JP2001358415A - Printed circuit board - Google Patents

Printed circuit board

Info

Publication number
JP2001358415A
JP2001358415A JP2000181348A JP2000181348A JP2001358415A JP 2001358415 A JP2001358415 A JP 2001358415A JP 2000181348 A JP2000181348 A JP 2000181348A JP 2000181348 A JP2000181348 A JP 2000181348A JP 2001358415 A JP2001358415 A JP 2001358415A
Authority
JP
Japan
Prior art keywords
circuit board
printed circuit
silica
fluororesin
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000181348A
Other languages
Japanese (ja)
Inventor
Hitoshi Kanzaki
仁 神崎
Satoru Hashimoto
哲 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2000181348A priority Critical patent/JP2001358415A/en
Publication of JP2001358415A publication Critical patent/JP2001358415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a board wherein mechanical strength is excellent, thermal expansion coefficient is low, dimensional stability and through hole reliability are excellent, relative permittivity is extremely low at 2.1 at most, and application to a communication apparatus using radio wave of millimeter wave band is sufficiently enabled. SOLUTION: In a printed circuit board 1, a prescribed circuit pattern 3 is formed by using copper foil on at least a single side of a sheet-shaped insulating layer 2 wherein silica fine hollow members are compounded in fluororesin at a rate of 10-70 vol.%. The printed circuit board is constituted by using the silica fine hollow member wherein the volume ratio of silica part and air in a hollow part is set as 1:6-1:3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波帯域を使用
する各種電子機器の配線板として用いられるプリント回
路基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a printed circuit board used as a wiring board for various electronic devices using a high frequency band.

【0002】[0002]

【従来の技術】高周波帯域を使用する各種電子機器のプ
リント回路基板では、高周波に対応する電気的特性とし
て、低比誘電率で、低誘電正接が要求される。この要求
に応えるプリント回路基板として、従来、フッ素樹脂を
絶縁層とし、その少なくとも片面側に金属箔により所定
の回路パターンを形成したものが多用されている。
2. Description of the Related Art Printed circuit boards of various electronic devices using a high frequency band require a low dielectric constant and a low dielectric loss tangent as electrical characteristics corresponding to a high frequency. Conventionally, as a printed circuit board that meets this requirement, a circuit board in which a predetermined circuit pattern is formed of a metal foil on at least one side of a fluorine resin as an insulating layer is often used.

【0003】すなわち、プリント回路基板において、そ
の回路の信号伝送速度及び伝送損失は基板自体の誘電率
及び誘電正接に大きく左右されるものであって、基板の
誘電率が小さいほど信号伝送速度は速く、かつ、誘電正
接が小さいほど伝送損失は小さい。したがって、コンピ
ュータ等の信号伝送の高速度化、高効率化が求められる
電子機器用の基板としては、低誘電率、低誘電正接であ
ることが要求され、従来のプリント回路基板における絶
縁層としてフッ素樹脂が多用される理由は、フッ素樹脂
の誘電率、誘電正接がフェノール樹脂やエポキシ樹脂、
ポリイミド樹脂等に比べて小さいためである。
That is, in a printed circuit board, the signal transmission speed and the transmission loss of the circuit largely depend on the dielectric constant and the dielectric loss tangent of the substrate itself. The smaller the dielectric constant of the substrate, the higher the signal transmission speed. The smaller the dielectric loss tangent, the smaller the transmission loss. Therefore, substrates for electronic devices that require high speed and high efficiency of signal transmission such as computers are required to have a low dielectric constant and a low dielectric loss tangent, and fluorine is used as an insulating layer in a conventional printed circuit board. The reason why resin is often used is that the dielectric constant and dielectric loss tangent of fluororesin are phenol resin or epoxy resin,
This is because it is smaller than a polyimide resin or the like.

【0004】ところで、近年の情報通信技術の発達によ
り、これまでのマイクロ波帯域(数百MHz〜20GH
z)より更に高いミリ波帯域(20GHz〜30GH
z)の電波を対象とする携帯通信機器や電波送受信機器
(アンテナ)などの新しい用途が生れ、ますます超高速
動作を必要とし、これに対応させるためにはプリント回
路基板の一層の低誘電率化、低誘電正接化が求められて
いる。
Meanwhile, with the recent development of information communication technology, the conventional microwave band (several hundred MHz to 20 GHz) has been used.
z) Even higher millimeter wave band (20 GHz to 30 GHz)
z) New applications such as mobile communication devices and radio wave transmission / reception devices (antennas) for radio waves are required, and ultra-high-speed operation is required more and more. And a low dielectric loss tangent are required.

【0005】[0005]

【発明が解決しようとする課題】しかし、フッ素樹脂を
絶縁層として用いた従来のプリント回路基板では、フッ
素樹脂の中でも材料自体の比誘電率が2.1と最も小さ
いPTFE(ポリテトラフルオロエチレン)を使用した
場合でも、基板全体の比誘電率は最高でも約2.1程度
に止まり、上記したミリ波帯域の電波を使用する機器に
おいて求められている2.1以下の比誘電率の基板は得
られない。
However, in a conventional printed circuit board using a fluororesin as an insulating layer, PTFE (polytetrafluoroethylene) having the lowest relative dielectric constant of 2.1 among the fluororesins itself is used. Even when the substrate is used, the relative dielectric constant of the entire substrate is limited to about 2.1 at the maximum, and the substrate having a relative dielectric constant of 2.1 or less required for the above-described device using the millimeter wave band radio wave is I can't get it.

【0006】また、比誘電率が2.1以下の基板とし
て、例えば特開平5−243697号公報に開示されて
いるように、空孔を有する多孔質フッ素樹脂を絶縁層と
して用いたものも知られている。この多孔質フッ素樹脂
は、例えば空孔が80%であると、それ自体の比誘電率
が約1.1程度と非常に低く、かつ誘電損失も1MHz
測定で約0.00002で、基板の低誘電率化、低誘電
正接化に適しているものの、薄い誘電体、例えば400
μm以下の誘電体(絶縁層)として使用するには非常な
困難を伴うために、高周波、特にミリ波帯域の電波を使
用し薄肉小型化が望まれる携帯電話等の回路基板には適
用しにくく、また、そのような適用例も殆んどない。な
ぜならば、多孔質フッ素樹脂で形成された薄いシート状
絶縁層は、機械的強度が非常に弱く、空孔の存在でふわ
ふわのシートであり、かつ、腰の強さが全くなく、さら
に、熱膨張率も90×10-6/℃と非常に高く、180
℃の熱を加えるだけでも大きく収縮してしまい、熱に対
する寸法安定性が悪く、スルーホール信頼性に劣るから
である。
Further, as a substrate having a relative dielectric constant of 2.1 or less, there is known a substrate using a porous fluororesin having pores as an insulating layer as disclosed in, for example, JP-A-5-243697. Have been. When the porous fluororesin has, for example, 80% of the pores, the relative dielectric constant of the porous fluororesin itself is very low at about 1.1 and the dielectric loss is also 1 MHz.
The measured value is about 0.00002, which is suitable for lowering the dielectric constant and the dielectric loss tangent of the substrate, but is a thin dielectric such as 400
Since it is extremely difficult to use as a dielectric (insulating layer) of μm or less, it is difficult to apply to a circuit board of a mobile phone or the like where high frequency, especially a millimeter wave band radio wave is used and thin and small size is desired. Also, there are few such applications. This is because a thin sheet-like insulating layer formed of a porous fluororesin has a very low mechanical strength, is a fluffy sheet due to the presence of vacancies, has no stiffness at all, and further has a high thermal resistance. The expansion coefficient is as high as 90 × 10 −6 / ° C.
This is because even if heat of only ° C is applied, the material shrinks greatly, the dimensional stability against heat is poor, and the reliability of through holes is poor.

【0007】一方、フッ素樹脂を絶縁層として用いたプ
リント回路基板では、一般にフッ素樹脂自体の熱膨張率
に起因して基板の熱膨張率が高い。最も一般的なフッ素
樹脂積層板の厚み方向の熱膨張率は、80〜100×1
-6/℃で、エポキシ樹脂やポリイミド樹脂等の積層板
の厚み方向の熱膨張率20〜40×10-6/℃に比べて
大きい。また、寸法安定性も当然悪いために、スルーホ
ール信頼性が低下するといった課題がある。
On the other hand, a printed circuit board using a fluororesin as an insulating layer generally has a high thermal expansion coefficient due to the thermal expansion coefficient of the fluororesin itself. The most general thermal expansion coefficient of the fluororesin laminate in the thickness direction is 80 to 100 × 1.
At 0 -6 / ° C, the thermal expansion coefficient in the thickness direction of a laminate of an epoxy resin, a polyimide resin or the like is larger than 20 to 40 × 10 -6 / ° C. In addition, since the dimensional stability is naturally poor, there is a problem that the reliability of the through hole is reduced.

【0008】これら課題を解決するために、フッ素樹脂
にシリカ粉末など熱膨張率の低い無機充填材の粒子を添
加して厚み方向の熱膨張率を低減させる技術も知られて
いるが、このような無機粒子含有のフッ素樹脂基板にお
いては、無機粒子の比誘電率が高い(シリカの場合で4
程度)ために、基板の誘電率も高くなり、ミリ波帯域の
電波を使用する携帯電話等の回路基板に求められている
2.1以下の比誘電率は到底達成することができないと
いう問題がある。
In order to solve these problems, there is known a technique of adding particles of an inorganic filler having a low coefficient of thermal expansion such as silica powder to a fluorine resin to reduce the coefficient of thermal expansion in the thickness direction. In a fluororesin substrate containing inorganic particles, the relative permittivity of the inorganic particles is high (4% in the case of silica).
Therefore, the dielectric constant of the substrate is also increased, and the relative dielectric constant of 2.1 or less required for a circuit substrate of a mobile phone or the like using radio waves in the millimeter wave band cannot be achieved at all. is there.

【0009】本発明は上述の実情に鑑みてなされたもの
で、機械的強度に優れていると共に、熱膨張率も低くて
寸法安定性及びスルーホール信頼性に優れ、しかも、比
誘電率が2.1以下と極めて低く、ミリ波帯域の電波を
使用する通信機器にも十分に適用することができるプリ
ント回路基板を提供することを目的としている。
The present invention has been made in view of the above situation, and has excellent mechanical strength, low thermal expansion coefficient, excellent dimensional stability and through-hole reliability, and a relative dielectric constant of 2 or more. It is an object of the present invention to provide a printed circuit board which is extremely low, such as 0.1 or less, and can be sufficiently applied to communication equipment using radio waves in the millimeter wave band.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係るプリント回路基板は、フッ素樹脂とシ
リカ微小中空体との配合物からなるシート状絶縁層の少
なくとも片面側に金属箔により所定の回路パターンが形
成されているプリント回路基板であって、上記シリカ微
小中空体はそのシリカ部と中空部内の空気との体積比が
1:6〜1:3に設定されており、かつ、フッ素樹脂に
対するシリカ微小中空体の配合割合は10〜70VOL.%
に設定されていることを特徴とするものである。
In order to achieve the above object, a printed circuit board according to the present invention comprises a metal foil on at least one side of a sheet-like insulating layer made of a mixture of a fluororesin and a hollow silica fine body. Wherein the volume ratio between the silica portion and the air in the hollow portion is set to 1: 6 to 1: 3. The mixing ratio of the silica micro hollow body to the fluororesin is 10 to 70 VOL.%
Is set to.

【0011】上記のような構成を有する本発明によれ
ば、フッ素樹脂にシリカ微小中空体を10〜70VOL.%
配合させて絶縁層を形成することにより、厚みの薄いシ
ート状絶縁層であっても、機械的強度を十分に確保して
腰が強く、反りなどの発生しない基板を得ることが可能
であると共に、基板厚み方向の熱膨張率がフッ素樹脂自
体の熱膨張率(70〜95×10-6/℃)よりも低くな
り、寸法安定性及びスルーホール信頼性を高めることが
可能であり、かつ、基板上の回路パターンに接続する部
品との熱膨張率の差も小さくなるために、実使用時の熱
応力によって部品接続部にクラックが発生したり、剥離
したりすることもなく、接続信頼性も高めることが可能
である。
According to the present invention having the above-described structure, the silica fine hollow body is added to the fluororesin in an amount of 10 to 70 vol.%.
By forming the insulating layer by blending, even with a thin sheet-like insulating layer, it is possible to obtain a substrate that ensures sufficient mechanical strength, is strong, and has no warpage. The coefficient of thermal expansion in the thickness direction of the substrate is lower than the coefficient of thermal expansion of the fluororesin itself (70 to 95 × 10 −6 / ° C.), and dimensional stability and through-hole reliability can be improved; and Since the difference in the coefficient of thermal expansion between the component connected to the circuit pattern on the board is also small, there is no cracking or peeling at the component connection due to thermal stress during actual use, and connection reliability Can also be increased.

【0012】因みに、フッ素樹脂に対するシリカ微小中
空体の配合割合が10VOL.%未満の場合は、十分な機械
的強度を確保できないとともに、熱膨張率も大きくなっ
て、寸法安定性及びスルーホール信頼性に欠ける。一
方、フッ素樹脂に対するシリカ微小中空体の配合割合が
70VOL.%を超える場合は、樹脂不足または樹脂流動不
足により配合物中に多くの隙間が生じるために、その配
合物からなるシート状絶縁層の吸水率が上がって基板の
半田耐熱性が低下するとともに、回路パターンを形成す
る金属箔との接着性が悪化して層間剥離などを起し易く
なる。
[0012] By the way, when the mixing ratio of the silica micro hollow body to the fluororesin is less than 10 VOL.%, Sufficient mechanical strength cannot be ensured and the thermal expansion coefficient becomes large, so that the dimensional stability and the reliability of the through hole are not improved. Lack. On the other hand, when the blending ratio of the silica micro hollow body to the fluororesin exceeds 70 VOL.%, Many gaps are generated in the blend due to insufficient resin or insufficient resin flow, so that the sheet-like insulating layer made of the blend has The water absorption rate is increased and the solder heat resistance of the substrate is reduced, and the adhesion to the metal foil forming the circuit pattern is deteriorated, so that delamination or the like is easily caused.

【0013】その上、シリカ部と中空部内の空気との体
積比が1:6〜1:3のシリカ微小中空体をフッ素樹脂
に配合することにより、シリカ微小中空体の中空部内に
存在する空気の比誘電率(=約1)及びシリカ部の比誘
電率(=約4)の平均化により、シリカ微小中空体自体
の比誘電率はフッ素樹脂より低くなり、その結果、絶縁
層、ひいては基板の比誘電率を2.1以下と非常に小さ
いものとして、ミリ波帯域の電波を使用する通信機器に
も十分に適用可能な低比誘電率、低誘電正接のプリント
回路基板を得ることができる。
In addition, by mixing a silica micro hollow body having a volume ratio of silica part to air in the hollow part of 1: 6 to 1: 3 with a fluororesin, the air existing in the hollow part of the silica micro hollow body is mixed. By averaging the relative permittivity (= about 1) and the relative permittivity of the silica part (= about 4), the relative permittivity of the silica micro hollow body itself becomes lower than that of the fluororesin, and as a result, the insulating layer, and hence the substrate Has a very low relative dielectric constant of 2.1 or less, so that a printed circuit board having a low dielectric constant and a low dielectric loss tangent that can be sufficiently applied to communication equipment using millimeter wave band radio waves can be obtained. .

【0014】ここで、フッ素樹脂に対するシリカ微小中
空体の配合割合を、請求項2に記載のように、40〜6
0VOL.%に設定することにより、機械的強度を一層優れ
たものにすることができるとともに、熱膨張率を小さく
して寸法安定性及びスルーホール信頼性をより高めるこ
とができる。
Here, the mixing ratio of the silica micro hollow body to the fluororesin is set to be 40 to 6 as described in claim 2.
By setting to 0 VOL.%, The mechanical strength can be further improved, and the coefficient of thermal expansion can be reduced to further enhance the dimensional stability and the reliability of the through-hole.

【0015】本発明において用いるフッ素樹脂として
は、請求項3に記載のとおり、PTFE(ポリテトラフ
ルオロエチレン)、FEP(テトラフルオロエチレン/
ヘキサフルオロプロピレン共重合体)、PFA(テトラ
フルオロエチレン/パーフルオロアルキルビニルエーテ
ル共重合体)の中から選択された1つであればよいが、
特に、基板の比誘電率を低くする上で、材料自体の比誘
電率が最も小さいPTFEの使用が好ましい。
As the fluorine resin used in the present invention, as described in claim 3, PTFE (polytetrafluoroethylene), FEP (tetrafluoroethylene /
Hexafluoropropylene copolymer) and PFA (tetrafluoroethylene / perfluoroalkylvinyl ether copolymer) may be one selected from
In particular, in order to lower the relative dielectric constant of the substrate, it is preferable to use PTFE having the smallest relative dielectric constant of the material itself.

【0016】また、本発明において用いるシリカ微小中
空体としては、例えば球状、針状等のいかなる形状のも
のでもよいが、特に、請求項4に記載のとおり、5〜2
0μmの粒子径を有する球状のものであることが望まし
い。このような粒子径範囲のシリカ微小中空球体を使用
することにより、0.2〜0.5μm程度のフッ素樹脂
粒子がシリカ微小中空球体の周囲を満遍なく取り囲み被
覆してシリカ微小中空球体とフッ素樹脂粒子との間に隙
間を生じることがなくなり、絶縁層中にボイドを形成す
ることがない。粒子径が5μm未満のシリカ微小中空球
体を用いる場合は、シリカ微小中空球体間へのフッ素樹
脂粒子の浸透が困難になるために、シリカ微小中空球体
とフッ素樹脂粒子との間に隙間を生じやすくなる場合が
あり、絶縁層中にボイドを発生する。また、粒子径が2
0μmを超えるシリカ微小中空球体を用いる場合は、粒
子が大きすぎて沈降しやすくなる場合があり、フッ素樹
脂と均一に分散混合することができず、その結果、絶縁
層の比誘電率にばらつきを生じやすい。さらに、成形圧
力によりシリカ微小中空球体が割れてしまうため、ボイ
ドの原因となったり、低誘電率の達成が困難となる。
The hollow silica microparticles used in the present invention may be of any shape, for example, spherical, needle-like or the like.
It is desirable that the particles have a spherical shape with a particle diameter of 0 μm. By using silica micro hollow spheres having such a particle diameter range, fluororesin particles of about 0.2 to 0.5 μm uniformly surround and cover the silica micro hollow spheres, and silica micro hollow spheres and fluoro resin particles And no void is formed in the insulating layer. When a silica micro hollow sphere having a particle diameter of less than 5 μm is used, it is difficult to infiltrate the fluororesin particles between the silica micro hollow spheres, so that a gap is easily generated between the silica micro hollow sphere and the fluororesin particle. In some cases, voids are generated in the insulating layer. Further, when the particle diameter is 2
When silica micro hollow spheres exceeding 0 μm are used, the particles may be too large to be easily settled, and cannot be uniformly dispersed and mixed with the fluororesin. As a result, the relative dielectric constant of the insulating layer may vary. Easy to occur. Further, since the silica micro hollow sphere is broken by the molding pressure, it causes voids and it is difficult to achieve a low dielectric constant.

【0017】更に、本発明に係るプリント回路基板は、
請求項5に記載のように、上記シート状絶縁層を複数枚
積層してなる積層板から構成されたものであっても、ま
た、請求項6に記載のように、上記シート状絶縁層の少
なくとも片面側に金属箔により所定の回路パターンが形
成されている基板を多層に積層して構成されたものであ
ってもよい。
Furthermore, the printed circuit board according to the present invention is
According to a fifth aspect of the present invention, the sheet-like insulating layer may be constituted by a laminated plate formed by laminating a plurality of the sheet-like insulating layers. It may be configured by laminating a plurality of substrates having a predetermined circuit pattern formed of metal foil on at least one side.

【0018】更にまた、本発明に用いられる金属箔とし
ては、銅、アルミニウム、鉄、ステンレス、ニッケル等
の金属もしくはそれらの合金箔が含まれるが、これらの
中で銅箔の使用が最も好ましい。また、シリカ微小中空
体として同一作用を有するシラス微小中空体を使用して
もよい。
Further, the metal foil used in the present invention includes metals such as copper, aluminum, iron, stainless steel, nickel and the like and alloy foils thereof, and among them, the use of copper foil is most preferable. Moreover, you may use the shirasu micro hollow body which has the same effect as a silica micro hollow body.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は本発明に係るプリント回路
基板の断面構造図であり、このプリント回路基板1は、
シート状絶縁層2の両面に金属箔の一例である銅箔によ
り所定の回路パターン3,3を形成したものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional structural view of a printed circuit board according to the present invention.
The circuit patterns 3 and 3 are formed on both surfaces of the sheet-like insulating layer 2 with copper foil as an example of a metal foil.

【0020】上記シート状絶縁層2は、図2に明示する
ように、PTFE、FEP、PFAの中から選択された
フッ素樹脂4に、5〜20μmの粒子径を有し、かつ、
シリカ部5aと中空部5b内の空気との体積比が1:6
〜1:3に設定されている球状のシリカ微小中空体5を
10〜70VOL.%、好ましくは40〜60VOL.%の割合
で溶剤により均一に分散混合させてペースト状の配合物
を作り、このペースト状配合物を押出機等を用いて所定
厚みのシート状に押し広げて溶剤を加熱蒸発させたもの
である。そして、このシート状絶縁層2の両面に所定パ
ターンに銅箔を配置したうえで、380℃、980×1
4 Pa(100kgf/cm2 )、60分の条件でホットプ
レスすることにより、所定の回路パターン3,3を備え
たプリント回路基板1を作製している。
As shown in FIG. 2, the sheet-like insulating layer 2 has a particle diameter of 5 to 20 μm in a fluororesin 4 selected from PTFE, FEP and PFA, and
The volume ratio between the silica portion 5a and the air in the hollow portion 5b is 1: 6.
The spherical silica micro hollow body 5 set to に 1: 3 is uniformly dispersed and mixed with a solvent at a ratio of 10 to 70 VOL.%, Preferably 40 to 60 VOL.% To prepare a paste-like compound. The paste-like compound is spread out into a sheet having a predetermined thickness using an extruder or the like, and the solvent is heated and evaporated. Then, after arranging copper foil in a predetermined pattern on both sides of the sheet-like insulating layer 2, 380 ° C., 980 × 1
0 4 Pa (100kgf / cm 2 ), by hot pressing at 60 minutes of conditions, and to produce a printed circuit board 1 having a predetermined circuit pattern 3, 3.

【0021】上記のように作製されたプリント回路基板
1においては、フッ素樹脂4に均一に分散配合されてい
るシリカ微小中空体5の補強効果によってシート状絶縁
層2及びプリント回路基板1の曲げ強度等の機械的強度
の向上が図れるだけでなく、プリント回路基板1の厚み
方向の熱膨張率がフッ素樹脂4自体の熱膨張率(95×
10-6/℃)よりも低く、かつ、面方向で均一になり、
これによって、ホットプレス等の所定の回路パターン
3,3形成時の熱による反りの発生を抑制し寸法安定性
及びスルーホール信頼性、さらには部品の接続信頼性の
向上が図れる。加えて、シリカ微小中空体5の中空部5
b内に存在する空気の比誘電率(=約1)及びシリカ部
5aの比誘電率(=約4)の加重平均により、シリカ微
小中空体5自体の比誘電率がフッ素樹脂4の比誘電率よ
りも低くなり、その結果、シート状絶縁層2、ひいては
基板1全体のの比誘電率を2.1以下と非常に小さいも
のにすることが可能で、ミリ波帯域の電波を使用する通
信機器にも十分に適用可能な低比誘電率、低誘電正接の
プリント回路基板1を得ることができる。
In the printed circuit board 1 manufactured as described above, the bending strength of the sheet-shaped insulating layer 2 and the printed circuit board 1 is enhanced by the reinforcing effect of the silica micro hollow body 5 uniformly dispersed and mixed in the fluororesin 4. In addition to improving the mechanical strength of the printed circuit board 1, the coefficient of thermal expansion in the thickness direction of the printed circuit board 1 can be improved by the coefficient of thermal expansion of the fluororesin 4 itself (95 ×
10 −6 / ° C.) and uniform in the plane direction,
As a result, the occurrence of warpage due to heat when forming the predetermined circuit patterns 3 and 3 such as a hot press can be suppressed, and dimensional stability, through-hole reliability, and component connection reliability can be improved. In addition, the hollow part 5 of the silica micro hollow body 5
Due to the weighted average of the relative permittivity of air (= about 1) and the relative permittivity (= about 4) of the silica portion 5a, the relative permittivity of the silica minute hollow body 5 itself becomes the relative permittivity of the fluororesin 4. As a result, the relative dielectric constant of the sheet-like insulating layer 2 and thus the entire substrate 1 can be made as very low as 2.1 or less, and communication using radio waves in the millimeter wave band is possible. The printed circuit board 1 having a low relative dielectric constant and a low dielectric loss tangent that can be sufficiently applied to equipment can be obtained.

【0022】次に、本発明を実施例により一層詳細に説
明する。表1に記載したように、本発明品に相当する実
施例1〜5の基板では、シリカ微小中空球体のフッ素樹
脂(PTFE)に対する配合割合をそれぞれ、10,2
0,40、60、70VOL.%に設定しているとともに、
シリカ微小中空球体のシリカ部と中空部内の空気との体
積比をそれぞれ、1:6、1:6、1:4、1:3、
1:3に設定している。これによって、実施例1〜5に
おけるシリカ微小中空球体の比誘電率は、中空部に存在
する空気の比誘電率(=約1)とシリカ部の比誘電率
(=約4)との加重平均により、1.4、1.4、1.
6、1.7、1.7となる。
Next, the present invention will be described in more detail with reference to examples. As described in Table 1, in the substrates of Examples 1 to 5 corresponding to the product of the present invention, the mixing ratio of the hollow silica microspheres to the fluororesin (PTFE) was 10, 2 respectively.
0, 40, 60, 70 VOL.%
The volume ratios of the silica part of the silica micro hollow sphere and the air in the hollow part were respectively 1: 6, 1: 6, 1: 4, 1: 3,
1: 3 is set. As a result, the relative dielectric constant of the silica micro hollow spheres in Examples 1 to 5 is a weighted average of the relative dielectric constant (= about 1) of the air existing in the hollow part and the relative dielectric constant (= about 4) of the silica part. , 1.4, 1.4, 1.
6, 1.7 and 1.7.

【0023】一方、比較例1の基板では、多孔質フッ素
樹脂を絶縁層としたものであり、シリカ微小中空球体及
びシリカ粉末のいずれも配合していない。比較例2の基
板では、フッ素樹脂(PTFE)に対してシリカ粉末を
50VOL.%配合している。比較例3の基板では、フッ素
樹脂(PTFE)に対してシリカ微小中空球体を5VOL.
%配合するとともに、そのシリカ微小中空球体のシリカ
部と中空部内の空気との体積比を1:4に設定してい
る。これによって、比較例3におけるシリカ微小中空球
体の比誘電率は1.6となる。
On the other hand, in the substrate of Comparative Example 1, the porous fluororesin was used as the insulating layer, and neither silica fine hollow spheres nor silica powder was blended. In the substrate of Comparative Example 2, 50 VOL.% Of silica powder was blended with the fluororesin (PTFE). In the substrate of Comparative Example 3, 5 VOL.
%, And the volume ratio of the silica part of the silica micro hollow sphere to the air in the hollow part is set to 1: 4. Thereby, the relative permittivity of the hollow silica microspheres in Comparative Example 3 is 1.6.

【0024】[0024]

【表1】 [Table 1]

【0025】上記のような条件の実施例1〜5及び比較
例1〜3の基板の比誘電率、熱膨張率(×10-6
℃)、機械的強度及びスルーホール信頼性を所定の試験
方法に従って測定したところ、表2に示す結果が得られ
た。
Under the above conditions, the relative dielectric constant and the coefficient of thermal expansion of the substrates of Examples 1 to 5 and Comparative Examples 1 to 3 (× 10 −6 /
C), mechanical strength and through-hole reliability were measured according to a predetermined test method, and the results shown in Table 2 were obtained.

【0026】[0026]

【表2】 [Table 2]

【0027】表2からも明らかなように、本発明品に相
当する実施例1〜5のプリント回路基板は、いずれも比
誘電率が2.1以下であるとともに、熱膨張率もフッ素
樹脂単独の熱膨張率(70〜95×10-6/℃)よりも
かなり低く、熱に対する寸法安定性及びスルーホール信
頼性に優れ、かつ、機械的強度の面においてもミリ波帯
域の電波を使用する通信機器に適した薄い(例えば40
0μm厚以下)シート状絶縁層を備えた基板として求め
られる強度を十分に確保している。
As is clear from Table 2, the printed circuit boards of Examples 1 to 5 corresponding to the products of the present invention have a relative dielectric constant of 2.1 or less and a thermal expansion coefficient of only fluororesin. Is considerably lower than the thermal expansion coefficient (70-95 × 10 −6 / ° C.), has excellent dimensional stability against heat and reliability of through-holes, and uses millimeter wave band radio waves in terms of mechanical strength. Thin suitable for communication equipment (for example, 40
(0 μm thickness or less) The strength required for a substrate having a sheet-like insulating layer is sufficiently ensured.

【0028】これに対して、多孔質フッ素樹脂を絶縁層
とした比較例1のプリント回路基板では、既述したとお
り比誘電率は低くなる反面、熱膨張率が極めて高く、熱
に対する寸法安定性及びスルーホール信頼性が非常に悪
いだけでなく、機械的強度も弱いために、薄いシート状
絶縁層としての使用に困難を伴い、ミリ波帯域の電波を
使用する通信機器には適用することができない。また、
比較例2のプリント回路基板では、熱膨張率の低減及び
機械的強度の向上を図れるものの、比誘電率の高い(=
約4)シリカ粉末の配合により、基板全体の比誘電率が
非常に高い値となり、高周波に対する電気的特性の面か
らミリ波帯域の電波を使用する通信機器用の基板として
は実用することができない。さらに、比較例3のプリン
ト回路基板では、比誘電率の低下を図れるものの、シリ
カ微小中空球体による補強効果が不十分で絶縁層を薄い
シート状に形成する上で求められる機械的強度を確保す
るには至らず、かつ、熱膨張率も未だ高く、スルーホー
ル信頼性に劣ると共に、基板上に接続する部品との熱膨
張率の差が大きいために、実使用時の熱応力によって部
品と基板との接続部にクラックを発生したり、剥離した
りするなど部品の接続信頼性に欠け、薄肉小型化が求め
られるミリ波帯域の電波を使用する通信機器用の基板と
しては不適である。
On the other hand, in the printed circuit board of Comparative Example 1 in which the porous fluororesin was used as the insulating layer, the relative dielectric constant was low as described above, but the thermal expansion coefficient was extremely high, and the dimensional stability against heat was high. In addition to very poor through-hole reliability and low mechanical strength, it is difficult to use it as a thin sheet-like insulating layer, and it can be applied to communication equipment that uses radio waves in the millimeter wave band. Can not. Also,
The printed circuit board of Comparative Example 2 can reduce the coefficient of thermal expansion and improve the mechanical strength, but has a high relative dielectric constant (=
Approximately 4) The relative permittivity of the whole substrate becomes very high due to the compounding of the silica powder, so that it cannot be practically used as a substrate for a communication device using a millimeter-wave band radio wave from the viewpoint of electrical characteristics with respect to a high frequency. . Furthermore, in the printed circuit board of Comparative Example 3, although the relative dielectric constant can be reduced, the reinforcing effect of the hollow silica microspheres is insufficient, and the mechanical strength required for forming the insulating layer into a thin sheet is ensured. And the coefficient of thermal expansion is still high, the reliability of through-holes is inferior, and the difference in coefficient of thermal expansion between the parts connected to the board and the parts is large. It is not suitable as a substrate for communication equipment using millimeter-wave band radio waves, which lacks the connection reliability of components such as cracks or peeling at the connection portion with the device and requires thinning and miniaturization.

【0029】なお、上記実施の形態では、単一のシート
状絶縁層2の両面に銅箔により所定の回路パターン3,
3を形成したプリント回路基板1について説明したが、
シート状絶縁層2の片面にのみ回路パターン3を形成し
た基板であってもよい。
In the above-described embodiment, the predetermined circuit patterns 3 and 3 are formed on both surfaces of the single sheet-like insulating layer 2 with copper foil.
3 has been described.
A substrate in which the circuit pattern 3 is formed only on one surface of the sheet-like insulating layer 2 may be used.

【0030】また、プリント回路基板1を積層板として
もよい。すなわち、図3に示すように、フッ素樹脂4に
球状のシリカ微小中空体5を10〜70VOL.%、好まし
くは40〜60VOL.%の割合で均一に分散混合させた配
合物から0.1mm程度の厚みのシート状に形成された
絶縁層2を複数枚(図面上では3枚で示すが、2枚以上
であればよい)積層し、この積層板2Aの両面もしくは
片面に銅箔による所定の回路パターン3を形成したもの
であってもよい。
The printed circuit board 1 may be a laminated board. That is, as shown in FIG. 3, a compound obtained by uniformly dispersing and mixing a spherical silica micro hollow body 5 at a ratio of 10 to 70 VOL.%, Preferably 40 to 60 VOL. A plurality of insulating layers 2 formed in a sheet shape having a thickness of (three sheets are shown in the drawing, but two or more sheets are sufficient), and a predetermined layer of copper foil is formed on both sides or one side of the laminated plate 2A. A circuit pattern 3 may be formed.

【0031】さらに、プリント回路基板1を多層型とし
てもよい。すなわち、図4に示すように、上記シート状
絶縁層2の複数枚を積層した積層板2Aの片面に銅箔に
よる所定の回路パターン3を形成してなる積層板型の回
路基板1の複数個を積層し、そのうち最も上位の基板1
の表面にも銅箔による所定の回路パターン3´を形成し
て多層型のプリント回路基板1´を構成したものであっ
てもよい。
Further, the printed circuit board 1 may be of a multilayer type. That is, as shown in FIG. 4, a plurality of laminated circuit boards 1 formed by forming a predetermined circuit pattern 3 of copper foil on one surface of a laminated board 2A in which a plurality of the sheet-shaped insulating layers 2 are laminated. And the top substrate 1
A multilayer circuit board 1 'may be formed by forming a predetermined circuit pattern 3' of a copper foil on the surface of the multi-layer printed circuit board 1 '.

【0032】[0032]

【発明の効果】以上のように、本発明によれば、フッ素
樹脂にシリカ微小中空体を10〜70VOL.%、好ましく
は40〜60VOL.%配合させて絶縁層を形成することに
より、厚みの薄いシート状絶縁層であっても、機械的強
度を十分に確保して腰が強く、反りなどの発生しない基
板を得ることができると共に、基板厚み方向の熱膨張率
をフッ素樹脂自体の熱膨張率よりも低くして、熱に対す
る寸法安定性及びスルーホール信頼性を高めることがで
き、かつ、基板上の回路パターンに接続する部品との熱
膨張率の差も小さくなることから、実使用時の熱応力に
よって部品接続部にクラックが発生したり、剥離したり
することのない接続信頼性の高いプリント回路基板を得
ることができる。
As described above, according to the present invention, the insulating layer is formed by mixing 10 to 70 vol.%, Preferably 40 to 60 vol. Even with a thin sheet-like insulating layer, it is possible to obtain a substrate that has sufficient mechanical strength and is stiff and does not warp, and has a coefficient of thermal expansion in the thickness direction of the substrate that is the thermal expansion of the fluororesin itself. Lower than the coefficient of thermal expansion to improve the dimensional stability against heat and the reliability of through-holes, and the difference in the coefficient of thermal expansion with the components connected to the circuit pattern on the board is reduced. Thus, it is possible to obtain a printed circuit board having high connection reliability without causing cracks or peeling at the component connection portions due to the thermal stress.

【0033】しかも、フッ素樹脂に配合されるシリカ微
小中空体として、シリカ部と中空部内の空気との体積比
が1:6〜1:3に設定されたものを用いることによ
り、シリカ微小中空体自体の比誘電率をフッ素樹脂の比
誘電率より低くして、絶縁層、ひいては基板の比誘電率
を2.1以下と非常に小さいものにでき、したがって、
ミリ波帯域の電波を使用する通信機器にも十分に適用可
能な低比誘電率、低誘電正接のプリント回路基板を提供
することができる。
In addition, by using a silica fine hollow body having a volume ratio between the silica part and the air in the hollow part set to 1: 6 to 1: 3 as the silica fine hollow body to be mixed with the fluororesin, the silica fine hollow body is used. The relative dielectric constant of itself can be made lower than the relative dielectric constant of the fluororesin, so that the relative dielectric constant of the insulating layer, and thus the substrate, can be very small, such as 2.1 or less.
It is possible to provide a printed circuit board having a low relative dielectric constant and a low dielectric loss tangent that can be sufficiently applied to communication devices using radio waves in the millimeter wave band.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るプリント回路基板の断面構造図で
ある。
FIG. 1 is a sectional structural view of a printed circuit board according to the present invention.

【図2】同上プリント回路基板の要部拡大図である。FIG. 2 is an enlarged view of a main part of the printed circuit board.

【図3】本発明による積層板型のプリント回路基板の断
面構造図である。
FIG. 3 is a cross-sectional structural view of a laminated printed circuit board according to the present invention.

【図4】本発明による多層型のプリント回路基板の断面
構造図である。
FIG. 4 is a sectional structural view of a multilayer printed circuit board according to the present invention.

【符号の説明】[Explanation of symbols]

1 プリント回路基板 1´ 多層型のプリント回路基板 2 シート状絶縁層 3,3´ 所定の回路パターン 4 フッ素樹脂 5 球状のシリカ微小中空体 5a シリカ部 5b 中空部 DESCRIPTION OF SYMBOLS 1 Printed circuit board 1 'Multilayer type printed circuit board 2 Sheet-shaped insulating layer 3, 3' Predetermined circuit pattern 4 Fluororesin 5 Spherical silica micro hollow body 5a Silica part 5b Hollow part

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 27/18 H05K 3/46 T H05K 3/46 C04B 35/00 108 Fターム(参考) 4F071 AA26 AB26 AD04 AF40 AF54 AH13 BA03 BB03 BB06 BC01 4G030 AA37 AA61 AA66 BA09 BA12 BA20 BA24 CA03 CA04 CA07 CA08 GA14 GA17 GA19 GA29 PA21 4J002 BD151 BD161 DJ016 FA106 GQ00 5E346 AA12 AA15 AA22 AA23 AA25 BB01 CC14 CC16 CC32 GG02 HH06 HH11 HH21 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C08L 27/18 H05K 3/46 T H05K 3/46 C04B 35/00 108 F term (reference) 4F071 AA26 AB26 AD04 AF40 AF54 AH13 BA03 BB03 BB06 BC01 4G030 AA37 AA61 AA66 BA09 BA12 BA20 BA24 CA03 CA04 CA07 CA08 GA14 GA17 GA19 GA29 PA21 4J002 BD151 BD161 DJ016 FA106 GQ00 5E346 AA12 AA15 AA22 AA23 AA25 BB01 CC14 CC16 CC32 GG02 HH06H11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 フッ素樹脂とシリカ微小中空体との配合
物からなるシート状絶縁層の少なくとも片面側に金属箔
により所定の回路パターンが形成されているプリント回
路基板であって、 上記シリカ微小中空体はそのシリカ部と中空部内の空気
との体積比が1:6〜1:3に設定されており、 かつ、フッ素樹脂に対するシリカ微小中空体の配合割合
は10〜70VOL.%に設定されていることを特徴とする
プリント回路基板。
1. A printed circuit board in which a predetermined circuit pattern is formed by a metal foil on at least one side of a sheet-like insulating layer comprising a blend of a fluororesin and a silica fine hollow body, The volume ratio of the silica part to the air in the hollow part is set to 1: 6 to 1: 3, and the mixing ratio of the silica micro hollow body to the fluororesin is set to 10 to 70 VOL.%. A printed circuit board.
【請求項2】 フッ素樹脂に対するシリカ微小中空体の
配合割合が、40〜60VOL.%に設定されている請求項
1に記載のプリント回路基板。
2. The printed circuit board according to claim 1, wherein the compounding ratio of the silica micro hollow body to the fluororesin is set to 40 to 60 VOL.%.
【請求項3】 フッ素樹脂が、PTFE(ポリテトラフ
ルオロエチレン)、FEP(テトラフルオロエチレン/
ヘキサフルオロプロピレン共重合体)、PFA(テトラ
フルオロエチレン/パーフルオロアルキルビニルエーテ
ル共重合体)の中から選択された1つである請求項1ま
たは2に記載のプリント回路基板。
3. The method according to claim 1, wherein the fluororesin is PTFE (polytetrafluoroethylene), FEP (tetrafluoroethylene /
The printed circuit board according to claim 1, which is one selected from hexafluoropropylene copolymer) and PFA (tetrafluoroethylene / perfluoroalkylvinyl ether copolymer). 4.
【請求項4】 シリカ微小中空体が、5〜20μmの粒
子径を有するものである請求項1ないし3のいずれかに
記載のプリント回路基板。
4. The printed circuit board according to claim 1, wherein the hollow silica microparticle has a particle diameter of 5 to 20 μm.
【請求項5】 上記シート状絶縁層を複数枚積層してな
る積層板から構成されている請求項1ないし4のいずれ
かに記載のプリント回路基板。
5. The printed circuit board according to claim 1, wherein the printed circuit board comprises a laminated plate formed by laminating a plurality of the sheet-shaped insulating layers.
【請求項6】 上記シート状絶縁層の少なくとも片面側
に金属箔により所定の回路パターンが形成されている基
板を多層に積層してなる請求項1ないし4のいずれかに
記載のプリント回路基板。
6. The printed circuit board according to claim 1, wherein a substrate having a predetermined circuit pattern formed of metal foil on at least one side of the sheet-like insulating layer is laminated in multiple layers.
JP2000181348A 2000-06-16 2000-06-16 Printed circuit board Pending JP2001358415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000181348A JP2001358415A (en) 2000-06-16 2000-06-16 Printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000181348A JP2001358415A (en) 2000-06-16 2000-06-16 Printed circuit board

Publications (1)

Publication Number Publication Date
JP2001358415A true JP2001358415A (en) 2001-12-26

Family

ID=18682291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000181348A Pending JP2001358415A (en) 2000-06-16 2000-06-16 Printed circuit board

Country Status (1)

Country Link
JP (1) JP2001358415A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007607A (en) * 2006-06-28 2008-01-17 Nippon Valqua Ind Ltd Filler-filled fluororesin sheet and process for producing filler-filled fluororesin sheet
KR101138109B1 (en) 2011-04-27 2012-04-24 (주)엠제이티 Manufacture method of printed circuit board having teflon
WO2015053309A1 (en) * 2013-10-11 2015-04-16 住友電工プリントサーキット株式会社 Fluorine resin base material, printed wiring board, and circuit module
JP2015074217A (en) * 2013-10-11 2015-04-20 住友電工プリントサーキット株式会社 Fluorine resin substrate, printed circuit board, display panel, display device, touch panel, illumination device, and solar panel
JP2015097257A (en) * 2013-10-11 2015-05-21 住友電工プリントサーキット株式会社 Fluorine resin base material, printed wiring board, and circuit module
US20160107376A1 (en) * 2013-05-31 2016-04-21 Sumitomo Electric Industries, Ltd. Metal-resin composite body, wiring material, and method for producing metal-resin composite body
JP2016534549A (en) * 2013-07-23 2016-11-04 ロジャーズ コーポレーション Circuit material, circuit laminate and method of manufacturing the same
EP3056343A4 (en) * 2013-10-11 2017-09-27 Sumitomo Electric Printed Circuits, Inc. Fluorine resin base material, printed wiring board, and circuit module
CN108079803A (en) * 2017-11-21 2018-05-29 浙江德清科赛塑料制品有限公司 A kind of microporous teflon membran
WO2018221556A1 (en) * 2017-05-31 2018-12-06 日東電工株式会社 Tabular composite material containing polytetrafluoroethylene and filler
JPWO2018221556A1 (en) * 2017-05-31 2020-04-02 日東電工株式会社 Plate-like composite material containing polytetrafluoroethylene and filler
CN111154206A (en) * 2020-02-17 2020-05-15 武汉理工大学 Modified PTFE composite medium material, preparation method and application thereof
JP2020174115A (en) * 2019-04-10 2020-10-22 株式会社フジクラ Multilayer circuit board
CN113232383A (en) * 2021-05-25 2021-08-10 武汉理工大学 PTFE composite medium substrate and preparation method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007607A (en) * 2006-06-28 2008-01-17 Nippon Valqua Ind Ltd Filler-filled fluororesin sheet and process for producing filler-filled fluororesin sheet
KR101138109B1 (en) 2011-04-27 2012-04-24 (주)엠제이티 Manufacture method of printed circuit board having teflon
US20160107376A1 (en) * 2013-05-31 2016-04-21 Sumitomo Electric Industries, Ltd. Metal-resin composite body, wiring material, and method for producing metal-resin composite body
JP2016534549A (en) * 2013-07-23 2016-11-04 ロジャーズ コーポレーション Circuit material, circuit laminate and method of manufacturing the same
US11364714B2 (en) 2013-10-11 2022-06-21 Sumitomo Electric Printed Circuits, Inc. Fluororesin base material, printed wiring board, and circuit module
JP2015074217A (en) * 2013-10-11 2015-04-20 住友電工プリントサーキット株式会社 Fluorine resin substrate, printed circuit board, display panel, display device, touch panel, illumination device, and solar panel
EP3056343A4 (en) * 2013-10-11 2017-09-27 Sumitomo Electric Printed Circuits, Inc. Fluorine resin base material, printed wiring board, and circuit module
JP2015097257A (en) * 2013-10-11 2015-05-21 住友電工プリントサーキット株式会社 Fluorine resin base material, printed wiring board, and circuit module
WO2015053309A1 (en) * 2013-10-11 2015-04-16 住友電工プリントサーキット株式会社 Fluorine resin base material, printed wiring board, and circuit module
US11453762B2 (en) 2017-05-31 2022-09-27 Nitto Denko Corporation Plate-like composite material containing polytetrafluoroethylene and filler
WO2018221556A1 (en) * 2017-05-31 2018-12-06 日東電工株式会社 Tabular composite material containing polytetrafluoroethylene and filler
JPWO2018221556A1 (en) * 2017-05-31 2020-04-02 日東電工株式会社 Plate-like composite material containing polytetrafluoroethylene and filler
US11884796B2 (en) 2017-05-31 2024-01-30 Nitto Denko Corporation Plate-like composite material containing polytetrafluoroethylene and filler
JP7102402B2 (en) 2017-05-31 2022-07-19 日東電工株式会社 Plate-like composite material containing polytetrafluoroethylene and filler
CN108079803A (en) * 2017-11-21 2018-05-29 浙江德清科赛塑料制品有限公司 A kind of microporous teflon membran
CN108079803B (en) * 2017-11-21 2024-05-31 浙江科赛新材料科技有限公司 Polytetrafluoroethylene microporous membrane
JP2020174115A (en) * 2019-04-10 2020-10-22 株式会社フジクラ Multilayer circuit board
CN111154206A (en) * 2020-02-17 2020-05-15 武汉理工大学 Modified PTFE composite medium material, preparation method and application thereof
CN113232383B (en) * 2021-05-25 2022-04-15 武汉理工大学 PTFE composite medium substrate and preparation method thereof
CN113232383A (en) * 2021-05-25 2021-08-10 武汉理工大学 PTFE composite medium substrate and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2001358415A (en) Printed circuit board
TWI639675B (en) Multi-layered anisotropic conductive adhesive having conductive fabric and the preparation thereof
CN102260378B (en) Composite material, high-frequency circuit board manufactured therefrom and manufacturing method of high-frequency circuit board
CN103958188B (en) Flexible metal laminate containing fluorinated polymer
CN112440534B (en) Metal foil laminated plate, printed circuit board and method for manufacturing metal foil laminated plate
WO2001003478A1 (en) Printed wiring board and prepreg for printed wiring board
CN112109391B (en) Metal foil laminate and method for producing the same
WO2019203266A1 (en) Insulation sheet, laminate, and substrate
WO2020066145A1 (en) Low dielectric substrate material
WO2004102589A1 (en) Insulating material, film, circuit board and method for manufacture thereof
WO2004066316A1 (en) Conductive paste, method for producing same, circuit board using such conductive paste and method for producing same
JP2002344100A (en) Dielectric material for substrate, and manufacturing method therefor
JP2006228871A (en) Wiring board
JPH11192620A (en) Prepreg and substrate
JP2007123737A (en) Board material and printed-circuit board
JP2001358416A (en) Printed circuit board
JP3514340B2 (en) Adhesive sheet
JP3153511B2 (en) Printed wiring board and method of manufacturing the same
CN109890140A (en) A kind of processing technology for the wiring board that corrosion-resistant loss is low
JP2023002495A (en) Dielectric material and flexible copper clad laminate including the same
JPS62206861A (en) Ceramic multilayer circuit board and semiconductor mounting structure
JP2002368416A (en) Printed wiring board and manufacturing method therefor
JPH07162111A (en) Composite dielectric board
JP2002280688A (en) Copper foil with adhesive agent for manufacturing printed circuit board and copper clad board
WO2024176534A1 (en) Fluororesin sheet, method for producing same, and metal-clad fluororesin substrate containing same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050726

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050826