JP2001346339A - Power supply incorporating storage battery - Google Patents

Power supply incorporating storage battery

Info

Publication number
JP2001346339A
JP2001346339A JP2000162258A JP2000162258A JP2001346339A JP 2001346339 A JP2001346339 A JP 2001346339A JP 2000162258 A JP2000162258 A JP 2000162258A JP 2000162258 A JP2000162258 A JP 2000162258A JP 2001346339 A JP2001346339 A JP 2001346339A
Authority
JP
Japan
Prior art keywords
battery
power supply
voltage
batteries
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000162258A
Other languages
Japanese (ja)
Inventor
Masaaki Yamamoto
雅秋 山本
Hirotaka Hayashida
浩孝 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP2000162258A priority Critical patent/JP2001346339A/en
Publication of JP2001346339A publication Critical patent/JP2001346339A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve maintainability by controlling the dispersion of charging states caused by the difference in self-discharging characteristics of each battery in a power supply that comprises a group of storage batteries connected in series for inputting and outputting a large current and that utilizes a storage battery that charges and discharge the group of the storage batteries. SOLUTION: A DC power supply 16 and a voltmeter 18 are connected to each of batteries 11a, 11b, etc. connected in series to constitute a circuit between the batteries and the DC power supply. A closed circuit voltage when a current is supplied and an open circuit one when the current supply is stopped are measured. Then, a computing and controlling device 20 obtains the difference between a voltage permissible range specified in advance and the actually measured voltage of closed and open circuits of each battery, thereby charging each battery additionally with a certain capacity if necessary.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の蓄電池を直
列接続させた電池群(蓄電池モジュール)を構成要素と
する蓄電池を用いた電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device using a storage battery including a battery group (storage battery module) in which a plurality of storage batteries are connected in series.

【0002】[0002]

【関連する背景技術】従来、この種の電源装置では、例
えば電気自動車やハイブリッド電気自動車の電源として
用いられ、外部へ向けた大電力供給と外部からの大電力
受け入れを急速に行うものが要求される。このような使
用環境では、配線部分でのエネルギー損失を抑える目的
で一般に高電圧が要求される。このために蓄電池を多段
に直列接続した電池群が用いられ放電と充電を行ってい
た。
2. Description of the Related Art Conventionally, a power supply of this type, which is used as a power supply for an electric vehicle or a hybrid electric vehicle, for example, is required to rapidly supply large power to the outside and receive large power from the outside. You. In such a use environment, a high voltage is generally required in order to suppress energy loss in the wiring portion. For this purpose, a battery group in which a plurality of storage batteries are connected in series has been used for discharging and charging.

【0003】しかしながら、電池の容量は均一ではなく
ばらつきがあり、これが原因となって上記の直列接続状
態で使用すると、容量の小さい電池(以下、「特定電
池」という)は、放電の際には放電末期に転極したり、
また充電の際には充電終了を電池群の電圧測定から判定
することが困難となるために過剰に充電される場合が生
じ、これらの異常は直列接続される電池の数が増えるに
従い、その異常検出が困難となる。
[0003] However, the capacity of the battery is not uniform, but varies. Due to this, when the battery is used in the above-described series connection state, a battery having a small capacity (hereinafter, referred to as a “specific battery”) is discharged. In the end of discharge,
In addition, when charging, it is difficult to determine the end of charging from the voltage measurement of the battery group, so that the battery may be excessively charged.These abnormalities become abnormal as the number of batteries connected in series increases. Detection becomes difficult.

【0004】例えば、アルカリ蓄電池の場合、特定電池
が転極すると、特に大電流放電では電池内圧の上昇が避
けられず、安全弁を開いて系外にガスを放出して電池の
寿命を損なうことになる。また、特定電池の過剰な充電
の際にも、大電流充電では内部での電解発生したガスの
再結合が間に合わず、同様に系外にガスを放出して電池
の寿命を損なうという問題点があった。また、非水系電
池などの他系の電池では、過充電或いは過放電により、
電池の活性自体が失われる場合もあり、さらに大きな問
題となっていた。
[0004] For example, in the case of an alkaline storage battery, when the specific battery is inverted, the internal pressure of the battery is unavoidably increased, especially in large current discharge, and the safety valve is opened to release gas to the outside of the system, thereby impairing the life of the battery. Become. In addition, even when the specific battery is excessively charged, the re-combination of the gas generated inside by the high current charging cannot be performed in time, and similarly, the gas is released to the outside of the system, thereby shortening the life of the battery. there were. In other types of batteries such as non-aqueous batteries, overcharging or overdischarging causes
In some cases, the activity of the battery itself is lost, which has been a further problem.

【0005】そこで、上記電池群中の特定電池の過放電
或いは過充電を避けるために、電池群の充電状態を評価
し、電池容量のばらつき程度では過放電や過充電に至ら
ない領域で使用する方法も行われている。すなわち、上
記方法では、例えば電池群の初期充電状態を電池容量の
50%程度で一定とし、電池群に対する充電量及び放電
量を測定し積算して充電状態を概算することによって使
用していた。
In order to avoid overdischarging or overcharging of a specific battery in the battery group, the state of charge of the battery group is evaluated, and the battery is used in a region where overdischarge or overcharging does not occur due to a variation in battery capacity. A method has also been implemented. That is, in the above-described method, for example, the initial charge state of the battery group is fixed at about 50% of the battery capacity, and the charge state and the discharge amount for the battery group are measured and integrated to estimate the charge state.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記方法で
は、ある程度の使用期間はほぼ正確な充電状態を把握す
ることができるが、使用期間が長期的になると実際の充
電状態との誤差の発生が避けられない上に、電池の自己
放電特性の差や自己放電に関連する電池温度のばらつき
の影響などにより、電池群を構成する個々の電池の充電
状態にも差が生じてしまう。つまり、上記方法では、概
算によって推定される充電状態からの電池群の充電状態
平均値のずれに加えて、個々の電池の充電状態にばらつ
きが起こる。このために、無保守での長期使用は困難で
あり、個々の電池ごとの充電状態を随時揃える必要があ
る。しかし、電池群を構成する個々の電池の充電状態の
把握は、上記充電状態に依存して開回路電圧が著しく変
化する電池以外では一般に困難であり、例えばアルカリ
蓄電池のように電圧平坦性に優れた電池では、特に開回
路電圧のみから充電状態を把握することは困難であっ
た。
However, in the above-mentioned method, although the state of charge can be grasped almost accurately during a certain period of use, an error from the actual state of charge occurs when the period of use is long. In addition to the above, unavoidable differences in the self-discharge characteristics of the batteries and variations in the battery temperature related to the self-discharge cause differences in the charge states of the individual batteries constituting the battery group. That is, in the above method, in addition to the deviation of the state of charge of the battery group from the state of charge estimated by the rough estimation, the state of charge of each battery varies. For this reason, long-term use without maintenance is difficult, and it is necessary to adjust the charge state of each battery as needed. However, it is generally difficult to grasp the state of charge of each of the batteries constituting the battery group, except for the battery whose open circuit voltage significantly changes depending on the state of charge, and for example, has excellent voltage flatness like an alkaline storage battery. In the case of the battery, it is particularly difficult to grasp the state of charge only from the open circuit voltage.

【0007】本発明は上記問題点に鑑みなされたもの
で、直列接続された電池群を長期にわたり無保守で使用
できる電源装置を簡単かつ安価な構成で提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a simple and inexpensive power supply device that can use a series-connected battery group for a long time without maintenance.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、複数の蓄電池を直列接続させた電池群
を有し、前記電池群の充放電を行う蓄電池を用いた電源
装置であって、前記電池群の入出力電流を測定する電流
計からなる電流測定手段と、前記電池群の各電池に複数
の通電状態又は通電状態と非通電状態のいずれかを発生
させる直流電源と、直流電源を用いた充電、放電および
休止を行った際の前記各電池における電圧をそれぞれ測
定する電圧計からなる電圧測定手段と、前記直流電源お
よび電圧測定手段と個々の前記電池との接続切り換えを
行う回路切換器からなる接続切換手段と、前記電流測定
手段で測定された入出力電流値及び前記電池群の予め設
定された初期充電状態設定値に基づいて、前記電池群の
充電状態を算出するとともに、予め入力されたデータ又
は計算式に基づいて、前記各電池の複数の通電状態又は
通電状態と非通電状態のいずれかでの電圧許容範囲を指
定する演算制御装置からなる演算制御手段とを備え、前
記演算制御手段は、前記直流電源から設定された各電池
の通電状態のうち大電流側の前記充電又は放電で測定さ
れる電圧が、前記指定する大電流側の電圧許容範囲より
も低く、かつ前記通電状態のうち小電流側もしくは非通
電状態で測定される電圧が、前記指定する小電流側もし
くは非通電状態での電圧許容範囲を超えない個々の電池
に対して、予め設定された電気量の充電を前記直流電源
から順次接続切り換えによって行わせる蓄電池を用いた
電源装置が提供される。
According to the present invention, there is provided a power supply apparatus having a battery group in which a plurality of storage batteries are connected in series, and using a storage battery for charging and discharging the battery group. A current measuring means comprising an ammeter for measuring the input / output current of the battery group; a DC power supply for generating a plurality of energized states or any of an energized state and a non-energized state for each battery of the battery group; A voltage measuring means comprising a voltmeter for measuring a voltage in each of the batteries when charging, discharging and pausing using a power supply, and connection switching between the DC power supply and the voltage measuring means and the individual batteries are performed. Calculating the state of charge of the battery group based on the input / output current value measured by the connection switching means including a circuit switcher and the preset initial state of charge setting of the battery group; In both cases, an arithmetic control unit including an arithmetic control unit that specifies a plurality of energized states of each of the batteries or a voltage allowable range in any of the energized state and the non-energized state based on data or a calculation formula input in advance. The arithmetic and control unit is configured such that the voltage measured by the charging or discharging on the high current side in the energized state of each battery set from the DC power supply is lower than the specified allowable voltage range on the high current side. The voltage measured on the small current side or the non-energized state of the energized state is set in advance for each battery that does not exceed the voltage allowable range on the specified small current side or the non-energized state. There is provided a power supply device using a storage battery for charging an electric quantity by sequentially switching connections from the DC power supply.

【0009】すなわち、個々の電池について直流電源と
接続させて、電池と直流電源間で回路を構成させて所定
の電流値で所定時間の充電を行い、充電開始後一定時間
での閉回路電圧を測定し、次いで充電を停止してから一
定時間経過後の開回路電圧を測定すると、閉回路電圧は
電池の充電状態と内部インピーダンスを反映した値とな
り、開回路電圧は電池の充電状態を反映した値となる。
一方、入出力電流値および初期充電状態設定値を用いて
電池群の充電状態を算出し、予め入力された相関表から
なるデータ又は計算式に基づいて各電池の通電状態それ
ぞれに対して電圧許容範囲を指定する。次に、演算制御
手段は、実際に測定された閉回路電圧が電圧許容範囲よ
りも低く、開回路電圧が電圧許容範囲を超えない電池
を、低い充電状態の電池と判断して予め設定した電気量
の充電を行うことによって、充電状態を高めることがで
きる。
That is, each battery is connected to a DC power supply, a circuit is formed between the battery and the DC power supply, charged at a predetermined current value for a predetermined time, and a closed circuit voltage at a predetermined time after the start of charging. Measured and then measured the open circuit voltage after a certain period of time after stopping charging, the closed circuit voltage was a value reflecting the battery charging state and internal impedance, and the open circuit voltage reflected the battery charging state Value.
On the other hand, the state of charge of the battery group is calculated using the input / output current value and the initial state of charge setting value. Specify a range. Next, the arithmetic and control unit determines that a battery whose actually measured closed circuit voltage is lower than the voltage allowable range and whose open circuit voltage does not exceed the voltage allowable range is a battery in a low state of charge, and sets a preset electric power. By charging the amount, the state of charge can be increased.

【0010】また、開回路電圧が低い電池に対する追い
充電の電気量は任意に設定することができるが、他の電
池の充電状態を大きく超えるまで充電することは運用上
望ましくないので、1回あたりの追い充電の電気量は電
池容量の15%以下で、かつ1%以上とする。また、電
池の劣化は、内部インピーダンスの上昇については低下
する閉回路電圧と上昇する開回路電圧の差によって検知
することができる。また自己放電速度が異常な電池につ
いては、このような電池は頻繁に追い充電がなされるこ
ととなるので、追い充電の頻度に基づいて検知すること
ができる。これらの不具合電池を検知して異常発生を報
知する。
Although the amount of additional charge for a battery having a low open circuit voltage can be arbitrarily set, it is not desirable to charge the battery until it greatly exceeds the state of charge of another battery. The amount of electricity for the additional charge is 15% or less of the battery capacity and 1% or more. Further, the deterioration of the battery can be detected based on the difference between the decreasing closed circuit voltage and the increasing open circuit voltage when the internal impedance increases. In addition, for a battery having an abnormal self-discharge speed, such a battery is frequently recharged, and thus can be detected based on the frequency of recharge. By detecting these defective batteries, the occurrence of abnormality is notified.

【0011】さらに、各電池の配線接続を、多点接続の
ための第1の金具と直流電源からのケーブルの先端に取
り付けた第2の金具とによる簡易着脱可能な嵌合構造で
構成することによって、電池交換を容易にする。
[0011] Further, the wiring connection of each battery is constituted by a simple detachable fitting structure of a first metal fitting for multipoint connection and a second metal fitting attached to the tip of a cable from a DC power supply. This facilitates battery replacement.

【0012】[0012]

【発明の実施の形態】本発明に係る蓄電池を用いた電源
装置の一実施形態を図1乃至図3の図面を用いて説明す
る。図1は、本発明に係る蓄電池を用いた電源装置の構
成の一例を示す構成図である。図において、本発明に係
る電源装置10は、電池11a,11b,…を直列に接
続した直列接続蓄電池群11と、発電機を兼ねるととも
に、駆動体12を駆動させる電動機13と、直列接続電
池群11と接続されて電動機13へ供給する電流量を制
御する電流制御器14と、直列接続蓄電池群11の入出
力電流を測定する電流計15と、直列接続蓄電池群11
の個々の電池を充電させるための直流電源16と、上記
個々の電池と直流電源16の切り換え接続を行う回路切
換器17と、上記充電開始後の電池の閉回路電圧を測定
する電圧計18と、電動機13の運転条件を入力する操
作盤19と、上記運転条件に基づいて電流制御器14に
制御指示を出力するとともに、回路切換器17の切り換
え動作制御及び直列接続蓄電池群11の充電状態の算
出、電池の通電状態又は非通電状態における電圧許容範
囲を指定する演算制御装置20とを備えて構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a power supply device using a storage battery according to the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram showing an example of a configuration of a power supply device using a storage battery according to the present invention. In the figure, a power supply device 10 according to the present invention includes a series-connected storage battery group 11 in which batteries 11a, 11b,... Are connected in series, an electric motor 13 serving also as a generator and driving a driving body 12, and a series-connected battery group. 11, a current controller 14 for controlling the amount of current supplied to the motor 13; an ammeter 15 for measuring the input / output current of the series-connected storage battery group 11;
A DC power supply 16 for charging the individual batteries, a circuit switch 17 for switching connection between the individual batteries and the DC power supply 16, and a voltmeter 18 for measuring a closed circuit voltage of the batteries after the start of charging. A control panel 19 for inputting the operating conditions of the electric motor 13, and a control instruction to the current controller 14 based on the operating conditions, to control the switching operation of the circuit switch 17 and to control the state of charge of the series-connected storage battery group 11. And an arithmetic and control unit 20 for designating the allowable voltage range in the calculation and in the energized state or the non-energized state of the battery.

【0013】このような構成において、直列接続蓄電池
群11は、電池11a,11b,…を直列に接続した少
なくとも1つの蓄電池モジュールからなり、使用開始前
の状態では所定の充電状態に予め充電された初期充電状
態にある。直列接続蓄電池群11は、電流制御器14を
介して電動機13と接続されている。駆動体12は、図
示しない外部の駆動源とも接続され、その駆動源によっ
て発電した電気エネルギーを直列接続電池群11に充電
する構造になっている。なお、本発明はこれに限らず、
例えば図示しない外部の商用電源から直流変換した電流
によって、必要に応じて直列接続電池群11を充電する
構造であっても良い。
In such a configuration, the series-connected storage battery group 11 includes at least one storage battery module in which batteries 11a, 11b,... Are connected in series, and has been charged to a predetermined charge state before use. It is in the initial charge state. The series-connected storage battery group 11 is connected to the electric motor 13 via the current controller 14. The driving body 12 is also connected to an external driving source (not shown), and has a structure for charging the series-connected battery group 11 with electric energy generated by the driving source. The present invention is not limited to this,
For example, a structure may be used in which the series-connected battery group 11 is charged as necessary with a DC-converted current from an external commercial power supply (not shown).

【0014】演算制御装置20は、操作盤19から電動
機13の運転条件が入力すると、電流制御器14に制御
指示を与え、直列接続電池群11から電動機13に供給
する電流を制御させ、駆動体12の運転開始(加速)の
際には所望の出力で駆動体12を駆動させるとともに、
駆動体12を停止又は減速させる際には電動機13を発
電機として機能させ、回生電流を直列接続電池群11に
充電する。
When the operating conditions of the electric motor 13 are inputted from the operation panel 19, the arithmetic and control unit 20 gives a control instruction to the current controller 14 to control the electric current supplied from the series-connected battery group 11 to the electric motor 13, and At the start of operation (acceleration) of the drive unit 12, the driving unit 12 is driven with a desired output,
When the driving body 12 is stopped or decelerated, the electric motor 13 is made to function as a generator, and the regenerative current is charged to the series-connected battery group 11.

【0015】駆動体12の停止又は減速の際は、全ての
制動エネルギーを回生電流として直流接続電池群11を
充電すると、直流接続電池群11の充電可能な電流値を
上回る場合があるが、この場合には、例えば駆動体12
を図示しない外部の機械的制動手段と組み合わせて制動
するなどの方法をとることができる。運転状態において
は、直流接続電池群11は操作盤19からの指令に基づ
いて充電および放電を繰り返し、この際に流れる入出力
電流が電流計15によって測定され、演算制御装置20
によって積算される。
When the driving body 12 is stopped or decelerated, if the DC connection battery group 11 is charged with all the braking energy as a regenerative current, the charging current of the DC connection battery group 11 may exceed the chargeable current value. In this case, for example, the driving body 12
May be combined with external mechanical braking means (not shown) for braking. In the operating state, the DC connection battery group 11 repeats charging and discharging based on a command from the operation panel 19, and the input / output current flowing at this time is measured by the ammeter 15 and the arithmetic and control unit 20
Multiplied by

【0016】演算制御装置20には、予め使用開始前の
直流接続電池群11の充電状態(初期充電状態)のデー
タが入力され記憶されている。演算制御装置20は、上
記初期充電状態のデータと、使用開始後の充放電による
入出力電流積算値とを、以下の計算式を用いて合算し
て、直流接続電池群11の充電状態(充電の電気量)を
算出する。
In the arithmetic and control unit 20, data on the state of charge (initial state of charge) of the DC-connected battery group 11 before use is input and stored in advance. The arithmetic and control unit 20 adds the data of the initial state of charge and the integrated value of input / output current by charge / discharge after the start of use by using the following formula to calculate the state of charge (charge) of the DC-connected battery group 11. Of electricity) is calculated.

【0017】(初期充電量)+(入出力電流積算量)−
(自己放電推算量) 一方、演算制御装置20は、電動機13と直流接続電池
群11の間で電流の入出力が行われない間、例えば本実
施形態の電源装置を自動車の電源装置として用いた場合
には、キーが挿入され、かつアイドリング状態等の停止
時に、回路切換器17を切り換えて、個々の電池と直流
電源16を順次接続させ、直流電源16から所定の電流
で各電池に充電を行う。本実施形態では、例えば直流接
続電池群11の電池のうち、電池11aから順に直流電
源16に接続させ、直流電源16から所定電流で各電池
に充電を行う。
(Initial charge amount) + (input / output current integrated amount) −
(Estimated amount of self-discharge) On the other hand, the arithmetic and control unit 20 uses, for example, the power supply device of the present embodiment as a power supply device of an automobile while current is not input and output between the electric motor 13 and the DC connection battery group 11. In this case, when the key is inserted and the idling state or the like is stopped, the circuit switch 17 is switched to connect the individual batteries to the DC power supply 16 in order, and charge each battery with a predetermined current from the DC power supply 16. Do. In the present embodiment, for example, among the batteries of the DC connection battery group 11, the batteries are connected to the DC power supply 16 in order from the battery 11a, and each battery is charged with a predetermined current from the DC power supply 16.

【0018】そして、電池11aへの充電開始後から所
定時間が経過すると、電池11aと直流電源16間に形
成された回路の閉回路電圧を電圧計18によって測定
し、演算制御装置20内の図示しないメモリに記録す
る。次に、演算制御装置20は、直流電源16からの電
流を停止させて所定時間経過後に、電池11aと直流電
源16間に形成された回路の開回路電圧を電圧計18に
よって測定し、同様に演算制御装置20内のメモリに記
録する。
When a predetermined time has elapsed after the start of charging of the battery 11a, a closed circuit voltage of a circuit formed between the battery 11a and the DC power supply 16 is measured by a voltmeter 18, Do not record in memory. Next, the arithmetic and control unit 20 stops the current from the DC power supply 16 and, after a lapse of a predetermined time, measures the open circuit voltage of the circuit formed between the battery 11a and the DC power supply 16 with the voltmeter 18, and similarly measures It is recorded in the memory in the arithmetic and control unit 20.

【0019】演算制御装置20は、記録されたこれら閉
回路電圧値及び開回路電圧値を、予め入力され記憶され
ている相関表のデータ又は計算式などを用いて、上記算
出された充電状態算出値に相当する閉回路電圧値及び開
回路電圧値と比較し、実際に測定された閉回路電圧値が
充電状態算出値に相当する閉回路電圧値よりも許容範囲
を超えて低く、実際に測定された開回路電圧値が予め設
定されている許容範囲内にある場合に、直流電源16を
作動させて電池11aに所定量の充電(追い充電)を行
わせる。
The arithmetic and control unit 20 uses the recorded closed-circuit voltage value and open-circuit voltage value to calculate the above-mentioned state of charge using the previously input and stored correlation table data or calculation formula. Compared with the closed circuit voltage value and open circuit voltage value corresponding to the value, the actually measured closed circuit voltage value is lower than the allowable value of the closed circuit voltage value corresponding to the state of charge calculation value, and is actually measured. When the set open circuit voltage value is within the preset allowable range, the DC power supply 16 is operated to charge the battery 11a with a predetermined amount of charge (additional charge).

【0020】閉回路電圧及び開回路電圧を比較する基準
となるデータは、閉回路電圧を測定する際の電流値、電
池の容量、周囲温度等によって変化する。このため電池
容量に応じて適当な閉回路電圧測定用の電流値及び通電
時間を定めて測定し、作成することができる。例えば、
7Ah容量の電池に対しては35Aで5秒充電し、充電
末期の電圧を閉回路電圧として記録したのち、充電停止
5秒後の電圧を開回路電圧として記録することができ、
基準となるデータは健全状態の電池に同様の処理を行っ
た場合の値を予め測定して用いる。電圧値は周囲温度に
よっても変化するため、基準となるデータは例えば10
℃変化毎に測定して記録しておき、中間の温度に対して
は近似値を補間法によって算出することが望ましい。
The reference data for comparing the closed circuit voltage and the open circuit voltage changes depending on the current value, the battery capacity, the ambient temperature, and the like when measuring the closed circuit voltage. For this reason, it is possible to determine and measure an appropriate current value and energizing time for measuring the closed-circuit voltage in accordance with the battery capacity, and create the measurement. For example,
A battery with a capacity of 7 Ah can be charged at 35 A for 5 seconds, and the voltage at the end of charging can be recorded as a closed circuit voltage, and then the voltage 5 seconds after charging is stopped can be recorded as an open circuit voltage.
As reference data, a value obtained when the same processing is performed on a battery in a healthy state is measured in advance and used. Since the voltage value changes depending on the ambient temperature, the reference data is, for example, 10
It is desirable to measure and record each change in ° C. and calculate an approximate value for the intermediate temperature by an interpolation method.

【0021】直流電源16は、例えば定電流電源を用い
れば操作が簡単であり、また充電状態が低いと判断され
た場合に行われる所定量の充電も、充電時間だけを制御
すればよいので好適であるが、特にこれに限らない。ま
た、自動車に搭載させる場合には、直流電源16は、例
えば電池群11とは別に設けた蓄電池から構成し、電動
機13の発電の一部を用いて充電できるようにしても良
いし、電池群11の一部のモジュールを用いて構成して
も良い。
The DC power supply 16 is preferably used because the operation is simple if, for example, a constant current power supply is used, and a predetermined amount of charge performed when it is determined that the state of charge is low only needs to control the charging time. However, the present invention is not limited to this. When the battery is mounted on an automobile, the DC power supply 16 may be configured by, for example, a storage battery provided separately from the battery group 11 so that the DC power supply 16 can be charged by using a part of the power generated by the electric motor 13. It may be configured by using some of the modules 11.

【0022】電池11aにおける上記一連の操作が終了
すると、演算制御装置20は、次に回路切換器17を切
り換え制御して電池11bと直流電源16間に回路を形
成させて、同様の上記操作を行う。そして、演算制御装
置20は、以下同様に、電池を順次切り換えて直流接続
電池群11を構成する全ての電池に対して同様の上記操
作を行うことにより、充電状態算出値よりも許容範囲を
超えて充電状態が低い電池に対して追い充電を行い、電
池毎の充電状態のばらつきを補正するとともに、各電池
毎に追い充電の履歴を記録する。
When the above series of operations on the battery 11a is completed, the arithmetic and control unit 20 then controls the circuit switch 17 to form a circuit between the battery 11b and the DC power supply 16, and performs the same operation as above. Do. Then, the arithmetic and control unit 20 similarly switches the batteries sequentially and performs the same operation on all the batteries constituting the DC-connected battery group 11, thereby exceeding the allowable range beyond the calculated state of charge. In addition, additional charging is performed on a battery having a low state of charge to correct variations in the state of charge of each battery, and a history of additional charging is recorded for each battery.

【0023】なお、追い充電を行う際の充電量は、大き
すぎると追い充電直後の電池の充電状態が他の電池に比
べて高くなりすぎる恐れがあり、小さすぎると頻繁に追
い充電をしなければならなくなる。そこで、本実施形態
では、初期充電状態を電池容量の50%程度で一定とし
たことや満充電に至らない範囲などを考慮して、好まし
い充電量を電池の公称容量の1%以上15%以下、さら
に好ましくは2%以上10%以下に設定した。
It should be noted that if the charge amount at the time of additional charge is too large, the state of charge of the battery immediately after the additional charge may be too high as compared with other batteries, and if it is too small, additional charge must be performed frequently. Have to be. Therefore, in the present embodiment, taking into account the fact that the initial state of charge is constant at about 50% of the battery capacity and the range in which the battery is not fully charged, the preferable charge amount is 1% to 15% of the nominal capacity of the battery. And more preferably, 2% or more and 10% or less.

【0024】また、上記電源装置10において、電池の
閉回路電圧が低いにも拘わらず、開回路電圧が許容範囲
を超えて高くなる場合や、上記記録された履歴から追い
充電の頻度が他の電池に比べて極端に高い場合などの状
況では、電池のサイクル寿命が尽きかけているか、電池
の内外で短絡が生じているなどの不具合の恐れがある。
そこで、本実施形態の演算制御装置20では、これらの
異常電池を検知して操作盤19側に報知する機能が付加
されている。
Further, in the power supply device 10, when the open circuit voltage becomes higher than the allowable range in spite of the low closed circuit voltage of the battery, or when the frequency of the additional charge is determined to be different from the recorded history. In a situation such as when the battery is extremely high compared to the battery, there is a possibility that the cycle life of the battery is exhausted or a short circuit occurs inside and outside the battery.
Therefore, in the arithmetic and control unit 20 of the present embodiment, a function of detecting these abnormal batteries and informing the operation panel 19 of the abnormal batteries is added.

【0025】以上説明したように、一般に電池の充電量
が少なくなると開回路電圧も低下する傾向にある。しか
し、開回路電圧は、測定される以前に充電したか放電し
たかの履歴によって差が生じ、さらにその充放電の時に
回路に流れる電流の値によっても変化するので、電池の
充電状態を開回路電圧だけから推定しようとすると、無
視できない誤差を生じる。これに対して、本実施形態で
は、個々の電池について所定の電流値で所定時間の充電
を行い、充電開始後一定時間での閉回路電圧を測定し、
次いで充電を停止してから一定時間経過後に開回路電圧
を測定している。これによって、上記閉回路電圧は電池
の充電量と電池の内部インピーダンスを反映した値とな
り、上記開回路電圧は電池の充電量を反映した値とな
り、さらに開回路電圧測定の直前に一定条件の充電がな
されるので、本実施形態では電池の充放電履歴の影響を
大きく低減でき、測定精度も向上できる。
As described above, the open circuit voltage generally tends to decrease as the battery charge decreases. However, the open circuit voltage varies depending on the history of charging or discharging before measurement, and also changes depending on the value of the current flowing through the circuit at the time of charging and discharging. Attempting to estimate from voltage alone results in non-negligible errors. On the other hand, in the present embodiment, each battery is charged at a predetermined current value for a predetermined time, and a closed circuit voltage is measured for a predetermined time after the start of charging.
Next, the open circuit voltage is measured after a certain period of time has elapsed since the charging was stopped. As a result, the closed circuit voltage has a value reflecting the amount of charge of the battery and the internal impedance of the battery, the open circuit voltage has a value reflecting the amount of charge of the battery, and the charging under a certain condition immediately before the measurement of the open circuit voltage. Therefore, in this embodiment, the influence of the charge / discharge history of the battery can be greatly reduced, and the measurement accuracy can be improved.

【0026】なお、本実施形態では、充電時の閉回路電
圧と充電停止後の開回路電圧を用いる場合を説明した
が、本発明はこれに限らず、例えば放電時の閉回路電圧
と放電停止後の開回路電圧の組み合わせ、又は電流を変
化させた閉回路電圧同士の組み合わせなども用いること
ができる。また、本実施形態の演算制御装置は、初期充
電状態設定値及び入出力電流値を用いて電池群の充電量
を算出し、予め入力されたデータ又は計算式に基づいて
各電池の通電状態それぞれに対して電圧許容範囲を指定
する。そして、実際に測定される閉回路電圧が上記電圧
許容範囲よりも低く、開回路電圧が電圧許容範囲を超え
ない電池は、演算制御手段が認識している充電状態より
も、明らかに低い充電状態と判断され、この電池に対し
て直流電源から予め設定された電気量が充電される。こ
の場合、演算制御装置が認識する充電状態と実際の電池
の充電状態の差を正確に把握する必要はなく、許容差を
超えて低めにずれた電池に追い充電を行うことによって
充電状態を高めればよい。
In this embodiment, the case where the closed circuit voltage at the time of charging and the open circuit voltage after the charging is stopped has been described. However, the present invention is not limited to this. A combination of a later open circuit voltage or a combination of closed circuit voltages with different currents can also be used. Further, the arithmetic and control unit of the present embodiment calculates the charge amount of the battery group using the initial charge state setting value and the input / output current value, and based on the data or the calculation formula input in advance, the energization state of each battery, respectively. Specify the voltage tolerance for. A battery whose actually measured closed-circuit voltage is lower than the voltage allowable range and whose open-circuit voltage does not exceed the voltage allowable range has a clearly lower charge state than the charge state recognized by the arithmetic and control unit. Is determined, and a predetermined amount of electricity is charged from the DC power supply to the battery. In this case, it is not necessary to accurately grasp the difference between the state of charge recognized by the arithmetic and control unit and the state of charge of the actual battery, and it is possible to increase the state of charge by performing additional charging to a battery that has shifted slightly below the allowable difference. I just need.

【0027】なぜなら、追い充電される電池は、演算制
御装置が算出の根拠とする自己放電などによる充電状態
の低下速度よりも速い速度で充電状態の低下を生じてお
り、その速度が追い充電によって大幅に変化することも
ないので、追い充電によって演算制御装置が認識する充
電状態を超えて充電された場合でも、長期間の使用で再
びこれを下回るためである。従って、本実施形態では、
開回路電圧が低い電池に対する充電の電気量は任意に設
定することができるが、他の電池の充電状態を大きく超
えるまで充電することは運用上望ましくなく、一回あた
りの電気量は電池容量の15%以内であることが望まし
く、さらに一回当たりの電気量は電池容量の10%以内
であることが望ましい。
The reason for this is that the state of charge of the battery to be additionally charged is reduced at a higher speed than the rate of reduction of the state of charge due to self-discharge or the like, which is the basis for calculation by the arithmetic and control unit. This is because even if the battery is charged beyond the charge state recognized by the arithmetic and control unit due to the additional charge, the charge will again fall below the value after a long use. Therefore, in this embodiment,
The amount of charge for a battery with a low open circuit voltage can be set arbitrarily, but it is not desirable for operation to charge the battery until it greatly exceeds the state of charge of other batteries. It is desirable to be within 15%, and it is desirable that the amount of electricity per operation be within 10% of the battery capacity.

【0028】なお、本発明では、演算制御手段が認識す
る充電状態からの乖離を検知して、個々の電池に対して
追い充電を行うため、実際の電池の充電状態の低下速度
が充電状態算出の根拠となる値よりも小さいと、補正が
困難となる。電池群の充電状態算出値が、実際に用いる
電池の自己放電のばらつきの中で、自己放電最小のもの
と一致するか、もしくは充電状態の低下速度をさらに小
さく見積もったものに一致させることにより、全ての電
池に対して追い充電を行い、個々の電池のばらつきを追
い充電の頻度の差で調整するように設定することが望ま
しい。
In the present invention, since the deviation from the state of charge recognized by the arithmetic and control means is detected and additional charging is performed for each battery, the rate of decrease in the actual state of charge of the battery is determined by the state of charge calculation. If the value is smaller than the value which is the basis of the correction, the correction becomes difficult. By calculating the state of charge of the battery group in accordance with the variation in the self-discharge of the battery actually used, the self-discharge coincides with the minimum one, or the rate of decrease in the state of charge is made to coincide with a smaller estimated value. It is preferable that the additional charging be performed on all the batteries, and the variation of each battery be adjusted based on the difference in the frequency of the additional charging.

【0029】これとは逆に、本発明では、充電低下速度
を実際の電池のそれより大きく見積もっておき、充電状
態が高くずれる分を放電によって補正することも可能で
ある。しかし、この場合は、無駄な放電を行うことにな
るため、追い充電によって補正することがより望ましい
方法である。特に、充電中の閉回路電圧と充電停止後の
開回路電圧を用いて電池の充電状態を判断し、充電状態
が低い電池に対して追い充電を行うようにすれば、小容
量かつ電流可変機能を持たない定電流電源と設定時間で
電流をオンオフする簡単なリレー装置によって構成する
ことができ、コスト的にも有利なものとなる。
On the contrary, in the present invention, it is also possible to estimate the rate of charge decrease higher than that of the actual battery, and to correct the amount by which the state of charge shifts higher by discharging. However, in this case, useless discharging is performed, so that it is more desirable to make correction by additional charging. In particular, if the battery charge state is determined using the closed circuit voltage during charging and the open circuit voltage after charging is stopped, and the battery with low charge state is additionally charged, a small capacity and variable current function can be achieved. And a simple relay device that turns on and off the current for a set time, which is advantageous in terms of cost.

【0030】なお、個々の電池に対して充電状態を判断
するために行う充電の電気量は、電池の容量に対して無
視できる程度の量としても良いが、電池群を構成する全
ての電池に対して同一量として、演算制御装置の充電状
態の算出の際に繰り込むことがより望ましい。また、多
数回の充放電繰り返しにより電池が劣化してくると、一
般に電極表面の皮膜形成や電解液の不均質分布などによ
り内部インピーダンスが上昇し、閉回路電圧の低下が顕
著となる一方、開回路電圧は電極が完全放電できない状
態になるため上昇する。電池の劣化は、この閉回路電圧
と開回路電圧との差を検知することによって把握でき
る。また、電池内の正極と負極を隔離するセパレータに
不純物が付着したりすると、その部分の電気絶縁性が低
下して見かけ上、自己放電が大きい電池が生じる場合が
ある。このような電池は、頻繁に追い充電がなされるこ
とになり、検知および特定が可能となる。本実施形態で
は、これらの不具合電池の発生を報知する機能を付加す
ることで、電源装置の保守性や信頼性を向上させること
ができる。
The amount of electricity to be charged for judging the state of charge of each battery may be negligible with respect to the capacity of the battery. On the other hand, it is more desirable to use the same amount when calculating the state of charge of the arithmetic and control unit. In addition, when the battery deteriorates due to a large number of charge / discharge cycles, the internal impedance generally rises due to the formation of a film on the electrode surface and the heterogeneous distribution of the electrolytic solution, and the closed-circuit voltage drops significantly. The circuit voltage rises because the electrodes cannot be completely discharged. The deterioration of the battery can be grasped by detecting the difference between the closed circuit voltage and the open circuit voltage. In addition, when impurities adhere to the separator that separates the positive electrode and the negative electrode in the battery, the electrical insulation of that portion is reduced, and a battery having a large apparent self-discharge may be generated. Such a battery is frequently recharged, and can be detected and specified. In the present embodiment, by adding a function of notifying the occurrence of these defective batteries, the maintainability and reliability of the power supply device can be improved.

【0031】さらに、大電流用の直流接続電池群では、
個々の電池間接続の電気抵抗が問題となるため、多点溶
接のための金具を介在させて構成した数本単位の直列接
続のモジュールを用い、このモジュールをさらに大電流
用バスバーで接続して接続部分による電圧降下を防止す
る構造が一般に用いられる。そこで、本実施形態の直流
接続電池群11では、図2、図3に示すように、個々の
電池の接続を剛性の高い多点接続可能な第1の金具、例
えば材質が鉄からなる金具21を介在させた構造からな
る。金具21は、各電池1間に設けられる円形の底板2
2と円筒形の側板23とから一体的に形成されており、
側板23には、その一部を切欠くことによって、直流電
源16からの電源ケーブル24と接続される接続部23
aが設けられている。
Further, in a DC connection battery group for a large current,
Since the electrical resistance of the connection between the individual batteries becomes a problem, several series-connected modules configured with metal fittings for multipoint welding are used, and this module is further connected with a bus bar for large current. A structure for preventing a voltage drop due to a connection portion is generally used. Therefore, in the DC connection battery group 11 of the present embodiment, as shown in FIGS. 2 and 3, a first metal fitting capable of connecting individual batteries with high rigidity at multiple points, for example, a metal fitting 21 made of iron And a structure interposed. The metal fitting 21 is a circular bottom plate 2 provided between the batteries 1.
2 and the cylindrical side plate 23 are integrally formed,
The side plate 23 has a connection portion 23 connected to a power cable 24 from the DC power supply 16 by notching a part thereof.
a is provided.

【0032】電源ケーブル24の先端には、第2の金具
である金具25が取り付けられており、金具25は電源
ケーブル24の先端が接続される接続端子25aと、磁
石からなり、接続端子を保持する保持部材25bと、接
続端子25aと保持部材25b間に配設される絶縁部材
25cとを備えており、保持部材25bを接続部23a
に嵌合させて、磁力で接続端子25aを接続部23aに
圧接させることで、個々の電池1と電源ケーブル24の
接続を可能にしている。なお、図2中の26は、円筒形
の絶縁体であり、絶縁機能とともに電池1を固定保持し
ている。
A metal fitting 25 as a second metal fitting is attached to the tip of the power cable 24. The metal fitting 25 is made up of a magnet and a connection terminal 25a to which the tip of the power cable 24 is connected, and holds the connection terminal. A connection member 25b, and an insulating member 25c disposed between the connection terminal 25a and the holding member 25b.
, And the connection terminal 25a is pressed against the connection portion 23a by magnetic force, thereby enabling connection between the individual batteries 1 and the power supply cable 24. In addition, reference numeral 26 in FIG. 2 denotes a cylindrical insulator, which fixedly holds the battery 1 together with an insulating function.

【0033】このように、本実施形態では、個々の電池
への配線接続を、これらの多点接続のための第1の金具
やバスバーの一部が電池ごとの電圧測定および充電に用
いるケーブルの先端に取り付けた第2の金具とによって
簡易着脱可能な嵌合構造で構成するようにしておけば、
特定の電池が劣化した際にその電池が含まれるモジュー
ルだけを簡単に交換できるため、取り扱いが簡単化でき
る。
As described above, in the present embodiment, the wiring connection to the individual batteries is performed by connecting the first metal fittings for these multipoint connections and a part of the bus bar to the cables used for voltage measurement and charging for each battery. If it is configured with a fitting structure that can be easily attached and detached with the second metal fitting attached to the tip,
When a specific battery is deteriorated, only the module including the battery can be easily replaced, so that the handling can be simplified.

【0034】なお、本発明では、これに限らず、例えば
多点接続可能な第1の金具の一部を突起状に形成する
か、又は突起状の形成物を上記第1の金具に溶接して、
上記電源ケーブル24の先端と簡易着脱可能な嵌合構造
に構成させることも可能である。本発明の電源装置で
は、直流電源から直流接続電池群の個々の電池に対して
供給する電流は小さくても特に支障がないため、直流電
源と電池を接続するケーブルや接続部の抵抗が大きな問
題を生じることがないので、電池間接続構造にかかる簡
易着脱可能な嵌合構造を適用できる。
In the present invention, the present invention is not limited to this. For example, a part of the first metal fitting which can be connected at multiple points may be formed in a projection shape, or the projection-shaped product may be welded to the first metal fitting. hand,
It is also possible to form a fitting structure that can be easily attached to and detached from the tip of the power cable 24. In the power supply device of the present invention, since the current supplied from the DC power supply to each battery of the DC connection battery group is small, there is no particular problem. Therefore, a simple detachable fitting structure for the inter-battery connection structure can be applied.

【0035】本発明は、これら実施形態に限定されるも
のではなく、本発明の要旨を逸脱しない範囲で種々の変
形実施が可能である。
The present invention is not limited to these embodiments, and various modifications can be made without departing from the gist of the present invention.

【0036】[0036]

【発明の効果】以上説明したように、本発明では、個々
の電池の充電状態を検知し、必要に応じて個々の電池に
対して追い充電を行うので、直列接続された電池群を長
期にわたり無保守で使用できる電源装置を簡単かつ安価
な構成で提供できる。
As described above, according to the present invention, the state of charge of each battery is detected, and additional charging is performed for each battery as necessary. A power supply that can be used without maintenance can be provided with a simple and inexpensive configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る蓄電池を用いた電源装置の構成の
一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a configuration of a power supply device using a storage battery according to the present invention.

【図2】図1に示した直流接続電池群の電池間接続構造
の構成を示す断面図である。
FIG. 2 is a cross-sectional view showing a configuration of a battery connection structure of the DC connection battery group shown in FIG.

【図3】図2に示した電池間接続構造を拡大した斜視図
である。
FIG. 3 is an enlarged perspective view of the inter-battery connection structure shown in FIG. 2;

【符号の説明】[Explanation of symbols]

10 電源装置 11 直列接続電池群 1,11a,11b,… 電池 12 駆動体 13 電動機 14 電流制御器 15 電流計 16 直流電源 17 回路切換器 18 電圧計 19 操作盤 20 演算制御装置 21 第1の金具 24 電源ケーブル 25 第2の金具 Reference Signs List 10 power supply device 11 series-connected battery group 1, 11a, 11b, ... battery 12 driver 13 motor 14 current controller 15 ammeter 16 DC power supply 17 circuit switcher 18 voltmeter 19 operation panel 20 operation control device 21 first metal fitting 24 power cable 25 second fitting

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林田 浩孝 神奈川県川崎市幸区堀川町72番地 株式会 社東芝研究開発センター内 Fターム(参考) 5G003 AA07 BA03 DA07 DA12 EA09 FA03 FA06 5H022 AA04 CC09 5H030 AA01 AS08 BB01 FF42 FF43 FF44  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hirotaka Hayashida 72 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa F-term in Toshiba R & D Center (reference) 5G003 AA07 BA03 DA07 DA12 EA09 FA03 FA06 5H022 AA04 CC09 5H030 AA01 AS08 BB01 FF42 FF43 FF44

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の蓄電池を直列接続させた電池群を
有し、前記電池群の充放電を行う蓄電池を用いた電源装
置であって、 前記電池群の入出力電流を測定する電流測定手段と、 前記電池群の各電池に複数の通電状態又は通電状態と非
通電状態のいずれかを発生させる直流電源と、 直流電源を用いた充電、放電および休止を行った際の前
記各電池における電圧をそれぞれ測定する電圧測定手段
と、 前記直流電源および電圧測定手段と個々の前記電池との
接続切り換えを行う接続切換手段と、 前記電流測定手段で測定された入出力電流値及び前記電
池群の予め設定された初期充電状態設定値に基づいて、
前記電池群の充電状態を算出するとともに、予め入力さ
れたデータ又は計算式に基づいて、前記各電池の複数の
通電状態又は通電状態と非通電状態のいずれかでの電圧
許容範囲を指定する演算制御手段とを備え、 前記演算制御手段は、前記直流電源から設定された各電
池の通電状態のうち大電流側の前記充電又は放電で測定
される電圧が、前記指定する大電流側の電圧許容範囲よ
りも低く、かつ前記通電状態のうち小電流側もしくは非
通電状態で測定される電圧が、前記指定する小電流側も
しくは非通電状態での電圧許容範囲を超えない個々の電
池に対して、予め設定された電気量の充電を前記直流電
源から順次接続切り換えによって行わせることを特徴と
する蓄電池を用いた電源装置。
1. A power supply device having a battery group in which a plurality of storage batteries are connected in series and using a storage battery for charging and discharging the battery group, wherein current measuring means for measuring input / output current of the battery group And a DC power supply for generating a plurality of energized states or any of an energized state and a non-energized state for each of the batteries in the battery group, and a voltage at each of the batteries when charging, discharging and suspending using the DC power supply Voltage measuring means for measuring the DC power supply and the voltage measuring means, and connection switching means for switching the connection between each of the batteries, the input / output current value measured by the current measuring means and the battery group in advance. Based on the set initial charging state setting value,
An operation of calculating the state of charge of the battery group and specifying a plurality of energized states of each of the batteries or a voltage allowable range in any of the energized state and the non-energized state based on data or a calculation formula input in advance. Control means, wherein the arithmetic and control means is configured such that the voltage measured in the charging or discharging on the high current side in the energized state of each battery set from the DC power supply is the specified large current side voltage tolerance. For each battery that is lower than the range and the voltage measured on the small current side or the non-energized state of the energized state does not exceed the voltage allowable range on the specified small current side or the non-energized state, A power supply device using a storage battery, wherein charging of a predetermined amount of electricity is performed by sequentially switching connections from the DC power supply.
【請求項2】 前記直流電源からなされる電気量の充電
は、電池公称容量の15%以下で、かつ1%以上である
ことを特徴とする請求項1に記載の蓄電池を用いた電源
装置。
2. The power supply device using a storage battery according to claim 1, wherein the charging of the amount of electricity performed by the DC power supply is 15% or less of the nominal capacity of the battery and 1% or more.
【請求項3】 前記演算制御手段は、前記直流電源から
の電気量の供給時期を前記各電池毎に記憶し、前記供給
の頻度が予め設定した設定値を上回る場合、又は前記大
電流側の電圧が電圧許容範囲よりも低く、前記小電流側
もしくは非通電状態の電圧が電圧許容範囲を超える場合
に、異常と判断して報知することを特徴とする請求項1
又は2に記載の蓄電池を用いた電源装置。
3. The arithmetic and control unit stores the supply time of the amount of electricity from the DC power supply for each of the batteries, and when the frequency of the supply exceeds a preset value, 2. When the voltage is lower than the voltage allowable range and the voltage on the small current side or the non-energized state exceeds the voltage allowable range, it is determined to be abnormal and notified.
Or a power supply device using the storage battery according to 2.
【請求項4】 前記電池群は、複数の蓄電池を、当該電
池間に介在させた接続用の第1の金具で直列接続させた
モジュールによって構成され、前記第1の金具は、一部
が前記電池毎の電圧測定および充電に用いるケーブルの
先端に取り付けられた第2の金具と簡易着脱可能な嵌合
構造を構成することを特徴とする請求項1乃至3のいず
れかに記載の蓄電池を用いた電源装置。
4. The battery group is constituted by a module in which a plurality of storage batteries are connected in series with a first metal fitting for connection interposed between the batteries, and a part of the first metal fitting is the module. The storage battery according to any one of claims 1 to 3, wherein the storage battery according to any one of claims 1 to 3, wherein the storage device according to any one of claims 1 to 3, is configured to easily and detachably fit with a second fitting attached to a tip of a cable used for voltage measurement and charging for each battery. Power supply.
JP2000162258A 2000-05-31 2000-05-31 Power supply incorporating storage battery Pending JP2001346339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000162258A JP2001346339A (en) 2000-05-31 2000-05-31 Power supply incorporating storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000162258A JP2001346339A (en) 2000-05-31 2000-05-31 Power supply incorporating storage battery

Publications (1)

Publication Number Publication Date
JP2001346339A true JP2001346339A (en) 2001-12-14

Family

ID=18666178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000162258A Pending JP2001346339A (en) 2000-05-31 2000-05-31 Power supply incorporating storage battery

Country Status (1)

Country Link
JP (1) JP2001346339A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130490A (en) * 2006-11-24 2008-06-05 Yazaki Corp Connecting member, and electric power unit provided with the same
JP2008262751A (en) * 2007-04-10 2008-10-30 Matsushita Electric Ind Co Ltd Battery pack, unit cell, and cell pack
JP2010102944A (en) * 2008-10-23 2010-05-06 Fujitsu Telecom Networks Ltd Discharge device
WO2011108025A1 (en) * 2010-03-04 2011-09-09 三菱電機株式会社 Assembled battery and power storage system
JP2013171617A (en) * 2012-02-17 2013-09-02 Auto Network Gijutsu Kenkyusho:Kk Battery wiring module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130490A (en) * 2006-11-24 2008-06-05 Yazaki Corp Connecting member, and electric power unit provided with the same
JP2008262751A (en) * 2007-04-10 2008-10-30 Matsushita Electric Ind Co Ltd Battery pack, unit cell, and cell pack
JP2010102944A (en) * 2008-10-23 2010-05-06 Fujitsu Telecom Networks Ltd Discharge device
WO2011108025A1 (en) * 2010-03-04 2011-09-09 三菱電機株式会社 Assembled battery and power storage system
JP4835808B2 (en) * 2010-03-04 2011-12-14 三菱電機株式会社 Power storage system
CN102804477A (en) * 2010-03-04 2012-11-28 三菱电机株式会社 Assembled battery and power storage system
AU2010347489B2 (en) * 2010-03-04 2013-09-12 Mitsubishi Electric Corporation Electric power storage system
KR101348026B1 (en) 2010-03-04 2014-01-10 미쓰비시덴키 가부시키가이샤 Power storage system
US9041404B2 (en) 2010-03-04 2015-05-26 Mitsubishi Electric Corporation Electric power storage system
JP2013171617A (en) * 2012-02-17 2013-09-02 Auto Network Gijutsu Kenkyusho:Kk Battery wiring module

Similar Documents

Publication Publication Date Title
JP6445190B2 (en) Battery control device
EP2033003B1 (en) Determination of battery predictive power limits
JP5854242B2 (en) Electric power supply device using electric vehicle
US20140176085A1 (en) Battery controller of vehicle
KR100544845B1 (en) Power supply for electric vehicle
WO2012169063A1 (en) Battery control device and battery system
US20140103859A1 (en) Electric storage system
US10114056B2 (en) Deterioration specifying device and deterioration specifying method
JP2014036497A (en) Power storage system and equalization method
JP2017085810A (en) Vehicular power supply system
US8796972B2 (en) Method for starting an electronic drive circuit of an electric motor and circuit arrangement therefor
JP2019129558A (en) Power storage system
US11555863B2 (en) Ground fault detection device
WO2018179855A1 (en) Battery control device
US20210006084A1 (en) Battery device and vehicle
JP2004079324A (en) Apparatus and method for controlling discharge end for electric vehicle
JP2019041497A (en) Power source management device
JP2001346339A (en) Power supply incorporating storage battery
JP6853797B2 (en) Battery monitoring device and relay status diagnostic method
WO2004034074A1 (en) Battery managing metod and device
JP5978143B2 (en) Battery system
JP2012130155A (en) Charger and electric vehicle including the same
JP2020061823A (en) Secondary battery control device
JPWO2019088264A1 (en) Management device, power storage device, cause analysis method, engine drive vehicle, electric vehicle
JP2014209821A (en) Power supply system for vehicle