JP2002004061A - Separating agent for annealing grain oriented electrical steel sheet and method of producing the grain oriented electrical steel sheet - Google Patents

Separating agent for annealing grain oriented electrical steel sheet and method of producing the grain oriented electrical steel sheet

Info

Publication number
JP2002004061A
JP2002004061A JP2000180364A JP2000180364A JP2002004061A JP 2002004061 A JP2002004061 A JP 2002004061A JP 2000180364 A JP2000180364 A JP 2000180364A JP 2000180364 A JP2000180364 A JP 2000180364A JP 2002004061 A JP2002004061 A JP 2002004061A
Authority
JP
Japan
Prior art keywords
steel sheet
mgo
annealing
slurry
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000180364A
Other languages
Japanese (ja)
Other versions
JP4157255B2 (en
Inventor
Hideyuki Kobayashi
英之 小林
Kazutoshi Takeda
和年 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000180364A priority Critical patent/JP4157255B2/en
Publication of JP2002004061A publication Critical patent/JP2002004061A/en
Application granted granted Critical
Publication of JP4157255B2 publication Critical patent/JP4157255B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain oriented electrical steel sheet having uniform and excellent film properties and excellent magnetic properties, which is obtained by improving a separating agent for annealing to form, especially, a forsterite-based insulating film when the grain oriented electrical steel sheet is produced. SOLUTION: The separating agent for annealing is used for producing the grain oriented electrical steel sheet which is produced by making the separating agent for annealing containing MgO as a main component into slurry, then coating the slurry on a steel plate, drying and subjecting the coated steel sheet to final finishing annealing. The separating agent for annealing is characterized by that the 90 % diameter of the separating agent for annealing coated on the steel sheet and dried is shorter than the 90 % diameter of the separating agent for annealing before being made into the slurry.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は方向性電磁鋼板の製
造に際し、特にフォルステライト系絶縁被膜形成のため
の焼鈍分離剤を改良することによって、均一で優れた被
膜特性を有し、かつ優れた磁気特性を有する方向性電磁
鋼板を得ようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of grain-oriented electrical steel sheets, in particular, by improving an annealing separator for forming a forsterite-based insulating film to provide uniform and excellent film properties and excellent An object is to obtain a grain-oriented electrical steel sheet having magnetic properties.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、Si:2.5〜4.
0%を含有する素材スラブを熱延し、焼鈍と1回または
中間焼鈍を挟む2回以上の冷延により最終板厚とされ
る。次いで、連続焼鈍炉においてH2 あるいはN2 +H
2 雰囲気中で脱炭焼鈍を行い、脱炭処理、一次再結晶処
理、SiO2 を主成分とする酸化層形成処理を行う。そ
の後、MgOを主成分とする焼鈍分離剤を鋼板に塗布し
乾燥する。鋼板はコイル状に巻取られ、最終仕上げ焼鈍
を行った後に、絶縁被膜剤処理とヒートフラットニング
処理を行って最終製品となる。
2. Description of the Related Art Grain-oriented electrical steel sheets have a Si content of 2.5-4.
A material slab containing 0% is hot-rolled, and the final sheet thickness is obtained by annealing and one or two or more cold rollings sandwiching intermediate annealing. Then, in a continuous annealing furnace, H 2 or N 2 + H
Decarburization annealing is performed in two atmospheres, and decarburization treatment, primary recrystallization treatment, and oxide layer formation treatment containing SiO 2 as a main component are performed. Thereafter, an annealing separator containing MgO as a main component is applied to the steel sheet and dried. The steel sheet is wound into a coil and subjected to final finish annealing, and then subjected to an insulating coating agent treatment and a heat flattening treatment to become a final product.

【0003】方向性電磁鋼板は圧延方向に<001>方
位を持つGoss方位結晶粒が多数存在するために優れた磁
気特性を有している。このGoss方位結晶粒は最終仕上げ
焼鈍工程の二次再結晶過程で成長する。Goss方位結晶粒
が優先的に成長するのは、鋼中にインヒビターとして分
散している析出物(AlN,MnS等)によって、Goss
方位以外の他方位結晶粒の成長が、Goss方位結晶粒成長
開始温度域まで抑えられているからである。従って優れ
た方向性電磁鋼板を製造するためには、鋼中のインヒビ
ター(AlN,MnS等)の分散状態を適正に制御し、
できるだけ正確な<001>方位を持つGoss方位結晶粒
を成長させることが重要である。鋼中のインヒビターの
分散状態はいろいろの要因により変化するが、特に最終
仕上げ焼鈍時に形成されるフォルステライト被膜の形成
状態が大きな影響を及ぼす。
A grain-oriented electrical steel sheet has excellent magnetic properties due to the presence of many Goss-oriented crystal grains having a <001> orientation in the rolling direction. The Goss-oriented grains grow during the secondary recrystallization in the final finish annealing step. The preferential growth of Goss-oriented grains is caused by precipitates (AlN, MnS, etc.) dispersed as inhibitors in steel.
This is because the growth of crystal grains in other directions than the crystal orientation is suppressed to the Goss crystal growth start temperature range. Therefore, in order to manufacture an excellent grain-oriented electrical steel sheet, the dispersion state of the inhibitor (AlN, MnS, etc.) in the steel is appropriately controlled,
It is important to grow Goss-oriented crystal grains having the <001> orientation as accurate as possible. The dispersion state of the inhibitor in the steel varies depending on various factors, and particularly, the formation state of the forsterite film formed at the time of final finish annealing has a great influence.

【0004】フォルステライト被膜は、脱炭焼鈍中に形
成された酸化層中のSiO2 と、焼鈍分離剤中のMgO
が、最終仕上げ焼鈍中に、SiO2 +2MgO→Mg2
SiO4 (フォルステライト)のとおりに反応して形成
される。このフォルステライト被膜は鋼板の表面に形成
されるため、鋼中のインヒビターと最終仕上げ焼鈍の雰
囲気ガスとのやりとりを制御する重要な役割を持つ。
[0004] Forsterite coating consists of SiO 2 in an oxide layer formed during decarburizing annealing and MgO in an annealing separator.
However, during the final annealing, SiO 2 + 2MgO → Mg 2
It is formed by reacting like SiO 4 (forsterite). Since this forsterite film is formed on the surface of the steel sheet, it plays an important role in controlling the exchange between the inhibitor in the steel and the atmosphere gas in the final annealing.

【0005】フォルステライト被膜は仕上げ焼鈍途中の
昇温過程およそ900℃あたりの温度域で形成される
が、その進行が遅れたり、あるいは形成された被膜が不
均一またはポーラスな構造を呈したりした場合には、仕
上げ焼鈍雰囲気からOやNが鋼中に過剰に侵入するた
め、鋼中のインヒビターが分解、粗大化または過剰化し
て適正なインヒビター分散状態を得られない。また、フ
ォルステライト被膜形成反応が低温域から早めに進行し
すぎた場合には、インヒビター構成元素が鋼中からフォ
ルステライト被膜中へ過剰に吸上げられるため、鋼中の
インヒビター不足が生じて適正なインヒビター分散状態
を得られない。
[0005] The forsterite film is formed in a temperature range of about 900 ° C during the temperature rise process during the finish annealing. However, when the progress is delayed or the formed film exhibits an uneven or porous structure. In this case, since O and N excessively penetrate into the steel from the finish annealing atmosphere, the inhibitor in the steel is decomposed, coarsened or excessively dispersed, and a proper inhibitor dispersion state cannot be obtained. Also, if the forsterite film formation reaction proceeds too early from the low temperature range, the inhibitor constituent elements are excessively absorbed from the steel into the forsterite film, so that the inhibitor in the steel becomes insufficient and the proper Inhibitor dispersion cannot be obtained.

【0006】フォルステライト被膜形成反応の進行度や
その形態には、鋼板表面酸化層中のSiO2 の量や形
態、焼鈍分離剤中のMgO性状(純度、反応性、水和の
進行度合、粒度、塗布量等)、および仕上げ焼鈍雰囲気
カ゛ス組成が大きく関係する。とりわけ焼鈍分離剤中のM
gOの反応性は、フォルステライト被膜形成にとって非
常に重要である。MgOの反応性が劣化すると、鋼板表
面酸化層中のSiO2 と焼鈍分離剤中のMgOとの反応
が進行し難くなり、フォルステライト被膜は形成され難
くなる。MgOの反応性が良好であればSiO2 とMg
Oとの反応が進行し易くなり、フォルステライト被膜は
形成され易くなる。
The progress and form of the forsterite film forming reaction include the amount and form of SiO 2 in the oxide layer on the surface of the steel sheet, the properties of MgO in the annealing separator (purity, reactivity, progress of hydration, particle size). , Coating amount, etc.) and the gas composition of the final annealing atmosphere. In particular, M in the annealing separator
The reactivity of gO is very important for forsterite film formation. When the reactivity of MgO is deteriorated, the reaction between SiO 2 in the oxide layer on the surface of the steel sheet and MgO in the annealing separator hardly progresses, and the forsterite film is hardly formed. If the good reactivity of MgO SiO 2 and Mg
The reaction with O easily proceeds, and the forsterite film is easily formed.

【0007】MgO反応性はいろいろの要因によって変
化するが、中でもMgO粒度の影響が大きい。MgO粒
が大きい場合は、単位重量当りの表面積が小さくなり反
応面積が減少するため、SiO2 とMgOとの反応が進
行し難くなりMgO反応性は劣化する。また、被膜形成
促進剤等を添加した場合でもMgO粒が大きいため、ミ
クロ的には促進剤濃度が不均一となり、局所的に促進剤
濃度が少ない部分ではMgO反応性が劣化して、均一で
良好なフォルステライト被膜を得られない。一方、Mg
O粒が小さい場合は、単位重量当りの表面積が大きくな
り反応面積が増大するためSiO2 とMgOとの反応が
進行し易くなり、MgO反応性が向上すると共に被膜形
成促進剤等も均一分散するため、均一良好なフォルステ
ライト被膜を得ることができる。
The reactivity of MgO varies depending on various factors, but the influence of the particle size of MgO is particularly large. When the MgO particles are large, the surface area per unit weight decreases and the reaction area decreases, so that the reaction between SiO 2 and MgO becomes difficult to progress, and the MgO reactivity deteriorates. In addition, even when a film-forming accelerator is added, the MgO particles are large, so that the accelerator concentration becomes non-uniform microscopically, and the MgO reactivity deteriorates locally in portions where the accelerator concentration is low, resulting in uniformity. A good forsterite film cannot be obtained. On the other hand, Mg
When the O grains are small, the surface area per unit weight increases and the reaction area increases, so that the reaction between SiO 2 and MgO easily proceeds, the MgO reactivity is improved, and the film-forming accelerator and the like are uniformly dispersed. Therefore, a uniformly good forsterite film can be obtained.

【0008】通常、MgOを主成分とする焼鈍分離剤
は、まず水と混合してスラリー状とし、次に溝付きロー
ルなどを用いて鋼板へ塗布される。その後水分除去のた
め乾燥工程を経て、鋼板はコイル状に巻取られ、最終仕
上げ焼鈍が施される。良好なフォルステライト被膜を得
るためにはMgOスラリーを鋼板表面へ均一に塗布しな
くてはならないが、MgO粒度はこのMgOスラリーの
塗布性にも大きな影響を及ぼす。すなわち、MgO粒が
小さい場合は、鋼板へ均一に塗布され易く乾燥後の鋼板
との密着性も良く、フォルステライト被膜形成状態は良
好である。一方、MgO粒が大きい場合は、均一塗布性
が悪化して乾燥中に剥離が発生する場合があり、フォル
ステライト被膜形成状態は劣化する。このようにMgO
粒度は、MgO反応性とMgOスラリー塗布性に多大に
関係しており、その結果、フォルステライト被膜形成状
態を左右し、インヒビター分散状態、更には方向性電磁
鋼板の磁性に大きな影響を及ぼす。
Usually, an annealing separator mainly composed of MgO is first mixed with water to form a slurry, and then applied to a steel sheet using a grooved roll or the like. Then, after a drying process for removing moisture, the steel sheet is wound into a coil shape and subjected to final finish annealing. In order to obtain a good forsterite film, the MgO slurry must be uniformly applied to the steel sheet surface, but the particle size of the MgO has a great influence on the applicability of the MgO slurry. That is, when the MgO particles are small, the MgO particles are easily applied uniformly to the steel sheet, the adhesion to the dried steel sheet is good, and the state of forming the forsterite film is good. On the other hand, when the MgO particles are large, the uniform coating property is degraded, and peeling may occur during drying, and the state of forming the forsterite film is deteriorated. Thus, MgO
The particle size is greatly related to the reactivity of MgO and the applicability of MgO slurry, and as a result, affects the state of formation of the forsterite film, and has a great influence on the state of dispersion of the inhibitor and further on the magnetism of the grain-oriented electrical steel sheet.

【0009】MgO粒度に関する研究は過去より数多く
なされてきている。例えば特開平5−239664号公
報では、スラリー調整から鋼板塗布までの過程で超微細
粉砕装置により微粒化を行う方法が開示されている。こ
の機械的な方法によってMgO粒は超微細となり、Mg
O粒全体の表面積が増大するためMgO反応性は向上
し、鋼板表面の均一塗布性も確保できる。しかし、Mg
O粒が小さすぎるために、MgOスラリー中の粒子が過
剰に凝集し易くなるという問題が発生した。その結果、
超微細粉砕機の狭い間隔が閉塞する危険性が発生し、ま
た、場合によってはMgO粒が凝集しすぎて逆にかなり
粗大化し、結局はMgO粒が大きい場合と同様に、Mg
O反応性とMgOスラリー塗布性が劣化するトラブルも
発生した。
[0009] Much research has been done on MgO particle size since the past. For example, Japanese Patent Application Laid-Open No. Hei 5-239664 discloses a method of performing atomization by an ultrafine pulverizer in the process from slurry adjustment to steel sheet application. By this mechanical method, the MgO grains become ultrafine,
Since the surface area of the entire O grains is increased, the reactivity of MgO is improved, and uniform coating properties on the steel sheet surface can be secured. However, Mg
Since the O particles were too small, there was a problem that particles in the MgO slurry were likely to be excessively aggregated. as a result,
There is a danger that the narrow space between the ultrafine grinders will be blocked, and in some cases, the MgO particles will be too agglomerated and consequently quite coarse, eventually resulting in the MgO particles having a large size.
There was also a problem that the O reactivity and the coatability of the MgO slurry deteriorated.

【0010】特開平10−88242号公報では、Mg
O粉を水と混合してスラリー状にした際のMgO粒凝集
特性を、横軸に攪拌速度、縦軸に累積90%径を示した
グラフ中のある領域で規定する方法が提案されている。
この方法は、MgO粉をMgOスラリーにした際に起こ
る「凝集」を適正範囲に制御することで、均一で優れた
被膜特性を有するフォルステライト被膜を形成する条件
を得ている。しかし、操業条件が縦軸、横軸のそれぞれ
の規定範囲を外れても不可である厳しいものとなること
から、従来よりも正確な操業技術が必要となり、規定範
囲を外れるものは使用不可のため廃棄しなくてはなら
ず、多様なトラブル等が発生する工場現場操業の面で不
利であった。
JP-A-10-88242 discloses that Mg
A method has been proposed in which the agglomeration characteristics of MgO particles when O powder is mixed with water to form a slurry are defined in a certain region in a graph showing the stirring speed on the horizontal axis and the cumulative 90% diameter on the vertical axis. .
This method obtains the conditions for forming a forsterite film having uniform and excellent film properties by controlling the “agglomeration” occurring when the MgO powder is converted into the MgO slurry within an appropriate range. However, since the operating conditions are strict, which is impossible even if they deviate from the specified ranges of the vertical axis and the horizontal axis, more accurate operation technology is required than before, and those that deviate from the specified ranges are unusable. It had to be discarded, which was disadvantageous in terms of factory operation, which caused various troubles.

【0011】[0011]

【発明が解決しようとする課題】上述したとおり、従来
の技術では、MgOの粒度やMgO粒のスラリー中での
凝集を制御することで良好なフォルステライト被膜を得
る方法があっても、製造現場における操業性が困難にな
ると共に、規定条件を外れたものは優れた被膜特性を得
られないという不利な面があった。従って、操業、設備
条件を細かく規定しなくともMgOの粒度を簡単に制御
でき、かつ良好なフォルステライト被膜を得られる方法
の開発が望まれていた。
As described above, in the prior art, even if there is a method of obtaining a good forsterite film by controlling the particle size of MgO and the coagulation of MgO particles in a slurry, it is difficult to improve the manufacturing site. In addition, the operability becomes difficult, and those deviating from the specified conditions have the disadvantage that excellent coating properties cannot be obtained. Therefore, it has been desired to develop a method capable of easily controlling the particle size of MgO and obtaining a good forsterite coating without finely specifying the operation and equipment conditions.

【0012】これらの問題を解決するために、本発明は
「MgO粒がスラリー中で凝集してMgO粒が大きくな
る」性質を十分に考慮した上で、「MgO粒がスラリー
中で凝集した場合でも、鋼板に塗布、乾燥後のMgO粒
は小さくなる」方法で、かつ現場操業に負荷のかからな
い方法を提供するものである。
In order to solve these problems, the present invention fully considers the property that “MgO particles agglomerate in a slurry to increase the size of MgO particles”. However, the present invention provides a method in which the MgO particles after being applied to the steel sheet and dried become small, and which does not impose a load on the on-site operation.

【0013】[0013]

【課題を解決するための手段】本発明者は、「MgO粒
がスラリー中で凝集した場合でも、鋼板に塗布、乾燥後
のMgO粒は小さくなる」方法を探究する際に、現場操
業方法の変更または設備の改造により目的を達成するよ
りも、MgO粉そのものに目的を達成する性質を持たせ
れば、製造現場条件を特に変更させることなく容易に扱
うことができると考えた。そこでMgO粉の性質とし
て、「スラリーにする前のMgO粒径>鋼板に塗布、乾
燥後のMgO粒径」で示されるMgO粉であれば、「ス
ラリー中で凝集後のMgO粒径>スラリーにする前のM
gO粒径」であるから、「スラリー中で凝集後のMgO
粒径>鋼板に塗布、乾燥後のMgO粒径」となり、目的
の「MgO粒がスラリー中で凝集した場合でも、鋼板に
塗布、乾燥後のMgO粒は小さくなる」方法を実現でき
る。
SUMMARY OF THE INVENTION The present inventor has found that, even when MgO particles are agglomerated in a slurry, the MgO particles after being applied to a steel sheet and dried are reduced in size. Rather than achieving the purpose by changing or modifying the equipment, it was thought that if the MgO powder itself had the property to achieve the purpose, it could be easily handled without particularly changing the manufacturing site conditions. Therefore, as a property of MgO powder, if the MgO powder is represented by “MgO particle size before slurrying> MgO particle size after coating and drying on steel sheet”, “MgO particle size after aggregation in slurry> Slurry” M before doing
gO particle size ”, it means that“ MgO
Particle size> MgO particle size after coating and drying on steel sheet ", and a desired method of" Even if MgO particles are agglomerated in the slurry, the MgO particles after coating and drying on the steel sheet become small "can be realized.

【0014】すなわち、Si:2.5〜4.0%を含有
する素材スラブを熱延し、焼鈍と1回または中間焼鈍を
挟む2回以上の冷延により最終板厚とした後、次いで連
続焼鈍炉においてH2 あるいはN2 +H2 雰囲気中で脱
炭焼鈍を行い、その後、MgOを主成分とする焼鈍分離
剤をスラリー状にして鋼板に塗布、乾燥し、コイル状に
巻取り、最終仕上げ焼鈍を行う一連の工程からなる方向
性電磁鋼板の製造方法において、この方法によって製造
される方向性電磁鋼板に適用されるMgOを主成分とす
る焼鈍分離剤であって、鋼板に塗布、乾燥後の焼鈍分離
剤の90%径が、スラリー状にする前の焼鈍分離剤の9
0%径より小さくなるものを用いることにより、本発明
の課題を解決できる。
That is, a material slab containing 2.5% to 4.0% of Si is hot-rolled, and is subjected to annealing and one or two or more cold-rolling steps of intermediate annealing to obtain a final sheet thickness. Decarburizing annealing is performed in an H 2 or N 2 + H 2 atmosphere in an annealing furnace, and then an annealing separator containing MgO as a main component is slurried, applied to a steel plate, dried, wound into a coil, and finally finished. In a method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing annealing, an annealing separator mainly containing MgO applied to a grain-oriented electrical steel sheet produced by this method, applied to a steel sheet, and dried. 90% of the annealed separating agent is 9% of the annealed separating agent before slurrying.
The object of the present invention can be solved by using a material having a diameter smaller than 0%.

【0015】上記工程でのスラリーの乾燥は、スラリー
を鋼板に塗布後、500〜900℃の範囲に加熱された
焼鈍炉中にて3〜40秒間の範囲内で保持して行うのが
望ましく、乾燥炉内の雰囲気としては、大気でもN2
どの無酸素雰囲気でも良い。
The drying of the slurry in the above step is desirably performed after the slurry is applied to a steel sheet and held in an annealing furnace heated to a temperature of 500 to 900 ° C. for 3 to 40 seconds. the atmosphere in the drying furnace may be an oxygen-free atmosphere such as N 2 in air.

【0016】またMgO粉としては、Mgを含有する物
質を1500℃以上で焼成してMgOを得る処理を施し
たものがとりわけ有利に適合する。ここでMgを含有す
る物質とは、MgCl2 、炭酸マグネシウム、塩基性炭
酸マグネシウム、海水、苦汁、岩塩などであり、Mg
(OH)2 でもかまわない。Mgを含有する物質を15
00℃以上で焼成してMgOを得る具体的な処理方法と
しては、「アーマンリアクター」方式が知られており、
この方法は、MgCl2 を主成分とする濃い海水を約2
000℃付近で焼成してMgOを得るものである。
As the MgO powder, one obtained by subjecting a substance containing Mg to a treatment for obtaining MgO by firing at 1500 ° C. or more is particularly suitable. Here, the substance containing Mg refers to MgCl 2 , magnesium carbonate, basic magnesium carbonate, seawater, bittern, rock salt, etc.
(OH) 2 is acceptable. 15 containing Mg
As a specific processing method of obtaining MgO by firing at 00 ° C. or higher, an “Arman reactor” method is known.
This method uses about 2 g of concentrated seawater containing MgCl 2 as a main component.
It is obtained by firing at about 000 ° C. to obtain MgO.

【0017】スラリー前の90%径としては、100μ
m以下であるものが好ましい。ここで90%径とは、小
粒径のものから数えて90%目のMgO粒の径である。
90%径の測定方式としては、レーザー回折式粒度分布
測定装置を用いる。本発明においては、HORIBA製
のLA−500を使用し、測定条件の選択は、分散液と
して室温の蒸留水を使用、攪拌方法として最高回転数1
000rpm の8段階調節の4番目選択、循環方法として
最大吐出量600ml/minの7段階調節の3番目選択、超
音波分散バス使用なし、必要試料量は装置表示の適性範
囲内とした。
The 90% diameter before the slurry is 100 μm.
m or less is preferable. Here, the 90% diameter is the diameter of the 90% MgO particle counted from the small particle diameter.
As a measuring method of the 90% diameter, a laser diffraction type particle size distribution measuring device is used. In the present invention, LA-500 manufactured by HORIBA is used, and measurement conditions are selected by using distilled water at room temperature as a dispersion and a maximum rotation speed of 1 as a stirring method.
The fourth selection of eight-step adjustment at 000 rpm, the third selection of seven-step adjustment at a maximum discharge rate of 600 ml / min as a circulation method, no ultrasonic dispersion bath was used, and the required sample amount was within the appropriate range indicated on the apparatus.

【0018】粒度測定用のMgO粉サンプルの採取方法
としては、スラリー前のMgO粉は、MgO粉の入った
紙袋やフレコンパックから任意に取り出した。鋼板に塗
布、乾燥後のMgO粉は、実際の製品コイルにおいて
は、乾燥後の鋼板表面の幅方向全体から乾燥終了後10
分間以内に、測定に必要な量を機械的に掻き集めた。こ
こで実際の製品コイルを用いる以外に、実験室的には以
下のようにして本発明効果を確認することができる。
As a method of collecting the MgO powder sample for measuring the particle size, the MgO powder before the slurry was arbitrarily taken out of a paper bag or a flexible container pack containing the MgO powder. In the actual product coil, the MgO powder applied to the steel sheet and dried is 10 mm after the end of the drying from the entire width of the dried steel sheet surface.
Within minutes, the amount needed for the measurement was mechanically scraped. Here, besides using the actual product coil, the effects of the present invention can be confirmed in a laboratory as follows.

【0019】まず重量100gのMgO粉を、MgO粉
の入った紙袋やフレコンパックから任意に取り出す。次
に、0〜5℃の範囲に冷却された750cm3 の水中へ先
の重量100gのMgO粉を投入し、約1000rpm の
攪拌速度で攪拌してMgOスラリーを作製する。その
後、鉄を主成分とする約0.3mm板厚の鋼板の両面にM
gOスラリーを乾燥後、MgO粉重量が片面当り5g/m
2 となるように塗布して、500℃に加熱された大気雰
囲気の実験炉中で15秒間保持する。焼鈍後の鋼板温度
は約300℃となり、塗布されたMgOスラリーは十分
に乾燥した状態となる。この乾燥したMgO粉を、へら
等を使用して鋼板表面から掻き落して粒度測定用のサン
プルとする。
First, 100 g of MgO powder is arbitrarily taken out of a paper bag or a flexible container pack containing MgO powder. Next, 100 g of the MgO powder is charged into 750 cm 3 of water cooled to a temperature of 0 to 5 ° C., and stirred at a stirring speed of about 1000 rpm to prepare an MgO slurry. Then, M is applied to both sides of a steel plate of about 0.3 mm thickness mainly composed of iron.
After drying the gO slurry, the MgO powder weight was 5 g / m
It is applied so as to be 2 and kept for 15 seconds in a laboratory furnace in an air atmosphere heated to 500 ° C. The temperature of the steel sheet after annealing becomes about 300 ° C., and the applied MgO slurry is in a sufficiently dried state. The dried MgO powder is scraped off from the surface of the steel sheet using a spatula or the like to form a sample for particle size measurement.

【0020】このようにして得られた鋼板に、塗布、乾
燥後のMgO粉と、紙袋やフレコンパックから任意に取
り出したスラリー前のMgO粉の90%径を測定して比
較を行う。なお、90%径の測定方式としては、レーザ
ー回折式粒度分布測定装置を用い、詳細については先述
のとおりである。測定の結果、塗布、乾燥後のMgO粉
の90%径が、スラリー前のMgO粉の90%径より小
さければ、本発明の効果が得られるMgO粉であると断
定できる。
A comparison is made by measuring the 90% diameter of the MgO powder after coating and drying on the steel sheet thus obtained and the MgO powder before slurry arbitrarily taken out of a paper bag or a flexible container pack. In addition, as a measuring method of the 90% diameter, a laser diffraction type particle size distribution analyzer is used, and the details are as described above. As a result of the measurement, if the 90% diameter of the MgO powder after application and drying is smaller than the 90% diameter of the MgO powder before the slurry, it can be determined that the MgO powder has the effects of the present invention.

【0021】[0021]

【発明の実施の形態】以下、この発明の解明経緯につい
て述べる。発明者らは、MgOについて、製造方法、粒
度を種々に変更させたものを用いて、かかるMgOが磁
気特性、被膜特性に及ぼす影響を調査した。その結果、
アーマンリアクター方式により生成したMgOであっ
て、鋼板に塗布、乾燥後の焼鈍分離剤の90%径が、ス
ラリー状にする前の焼鈍分離剤の90%径より小さい場
合に、磁気特性、被膜特性が向上することを新規に見出
したのである。すなわち本発明のMgOは、「スラリー
にする前のMgO粒径>鋼板に塗布、乾燥後のMgO粒
径」であるために、磁気特性、被膜特性が向上するので
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the invention will be described below. The inventors investigated the effect of the MgO on the magnetic properties and the film properties using MgO obtained by changing the manufacturing method and the particle size in various ways. as a result,
Magnetic properties and coating properties of MgO produced by the Amann reactor method, when the 90% diameter of the annealing separator after coating and drying on a steel sheet is smaller than the 90% diameter of the annealing separator before slurrying. Is newly found to be improved. That is, since the MgO of the present invention satisfies “MgO particle size before slurrying> MgO particle size after coating and drying on steel sheet”, magnetic properties and coating properties are improved.

【0022】ここでアーマンリアクター方式と、従来方
式であるロータリーキルン方式、マッフル炉方式との相
違点を説明する。アーマンリアクター方式ではMgO製
造時に生石灰(CaO)を添加しないが、ロータリーキ
ルン方式、マッフル炉方式では生石灰を添加する。従っ
てアーマンリアクター方式で製造されたMgOは、ロー
タリーキルン方式、マッフル炉方式で製造されたMgO
よりもCaO含有量が少ないことが特徴である。次にア
ーマンリアクター方式の焼成温度は、ロータリーキルン
方式、マッフル炉方式よりも高い。アーマンリアクター
方式では1500℃以上の温度、平均的には約2000
℃付近で焼成するのに対して、ロータリーキルン方式で
は800〜1000℃、マッフル炉方式では1000〜
1200℃の温度で焼成する。一般にロータリーキルン
方式とは加熱された回転する炉中で焼成する方法であ
り、マッフル炉方式とは比較的小型の釜状焼鈍炉で適度
に攪拌しながら焼成する方法である。
Here, the differences between the armor reactor system and the conventional rotary kiln system and muffle furnace system will be described. Although quicklime (CaO) is not added during the production of MgO in the Arman reactor method, quicklime is added in the rotary kiln method and the muffle furnace method. Therefore, the MgO produced by the Arman reactor method is the same as the MgO produced by the rotary kiln method and the muffle furnace method.
It is characterized in that the CaO content is lower than that of CaO. Next, the firing temperature of the armor reactor system is higher than that of the rotary kiln system or muffle furnace system. The temperature of 1500 ℃ or more in the Armant reactor system, on average about 2000
C., whereas the rotary kiln method sinters at 800-1000 ° C., and the muffle furnace method fires at 1000-1000 ° C.
Baking at a temperature of 1200 ° C. In general, the rotary kiln method is a method of baking in a heated rotating furnace, and the muffle furnace method is a method of baking in a relatively small kettle-shaped annealing furnace while appropriately stirring.

【0023】本発明のMgOの特徴は次の通りである。 (1)鋼板に塗布、乾燥後の90%径が、スラリー状に
する前の90%径より小さい。 (2)アーマンリアクター方式で製造されている。 (3)1500℃以上の温度(約2000℃付近)で焼
成する。 (4)CaO含有量が少ない。 本発明のMgOの最大の特徴である、「鋼板に塗布、乾
燥後の90%径が、スラリー状にする前の90%径より
小さくなる」理由としては、上記の(2)〜(4)が大
きく関係していると考えられるが、実際に起こっている
現象としては、従来のロータリーキルン方式、マッフル
炉方式で約1000℃付近の焼成により製造されたMg
Oと異なり、鋼板に塗布後の乾燥段階で、MgO粒の亀
裂が拡大または新たに発生して分割が進み、全体として
粒度が細かくなっていると推定できる。
The characteristics of the MgO of the present invention are as follows. (1) The 90% diameter after coating and drying on a steel sheet is smaller than the 90% diameter before slurrying. (2) Manufactured by the Arman reactor method. (3) firing at a temperature of 1500 ° C. or higher (around about 2000 ° C.); (4) CaO content is low. The most significant feature of the MgO of the present invention is that the “90% diameter after coating and drying on a steel sheet is smaller than the 90% diameter before slurrying” as described in the above (2) to (4). It is considered that this is largely related to the phenomenon that has actually occurred, such as Mg produced by firing at about 1000 ° C. in a conventional rotary kiln system or muffle furnace system.
Unlike O, in the drying stage after coating on the steel sheet, it can be estimated that the cracks of the MgO particles are enlarged or newly generated, the division proceeds, and the overall grain size is reduced.

【0024】次に本発明の限定理由を述べる。まず本発
明に適用されるMgOは、鋼板に塗布、乾燥後の焼鈍分
離剤の90%径が、スラリー状にする前の焼鈍分離剤の
90%径より小さいことが特徴である。鋼板に塗布、乾
燥後の90%径がスラリー前より大きい場合は、過剰な
凝集反応が発生していることを示し、すなわちMgO粒
が凝集してかなり粗大化しているためにMgO反応性お
よびMgOスラリー塗布性が劣化するため良くない。
Next, the reasons for limitation of the present invention will be described. First, MgO applied to the present invention is characterized in that the 90% diameter of the annealing separator after coating and drying on a steel sheet is smaller than the 90% diameter of the annealing separator before forming into a slurry. If the 90% diameter after coating and drying on a steel sheet is larger than that before slurry, it indicates that excessive agglomeration reaction has occurred, that is, MgO particles are agglomerated and considerably coarsened, so that MgO reactivity and MgO This is not good because the slurry coatability deteriorates.

【0025】スラリー前の焼鈍分離剤の90%径は10
0μm以下であることが好ましい。スラリー前の90%
径が100μmを超えるとMgOスラリー塗布性が劣化
する。90%径の下限については、鋼板に塗布、乾燥後
の90%径がスラリー前より小さければ特に問題になる
ことはないため、限定していない。
The 90% diameter of the annealing separator before slurry is 10%.
It is preferably 0 μm or less. 90% before slurry
If the diameter exceeds 100 μm, the coatability of the MgO slurry deteriorates. The lower limit of the 90% diameter is not particularly limited as long as the 90% diameter after coating and drying on the steel sheet is smaller than that before the slurry, and thus is not limited.

【0026】製造方法としては、Mgを含有する物質を
1500℃以上で焼成してMgOを得る処理を施したも
のがとりわけ有利に適合し、望ましくは約2000℃付
近で焼成したものが良い。この方式として、アーマンリ
アクター方式が知られているが、従来のロータリーキル
ン方式、マッフル炉方式でも同様の考え方によりMgを
含有する物質を1500℃以上(望ましくは約2000
℃付近)で焼成すれば、本発明のMgOを得ることが可
能である。1500℃未満の焼成温度ではスラリー中で
凝集したMgO粒の乾燥段階での分割・細粒化が進み難
くなり、本発明効果が得られない。高温で焼成するほど
本発明効果は得られ易くなると考えているが、実際はM
gO粉製造設備の耐久性から約2000℃付近が最適で
ある。
As a production method, a method in which a Mg-containing substance is subjected to a treatment of obtaining MgO by firing at 1500 ° C. or higher is particularly suitable, and a method of firing at about 2000 ° C. is preferable. As this method, an Armor reactor method is known, but in a conventional rotary kiln method or a muffle furnace method, a material containing Mg is heated to 1500 ° C. or more (preferably about 2000 ° C.) by the same concept.
(Approx. ° C.), the MgO of the present invention can be obtained. At a sintering temperature of less than 1500 ° C., it becomes difficult for the MgO particles agglomerated in the slurry to be divided and refined in the drying stage, and the effect of the present invention cannot be obtained. We believe that the effect of the present invention is more likely to be obtained when firing at a high temperature.
Approximately about 2000 ° C. is optimal in view of the durability of the gO powder production equipment.

【0027】化学成分的には、CaOが0.3%以下で
あることが好ましい。アーマンリアクター方式で製造さ
れたMgOは、ロータリーキルン方式、マッフル炉方式
で製造されたMgOよりもCaO含有量が少ないことが
特徴であり、これも本発明効果である乾燥後のMgO粒
度を細かくすることに貢献していると推定している。ま
たCaOが過剰に存在する場合には、フォルステライト
被膜形成の進行が劣化する傾向にあるため良くない。以
上からCaO含有量の上限は、アーマンリアクター方式
で通常生産される成分範囲の上限と等しく0.3%とし
た。
As for chemical components, it is preferable that CaO is 0.3% or less. The MgO produced by the Ahrmann reactor method is characterized in that the content of CaO is smaller than the MgO produced by the rotary kiln method and the muffle furnace method. Is estimated to have contributed. If CaO is present in excess, the formation of the forsterite film tends to deteriorate, which is not good. From the above, the upper limit of the CaO content is set to 0.3%, which is equal to the upper limit of the range of components normally produced by the Arman reactor method.

【0028】MgOスラリーの乾燥方法としては、スラ
リーを鋼板に塗布後、500〜900℃の範囲に加熱さ
れた焼鈍炉中にて、3〜40秒間の範囲内で保持する方
法が好ましい。この範囲を外れる乾燥方法では、本発明
の効果を最大限に得ることができず、更に水分を十分に
除去できなかったり、鋼板が過酸化を起こしたりしてフ
ォルステライト被膜形成状態が劣化する。乾燥炉内の雰
囲気としては、大気でもN2 などの無酸素雰囲気でも良
いが、大気中である方がコスト面から費用は少なくて済
む。
As a method for drying the MgO slurry, it is preferable to apply the slurry to a steel plate and then hold it in an annealing furnace heated to a temperature of 500 to 900 ° C. for 3 to 40 seconds. If the drying method is out of this range, the effects of the present invention cannot be obtained to the maximum, and furthermore, the water cannot be sufficiently removed or the steel sheet is overoxidized, so that the state of formation of the forsterite film deteriorates. The atmosphere in the drying furnace may be air or an oxygen-free atmosphere such as N 2 , but if it is in the air, the cost is lower in terms of cost.

【0029】本発明のMgOに、本発明効果が得られる
範囲内で、本発明以外のMgOやその他の粉体を混合さ
せても同様の本発明効果を得ることができる。その他の
粉体としては、TiO2 粉末、Sb化合物、B化合物、
Cl化合物などがある。
The same effects of the present invention can be obtained by mixing MgO of the present invention with other powders of MgO other than the present invention as long as the effects of the present invention can be obtained. Other powders include TiO 2 powder, Sb compound, B compound,
Cl compounds and the like.

【0030】[0030]

【実施例】[実施例1]C:0.05%、Si:3%、
Mn:0.06%、S:0.03%、N:0.005
%、Cu:0.2%を含有し、残部が不可避的不純物と
Feからなる0.30mmの板厚の鋼板を脱炭焼鈍して、
表1に示すMgO粉を純水と混合してスラリー状にした
ものを片面当り5g/m2 塗布し、800℃に加熱された
炉中で大気雰囲気中10秒間乾燥させてコイル状に巻き
取り、1150℃×20hrの最終仕上げ焼鈍を施して、
ヒートフラットニング処理を行い製品とした。
[Example 1] C: 0.05%, Si: 3%,
Mn: 0.06%, S: 0.03%, N: 0.005
%, Cu: 0.2%, the balance is decarburized and annealed to a steel plate having a thickness of 0.30 mm consisting of unavoidable impurities and Fe.
A slurry obtained by mixing MgO powder shown in Table 1 with pure water was applied at a rate of 5 g / m 2 per side, dried in an air atmosphere for 10 seconds in a furnace heated to 800 ° C., and wound into a coil. 1150 ℃ × 20hr final finish annealing
Heat flattening treatment was performed to obtain a product.

【0031】各製品から鋼板サンプルを採取して磁気特
性を測定し、コイル全長の観察結果から被膜外観と不良
部発生率を得た。また各コイルごとにMgOスラリー乾
燥後のMgOサンプルを、乾燥させた鋼板表面の幅方向
全体から乾燥終了後10分間以内に機械的に掻き集めて
採取し、レーザー回折式粒度分布測定装置(HORIB
A製のLA−500)により粒度分布を測定して90%
径を求めた。結果を表2に示す。本発明の範囲において
磁気特性、被膜特性とも良好となっている。
A steel sheet sample was collected from each product, the magnetic properties were measured, and the appearance of the coating and the incidence of defective portions were obtained from the observation results of the entire length of the coil. For each coil, the MgO sample after drying the MgO slurry was mechanically scraped and collected within 10 minutes after the end of drying from the entire width direction of the dried steel sheet surface, and was collected by a laser diffraction particle size distribution analyzer (HORIB).
A-LA), the particle size distribution was measured to be 90%.
The diameter was determined. Table 2 shows the results. Within the scope of the present invention, both magnetic properties and coating properties are good.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[実施例2]C:0.06%、Si:3
%、Mn:0.1%、S:0.03%、Al:0.03
%、N:0.008%、Cu:0.2%を含有し、残部
が不可避的不純物とFeからなる0.30mmの板厚の鋼
板を脱炭焼鈍して、表1に示すMgO粉を純水と混合し
てスラリー状にしたものに、被膜形成促進剤としてTi
2 をMgO粉重量の3%加え、そのスラリーを片面当
り5g/m2 塗布し、800℃に加熱された炉中で大気雰
囲気中20秒間乾燥させてコイル状に巻き取り、115
0℃×20hrの最終仕上げ焼鈍を施して、ヒートフラッ
トニング処理を行い製品とした。
Example 2 C: 0.06%, Si: 3
%, Mn: 0.1%, S: 0.03%, Al: 0.03
%, N: 0.008%, Cu: 0.2%, and the balance is decarburized and annealed to a 0.30 mm-thick steel plate composed of unavoidable impurities and Fe. A slurry was prepared by mixing with pure water, and Ti was added as a film-forming accelerator.
O 2 was added at 3% of the weight of the MgO powder, the slurry was applied at 5 g / m 2 per side, dried in an air atmosphere for 20 seconds in a furnace heated to 800 ° C., and wound into a coil.
The product was subjected to a final finish annealing at 0 ° C. × 20 hours, and a heat flattening treatment was performed to obtain a product.

【0035】各製品から鋼板サンプルを採取して磁気特
性を測定し、コイル全長の観察結果から被膜外観と不良
部発生率を得た。また各コイルごとでMgOスラリー乾
燥後のMgOサンプルを、乾燥させた鋼板表面の幅方向
全体から乾燥終了後10分間以内に機械的に掻き集めて
採取し、レーザー回折式粒度分布測定装置(HORIB
A製のLA−500)により粒度分布を測定して90%
径を求めた。結果を表3に示す。本発明の範囲において
磁気特性、被膜特性とも良好となっている。
A steel sheet sample was taken from each product, the magnetic properties were measured, and the appearance of the coating and the incidence of defective portions were obtained from the observation results of the total length of the coil. Further, the MgO sample after drying the MgO slurry in each coil was mechanically scraped and collected from the entire width direction of the surface of the dried steel sheet within 10 minutes after the completion of the drying, and the laser diffraction particle size distribution analyzer (HORIB)
A-LA), the particle size distribution was measured to be 90%.
The diameter was determined. Table 3 shows the results. Within the scope of the present invention, both magnetic properties and coating properties are good.

【0036】[0036]

【表3】 [Table 3]

【0037】[実施例3]C:0.08%、Si:3
%、Mn:0.08%、S:0.03%、Al:0.0
3%、N:0.008%、Cu:0.1%、Sn:0.
1%を含有し、残部が不可避的不純物とFeからなる
0.23mmの板厚の鋼板を脱炭焼鈍して、表1に示すM
gO粉を純水と混合してスラリー状にしたものに、被膜
形成促進剤としてTiO2 をMgO粉重量の3%、Sb
2 (SO4 3 をMgO粉重量の0.2%加え、そのス
ラリーを片面当り6g/m2 塗布し、800℃に加熱され
た炉中で大気雰囲気中10秒間乾燥させてコイル状に巻
き取り、1150℃×20hrの最終仕上げ焼鈍を施し
て、ヒートフラットニング処理を行い製品とした。
Example 3 C: 0.08%, Si: 3
%, Mn: 0.08%, S: 0.03%, Al: 0.0
3%, N: 0.008%, Cu: 0.1%, Sn: 0.
A steel sheet having a thickness of 0.23 mm containing 1% and the balance consisting of unavoidable impurities and Fe was decarburized and annealed.
gO powder was mixed with pure water to form a slurry, and TiO 2 was used as a film formation accelerator in an amount of 3% by weight of MgO powder and Sb.
2 (SO 4 ) 3 was added at 0.2% of the weight of the MgO powder, the slurry was applied at 6 g / m 2 on one side, dried in an air atmosphere for 10 seconds in a furnace heated to 800 ° C. and wound into a coil. The product was subjected to a final finish annealing at 1150 ° C. × 20 hours, and subjected to a heat flattening treatment to obtain a product.

【0038】各製品から鋼板サンプルを採取して磁気特
性を測定し、コイル全長の観察結果から被膜外観と不良
部発生率を得た。また各コイルごとでMgOスラリー乾
燥後のMgOサンプルを、乾燥させた鋼板表面の幅方向
全体から乾燥終了後10分間以内に機械的に掻き集めて
採取し、レーザー回折式粒度分布測定装置(HORIB
A製のLA−500)により粒度分布を測定して90%
径を求めた。結果を表4に示す。本発明の範囲において
磁気特性、被膜特性とも良好となっている。
A steel sheet sample was taken from each product, the magnetic properties were measured, and the appearance of the coating and the incidence of defective portions were obtained from the observation results of the entire length of the coil. Further, the MgO sample after drying the MgO slurry in each coil was mechanically scraped and collected from the entire width direction of the surface of the dried steel sheet within 10 minutes after the completion of the drying, and the laser diffraction particle size distribution analyzer (HORIB)
A-LA), the particle size distribution was measured to be 90%.
The diameter was determined. Table 4 shows the results. Within the scope of the present invention, both magnetic properties and coating properties are good.

【0039】[0039]

【表4】 [Table 4]

【0040】[実施例4]表1に示すMgO粉を重量1
00gずつ採取して、それぞれを0〜5℃の範囲に冷却
した750cm3 の水中へ投入し、約1000rpm の攪拌
速度で攪拌してMgOスラリーを作製した。その後、S
i:3%を含有した鉄を主成分とする0.3mm板厚の鋼
板の両面に、MgOスラリーを乾燥後MgO粉重量が片
面当り5g/m2 となるように塗布して、500℃に加熱
した大気雰囲気の実験炉中で15秒間保持した。十分に
乾燥したMgO粉をへらを使用して鋼板表面から掻き落
し収集して、レーザー回折式粒度分布測定装置(HOR
IBA製のLA−500)により粒度分布を測定して9
0%径を求めた。結果を表5に示す。上記のとおりの実
験室的な方法によって、本発明のMgO粉は、塗布、乾
燥後のMgO粉の90%径が、スラリー前のMgO粉の
90%径より小さいことが確認できている。実施例1〜
3から、本発明のMgOを使用して方向性電磁鋼板を製
造すれば、優れた磁気特性と被膜特性を得られることは
明らかである。
Example 4 MgO powder shown in Table 1 was weighed 1
Each sample was collected in a 750 cm 3 water cooled to a range of 0 to 5 ° C., and stirred at a stirring speed of about 1000 rpm to prepare an MgO slurry. Then, S
i: MgO slurry was dried on both sides of a 0.3 mm-thick steel sheet containing iron as a main component and containing 3%, and then applied so that the weight of MgO powder was 5 g / m 2 per side. It was kept for 15 seconds in a heated atmosphere atmosphere in a laboratory furnace. A sufficiently dried MgO powder is scraped off from the surface of the steel sheet using a spatula and collected, and a laser diffraction particle size distribution analyzer (HOR) is used.
The particle size distribution was measured using an LA-500 manufactured by IBA to obtain 9
The 0% diameter was determined. Table 5 shows the results. The laboratory method as described above has confirmed that the MgO powder of the present invention has a 90% diameter of the coated and dried MgO powder smaller than the 90% diameter of the MgO powder before the slurry. Example 1
It is clear from FIG. 3 that when the grain-oriented electrical steel sheet is produced using the MgO of the present invention, excellent magnetic properties and coating properties can be obtained.

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【発明の効果】以上詳述したように、本発明のMgOを
主成分とする焼鈍分離剤を使用して方向性電磁鋼板を製
造すれば、極めて優れた磁気特性および被膜特性を有す
る方向性電磁鋼板を安定して製造することが可能とな
る。
As described in detail above, if a grain-oriented electrical steel sheet is manufactured using the annealing separator containing MgO as a main component of the present invention, a grain-oriented electrical steel sheet having extremely excellent magnetic properties and coating properties can be obtained. It is possible to manufacture a steel sheet stably.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K026 AA03 AA22 BA08 BB05 CA16 CA18 DA02 DA11 EB11 4K033 AA02 LA01 LA02 MA01 MA02 RA04 TA01 TA02 5E041 AA02 BC01 HB11 HB14 NN18 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K026 AA03 AA22 BA08 BB05 CA16 CA18 DA02 DA11 EB11 4K033 AA02 LA01 LA02 MA01 MA02 RA04 TA01 TA02 5E041 AA02 BC01 HB11 HB14 NN18

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 MgOを主成分とする焼鈍分離剤をスラ
リー状にして鋼板に塗布、乾燥し、次いで最終仕上げ焼
鈍を施して製造する方向性電磁鋼板に適用し、鋼板に塗
布、乾燥後の焼鈍分離剤の90%径が、スラリー状にす
る前の焼鈍分離剤の90%径より小さくなることを特徴
とする方向性電磁鋼板用の焼鈍分離剤。
1. An annealing separator mainly composed of MgO is applied to a steel sheet in the form of a slurry, applied to a steel sheet, dried, and then subjected to final finish annealing. An annealing separator for grain-oriented electrical steel sheets, wherein the 90% diameter of the annealing separator is smaller than the 90% diameter of the annealing separator before being made into a slurry.
【請求項2】 スラリーの乾燥を、スラリーを鋼板に塗
布後、500〜900℃の範囲に加熱された焼鈍炉中に
て3〜40秒間の範囲内で保持して行うことを特徴とす
る請求項1記載の方向性電磁鋼板用の焼鈍分離剤。
2. The drying of the slurry, wherein the slurry is applied to a steel plate and held in an annealing furnace heated to a temperature of 500 to 900 ° C. for 3 to 40 seconds. Item 4. An annealing separator for a grain-oriented electrical steel sheet according to Item 1.
【請求項3】 Mgを含有する物質を1500℃以上で
焼成して得たMgOを用いることを特徴とする請求項1
記載の方向性電磁鋼板用の焼鈍分離剤。
3. The method according to claim 1, wherein MgO obtained by firing a material containing Mg at 1500 ° C. or higher is used.
An annealing separator for a grain-oriented electrical steel sheet as described.
【請求項4】 Mgを含有する物質を、アーマンリアク
ター方式により処理して得たMgOを用いることを特徴
とする請求項3記載の方向性電磁鋼板用の焼鈍分離剤。
4. The annealing separating agent for grain-oriented electrical steel sheets according to claim 3, wherein MgO obtained by treating a substance containing Mg by an Arman reactor method is used.
【請求項5】 スラリー前の90%径が100μm以下
であることを特徴とする請求項1記載の方向性電磁鋼板
用の焼鈍分離剤。
5. The annealing separator according to claim 1, wherein the 90% diameter before the slurry is 100 μm or less.
【請求項6】 CaO含有量が0.3%以下であること
を特徴とする請求項1記載の方向性電磁鋼板用の焼鈍分
離剤。
6. The annealing separator according to claim 1, wherein the CaO content is 0.3% or less.
【請求項7】 MgOを主成分とする焼鈍分離剤をスラ
リー状にして鋼板に塗布、乾燥し、次いで最終仕上げ焼
鈍を施して方向性電磁鋼板を製造するにあたり、スラリ
ーの乾燥を、スラリーを鋼板に塗布後、500〜900
℃の範囲に加熱された焼鈍炉中にて3〜40秒間の範囲
内で保持して行うことを特徴とする請求項1記載の焼鈍
分離剤を用いた方向性電磁鋼板の製造方法。
7. An anneal separating agent containing MgO as a main component is formed into a slurry, applied to a steel sheet, dried, and then subjected to final finish annealing to produce a grain-oriented electrical steel sheet. 500 ~ 900
The method for producing a grain-oriented electrical steel sheet using an annealing separator according to claim 1, wherein the annealing is carried out in an annealing furnace heated to a temperature within the range of 3 to 40 seconds.
JP2000180364A 2000-06-15 2000-06-15 Annealing separator for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet Expired - Lifetime JP4157255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000180364A JP4157255B2 (en) 2000-06-15 2000-06-15 Annealing separator for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000180364A JP4157255B2 (en) 2000-06-15 2000-06-15 Annealing separator for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2002004061A true JP2002004061A (en) 2002-01-09
JP4157255B2 JP4157255B2 (en) 2008-10-01

Family

ID=18681481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000180364A Expired - Lifetime JP4157255B2 (en) 2000-06-15 2000-06-15 Annealing separator for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4157255B2 (en)

Also Published As

Publication number Publication date
JP4157255B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
KR100762436B1 (en) Annealing separating agent for grain oriented silicon steel sheet excellent in surface characteristic and production method of grain oriented silicon steel sheet using the same
JP7454334B2 (en) Method for manufacturing magnesium oxide and grain-oriented electrical steel sheet for annealing separator
CN1043056C (en) Anneal isolating objects with good reactivity and used for silica steel sheet
JP3536775B2 (en) Magnesia for annealing separator of grain-oriented electrical steel, method for producing the same, and method for producing grain-oriented electrical steel sheet with excellent coating properties
JP4192282B2 (en) Method for producing MgO for annealing separator
JP3475258B2 (en) Ceramic film forming agent and method for producing the same
JPH0459370B2 (en)
JP7454335B2 (en) Method for manufacturing magnesium oxide and grain-oriented electrical steel sheet for annealing separator
JPH11269555A (en) Production of separation agent at annealing for grain oriented silicon steel sheet and of grain oriented silicon steel sheet excellent in glass film and magnetic property
JPH11181525A (en) Production of grain oriented silicon steel sheet excellent in magnetic property and film characteristic
JP2002004061A (en) Separating agent for annealing grain oriented electrical steel sheet and method of producing the grain oriented electrical steel sheet
JP3043975B2 (en) Annealing separator for grain-oriented silicon steel sheet
JP4310996B2 (en) Method for producing grain-oriented electrical steel sheet and annealing separator used in this method
JP3091096B2 (en) Annealing separator and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic properties
JPH0225433B2 (en)
JP3059338B2 (en) Annealing separating agent for grain-oriented electrical steel sheet having extremely excellent reactivity and method of using the same
JP3549492B2 (en) Annealing separator and method for producing grain-oriented electrical steel sheet with excellent glass coating
JP3091088B2 (en) Annealing separation agent having extremely excellent reactivity and method of using the same
JP2711614B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent film properties and magnetic properties
JPH1053818A (en) Production of separation agent at annealing, excellent in film forming capacity, and grain oriented silicon steel sheet using same
JP3933225B2 (en) Method for preparing MgO powder for annealing separator during production of grain-oriented electrical steel sheet
JP2648205B2 (en) Method for producing grain-oriented electrical steel sheet with uniform glass coating and excellent magnetic properties
JP3707249B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating uniformity
JP2749783B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent glass coating performance and magnetic properties
JP3539938B2 (en) Annealing separator and method for producing grain-oriented electrical steel sheet with excellent glass coating using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4157255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term