator and steam sterilizer
JP2002052070A (en) Steam sterilizer and hot-air sterilizer
JP2002233565A (en) Steam sterilizer
CN105073145B (en) Sterilizer
JPH09266943A (en) Operation of sterilizer
JPH0587259B2 (en)
KR200223102Y1 (en) sterilizer for medical appliance
JP3512234B2 (en) Small steam sterilizer
JP2002294245A (en) Heat treatment method for organic compound and heat treatment system
JP2711117B2 (en) Drying method of the material to be sterilized
JP2002102316A (en) High-pressure steam sterilizing device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118