JP2002018488A - Method and apparatus for treating wastewater - Google Patents

Method and apparatus for treating wastewater

Info

Publication number
JP2002018488A
JP2002018488A JP2001169943A JP2001169943A JP2002018488A JP 2002018488 A JP2002018488 A JP 2002018488A JP 2001169943 A JP2001169943 A JP 2001169943A JP 2001169943 A JP2001169943 A JP 2001169943A JP 2002018488 A JP2002018488 A JP 2002018488A
Authority
JP
Japan
Prior art keywords
treatment
sludge
membrane separation
coagulation
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001169943A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Okaniwa
良安 岡庭
Hisato Takeda
久人 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2001169943A priority Critical patent/JP2002018488A/en
Publication of JP2002018488A publication Critical patent/JP2002018488A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for treating wastewater whereby the quality of membrane-separated sludge is improved; the concentration dependence of filtration pressure in membrane separation is reduced and so is the formation of a cake layer on a membrane surface; and thus, the membrane separation performance can be enhanced. SOLUTION: This method for treating wastewater comprises a biological treatment step wherein wastewater is biologically treated in a biological treatment apparatus; a flocculation treatment step wherein an inorganic flocculant is added while an active sludge is kept remaining in a treated liquid obtained in the biological treatment step without subjecting the treated liquid to solid- liquid separation and the pH of the treated liquid is adjusted to 4.5-6.5; a membrane separation step wherein the treated liquid obtained by the flocculation treatment in the flocculation treatment step and containing the active sludge and a flocculated sludge is subjected to membrane separation; and a return step wherein at least a part of the sludge separated in the membrane separation step is returned to the biological treatment apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、し尿や浄化槽から
発生する浄化槽汚泥などの汚水を処理するための汚水の
処理方法及び装置に関する。
The present invention relates to a method and an apparatus for treating sewage for treating sewage such as human waste and septic tank sludge generated from a septic tank.

【0002】[0002]

【従来の技術】し尿や浄化槽から発生する浄化槽汚泥な
どの汚水を処理する方法として、例えば特公平6−67
520号公報や、特開平9−314193号公報に開示
されているものが知られている。
2. Description of the Related Art As a method for treating sewage such as human waste or septic tank sludge generated from a septic tank, for example, Japanese Patent Publication No. 6-67.
Japanese Unexamined Patent Publication No. 520 and No. 9-314193 are known.

【0003】特公平6−67520号公報に開示の処理
法では、し尿系汚水に予め凝集剤を添加して凝集槽およ
び脱水機において凝集脱水し、得られた分離液を生物処
理槽において生物処理し、処理液を限外ろ過膜により膜
分離して膜透過水を系外に排出している。
In the treatment method disclosed in Japanese Patent Publication No. 6-67520, a coagulant is added to human wastewater in advance and coagulated and dewatered in a coagulation tank and a dehydrator, and the obtained separated liquid is subjected to biological treatment in a biological treatment tank. Then, the treatment liquid is subjected to membrane separation by an ultrafiltration membrane, and the water permeated through the membrane is discharged out of the system.

【0004】また、特開平9−314193号公報に開
示の処理法では、浄化槽汚泥に予め凝集剤を添加して第
1凝集槽および脱水機において凝集脱水し、得られた分
離液にし尿を混合した上で生物処理槽において生物処理
し、処理液を沈殿槽にて固液分離した後、第2凝集槽に
おいて上澄みの分離液に無機凝集剤を添加し、凝集汚泥
を限外濾過膜により膜分離して膜透過水を系外に排出し
ている。
In the treatment method disclosed in Japanese Patent Application Laid-Open No. 9-314193, a coagulant is added to a septic tank sludge in advance, coagulated and dewatered in a first coagulation tank and a dehydrator, and urine is mixed with the obtained separated liquid. After the biological treatment in the biological treatment tank, the treated liquid is subjected to solid-liquid separation in the sedimentation tank, and then the inorganic flocculant is added to the supernatant separated liquid in the second flocculation tank, and the flocculated sludge is subjected to membrane filtration using an ultrafiltration membrane. Separated and the permeated water is discharged out of the system.

【0005】[0005]

【発明が解決しようとする課題】しかし、特公平6−6
7520号公報に開示の処理法では、生物処理に供され
た活性汚泥を限外濾過膜にて膜分離しているため、濾過
圧力が膜分離設備内での活性汚泥濃度に依存性を示し、
また濾過圧力が透過流束の増大に伴って急激に上昇する
という問題があった。従って、処理の際には適切な活性
汚泥濃度を維持し、また濾過圧力が急激に立ち上がらな
いように適切な透過流束を選択する必要があり、膜分離
において種々の制約を伴っていた。
[Problems to be solved by the invention]
In the treatment method disclosed in No. 7520, since activated sludge subjected to biological treatment is subjected to membrane separation by an ultrafiltration membrane, the filtration pressure is dependent on the activated sludge concentration in the membrane separation equipment,
There is also a problem that the filtration pressure rises rapidly with the increase of the permeation flux. Therefore, at the time of treatment, it is necessary to maintain an appropriate activated sludge concentration and to select an appropriate permeation flux so that the filtration pressure does not rise sharply, and this involves various restrictions in membrane separation.

【0006】また、特開平9−314193号公報に開
示の処理法では、無機凝集剤を添加して生成された凝集
汚泥を限外ろ過膜により膜分離しているため、ろ過に伴
って凝集汚泥が膜表面においてケーキ層を形成し易くな
り、頻繁な膜洗浄が必要であった。
In the treatment method disclosed in Japanese Patent Application Laid-Open No. 9-314193, the coagulated sludge generated by adding an inorganic coagulant is subjected to membrane separation by an ultrafiltration membrane. However, it became easy to form a cake layer on the film surface, and frequent film cleaning was required.

【0007】そこで本発明は、膜分離される汚泥の性質
を改善し、膜分離の際におけるろ過圧力の濃度依存性の
緩和及び膜面におけるケーキ層形成の緩和を図り、もっ
て膜分離性能を向上させることができる汚水の処理方法
および装置を提供することを目的とする。
Therefore, the present invention improves the properties of sludge to be subjected to membrane separation, and alleviates the concentration dependency of filtration pressure during membrane separation and the formation of a cake layer on the membrane surface, thereby improving membrane separation performance. It is an object of the present invention to provide a method and an apparatus for treating sewage that can be performed.

【0008】[0008]

【課題を解決するための手段】本発明の汚水の処理方法
は、汚水を生物処理設備において生物処理する生物処理
ステップと、生物処理ステップにおいて得られた処理液
を固液分離することなく、処理液中に活性汚泥を残留さ
せたままで無機凝集剤を添加すると共に、処理液のpH
を4.5〜6.5に調整して凝集処理する凝集処理ステ
ップと、凝集処理ステップにおいて凝集処理して得られ
た活性汚泥と凝集汚泥とが混在する処理液を膜分離する
膜分離ステップと、膜分離ステップにおいて分離された
汚泥の少なくとも一部を生物処理設備に返送する返送ス
テップとを含むことを特徴とする。
A wastewater treatment method according to the present invention comprises a biological treatment step of biologically treating wastewater in a biological treatment facility, and a treatment liquid without solid-liquid separation of the treatment liquid obtained in the biological treatment step. Add the inorganic flocculant while leaving activated sludge in the solution, and
A coagulation treatment step of adjusting coagulation to 4.5 to 6.5, and a membrane separation step of membrane-separating a treatment liquid in which activated sludge and coagulation sludge obtained by coagulation treatment in the coagulation treatment step are mixed. And returning the sludge separated in the membrane separation step to the biological treatment facility.

【0009】また、本発明の汚水の処理装置は、汚水を
生物処理する生物処理手段と、生物処理手段からの処理
液に無機凝集剤を添加すると共に、処理液のpHを4.
5〜6.5に調整して凝集処理する凝集処理手段と、生
物処理手段からの処理液を、処理液中に活性汚泥を残留
させたままで凝集処理手段に送るための流路と、凝集処
理手段からの活性汚泥と凝集汚泥とが混在する処理液を
膜分離する膜分離手段と、凝集処理手段からの活性汚泥
と凝集汚泥とが混在する処理液を膜分離手段に送るため
の流路と、膜分離手段により分離された汚泥の少なくと
も一部を生物処理手段に返送する返送手段と、を備える
ことを特徴とする。
The wastewater treatment apparatus of the present invention further comprises a biological treatment means for biologically treating wastewater, an inorganic coagulant added to the treatment liquid from the biological treatment means, and a pH of the treatment liquid of 4.
A coagulation treatment means for performing coagulation treatment by adjusting to 5 to 6.5; a flow path for sending the treatment liquid from the biological treatment means to the coagulation treatment means with activated sludge remaining in the treatment liquid; A membrane separation means for membrane-separating the treatment liquid in which the activated sludge and the coagulated sludge are mixed from the means, and a flow path for sending the treatment liquid in which the activated sludge and the coagulated sludge are mixed from the coagulation treatment means to the membrane separation means. And return means for returning at least a part of the sludge separated by the membrane separation means to the biological treatment means.

【0010】かかる方法及び装置によれば、搬入された
汚水は生物処理手段による生物処理ステップにおいて生
物処理される。生物処理された処理液は、固液分離され
ることなく処理液中に活性汚泥を残留させたままで、生
物処理手段から流路を通って凝集処理手段に送られる。
そして、凝集処理手段による凝集処理ステップにおいて
活性汚泥が残留したままの処理液中に無機凝集剤が添加
されると共に、pHが4.5〜6.5の酸性状態に調整
され、生物処理では処理されにくい例えばリン化合物や
難分解性有機物などが凝集処理される。その後、凝集処
理されて得られた活性汚泥と凝集汚泥とが混在する処理
液が、流路を通って膜分離手段に送られ、膜分離手段に
よる膜分離ステップにおいて膜分離されて膜分離液が系
外に排出される。このように、生物処理された処理液を
固液分離することなく凝集処理を行っているため、膜分
離される汚泥は生物処理による活性汚泥と凝集処理によ
る凝集汚泥とが混在したいわゆる凝集活性汚泥の状態と
なる。従って、凝集活性汚泥は、膜面でケーキ層が形成
されにくいが、ろ過圧力が膜分離設備内での汚泥の濃度
に依存する活性汚泥と、ろ過圧力が膜分離設備内での汚
泥の濃度に依存しないが、膜面でケーキ層が形成し易い
という凝集汚泥との中間の性質を持ち、汚泥の性質が改
善されることとなる。その結果、ろ過圧力の濃度依存性
の緩和および膜面でのケーキ層形成の緩和が図られ、膜
分離性能を向上させることができる。また、生物処理後
に処理液を固液分離する必要がなくなり、処理の簡略化
を図ることができる。また、膜分離手段にる膜分離ステ
ップにおいて分離された汚泥の少なくとも一部は、返送
手段による返送ステップにおいて生物処理手段に返送さ
れ、生物処理に供される。これにより、生物処理手段に
よる生物処理ステップにおいて、処理に用いる活性汚泥
濃度を高濃度に維持することができる。その結果、生物
処理を好適に行うことができるとともに、生物処理設備
の小型化が図られる。また、返送される汚泥中には凝集
処理に供されなかった余分な無機凝集剤が残留している
ため、凝集処理において添加される無機凝集剤の節約を
図ることができる。
[0010] According to the method and the apparatus, the contaminated sewage is biologically treated in the biological treatment step by the biological treatment means. The biologically treated treatment liquid is sent from the biological treatment means to the coagulation treatment means through the flow path, with the activated sludge remaining in the treatment liquid without solid-liquid separation.
Then, in the coagulation treatment step by the coagulation treatment means, an inorganic coagulant is added to the treatment liquid in which the activated sludge remains, and the pH is adjusted to an acidic state of 4.5 to 6.5. For example, a phosphorus compound, a hardly decomposable organic substance, or the like that is difficult to be subjected to aggregation treatment. Thereafter, the treatment liquid in which the activated sludge obtained by the coagulation treatment and the coagulated sludge are mixed is sent to the membrane separation means through the flow path, and the membrane is separated in the membrane separation step by the membrane separation means, and the membrane separation liquid is separated. It is discharged out of the system. As described above, since the coagulation treatment is performed without separating the biologically treated treatment liquid into solid and liquid, the sludge to be subjected to membrane separation is a so-called coagulation activated sludge in which activated sludge by biological treatment and coagulation sludge by coagulation treatment are mixed. State. Therefore, the coagulation activated sludge does not easily form a cake layer on the membrane surface, but the activated sludge whose filtration pressure depends on the concentration of sludge in the membrane separation equipment and the filtration pressure depends on the concentration of sludge in the membrane separation equipment. Although it does not depend on it, it has an intermediate property with coagulated sludge that a cake layer is easily formed on the membrane surface, and the property of sludge is improved. As a result, the concentration dependency of the filtration pressure is reduced, and the formation of the cake layer on the membrane surface is reduced, and the membrane separation performance can be improved. In addition, there is no need to perform solid-liquid separation of the treatment liquid after the biological treatment, and the treatment can be simplified. Further, at least a part of the sludge separated in the membrane separation step by the membrane separation means is returned to the biological treatment means in the return step by the return means, and is subjected to biological treatment. Thereby, in the biological treatment step by the biological treatment means, the concentration of the activated sludge used for the treatment can be maintained at a high concentration. As a result, biological treatment can be suitably performed, and the size of the biological treatment equipment can be reduced. Further, since the returned sludge has an extra inorganic coagulant that has not been subjected to the coagulation treatment, the inorganic coagulant added in the coagulation treatment can be saved.

【0011】本発明の汚水の処理方法では、生物処理ス
テップは、生物処理設備において汚水のpHを調整する
pH調整ステップを含むことを特徴としてもよい。また
本発明の汚水の処理装置では、生物処理手段は、汚水の
pHを調整するpH調整手段を有することを特徴として
もよい。このようにすれば、汚水が効率的に生物処理さ
れる。
In the method for treating wastewater of the present invention, the biological treatment step may include a pH adjusting step of adjusting the pH of the wastewater in the biological treatment facility. In the sewage treatment apparatus of the present invention, the biological treatment means may include a pH adjusting means for adjusting the pH of the sewage. In this way, wastewater is efficiently biologically treated.

【0012】また、本発明の汚水の処理方法及び装置で
は、無機凝集剤は鉄系凝集剤を含むことを特徴としても
よい。
In the method and apparatus for treating wastewater of the present invention, the inorganic coagulant may include an iron-based coagulant.

【0013】[0013]

【発明の実施の形態】以下、添付図面を参照して本発明
の実施形態を説明する。なお、同一の要素には同一の符
号を付し、重複する説明を省略する。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that the same components are denoted by the same reference numerals, and redundant description will be omitted.

【0014】図1は、本発明の好適な実施形態にかかる
し尿系汚水の処理装置(以下「処理装置」という。)を
概略的に示すフローシートである。ここで、し尿系汚水
とは、し尿や浄化槽から発生する浄化槽汚泥などのこと
を指す。
FIG. 1 is a flow sheet schematically showing an apparatus for treating human wastewater (hereinafter referred to as “treatment apparatus”) according to a preferred embodiment of the present invention. Here, the human wastewater refers to human waste and septic tank sludge generated from the septic tank.

【0015】図1に示すように、処理装置10は、し尿
系汚水を凝集脱水する凝集脱水設備(凝集脱水手段)1
1を備えている。この凝集脱水設備11は、凝集槽12
と脱水機13とを備えており、凝集槽12にはし尿系汚
水を流入させるラインL0が接続されている。また、凝
集槽12には、流入されたし尿系汚水にカチオンポリマ
ー等の高分子凝集剤を添加する図示しない高分子凝集剤
添加装置が設けられている。なお、凝集剤をラインL0
に直接注入することによって凝集槽12を省略すること
も可能である。
As shown in FIG. 1, a treatment apparatus 10 includes a coagulation dehydration equipment (coagulation dehydration means) 1 for coagulating and dewatering human wastewater.
1 is provided. The coagulation dewatering equipment 11 includes a coagulation tank 12
And a dehydrator 13. A line L <b> 0 through which the human wastewater flows in is connected to the coagulation tank 12. The coagulation tank 12 is provided with a polymer coagulant adding device (not shown) for adding a polymer coagulant such as a cationic polymer to the inflowed human wastewater. The coagulant was added to the line L0.
It is also possible to omit the coagulation tank 12 by directly injecting it into the tank.

【0016】また、凝集槽12には、ラインL1を介
し、凝集槽12において凝集処理されたし尿系汚水を脱
水汚泥と分離液とに脱水分離する脱水機13が接続され
ている。そしてこの脱水機13には、脱水汚泥を系外に
排出する脱水汚泥取出手段14が設けられている。
The coagulation tank 12 is connected via a line L1 to a dehydrator 13 for dehydrating and separating the human wastewater subjected to coagulation in the coagulation tank 12 into dehydrated sludge and a separated liquid. The dehydrator 13 is provided with a dewatered sludge take-out means 14 for discharging the dewatered sludge out of the system.

【0017】さらに、脱水機13には、ラインL2(流
路)を介して脱水機13において分離された分離液を生
物処理するための生物処理設備(生物処理手段)15が
接続されている。生物処理設備15には、脱水機13よ
り導かれた分離液を活性汚泥により効率よく処理するた
めに、図示しない空気などの酸素を供給する曝気手段や
pHを測定し制御するpH制御手段などが設けられてい
る。
Further, a biological treatment facility (biological treatment means) 15 for biologically treating the separated liquid separated in the dehydrator 13 via a line L2 (flow path) is connected to the dehydrator 13. The biological treatment equipment 15 includes an aeration unit (not shown) for supplying oxygen such as air and a pH control unit for measuring and controlling the pH in order to efficiently treat the separated liquid introduced from the dehydrator 13 with activated sludge. Is provided.

【0018】また、生物処理設備15には、生物処理さ
れた処理液を固液分離するための沈殿槽や膜等の固液分
離手段を介することなく、ラインL3(流路)を介して
凝集混和設備(凝集処理手段)16が接続されている。
凝集混和設備16には、ラインL3を介して送られてき
た懸濁物質(SS)濃度の高い活性汚泥混合液に、無機
凝集剤、例えば、塩化第二鉄、ポリ硫酸鉄等の鉄系の凝
集剤、または硫酸バンド、ポリ塩化アルミニウム等のア
ルミ系の凝集剤を添加する図示しない無機凝集剤添加装
置が設けられている。また、凝集混和設備16には、活
性汚泥混合液に炭素質吸着材を添加する定量フィーダ
(炭素質吸着材添加手段)17が接続されている。炭素
質吸着材としては、例えば粉末活性炭、粒状活性炭が用
いられる。これらのうち、通常は流動性の高い10〜5
0μm程度の粒径の粉末活性炭が好んで使用される。な
お、定量フィーダ17は、粉末活性炭の攪拌混合を行い
易い凝集混和設備16に接続することが好ましいが、生
物処理設備15や後述する膜分離設備18に接続しても
よい。また、ラインL3の途中や、後述するラインL4
(流路)の途中に接続してもよい。また、凝集混和設備
16には、凝集に至適なpHを確保するために、pHを
測定し制御する図示しないpH制御手段が設けられてい
る。
In the biological treatment equipment 15, the coagulation is performed via the line L3 (flow path) without passing through a solid-liquid separation means such as a sedimentation tank or a membrane for solid-liquid separation of the biologically treated treatment liquid. The mixing equipment (aggregation processing means) 16 is connected.
The flocculation and mixing equipment 16 includes an activated sludge mixture having a high concentration of suspended solids (SS) sent through the line L3 and an inorganic flocculant, for example, an iron-based compound such as ferric chloride and polyiron sulfate. An inorganic coagulant adding device (not shown) for adding a coagulant or an aluminum-based coagulant such as a sulfate band or polyaluminum chloride is provided. In addition, a quantitative feeder (carbonaceous adsorbent addition means) 17 for adding a carbonaceous adsorbent to the activated sludge mixture is connected to the coagulation and mixing equipment 16. As the carbonaceous adsorbent, for example, powdered activated carbon and granular activated carbon are used. Of these, usually 10 to 5 having high fluidity
Powdered activated carbon having a particle size of about 0 μm is preferably used. It is preferable that the fixed-quantity feeder 17 is connected to the coagulation and mixing equipment 16 that facilitates the stirring and mixing of the powdered activated carbon, but may be connected to the biological treatment equipment 15 and a membrane separation equipment 18 described later. In addition, in the middle of the line L3 or a line L4 described later.
(The flow path) may be connected in the middle. Further, the coagulation mixing equipment 16 is provided with a pH control means (not shown) for measuring and controlling the pH in order to secure an optimum pH for coagulation.

【0019】また、凝集混和設備16には、ラインL4
を介して膜分離設備(膜分離手段)18が接続されてい
る。膜分離設備18においては、回転平膜や浸漬平膜や
チューブラ膜等のいずれも使用することができる。ま
た、膜の種類としては限外ろ過膜、精密ろ過膜等のいず
れも使用することができる。そして、膜分離設備18に
は、分離された汚泥の一部を生物処理設備15に返送す
る返送汚泥返送手段(返送手段)19が接続されている
とともに、余分な汚泥を余剰汚泥として凝集槽12に返
送する余剰汚泥返送手段20が接続されている。
Further, the line L4
A membrane separation facility (membrane separation means) 18 is connected via the. In the membrane separation equipment 18, any of a rotating flat membrane, a submerged flat membrane, and a tubular membrane can be used. Further, as the type of the membrane, any of an ultrafiltration membrane, a microfiltration membrane and the like can be used. A return sludge return means (return means) 19 for returning a part of the separated sludge to the biological treatment equipment 15 is connected to the membrane separation equipment 18, and excess sludge is converted into excess sludge as excess sludge. The surplus sludge return means 20 for returning the sludge is connected.

【0020】また、膜分離設備18には、ラインL5を
介して活性炭吸着設備(活性炭処理手段)21が接続さ
れている。さらに、活性炭吸着設備21には、活性炭処
理された処理液を処理水として系外に放流するラインL
6が接続されている。
The membrane separation equipment 18 is connected to an activated carbon adsorption equipment (activated carbon treatment means) 21 via a line L5. Further, the activated carbon adsorption equipment 21 is provided with a line L for discharging the treated liquid subjected to the activated carbon treatment as treated water out of the system.
6 are connected.

【0021】次に、前述した構成の処理装置10を用い
たし尿系汚水の処理方法について説明する。
Next, a method of treating urine-based sewage using the treatment apparatus 10 having the above-described configuration will be described.

【0022】まず、し尿系汚水がラインL0を介して凝
集槽12に流入される。このし尿系汚水は、生のし尿系
汚水であるが、スクリーンなどの除渣手段にて除渣され
たし尿系汚水を流入させるようにしてもよい。凝集槽1
2に流入されたし尿系汚水には、図示しない高分子凝集
剤添加装置からカチオンポリマー等の高分子凝集剤が添
加され、し尿系汚水中の懸濁物質(SS)や油成分、重
金属化合物などが凝集される(凝集脱水ステップ)。
First, human wastewater flows into the coagulation tank 12 via the line L0. The human wastewater is raw human wastewater, but the human wastewater which has been removed by a removing means such as a screen may be allowed to flow. Coagulation tank 1
A polymer flocculant, such as a cationic polymer, is added to the human wastewater flowing into the wastewater from a polymer flocculant addition device (not shown), and a suspended solid (SS), an oil component, a heavy metal compound, etc. in the human wastewater is added. Are aggregated (coagulation dehydration step).

【0023】そして、ラインL1を介して脱水機13に
送られ、脱水汚泥と分離液に分離される(凝集脱水ステ
ップ)。ここで脱水分離された脱水汚泥は、脱水汚泥取
出手段14により系外に排出され、焼却処理あるいは土
壌還元等によって処分される。このように、生物処理を
行う前に、し尿系汚水に予め凝集脱水処理を施し、有機
物や懸濁物質(SS)等の濃度を下げることで、生物処
理にかかる負荷を軽減している。
Then, it is sent to the dehydrator 13 via the line L1 and separated into dehydrated sludge and a separated liquid (coagulation dehydration step). The dewatered sludge dewatered and separated here is discharged out of the system by the dewatered sludge take-out means 14 and disposed of by incineration or soil reduction. As described above, before performing the biological treatment, the wastewater of the human waste is subjected to the coagulation and dehydration treatment in advance to reduce the concentration of the organic matter and the suspended substance (SS), thereby reducing the load on the biological treatment.

【0024】また、脱水機13より得られた分離液は、
ラインL2を介して生物処理設備15に送られる。生物
処理設備15では、活性汚泥および後段の返送汚泥返送
手段19より返送される返送汚泥中の硝化菌、亜硝化
菌、脱窒菌により硝化脱窒処理が行われ、し尿系汚水中
の生物化学的酸素要求量(BOD)、化学的酸素要求量
(COD)、全窒素(T−N)等の成分が低減される
(生物処理ステップ)。このとき、生物処理に至適なp
Hを確保するため、アルカリを用いて図示しないpH調
整手段によりpHが6.5以上となるようにpH調整を
行うことが好ましい。また、生物処理設備15では、返
送汚泥を返送することにより活性汚泥濃度(菌体濃度)
を5〜20g/l程度の高濃度に維持することが好まし
い。これにより、生物処理設備15の小型化が図られ
る。
The separated liquid obtained from the dehydrator 13 is
It is sent to the biological treatment facility 15 via the line L2. In the biological treatment facility 15, nitrification denitrification treatment is performed by nitrifying bacteria, nitrifying bacteria, and denitrifying bacteria in the activated sludge and the returned sludge returned from the returned sludge returning means 19 in the subsequent stage, and the biochemical in the human wastewater is performed. Components such as oxygen demand (BOD), chemical oxygen demand (COD), and total nitrogen (TN) are reduced (biological treatment step). At this time, the optimal p
In order to secure H, it is preferable to perform pH adjustment using an alkali by a pH adjusting means (not shown) so that the pH becomes 6.5 or more. In the biological treatment equipment 15, the returned sludge is returned to activate the activated sludge (cell concentration).
Is preferably maintained at a high concentration of about 5 to 20 g / l. Thereby, size reduction of the biological treatment equipment 15 is achieved.

【0025】この後、生物処理設備15に所定時間滞留
されて生物処理された懸濁物質(SS)濃度の高い処理
液が、固液分離されることなくラインL3を介して凝集
混和設備16に送られる。ここで、図示しない無機凝集
剤添加装置より無機凝集剤が添加され、生物処理では処
理されにくいリン化合物(T−P)やCODに起因する
難分解性有機物が凝集処理される(凝集処理ステッ
プ)。なお、ラインL3を通って凝集混和設備に送られ
る活性汚泥が残留したままの処理液中の懸濁物質の濃度
は、5000mg/l〜20000mg/lの通常の生物処理
(活性汚泥処理)において得られる懸濁物質濃度である
ことが好ましい。これは、懸濁物質の濃度が5000mg
/lより小さいと、膜分離される凝集活性汚泥中の活性
汚泥の割合が小さくなりすぎて、凝集活性汚泥に活性汚
泥の性質がほとんど現れなくなる傾向があるからであ
り、また、懸濁物質の濃度が20000mg/lより大き
いと、膜分離される凝集活性汚泥中の凝集汚泥の割合が
小さくなりすぎて、凝集活性汚泥に凝集汚泥の性質がほ
とんど現れなくなる傾向があるからである。また、凝集
混和設備16では、凝集に至適なpHを確保するため、
アルカリまたは酸を用いて図示しないpH調整手段によ
りpH調整が行われる。この至適なpHは、使用する無
機凝集剤によって異なるが、pH4.5〜6.5程度が
好ましい。
Thereafter, the treatment liquid having a high concentration of suspended solids (SS), which has been retained in the biological treatment equipment 15 for a predetermined time and biologically treated, is transferred to the coagulation and mixing equipment 16 via the line L3 without being subjected to solid-liquid separation. Sent. Here, an inorganic coagulant is added from an inorganic coagulant addition device (not shown), and a phosphorus compound (TP) or a hardly decomposable organic substance caused by COD, which is hardly treated by biological treatment, is subjected to coagulation treatment (coagulation treatment step). . In addition, the concentration of the suspended solids in the treatment liquid in which the activated sludge sent to the coagulation and mixing apparatus through the line L3 remains as obtained in a normal biological treatment (activated sludge treatment) of 5000 mg / l to 20,000 mg / l. It is preferable that the concentration of the suspended substance is determined. This means that the concentration of the suspended substance is 5000mg
If the ratio is less than / l, the ratio of activated sludge in the coagulated activated sludge to be separated by membrane becomes too small, and the activated sludge tends to hardly exhibit the properties of the activated sludge. If the concentration is more than 20,000 mg / l, the ratio of the coagulated sludge in the coagulated activated sludge to be subjected to membrane separation becomes too small, and the coagulated activated sludge tends to hardly exhibit the properties of the coagulated sludge. In addition, in the coagulation mixing equipment 16, in order to secure the optimum pH for coagulation,
The pH is adjusted by a pH adjusting means (not shown) using an alkali or an acid. The optimum pH varies depending on the inorganic coagulant used, but is preferably about pH 4.5 to 6.5.

【0026】また、凝集混和設備16内の処理液には、
定量フィーダ17より粉末活性炭が添加され、後段の膜
分離における膜ろ過の障害となるような高分子たんぱく
等の有機物が吸着除去される(炭素質吸着材添加ステッ
プ)。これにより、後段の膜分離における膜分離性能を
向上させることができる。また、汚泥混合液中のCOD
や色度成分等の有機物をも吸着除去することができるた
め、後段で活性炭処理する場合に、その処理が簡略化さ
れるか、または活性炭処理を行わなくても活性炭処理を
行った場合と同等の水質を得ることができる。
The processing liquid in the coagulation mixing equipment 16 includes:
Activated carbon powder is added from the fixed-quantity feeder 17, and organic substances such as high-molecular-weight proteins that may hinder membrane filtration in the subsequent membrane separation are adsorbed and removed (carbonaceous adsorbent addition step). Thereby, the membrane separation performance in the subsequent membrane separation can be improved. COD in sludge mixture
Organic substances such as color and chromaticity components can also be adsorbed and removed, so that when activated carbon treatment is performed at a later stage, the treatment is simplified, or equivalent to the case where activated carbon treatment is performed without activated carbon treatment Water quality can be obtained.

【0027】次に、凝集処理された処理液が、ラインL
4を介して膜分離設備18に送られ、汚泥と膜分離液と
に膜分離される(膜分離ステップ)。本実施形態では、
生物処理された処理液を固液分離することなく凝集処理
を行っているため、膜分離される汚泥は、生物処理によ
る活性汚泥と凝集処理による凝集汚泥とが混在したいわ
ゆる凝集活性汚泥の状態となる。従って、凝集活性汚泥
は、膜面でケーキ層が形成されにくいが、ろ過圧力(膜
間差圧)が膜分離設備内での汚泥の濃度に依存するとい
う活性汚泥と、ろ過圧力が膜分離設備内での汚泥の濃度
に依存しないが、膜面でケーキ層が形成し易いという凝
集汚泥との中間の性質を持ち、汚泥の性質が改善される
こととなる。その結果、ろ過圧力の濃度依存性の緩和、
膜面でのケーキ層形成の緩和が図られ、膜分離性能の向
上を図ることができる。
Next, the treatment liquid subjected to the coagulation treatment is supplied to the line L
4 and is sent to the membrane separation equipment 18 to be subjected to membrane separation into sludge and a membrane separation liquid (membrane separation step). In this embodiment,
Since the biologically treated liquid is subjected to coagulation without solid-liquid separation, the sludge to be membrane-separated is a state of so-called coagulated activated sludge in which activated sludge by biological treatment and coagulated sludge by coagulation are mixed. Become. Therefore, in the case of flocculation activated sludge, a cake layer is not easily formed on the membrane surface, but activated sludge in which the filtration pressure (differential pressure between membranes) depends on the concentration of sludge in the membrane separation facility, Although it does not depend on the concentration of sludge in the inside, it has an intermediate property with coagulated sludge that a cake layer is easily formed on the membrane surface, and the properties of sludge are improved. As a result, the concentration dependency of the filtration pressure is reduced,
The formation of the cake layer on the membrane surface is eased, and the membrane separation performance can be improved.

【0028】この膜分離された凝集活性汚泥の一部は、
返送汚泥返送手段19を介して生物処理設備15に返送
される(返送ステップ)。これによって、生物処理に用
いる活性汚泥濃度を高濃度に維持することができ、生物
処理を好適に行うことができると共に、生物処理設備1
5の小型化を図ることができる。また、返送される汚泥
中には凝集処理に供されなかった無機凝集剤が残留して
いるため、凝集処理において添加される無機凝集剤の節
約を図ることができる。
Part of the flocculated activated sludge separated by the membrane is:
The sludge is returned to the biological treatment facility 15 via the return sludge return means 19 (return step). Thereby, the concentration of the activated sludge used for the biological treatment can be maintained at a high concentration, and the biological treatment can be suitably performed.
5 can be reduced in size. Further, since the inorganic flocculant that has not been subjected to the coagulation treatment remains in the returned sludge, the inorganic coagulant added in the coagulation treatment can be saved.

【0029】また、余分な汚泥は、余剰汚泥返送手段2
0を介して凝集槽12に返送される。これによって、増
殖しすぎた汚泥を凝集脱水手段11にて脱水汚泥と一緒
に系外へ排出することができる。
The excess sludge is returned to the excess sludge return means 2.
And returned to the coagulation tank 12 through the zero. Thereby, the sludge that has grown too much can be discharged out of the system together with the dewatered sludge by the coagulation and dewatering means 11.

【0030】また、膜分離液はラインL5を介して活性
炭処理設備21に送られる。ここで、膜分離液に残留し
ているCODや色度成分等の有機物が活性炭吸着され、
膜分離液中から除去される(活性炭処理ステップ)。こ
れによって、し尿系汚水中の有機物の除去効率が向上さ
れ、高度の浄化処理が行われる。
The membrane separation liquid is sent to the activated carbon treatment facility 21 via the line L5. Here, organic substances such as COD and chromaticity components remaining in the membrane separation solution are adsorbed on activated carbon,
It is removed from the membrane separation solution (activated carbon treatment step). As a result, the efficiency of removing organic matter from human wastewater is improved, and a high-level purification treatment is performed.

【0031】そして、活性炭処理された処理液が、ライ
ンL6を介して系外に放流され、河川などに放水され
る。
Then, the treatment liquid subjected to the activated carbon treatment is discharged out of the system via the line L6, and discharged to a river or the like.

【0032】以下、実施例により本発明の内容を具体的
に説明する。
Hereinafter, the contents of the present invention will be specifically described with reference to examples.

【0033】[0033]

【実施例】(実施例1)図1に示すような処理装置10
で、図6の表に示す性状のし尿と浄化槽汚泥とを1:1
で混合して成るし尿系汚水を処理した。生物処理設備1
5は、一般的な浮遊式の活性汚泥処理設備を用いた。ま
た、膜分離設備18の膜は、膜面積が1.5m2の回転平
膜を使用した。膜の種類としては、ポリスルホン系高分
子から形成され、分画分子量が750000のものを使
用した。さらに、温度条件として20〜30℃の間に設
定した。なお、実施例1では、定量フィーダ17より粉
末活性炭の添加は行っていない。
(Embodiment 1) A processing apparatus 10 as shown in FIG.
Then, the night soil and the septic tank sludge having the properties shown in the table of FIG.
The sewage sewage was mixed and treated. Biological treatment equipment 1
5 used a general floating activated sludge treatment facility. As the membrane of the membrane separation equipment 18, a rotating flat membrane having a membrane area of 1.5 m 2 was used. As a type of the membrane, a membrane formed of a polysulfone-based polymer and having a molecular weight cut off of 750000 was used. Further, the temperature condition was set between 20 and 30 ° C. In the first embodiment, the powdery activated carbon was not added from the fixed-quantity feeder 17.

【0034】まず、し尿約0.5m3/day、浄化槽汚泥
約0.5m3/dayおよび水約0.2m3/dayを、余剰汚泥
返送手段20にて返送される余剰汚泥約0.01m3/da
yとともに凝集槽12に流入させ、カチオンポリマーを
対SS重量で約1〜2%程度添加した。そして、攪拌混
合して凝集処理された処理液を脱水機13により脱水処
理した。そして、得られた脱水分離液約1.21m3/da
yを、返送汚泥返送手段19より返送される返送汚泥約
4.8m3/dayとともに生物処理設備15に流入させ、
活性汚泥処理を施した。そして、活性汚泥処理された活
性汚泥処理液約6.0m3/dayを固液分離することな
く、ラインL3を介して凝集混和設備16に送った。そ
して、凝集混和設備16で無機凝集剤としてFeCl3
を鉄イオンとして約500mg/l添加し、凝集処理さ
れた処理液約6.0m3/dayを膜分離設備18に送っ
た。膜分離設備18内では、上記した膜を用いて凝集活
性汚泥と膜分離液とに膜分離を行い、得られた膜分離液
約1.2m3/dayをラインL5を介して活性炭処理設備
21に送った。そして、活性炭処理を施した活性炭処理
液をラインL6より処理水として系外に排出した。この
場合の膜分離設備18内での凝集活性汚泥の濃度は約1
5g/lであり、膜間差圧は約13kPaであった。
First, about 0.5 m 3 / day of human waste, about 0.5 m 3 / day of septic tank sludge and about 0.2 m 3 / day of water are converted into about 0.01 m 3 of excess sludge returned by the excess sludge return means 20. 3 / da
The mixture was introduced into the coagulation tank 12 together with y, and about 1 to 2% of the cationic polymer was added in terms of SS weight. Then, the treatment liquid subjected to the aggregating treatment by stirring and mixing was dehydrated by the dehydrator 13. And about 1.21 m 3 / da of the obtained dehydrated separation liquid
y is flowed into the biological treatment facility 15 together with about 4.8 m 3 / day of returned sludge returned from the returned sludge return means 19,
Activated sludge treatment was performed. Then, about 6.0 m 3 / day of the activated sludge treatment liquid that had been subjected to the activated sludge treatment was sent to the coagulation mixing equipment 16 via the line L3 without solid-liquid separation. Then, FeCl 3 is used as an inorganic coagulant in the coagulation mixing equipment 16.
Was added as iron ions at a concentration of about 500 mg / l, and about 6.0 m 3 / day of the coagulated treatment liquid was sent to the membrane separation equipment 18. In the membrane separation equipment 18, the above-mentioned membrane is used to perform membrane separation into the flocculated activated sludge and the membrane separation liquid, and about 1.2 m 3 / day of the obtained membrane separation liquid is passed through the line L5 to the activated carbon treatment equipment 21. Sent to Then, the activated carbon treated liquid subjected to the activated carbon treatment was discharged out of the system as treated water from a line L6. In this case, the concentration of the flocculated activated sludge in the membrane separation equipment 18 is about 1
It was 5 g / l and the transmembrane pressure was about 13 kPa.

【0035】次に、この運転状態で、膜の透過流束(1
m2の膜でろ過できる膜分離液の量(m3))を0.0〜
2.0m3/m2・dayの間で変化させ、その場合の膜間差
圧(ろ過圧力)を随時測定して透過流束と膜間差圧との
関係を調べた。また、膜分離設備18内での凝集活性汚
泥の濃度を約12g/lに維持した場合についても上記
と同様の実験を行い、膜間差圧(ろ過圧力)と凝集活性
汚泥濃度との関係を調べた。
Next, in this operating state, the permeation flux (1
The amount (m 3 ) of the membrane separation liquid that can be filtered with the m 2
The pressure was changed between 2.0 m 3 / m 2 · day, and the transmembrane pressure (filtration pressure) in that case was measured as needed to examine the relationship between the permeation flux and the transmembrane pressure. Further, the same experiment as above was carried out also when the concentration of the flocculated activated sludge in the membrane separation equipment 18 was maintained at about 12 g / l, and the relationship between the transmembrane pressure (filtration pressure) and the flocculated activated sludge concentration was determined. Examined.

【0036】図3は、膜分離設備18内での凝集活性汚
泥濃度がそれぞれ約12g/l、15g/lの場合につい
て、膜分離液の透過流束と膜間差圧(ろ過圧力)との関
係を示している。また、実施例1を実施した場合におい
て、膜分離設備18の膜の洗浄の頻度は、二月に1回程
度であった。
FIG. 3 shows the relationship between the permeation flux of the membrane separation liquid and the transmembrane pressure (filtration pressure) when the flocculation activated sludge concentration in the membrane separation equipment 18 is about 12 g / l and 15 g / l, respectively. Shows the relationship. In the case where Example 1 was performed, the frequency of cleaning of the membrane of the membrane separation equipment 18 was about once every two months.

【0037】なお、実施例1を行った場合の装置の各部
におけるし尿系汚水の処理状況について図6の表に示
す。
The state of treatment of human wastewater in each part of the apparatus when the first embodiment is performed is shown in the table of FIG.

【0038】(比較例1)実施例1では、凝集汚泥と活
性汚泥とが混在する凝集活性汚泥を膜分離する場合の膜
間差圧と透過流束との関係について調べたが、比較例1
では、活性汚泥のみを膜分離する場合、また凝集汚泥の
みを膜分離する場合の膜間差圧と透過流束との関係を調
べ、凝集活性汚泥を膜分離する場合と比較するため、実
施例1と同じ膜を用いて以下の実験を行った。
(Comparative Example 1) In Example 1, the relationship between the transmembrane pressure and the permeation flux in the case of membrane separation of coagulated activated sludge in which coagulated sludge and activated sludge are mixed was examined.
In order to examine the relationship between the transmembrane pressure and the permeation flux when only activated sludge is subjected to membrane separation, or when only coagulated sludge is subjected to membrane separation, and to compare with the case where the activated sludge is subjected to membrane separation, The following experiment was performed using the same film as in Example 1.

【0039】図2に示す装置30においてし尿系汚水の
処理を行った。比較例1においては、生物処理を行った
後に、第1の膜分離設備33にて活性汚泥のみが含まれ
ている処理液を膜分離し、得られた膜分離液を凝集混和
設備35にて凝集処理し、凝集汚泥のみが含まれる処理
液を再び第2の膜分離設備36にて膜分離している。こ
こで、両膜分離設備33,36の膜は、比較のため実施
例1と同じものを用い、膜面積として第1の膜分離設備
33の膜は1.5m2とし、また、第2の膜分離設備36
の膜は、1.5m2とした。
The treatment of human wastewater was performed in the apparatus 30 shown in FIG. In Comparative Example 1, after performing the biological treatment, the treatment liquid containing only the activated sludge is subjected to membrane separation in the first membrane separation equipment 33, and the obtained membrane separation liquid is subjected to coagulation and mixing equipment 35. The coagulation treatment is performed, and the processing liquid containing only the coagulated sludge is subjected to membrane separation again in the second membrane separation equipment 36. Here, the membranes of the two membrane separation facilities 33 and 36 were the same as those in Example 1 for comparison, the membrane area of the first membrane separation facility 33 was 1.5 m 2, and the second Membrane separation equipment 36
Was 1.5 m 2 .

【0040】まず、し尿(SS=9700mg/l)約
0.5m3/day、浄化槽汚泥(SS=1500mg/l)
約0.5m3/dayおよび水約0.2m3/dayを、ラインL
0を介して受入貯留設備31に流入させた後、返送汚泥
返送手段38にて返送される返送汚泥(SS=1500
0mg/l)約4.7m3/day及び凝集脱水処理設備34
からラインL3を介して返送される分離液(SS=21
0mg/l)約0.6m3/dayとともにラインL1を介し
て生物処理設備32に流入させ、生物処理を行った。そ
して、生物処理された処理液(SS=12000mg/
l)約6.5m3/dayを、ラインL2を介して第1の膜
分離設備33に送り、活性汚泥と膜分離液とに膜分離し
た。そして、得られた膜分離液約1.3m3/dayをライ
ンL5を介して凝集混和設備35に送った。なお、第1
の膜分離設備33により膜分離された活性汚泥(SS=
15000mg/l)の一部の約0.5m3/dayは、ライ
ンL4を介して凝集脱水処理設備34に送られる。この
凝集脱水処理設備34では、第2の膜分離設備36から
送られてくる凝集汚泥(SS=10000mg/l)約
0.1m3/dayとともに、カチオンポリマーが対SS重
量で約1〜2%程度添加され、凝集処理された後脱水機
により脱水されて脱水汚泥と分離液とに分けられる。凝
集混和設備35に送られた膜分離液約1.3m3/dayに
は、無機凝集剤としてFeCl3を鉄イオンとして約5
00mg/l添加し、凝集処理した処理液約1.3m3
day(SS=1000mg/l)をラインL6を介して第
2の膜分離設備36に送った。第2の膜分離設備36内
では、凝集汚泥と膜分離液とに膜分離を行い、得られた
膜分離液約1.2m3/dayをラインL8を介して活性炭
処理設備37に送った。そして、活性炭処理を施した活
性炭処理液を処理水としてラインL9より系外に排出し
た。この場合の第1の膜分離設備33内での活性汚泥の
濃度は約15g/lであり、膜間差圧は約12kPaで
あった。また、第2の膜分離設備36内での凝集汚泥の
濃度は約10g/lであり、膜間差圧は約8kPaであ
った。
First, human waste (SS = 9700 mg / l) about 0.5 m 3 / day, septic tank sludge (SS = 1500 mg / l)
About 0.5m 3 / day and about 0.2m 3 / day of water
0, the sludge is returned to the receiving storage facility 31 and then returned by the return sludge return means 38 (SS = 1500
0 mg / l) about 4.7 m 3 / day and coagulation dewatering equipment 34
(SS = 21)
(0 mg / l) and flowed into the biological treatment facility 32 via the line L1 together with about 0.6 m 3 / day to carry out biological treatment. Then, a biologically treated treatment solution (SS = 12000 mg /
1) About 6.5 m 3 / day was sent to the first membrane separation facility 33 via the line L2, and the activated sludge and the membrane separation liquid were separated into membranes. Then, about 1.3 m 3 / day of the obtained membrane separation liquid was sent to the coagulation mixing equipment 35 via the line L5. The first
Activated sludge (SS =
About 0.5 m 3 / day of a part of 15000 mg / l) is sent to the coagulation dewatering equipment 34 via the line L4. In this coagulation and dewatering treatment facility 34, together with about 0.1 m 3 / day of coagulated sludge (SS = 10000 mg / l) sent from the second membrane separation equipment 36, the cationic polymer is contained in about 1 to 2% by weight of SS. After being added to a certain extent and subjected to coagulation treatment, the mixture is dehydrated by a dehydrator to be separated into dehydrated sludge and a separated liquid. About 1.3 m 3 / day of the membrane separation liquid sent to the coagulation mixing apparatus 35, about 5 m 2 of FeCl 3 as iron ion as an inorganic coagulant was used.
Approximately 1.3 m 3 /
Day (SS = 1000 mg / l) was sent to the second membrane separation equipment 36 via the line L6. In the second membrane separation facility 36, membrane separation was performed on the coagulated sludge and the membrane separation solution, and the obtained membrane separation solution was sent to the activated carbon treatment facility 37 via the line L8 at about 1.2 m 3 / day. Then, the activated carbon treatment liquid subjected to the activated carbon treatment was discharged out of the system from line L9 as treated water. In this case, the concentration of the activated sludge in the first membrane separation equipment 33 was about 15 g / l, and the transmembrane pressure was about 12 kPa. Further, the concentration of the coagulated sludge in the second membrane separation equipment 36 was about 10 g / l, and the transmembrane pressure was about 8 kPa.

【0041】次に、この運転状態で、それぞれの膜分離
設備33,36の膜の透過流束を0.0〜2.0m3/m2
・dayの間で変化させ、その場合の膜間差圧(ろ過圧
力)を随時測定して透過流束と膜間差圧との関係を調べ
た。
Next, in this operating state, the permeation flux of the membrane of each of the membrane separation equipments 33 and 36 is adjusted to 0.0 to 2.0 m 3 / m 2.
-It was changed during the day, and the transmembrane pressure (filtration pressure) in that case was measured as needed to examine the relationship between the permeation flux and the transmembrane pressure.

【0042】また、第1の膜分離設備33内での活性汚
泥の濃度を約11g/l、16g/l、21g/lに維持
した場合についても上記と同様の実験を行い、膜間差圧
(ろ過圧力)と活性汚泥濃度との関係を調べた。図4
は、第1の膜分離装置33内での活性汚泥濃度がそれぞ
れ約11g/l、16g/l、21g/lの場合につい
て、膜分離液の透過流束と膜間差圧(ろ過圧力)との関
係を示している。
The same experiment as above was carried out when the activated sludge concentration in the first membrane separation equipment 33 was maintained at about 11 g / l, 16 g / l and 21 g / l, and the transmembrane pressure difference was measured. The relationship between (filtration pressure) and the activated sludge concentration was examined. FIG.
In the case where the activated sludge concentration in the first membrane separation device 33 is about 11 g / l, 16 g / l and 21 g / l, respectively, the permeation flux of the membrane separation liquid and the transmembrane pressure (filtration pressure) Shows the relationship.

【0043】また、第2の膜分離設備36内での凝集汚
泥の濃度を6g/l、13g/l、19g/l、23g/l
に維持した場合についても上記と同様の実験を行い、膜
間差圧(ろ過圧力)と凝集汚泥濃度との関係を調べた。
図5は、第2の膜分離装置36内での凝集汚泥濃度がそ
れぞれ約6g/l、13g/l、19g/l、23g/lの
場合について、膜分離液の透過流束と膜間差圧(ろ過圧
力)との関係を示している。
The concentration of the coagulated sludge in the second membrane separation equipment 36 was 6 g / l, 13 g / l, 19 g / l, and 23 g / l.
The same experiment was performed as described above, and the relationship between the transmembrane pressure (filtration pressure) and the coagulated sludge concentration was examined.
FIG. 5 shows the permeation flux of the membrane separation liquid and the difference between the membranes when the coagulated sludge concentration in the second membrane separation device 36 is about 6 g / l, 13 g / l, 19 g / l, and 23 g / l, respectively. It shows the relationship with the pressure (filtration pressure).

【0044】なお、比較例1を実施した場合の第1の膜
分離設備33の膜の洗浄の頻度は、三月に1回程度であ
り、第2の膜分離設備36の膜の洗浄の頻度は、一月に
1回程度であった。
The frequency of cleaning the membrane of the first membrane separation facility 33 in the case of performing the comparative example 1 is about once every March, and the frequency of cleaning the membrane of the second membrane separation facility 36. Was about once a month.

【0045】以上の結果より、以下のことが分かる。The following can be understood from the above results.

【0046】すなわち、図4に示すように、膜を用いて
活性汚泥分離を行う場合、膜間差圧は透過流束が0.8
〜1.4m3/m2・day以上で急激に上昇し、それ以上の
透過流束でのろ過が難しいこと、及び膜間差圧が活性汚
泥濃度に強く依存することが分かる。従って、純粋に活
性汚泥を膜分離する場合は、適切な活性汚泥濃度を維持
し、また、膜間差圧が急激に立ち上がらないように適切
な透過流束を選択する必要があり、膜分離において種々
の制約が伴うことが分かる。ただし、活性汚泥の膜分離
では、膜の洗浄の頻度が三月に1回程度で済み、長時間
の継続運転が可能であることが分かる。
That is, as shown in FIG. 4, when activated sludge is separated using a membrane, the transmembrane pressure difference is 0.8
It can be seen that the temperature rises sharply at 以上 1.4 m 3 / m 2 · day or more, that filtration with a higher permeation flux is difficult, and that the transmembrane pressure strongly depends on the activated sludge concentration. Therefore, when pure activated sludge is subjected to membrane separation, it is necessary to maintain an appropriate activated sludge concentration, and to select an appropriate permeate flux so that the transmembrane pressure does not rise sharply. It can be seen that various restrictions are involved. However, in the membrane separation of activated sludge, the frequency of washing the membrane is only about once in March, and it can be seen that continuous operation for a long time is possible.

【0047】また、図5に示すように、膜を用いて凝集
汚泥分離を行う場合、膜間差圧は凝集汚泥濃度に依存し
ないこと及び小さな膜間差圧でろ過が可能であることが
分かる。従って、活性汚泥を膜分離する場合に比べて高
い透過流束での運転が可能であり、膜分離の際の制約が
少ないことが分かる。ただし、凝集汚泥の膜分離では、
ろ過に伴って凝集汚泥ケーキ層を形成し易いために、膜
の洗浄が一月に1回程度必要となり、長時間の継続運転
が難しいことが分かる。
Further, as shown in FIG. 5, when coagulated sludge is separated using a membrane, it can be seen that the transmembrane pressure does not depend on the coagulated sludge concentration and that filtration can be performed with a small transmembrane pressure. . Therefore, it can be seen that the operation with a higher permeation flux is possible as compared with the case where the activated sludge is subjected to membrane separation, and that there are fewer restrictions on membrane separation. However, in membrane separation of coagulated sludge,
Since it is easy to form a coagulated sludge cake layer with the filtration, it is necessary to wash the membrane about once a month, which indicates that long-term continuous operation is difficult.

【0048】これに対し、実施例1のように凝集活性汚
泥を膜分離する場合は、図3に示すとおり、図4と比べ
て膜間差圧の濃度依存性が緩和され、高い透過流束での
運転が可能となっていることが分かる。また、膜の洗浄
の頻度が二月に1回程度となり、純粋に活性汚泥を膜分
離する場合に比べると洗浄頻度が高くなっているが、純
粋に凝集汚泥を膜分離する場合に比べて洗浄頻度が低く
なっている。
On the other hand, when the flocculated activated sludge is subjected to membrane separation as in Example 1, as shown in FIG. 3, the concentration dependency of the transmembrane pressure difference is reduced as compared with FIG. It can be seen that the operation at is possible. In addition, the frequency of membrane cleaning is about once every two months, and the frequency of cleaning is higher than when pure activated sludge is separated by membrane. However, the cleaning frequency is higher than when pure coagulated sludge is separated by membrane. Frequency is low.

【0049】このように、従来は生物処理を行えば膜を
使って活性汚泥を膜分離し、凝集処理を行えば膜を使っ
て凝集汚泥を膜分離するという具合に、処理の度に固液
分離を行うことが処理効率等に鑑み常識とされていた
が、本発明では、敢えてこの常識を破り、生物処理と凝
集処理とで生ずる活性汚泥と凝集汚泥とが混在する凝集
活性汚泥を膜分離することで、上述した有利な作用効果
を奏し得たのである。即ち、膜分離される凝集活性汚泥
は、従来の活性汚泥と凝集汚泥との両方の性質を合わせ
持ち、膜分離される汚泥の性質が改善されることで、膜
分離の際におけるろ過圧力の濃度依存性の緩和が図られ
ると共に、膜面におけるケーキ層形成の緩和が図られ
て、もって膜分離性能が向上されていることがわかる。
As described above, conventionally, activated biological sludge is subjected to membrane separation using a membrane when biological treatment is performed, and aggregated sludge is subjected to membrane separation using a membrane when aggregate treatment is performed. Separation was considered to be common sense in view of treatment efficiency and the like, but in the present invention, this common sense is deliberately broken, and membrane activated coagulated sludge in which activated sludge generated by biological treatment and coagulation treatment and coagulated sludge are mixed is separated. By doing so, the advantageous effects described above could be obtained. That is, the coagulation activated sludge to be subjected to membrane separation has both properties of conventional activated sludge and coagulation sludge, and the properties of the sludge to be subjected to membrane separation are improved, so that the concentration of filtration pressure during membrane separation is improved. It can be seen that the dependence on the degree of dependence is reduced and the formation of a cake layer on the film surface is reduced, thereby improving the membrane separation performance.

【0050】また、生物処理後に処理液を固液分離する
必要がなくなり、処理の簡略化が図られているばかりで
なく、図6の表に示すように、処理水の水質も良好で、
高度の浄化処理がなされていることが分かる。
Further, it is not necessary to separate the treatment liquid into solid and liquid after the biological treatment, which not only simplifies the treatment but also improves the quality of the treated water as shown in the table of FIG.
It can be seen that advanced purification processing has been performed.

【0051】[0051]

【発明の効果】本発明では、膜分離される汚泥の性質を
改善し、膜分離の際におけるろ過圧力の濃度依存性の緩
和を図ると共に、膜面におけるケーキ層形成の緩和を図
り、もって膜分離性能を向上させることができる汚水の
処理方法および装置を提供することができる。
According to the present invention, the properties of sludge to be subjected to membrane separation are improved, the concentration dependency of filtration pressure during membrane separation is reduced, and the formation of a cake layer on the membrane surface is reduced. It is possible to provide a wastewater treatment method and apparatus capable of improving the separation performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態にかかるし尿系汚水の処理装
置を示すフローシート。
FIG. 1 is a flow sheet showing an apparatus for treating human wastewater according to an embodiment of the present invention.

【図2】比較例1を実施するためのし尿系汚水の処理装
置を示すフローシート。
FIG. 2 is a flow sheet showing an apparatus for treating human wastewater for implementing Comparative Example 1.

【図3】実施例1において凝集活性汚泥を膜分離する際
の透過流束と膜間差圧との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the permeation flux and the transmembrane pressure when the flocculated activated sludge is subjected to membrane separation in Example 1.

【図4】比較例1において活性汚泥を膜分離する際の透
過流束と膜間差圧との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between permeation flux and transmembrane pressure when activated sludge is subjected to membrane separation in Comparative Example 1.

【図5】比較例1において凝集汚泥を膜分離する際の透
過流束と膜間差圧との関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the permeation flux and the transmembrane pressure when the coagulated sludge is subjected to membrane separation in Comparative Example 1.

【図6】実施例1の場合のし尿系汚水の処理状況を示す
表。
FIG. 6 is a table showing the treatment status of human wastewater in the case of Example 1.

【符号の説明】[Explanation of symbols]

10…処理装置、11…凝集脱水設備、12…凝集槽、
13…脱水槽、15…生物処理設備、16…凝集混和設
備、17…定量フィーダ、18…膜分離設備、19…返
送汚泥返送手段、21…活性炭処理設備、L2,L3,
L4…ライン。
10 treatment apparatus, 11 coagulation dehydration equipment, 12 coagulation tank,
13 ... dehydration tank, 15 ... biological treatment equipment, 16 ... coagulation and mixing equipment, 17 ... quantitative feeder, 18 ... membrane separation equipment, 19 ... return sludge return means, 21 ... activated carbon treatment equipment, L2, L3
L4 ... line.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 9/00 504 C02F 9/00 504E B01D 21/01 102 B01D 21/01 102 C02F 1/44 C02F 1/44 F 1/52 ZAB 1/52 ZABE 3/12 3/12 D F S 11/02 11/02 11/14 11/14 B Fターム(参考) 4D006 GA06 GA07 HA21 HA41 HA82 KA01 KB13 KB22 MA02 MA03 MC62 PB08 PC63 4D015 BA19 BA23 BB05 CA03 DA04 DA05 DA16 DA17 EA13 EA37 FA26 4D028 AC01 AC04 BC19 BC28 BD17 4D059 AA02 BA01 BE55 BE57 BE70 DA16 DA17 DA23 DA24 DB11──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 9/00 504 C02F 9/00 504E B01D 21/01 102 B01D 21/01 102 C02F 1/44 C02F 1 / 44 F 1/52 ZAB 1/52 ZABE 3/12 3/12 DFS 11/02 11/02 11/14 11/14 BF term (reference) 4D006 GA06 GA07 HA21 HA41 HA82 KA01 KB13 KB22 MA02 MA03 MC62 PB08 PC63 4D015 BA19 BA23 BB05 CA03 DA04 DA05 DA16 DA17 EA13 EA37 FA26 4D028 AC01 AC04 BC19 BC28 BD17 4D059 AA02 BA01 BE55 BE57 BE70 DA16 DA17 DA23 DA24 DB11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 汚水を生物処理設備において生物処理す
る生物処理ステップと、 前記生物処理ステップにおいて得られた処理液を固液分
離することなく、処理液中に活性汚泥を残留させたまま
で無機凝集剤を添加すると共に、当該処理液のpHを
4.5〜6.5に調整して凝集処理する凝集処理ステッ
プと、 前記凝集処理ステップにおいて凝集処理して得られた活
性汚泥と凝集汚泥とが混在する処理液を膜分離する膜分
離ステップと、 前記膜分離ステップにおいて分離された汚泥の少なくと
も一部を前記生物処理設備に返送する返送ステップと、
を含む汚水の処理方法。
A biological treatment step of biologically treating sewage in a biological treatment facility; and inorganic coagulation while the activated sludge remains in the treatment liquid without solid-liquid separation of the treatment liquid obtained in the biological treatment step. A coagulation treatment step of adding the agent and adjusting the pH of the treatment liquid to 4.5 to 6.5 to perform coagulation treatment; and the activated sludge and coagulation sludge obtained by the coagulation treatment in the coagulation treatment step, A membrane separation step of membrane-separating the mixed treatment liquid, and a return step of returning at least a part of the sludge separated in the membrane separation step to the biological treatment facility,
Wastewater treatment method including:
【請求項2】 前記生物処理ステップは、前記生物処理
設備において前記汚水のpHを調整するpH調整ステッ
プを含む請求項1に記載の汚水の処理方法。
2. The wastewater treatment method according to claim 1, wherein the biological treatment step includes a pH adjustment step of adjusting a pH of the wastewater in the biological treatment facility.
【請求項3】 前記無機凝集剤は鉄系凝集剤を含む請求
項1または請求項2に記載の汚水の処理方法。
3. The method for treating sewage according to claim 1, wherein the inorganic coagulant includes an iron-based coagulant.
【請求項4】 汚水を生物処理する生物処理手段と、 前記生物処理手段からの処理液に無機凝集剤を添加する
と共に、当該処理液のpHを4.5〜6.5に調整して
凝集処理する凝集処理手段と、 前記生物処理手段からの処理液を、処理液中に活性汚泥
を残留させたままで前記凝集処理手段に送るための流路
と、 前記凝集処理手段からの活性汚泥と凝集汚泥とが混在す
る処理液を膜分離する膜分離手段と、 前記凝集処理手段からの活性汚泥と凝集汚泥とが混在す
る処理液を前記膜分離手段に送るための流路と、 前記膜分離手段により分離された汚泥の少なくとも一部
を前記生物処理手段に返送する返送手段と、を備える汚
水の処理装置。
4. A biological treatment means for biologically treating sewage, and an inorganic coagulant is added to the treatment liquid from the biological treatment means, and the pH of the treatment liquid is adjusted to 4.5 to 6.5 for coagulation. A flocculation treatment means to be treated; a flow path for sending the treatment liquid from the biological treatment means to the coagulation treatment means with activated sludge remaining in the treatment liquid; and an activated sludge from the coagulation treatment means and flocculation. Membrane separation means for membrane-separating a treatment liquid in which sludge is mixed, a flow path for sending a treatment liquid in which activated sludge and coagulated sludge are mixed from the coagulation treatment means to the membrane separation means, and the membrane separation means Return means for returning at least a part of the sludge separated by the above to the biological treatment means.
【請求項5】 前記生物処理手段は、前記汚水のpHを
調整するpH調整手段を有する請求項4に記載の汚水の
処理装置。
5. The sewage treatment apparatus according to claim 4, wherein the biological treatment means has a pH adjusting means for adjusting a pH of the sewage.
【請求項6】 前記無機凝集剤は鉄系凝集剤を含む請求
項4または請求項5に記載の汚水の処理装置。
6. The sewage treatment apparatus according to claim 4, wherein the inorganic coagulant includes an iron-based coagulant.
JP2001169943A 2001-06-05 2001-06-05 Method and apparatus for treating wastewater Pending JP2002018488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169943A JP2002018488A (en) 2001-06-05 2001-06-05 Method and apparatus for treating wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169943A JP2002018488A (en) 2001-06-05 2001-06-05 Method and apparatus for treating wastewater

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11098808A Division JP2000288586A (en) 1999-04-06 1999-04-06 Method and apparatus for treating excretion sewage

Publications (1)

Publication Number Publication Date
JP2002018488A true JP2002018488A (en) 2002-01-22

Family

ID=19011952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169943A Pending JP2002018488A (en) 2001-06-05 2001-06-05 Method and apparatus for treating wastewater

Country Status (1)

Country Link
JP (1) JP2002018488A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288287A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Organic wastewater treatment method
WO2011039832A1 (en) * 2009-09-29 2011-04-07 栗田工業株式会社 Organic wastewater treatment method and treatment device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288287A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Organic wastewater treatment method
JP4552482B2 (en) * 2004-03-31 2010-09-29 栗田工業株式会社 Organic wastewater treatment method
WO2011039832A1 (en) * 2009-09-29 2011-04-07 栗田工業株式会社 Organic wastewater treatment method and treatment device
CN102510840A (en) * 2009-09-29 2012-06-20 栗田工业株式会社 Organic wastewater treatment method and treatment device

Similar Documents

Publication Publication Date Title
JP4862361B2 (en) Waste water treatment apparatus and waste water treatment method
JP3368938B2 (en) Wastewater treatment method and apparatus
JP2010000476A (en) Organic wastewater treatment method and apparatus
JPS6328500A (en) Treatment device for night soil sanitary sewage
JPH0366036B2 (en)
JP2002018488A (en) Method and apparatus for treating wastewater
JP2939156B2 (en) Sewage treatment equipment
JP2008023417A (en) Water purifying apparatus and water purifying method
JP2000288586A (en) Method and apparatus for treating excretion sewage
JPH0647118B2 (en) Organic wastewater treatment method
JPH0352699A (en) Treatment of sewage of night soil system
CN110902949A (en) Sewage treatment process and device capable of achieving surface IV-class water discharge
JPH0649197B2 (en) Organic wastewater treatment method
JP2021010889A (en) Water recovery device
JPH0310399B2 (en)
JP4467748B2 (en) Waste water treatment equipment
JPH02293098A (en) Treatment of night soil
JPS60206498A (en) Treatment of excretion sewage
JP3229806B2 (en) Human wastewater treatment equipment
JPH074597B2 (en) Organic wastewater treatment equipment
JPH0310398B2 (en)
JP3229802B2 (en) Sewage treatment method and apparatus therefor
JPH0567359B2 (en)
JPH1028995A (en) Treatment of waste water
JPH044098A (en) Treatment of night soil-based sewage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120