JP2002009144A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2002009144A
JP2002009144A JP2000189267A JP2000189267A JP2002009144A JP 2002009144 A JP2002009144 A JP 2002009144A JP 2000189267 A JP2000189267 A JP 2000189267A JP 2000189267 A JP2000189267 A JP 2000189267A JP 2002009144 A JP2002009144 A JP 2002009144A
Authority
JP
Japan
Prior art keywords
element isolation
film
silicon
oxide film
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000189267A
Other languages
Japanese (ja)
Inventor
Shiro Uchiyama
士郎 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2000189267A priority Critical patent/JP2002009144A/en
Publication of JP2002009144A publication Critical patent/JP2002009144A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a technique for reducing a hollow (a divot) occurring at the end part of an element region and an element isolation region for the purpose of an oxide film removal process carried out repeatedly in forming a groove buried type element isolation region of a semiconductor device, and further to provide a technique for decreasing an oxidizing treating temperature after having formed a STI groove so as to isolate the element region. SOLUTION: In this method for manufacturing the semiconductor device, a silicon film is formed on the element isolation groove formed on the semiconduction substrate and on a first insulating layer, or after having formed the silicon film on an isolation mask opening and on the first insulating layer, the element isolation groove is formed, and the surface of the element isolation groove and the silicon film are then oxidized. As a result, the silicon film becomes an etching stopper in an oxide film removal process and thus the divot can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体記憶装置の製造
方法に関し、特にDRAM(DynamicRando
m Access Memory)の形成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor memory device, and more particularly to a DRAM (Dynamic Lando).
m Access Memory).

【0002】[0002]

【従来の技術】半導体の大容量化に伴い、セルサイズの
縮小化が進み、半導体装置の素子領域間の分離は現在、
STI(Shallow Trench Isolat
ion)を用いて行われている。しかし、このSTIで
は素子領域端部の形状が悪い。そこで、STI溝を形成
した後に端部の形状を改善するための酸化処理を行い、
その後素子分離領域に酸化膜を形成させる方法がとられ
ている。
2. Description of the Related Art As the capacity of semiconductors has increased, the cell size has been reduced.
STI (Shallow Trench Isolat)
ion). However, in this STI, the shape of the end of the element region is bad. Therefore, after forming the STI trench, an oxidation process is performed to improve the shape of the end portion,
Thereafter, a method of forming an oxide film in the element isolation region has been adopted.

【0003】従来のDRAMを作成する際のSTI形成
方法について、図面を参照しながら説明する。図3は、
従来のDRAMにおけるSTIの製造工程を順に示した
縦断面図である。まず、図3(a)に示すように、半導
体基板1上に厚さ10〜30nmのシリコン酸化膜2を
形成し、その上に100〜300nmのシリコン窒化膜
3を形成した後、拡散層になる領域とフィールドになる
領域とをリソグラフィーおよびドライエッチングにより
パターニングを行う。そして図3(b)に示すように、
膜が除去され半導体基板1が露出した素子分離領域をさ
らに異方性エッチングし、深さ100〜500nm程度
の素子分離溝4を形成する。
A method for forming an STI when a conventional DRAM is manufactured will be described with reference to the drawings. FIG.
FIG. 11 is a longitudinal sectional view sequentially showing a manufacturing process of an STI in a conventional DRAM. First, as shown in FIG. 3A, a silicon oxide film 2 having a thickness of 10 to 30 nm is formed on a semiconductor substrate 1 and a silicon nitride film 3 having a thickness of 100 to 300 nm is formed thereon. The region to be formed and the region to be a field are patterned by lithography and dry etching. Then, as shown in FIG.
The element isolation region where the film is removed and the semiconductor substrate 1 is exposed is further anisotropically etched to form an element isolation groove 4 having a depth of about 100 to 500 nm.

【0004】続いて、図3(c)に示すように、素子分
離溝4の側壁部に熱酸化法によりシリコン酸化膜10を
形成する。引き続いて、図3(d)に示すように、化学
気相成長(CVD)法により素子分離溝4をシリコン酸
化膜5で埋め込み、平坦化処理を行う。この後、図3
(e)に示すように、シリコン窒化膜3を除去し、さら
に図3(f)に示すようにシリコン酸化膜2も除去し半
導体基板1を露出させる。続いて、図3(g)に示すよ
うに、露出した半導体基板1上に、再びシリコン酸化膜
6を形成させ、この後イオン注入することにより半導体
基板1に拡散層7を形成する。この後、図3(h)に示
すように、シリコン酸化膜6の除去を行う。続いて、図
示はしていないがゲート電極材料堆積後、リソグラフィ
ーおよびドライエッチングによりゲート電極を形成す
る。
Subsequently, as shown in FIG. 3C, a silicon oxide film 10 is formed on the side wall of the isolation trench 4 by a thermal oxidation method. Subsequently, as shown in FIG. 3D, the element isolation trench 4 is buried with a silicon oxide film 5 by a chemical vapor deposition (CVD) method, and a flattening process is performed. After this, FIG.
As shown in FIG. 3E, the silicon nitride film 3 is removed, and as shown in FIG. 3F, the silicon oxide film 2 is also removed to expose the semiconductor substrate 1. Subsequently, as shown in FIG. 3 (g), a silicon oxide film 6 is formed again on the exposed semiconductor substrate 1, and thereafter, a diffusion layer 7 is formed on the semiconductor substrate 1 by ion implantation. Thereafter, the silicon oxide film 6 is removed as shown in FIG. Subsequently, although not shown, after depositing the gate electrode material, a gate electrode is formed by lithography and dry etching.

【0005】この様な従来方法では、素子領域端部の形
状改善のために行う図3(c)に示したような熱酸化処
理が高温で行われるため、シリコン基板に大きなストレ
スがかかり、特に6インチ以上のウェハーではストレス
に対するマージンがないため、欠陥や転移等を引き起こ
すという問題点があった。
In such a conventional method, since a thermal oxidation treatment as shown in FIG. 3C for improving the shape of the end portion of the element region is performed at a high temperature, a large stress is applied to the silicon substrate, and particularly, Since there is no margin for stress in a wafer of 6 inches or more, there is a problem that a defect or a transfer is caused.

【0006】またさらに、この従来方法では、STI埋
設に用いられるシリコン酸化膜5が、STI形成からゲ
ート電極形成までの間に繰り返し行う酸化膜除去工程に
より横方向にもエッチングされてしまい、素子領域とS
TI界面に図3(h)に示すようなくぼみ(ディボッ
ト)が発生してしまう。このディボットにより半導体基
板部分が露出してしまうと、露出した基板部分に電界が
集中してしまい、しきい値電流が低下すること、トラン
ジスタ性能への悪影響などの問題が起きることになる。
Furthermore, in this conventional method, the silicon oxide film 5 used for embedding the STI is etched in the lateral direction by an oxide film removing step that is repeatedly performed from the formation of the STI to the formation of the gate electrode, and thus the element region is formed. And S
A depression (divot) occurs at the TI interface as shown in FIG. If the semiconductor substrate portion is exposed by the divot, an electric field is concentrated on the exposed substrate portion, causing problems such as a decrease in threshold current and an adverse effect on transistor performance.

【0007】[0007]

【発明が解決しようとする課題】本発明は、このような
問題点を解決するためになされたものであり、STIで
半導体装置の溝埋め込み型素子分離領域の形成をする際
に、酸化処理温度を低下させると共に、素子領域とST
I界面にくぼみを生じることなく平滑な基板表面を有す
る、信頼性の高い半導体装置を効率良く製作できる方法
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem. When forming a trench-filled element isolation region of a semiconductor device by STI, an oxidation treatment temperature is reduced. And the element region and ST
It is an object of the present invention to provide a method for efficiently manufacturing a highly reliable semiconductor device having a smooth substrate surface without causing depression at an I interface.

【課題を解決するための手段】[Means for Solving the Problems]

【0008】前記課題を解決する本願発明請求項1の発
明は、従来例の" 素子分離溝を形成した後に素子分離溝
の側壁部に熱酸化法によりシリコン熱酸化膜を形成す
る"に対し、"素子分離溝を形成した後に素子分離溝内お
よび第1絶縁層上にシリコン膜を形成し、このシリコン
層を酸化しシリコン酸化膜とする"ことを特徴とする半
導体装置の製造方法である。
The invention of the present invention, which solves the above-mentioned problems, is characterized by the fact that a silicon thermal oxide film is formed on a side wall of an element isolation groove by a thermal oxidation method after forming an element isolation groove. A method for manufacturing a semiconductor device, characterized by "a silicon film is formed in an element isolation groove and on a first insulating layer after the element isolation groove is formed, and the silicon layer is oxidized to a silicon oxide film."

【0009】上記本願発明請求項1の発明によれば、素
子分離溝上に形成したシリコン膜を酸化させるので、従
来の半導体基板を露出させた状態で熱酸化膜を形成する
よりも、酸化温度を低下させることが可能となる。この
ため、シリコン基板にかかるストレスが小さくなるた
め、大きなサイズのウェハーにおいて欠陥や転移の問題
を低減できる。また、素子分離溝側壁のシリコン膜およ
び酸化膜が後工程で行う酸化膜エッチングの際にストッ
パーとなるために、ディボットを低く押さえることが可
能になる
According to the first aspect of the present invention, since the silicon film formed on the element isolation trench is oxidized, the oxidization temperature is reduced as compared with the case where the conventional thermal oxide film is formed with the semiconductor substrate exposed. It can be reduced. For this reason, the stress applied to the silicon substrate is reduced, so that the problem of defects and transfer in a large-sized wafer can be reduced. In addition, since the silicon film and the oxide film on the side walls of the isolation trench serve as stoppers in the oxide film etching performed in a later step, the divot can be suppressed low.

【0010】また、本願発明請求項2の発明は、従来例
の" 素子分離溝を形成した後に素子分離溝の側壁部に熱
酸化法によりシリコン熱酸化膜を形成する"に対し、"素
子分離溝を形成する前に半導体基板および第1絶縁層上
にシリコン膜を形成し、素子分離溝を形成した後、素子
分離溝の側壁部およびシリコン膜を酸化しシリコン酸化
膜とする"ことを特徴とする半導体装置の製造方法であ
る。
[0010] The invention of claim 2 of the present invention is directed to a method of forming a silicon thermal oxide film by a thermal oxidation method on a side wall of an element isolation groove after forming an element isolation groove. Before forming the groove, a silicon film is formed on the semiconductor substrate and the first insulating layer, and after forming the element isolation groove, the sidewall portion of the element isolation groove and the silicon film are oxidized to form a silicon oxide film. Of the semiconductor device.

【0011】上記本願発明請求項2の発明によれば、第
1絶縁層側壁のシリコン膜および酸化膜が後工程で行う
酸化膜エッチングの際にストッパーとなるために、ディ
ボットを低く押さえることが可能になる。
According to the second aspect of the present invention, since the silicon film and the oxide film on the side wall of the first insulating layer serve as stoppers when the oxide film is etched in a later step, the divot can be kept low. become.

【0012】本願発明請求項3乃至6はそれぞれ、第1
絶縁膜を構成する膜がシリコン窒化膜であること、第2
絶縁膜を構成する膜がシリコン酸化膜であること、シリ
コン膜の酸化はシリコン膜を一部または全部酸化するこ
と、第1絶縁膜を半導体基板上に直接または他の層を介
して形成することを特徴とする請求項1または請求項2
の半導体装置製造方法である。
[0012] Claims 3 to 6 of the present invention each have a first
The film constituting the insulating film is a silicon nitride film;
The film constituting the insulating film is a silicon oxide film, the oxidation of the silicon film is to partially or entirely oxidize the silicon film, and the first insulating film is formed directly or via another layer on the semiconductor substrate. The method according to claim 1 or 2, wherein
Semiconductor device manufacturing method.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【実施の形態1】次に本発明である半導体装置の製造方
法の実施の形態について図面を参照しながら説明する。
図1に本発明の第1の実施の形態を工程順に示した縦断
面図を示す。
Embodiment 1 Next, an embodiment of a method of manufacturing a semiconductor device according to the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing the first embodiment of the present invention in the order of steps.

【0014】まず、従来法と同様に図1(a)に示すよ
うに、半導体基板1上に厚さ10〜30nmのシリコン
酸化膜2を形成し、その上に100〜300nmのシリ
コン窒化膜3を形成した後、拡散層になる領域とフィー
ルドになる領域とをリソグラフィーおよびドライエッチ
ングによりパターニングを行う。続いて、図1(b)に
示すように、に示すように、膜が除去され半導体基板1
が露出した素子分離領域をさらに異方性エッチングし、
深さ100〜500nm程度の素子分離溝4を形成す
る。
First, as shown in FIG. 1A, a silicon oxide film 2 having a thickness of 10 to 30 nm is formed on a semiconductor substrate 1 and a silicon nitride film 3 having a thickness of 100 to 300 nm is formed thereon as shown in FIG. Is formed, a region to be a diffusion layer and a region to be a field are patterned by lithography and dry etching. Subsequently, as shown in FIG. 1B, as shown in FIG.
Is further anisotropically etched in the element isolation region where
An element isolation groove 4 having a depth of about 100 to 500 nm is formed.

【0015】続いて、図1(c)に示すように、半導体
基板1が露出した状態でシリコン膜8を5〜30nmで
形成し、この後に図1(d)に示すようにシリコン熱酸
化膜10を形成する。その後は従来の方法と同様に、図
1(e)に示すように、CVD法によって素子分離溝4
をシリコン酸化物の埋め込み酸化膜5で埋め込み、この
後に表面の平坦化処理を行う。続いて、図1(f)に示
すようにシリコン窒化膜3を除去し、図1(g)に示す
ようにシリコン酸化膜2を除去する。次に、図1(h)
に示すように、露出した半導体基板1に再度シリコン酸
化膜6を形成した後、イオン注入により半導体基板1に
拡散層7を形成する。続いて、図1(i)に示すよう
に、シリコン酸化膜6を除去する。その後図示はしてい
ないがゲート電極材料堆積後、リソグラフィーおよびド
ライエッチングによりゲート電極を形成する。
Subsequently, as shown in FIG. 1C, a silicon film 8 is formed to a thickness of 5 to 30 nm in a state where the semiconductor substrate 1 is exposed, and thereafter, as shown in FIG. Form 10. Thereafter, as in the conventional method, as shown in FIG.
Is buried with a buried oxide film 5 of silicon oxide, and thereafter, the surface is flattened. Subsequently, the silicon nitride film 3 is removed as shown in FIG. 1F, and the silicon oxide film 2 is removed as shown in FIG. Next, FIG.
As shown in (1), after a silicon oxide film 6 is formed again on the exposed semiconductor substrate 1, a diffusion layer 7 is formed on the semiconductor substrate 1 by ion implantation. Subsequently, as shown in FIG. 1I, the silicon oxide film 6 is removed. Thereafter, although not shown, after depositing the gate electrode material, a gate electrode is formed by lithography and dry etching.

【0016】本実施形態では、面方位依存性の少ないシ
リコン膜を形成することにより、低温の酸化処理でも拡
散層端部の形状改善効果が得られるため、従来よりも酸
化処理温度を低くすることが可能になり、欠陥や転移の
問題を抑制することができる。また、シリコン窒化膜側
壁のシリコン膜と熱酸化膜が、図1(g)工程での酸化
膜エッチングの際の保護領域となるため、ディボットを
生じにくく、平滑な表面が得やすくなるという効果が生
じる。
In this embodiment, by forming a silicon film having little dependence on plane orientation, an effect of improving the shape of the end portion of the diffusion layer can be obtained even at low-temperature oxidation treatment. And the problem of defects and dislocations can be suppressed. In addition, since the silicon film and the thermal oxide film on the side wall of the silicon nitride film serve as protection regions when the oxide film is etched in the step shown in FIG. 1 (g), divot hardly occurs and a smooth surface is easily obtained. Occurs.

【0017】[実施の形態2]本発明の半導体装置の製造
方法におけるシリコン膜の形成は、素子分離溝を形成す
る前に行う事でも、前述と同様の効果が実現できる。図
2は、本発明の第2の実施の形態の工程を順に示した縦
断面図である。
[Second Embodiment] The same effect as described above can be realized by forming a silicon film in a method of manufacturing a semiconductor device of the present invention before forming an element isolation groove. FIG. 2 is a longitudinal sectional view showing the steps of the second embodiment of the present invention in order.

【0018】まず、従来法と同様に図2(a)に示すよ
うに、半導体基板1上に厚さ10〜30nmのシリコン
酸化膜2を形成し、その上に100〜300nmのシリ
コン窒化膜3を形成した後、拡散層になる領域とフィー
ルドになる領域とをリソグラフィーおよびドライエッチ
ングによりパターニングを行う。続いて、図2(b)に
示すように、シリコン膜9を5〜30nmの厚さで形成
する。さらに、素子分離領域において異方性エッチング
を行い、図2(c)に示すような、深さ100〜500
nmの素子分離溝4を形成する。次に図2(d)に示す
ように、半導体基板1が露出した状態でシリコン熱酸化
膜10を形成する。
First, as shown in FIG. 2A, a silicon oxide film 2 having a thickness of 10 to 30 nm is formed on a semiconductor substrate 1 and a silicon nitride film 3 having a thickness of 100 to 300 nm is formed thereon as shown in FIG. Is formed, a region to be a diffusion layer and a region to be a field are patterned by lithography and dry etching. Subsequently, as shown in FIG. 2B, a silicon film 9 is formed with a thickness of 5 to 30 nm. Further, anisotropic etching is performed in the element isolation region, and a depth of 100 to 500 as shown in FIG.
A device isolation groove 4 of nm is formed. Next, as shown in FIG. 2D, a silicon thermal oxide film 10 is formed with the semiconductor substrate 1 exposed.

【0019】その後、図2(e)に示すように、CVD
法によって素子分離溝4をシリコン酸化膜の埋め込み酸
化膜5で埋め込み、平坦化処理を行う。その後、図2
(f)に示すようにシリコン窒化膜3を除去し、図2
(g)に示すように、シリコン酸化膜2を除去する。続
いて、図2(h)に示すように、露出した半導体基板1
に再度シリコン酸化膜6を形成する。その後、イオン注
入により半導体基板1に拡散層7を形成する。この後、
図2(i)に示すように、シリコン酸化膜6を除去す
る。図示はしていないが、続く工程としてゲート電極材
料堆積し、リソグラフィーおよびドライエッチングによ
りゲート電極を形成する。
Thereafter, as shown in FIG.
The element isolation trench 4 is buried with a buried oxide film 5 of a silicon oxide film by a method, and a planarization process is performed. Then, FIG.
The silicon nitride film 3 is removed as shown in FIG.
As shown in (g), the silicon oxide film 2 is removed. Subsequently, as shown in FIG.
The silicon oxide film 6 is formed again. After that, the diffusion layer 7 is formed on the semiconductor substrate 1 by ion implantation. After this,
As shown in FIG. 2I, the silicon oxide film 6 is removed. Although not shown, as a subsequent step, a gate electrode material is deposited, and a gate electrode is formed by lithography and dry etching.

【0020】本実施形態では、シリコン窒化膜側壁のシ
リコン膜と熱酸化膜が、図2(g)工程での酸化膜エッ
チングの際の保護領域となるため、ディボットを生じに
くく、平滑な表面が得やすくなるという効果が生じる。
In this embodiment, since the silicon film and the thermal oxide film on the side wall of the silicon nitride film serve as protection regions when the oxide film is etched in the step shown in FIG. 2 (g), divot hardly occurs and a smooth surface is obtained. The effect that it becomes easy to obtain arises.

【0021】なお、実施の形態1および実施の形態2で
は第1絶縁層を構成する膜がシリコン窒化膜であり、第
2絶縁層を構成する膜がシリコン酸化膜であるが、これ
に限らずシリコン膜よりもエッチング速度が速く、エッ
チングの際に選択的に除去されるものであればよい。ま
た、実施の形態1および実施の形態2では第1絶縁層は
シリコン酸化膜を介して半導体基板上に形成されたが、
半導体基板上に直接または他の層を介して形成されても
よい。
In the first and second embodiments, the film forming the first insulating layer is a silicon nitride film, and the film forming the second insulating layer is a silicon oxide film. However, the present invention is not limited to this. Any material may be used as long as it has a higher etching rate than the silicon film and is selectively removed at the time of etching. In the first and second embodiments, the first insulating layer is formed on the semiconductor substrate via the silicon oxide film.
It may be formed directly on the semiconductor substrate or via another layer.

【0022】[0022]

【発明の効果】以上のように、本発明の半導体装置の製
造方法は、半導体基板上に絶縁膜を介してシリコン窒化
膜上にシリコン膜を形成することで、低温の熱酸化が可
能となり、欠陥や転移の問題を低減することが可能にな
る。またさらに、このシリコン窒化膜側壁のシリコン膜
が後工程で行う酸化膜エッチングのストッパーとなるた
め、拡散相を露出させた際の表面に生じるディボットを
軽減することができ、半導体基板部分の露出を防止し、
しきい値電流の低下やトランジスタ性能への悪影響など
の問題を減少させるができる。
As described above, according to the method of manufacturing a semiconductor device of the present invention, a low-temperature thermal oxidation is made possible by forming a silicon film on a silicon nitride film via an insulating film on a semiconductor substrate, Defects and dislocation problems can be reduced. Furthermore, since the silicon film on the side wall of the silicon nitride film serves as a stopper for oxide film etching performed in a later process, divot generated on the surface when the diffusion phase is exposed can be reduced, and the exposure of the semiconductor substrate portion can be reduced. Prevent,
Problems such as a decrease in threshold current and an adverse effect on transistor performance can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における製造工程を
示す縦断面図で、(a)から(i)へと、その順序を示
す。
FIG. 1 is a longitudinal sectional view showing a manufacturing process according to a first embodiment of the present invention, in which the order is shown from (a) to (i).

【図2】本発明の第2の実施の形態における製造工程を
示す縦断面図で、(a)から(i)へと、その順序を示
す。
FIG. 2 is a longitudinal sectional view showing a manufacturing process according to a second embodiment of the present invention, in which the order is shown from (a) to (i).

【図3】従来の発明の製造工程を示す縦断面図で、
(a)から(h)へとその順序を示す。
FIG. 3 is a longitudinal sectional view showing a manufacturing process of a conventional invention.
The order is shown from (a) to (h).

【符号の説明】[Explanation of symbols]

1…半導体基板 2、6…シリコン酸化膜 5…埋め込み酸化膜 10…シリコン熱酸化膜 3…シリコン窒化膜 4…素子分離溝 7…拡散層 8、9…シリコン膜 REFERENCE SIGNS LIST 1 semiconductor substrate 2 6 silicon oxide film 5 buried oxide film 10 silicon thermal oxide film 3 silicon nitride film 4 element isolation groove 7 diffusion layer 8 9 silicon film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に形成された第1絶縁層およ
び分離マスク開口部に素子分離溝を形成する工程と、前
記素子分離溝内および前記第1絶縁層上にシリコン膜を
形成し酸化する工程と、前記素子分離溝に第2絶縁層を
充填したのち平坦化する工程とを、この順序に有するこ
とを特徴とする半導体装置製造方法。
A step of forming an element isolation groove in an opening of a first insulating layer and an isolation mask formed on a semiconductor substrate; and forming a silicon film in the element isolation groove and on the first insulating layer by oxidation. And a step of filling the element isolation trench with a second insulating layer and then planarizing the same in this order.
【請求項2】半導体基板上に形成された第1絶縁層に分
離マスク開口部を形成する工程と、前記分離マスク開口
部および前記第1絶縁層上にシリコン膜を形成する工程
と、前記分離マスク開口部に素子分離溝を形成したのち
前記素子分離溝内および前記シリコン膜を酸化する工程
と、前記素子分離溝に第2絶縁層を充填したのち平坦化
する工程とを、この順序に有することを特徴とする半導
体装置製造方法。
2. A step of forming an isolation mask opening in a first insulating layer formed on a semiconductor substrate; a step of forming a silicon film on the isolation mask opening and the first insulating layer; Forming an element isolation groove in the mask opening and then oxidizing the inside of the element isolation groove and the silicon film; and filling the element isolation groove with a second insulating layer and then planarizing the same. A method for manufacturing a semiconductor device, comprising:
【請求項3】前記第1絶縁層を構成する膜がシリコン窒
化膜であることを特徴とする請求項1または請求項2の
半導体装置製造方法。
3. The method according to claim 1, wherein the film constituting the first insulating layer is a silicon nitride film.
【請求項4】前記第2絶縁層を構成する膜がシリコン酸
化膜であることを特徴とする請求項1または請求項2の
半導体装置製造方法。
4. The method according to claim 1, wherein the film forming the second insulating layer is a silicon oxide film.
【請求項5】前記シリコン膜の酸化は前記シリコン膜の
一部または全部を酸化することを特徴とする請求項1ま
たは請求項2の半導体装置製造方法。
5. The method according to claim 1, wherein the oxidation of the silicon film oxidizes part or all of the silicon film.
【請求項6】前記第1絶縁層を半導体基板上に直接また
は他の層を介して形成することを特徴とする請求項1ま
たは請求項2の半導体装置製造方法。
6. The method according to claim 1, wherein the first insulating layer is formed on the semiconductor substrate directly or via another layer.
JP2000189267A 2000-06-23 2000-06-23 Method for manufacturing semiconductor device Pending JP2002009144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000189267A JP2002009144A (en) 2000-06-23 2000-06-23 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000189267A JP2002009144A (en) 2000-06-23 2000-06-23 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2002009144A true JP2002009144A (en) 2002-01-11

Family

ID=18688916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000189267A Pending JP2002009144A (en) 2000-06-23 2000-06-23 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2002009144A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855125B2 (en) 2007-03-16 2010-12-21 Seiko Epson Corporation Method for manufacturing semiconductor device and semiconductor device
US9960183B2 (en) 2016-06-03 2018-05-01 Renesas Electronics Corporation Method of manufacturing semiconductor device
US10002885B2 (en) 2016-09-16 2018-06-19 Renesas Electronics Corporation Manufacturing method of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855125B2 (en) 2007-03-16 2010-12-21 Seiko Epson Corporation Method for manufacturing semiconductor device and semiconductor device
US9960183B2 (en) 2016-06-03 2018-05-01 Renesas Electronics Corporation Method of manufacturing semiconductor device
US10297613B2 (en) 2016-06-03 2019-05-21 Renesas Electronics Corporation Method of manufacturing semiconductor device
US10002885B2 (en) 2016-09-16 2018-06-19 Renesas Electronics Corporation Manufacturing method of semiconductor device
US10559595B2 (en) 2016-09-16 2020-02-11 Renesas Electronics Corporation Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JP2000012676A (en) Method of isolating elements through trenches of semiconductor device
TWI253114B (en) Semiconductor device with trench isolation structure and method for fabricating the same
JPH10303291A (en) Semiconductor device and its manufacture
US6372606B1 (en) Method of forming isolation trenches in a semiconductor device
JPH06302684A (en) Forming method for field oxide film in semiconductor element
KR0161430B1 (en) Method for trench
JPH03101147A (en) Manufacture of semiconductor device
US6124184A (en) Method for forming isolation region of semiconductor device
JP2002009144A (en) Method for manufacturing semiconductor device
JP3725398B2 (en) Semiconductor device and manufacturing method thereof
CN110943032B (en) Semiconductor device forming method
JP3844896B2 (en) Semiconductor device isolation structure and method of forming the same
KR100475025B1 (en) Forming method for field oxide of semiconductor device
KR100403316B1 (en) Forming method for field oxide of semiconductor device
JP2002237518A (en) Semiconductor device and manufacturing method therefor
JP2000306989A (en) Fabrication of semiconductor device
KR100305026B1 (en) Manufacturing method of semiconductor device
US6284624B1 (en) Semiconductor device and method of manufacturing the same
JPH0729971A (en) Manufacture of semiconductor device
KR100470160B1 (en) Device isolation film formation method of semiconductor device
KR100629694B1 (en) Method for manufacturing semiconductor device
JPH0313745B2 (en)
JP2000306990A (en) Manufacture of semiconductor device
KR100770455B1 (en) Manufacturing method for semiconductor device
KR20010003615A (en) A method for forming trench type isolation layer in semiconductor device