JP2001340853A - Method for concentrating membrane filtered washing wastewater - Google Patents

Method for concentrating membrane filtered washing wastewater

Info

Publication number
JP2001340853A
JP2001340853A JP2000138182A JP2000138182A JP2001340853A JP 2001340853 A JP2001340853 A JP 2001340853A JP 2000138182 A JP2000138182 A JP 2000138182A JP 2000138182 A JP2000138182 A JP 2000138182A JP 2001340853 A JP2001340853 A JP 2001340853A
Authority
JP
Japan
Prior art keywords
washing wastewater
raw water
membrane
separation membrane
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000138182A
Other languages
Japanese (ja)
Inventor
Kenji Fujita
賢二 藤田
Kengen Kou
建元 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000096645 priority Critical
Priority to JP2000-96645 priority
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2000138182A priority patent/JP2001340853A/en
Publication of JP2001340853A publication Critical patent/JP2001340853A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for concentrating membrane filtered washing wastewater, capable of effectively concentrating washing wastewater generated at the time of filtering treatment of raw water containing soluble manganese by a separation membrane. SOLUTION: In the filtering treatment of a suspended substance in raw water containing soluble manganese by the separation membrane, the pH of raw water and the concentration of dissolved oxygen in the raw water are controlled to convert the soluble manganese to insoluble manganese dioxide, and particles of formed manganese dioxide are filtered along with the suspended substance by the separation membrane and washing wastewater of the separation membrane is filtered by a granular filter medium to concentrate the washing wastewater containing the suspended substance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、膜ろ過洗浄排水の
濃縮方法に関し、詳しくは、溶解性マンガンを含有する
原水中の濁質を分離膜を使用してろ過処理する際に発生
する膜ろ過洗浄排水の濃縮方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for concentrating membrane filtration washing wastewater, and more particularly, to membrane filtration generated when filtration of suspended matter in raw water containing soluble manganese using a separation membrane. The present invention relates to a method for concentrating washing wastewater.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】分離膜
を使用して原水中の濁質を分離除去する膜ろ過法は、シ
ンプルでコンパクトな装置構成で確実な固液分離を行え
るという利点を有しているため、小規模浄水施設で広く
実用化されつつある。しかし、分離膜に捕捉した濁質の
処理、すなわち、分離膜を洗浄する際に発生する洗浄排
水(汚泥)の処理方式が未だ十分に確立されていないと
いう問題がある。
2. Description of the Related Art A membrane filtration method for separating and removing turbidity in raw water using a separation membrane has an advantage that solid-liquid separation can be reliably performed with a simple and compact apparatus configuration. It is being widely used in small-scale water purification facilities. However, there is a problem that a method of treating turbid matter trapped on the separation membrane, that is, a treatment method of washing wastewater (sludge) generated when washing the separation membrane has not yet been sufficiently established.

【0003】そこで本発明は、溶解性マンガンを含有す
る原水を分離膜でろ過処理する際に発生する洗浄排水を
効果的に濃縮することができる膜ろ過洗浄排水の濃縮方
法を提供することを目的としている。
Accordingly, an object of the present invention is to provide a method for concentrating membrane filtration washing wastewater that can effectively concentrate washing wastewater generated when raw water containing soluble manganese is filtered through a separation membrane. And

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明の膜ろ過洗浄排水の濃縮方法は、溶解性マン
ガンを含有する原水中の濁質を分離膜によってろ過処理
するにあたり、前記原水のpH及び溶存酸素濃度を制御
して前記溶解性マンガンを不溶性の二酸化マンガンにし
た後、生成した二酸化マンガンの粒子を前記濁質と共に
前記分離膜によりろ過処理を行い、該分離膜の洗浄排水
を粒状ろ過材によってろ過処理を行うことにより、前記
濁質を含む洗浄排水を濃縮することを特徴としている。
Means for Solving the Problems To achieve the above object, the method for concentrating membrane filtration washing wastewater according to the present invention comprises the steps of: filtering a suspended matter in raw water containing soluble manganese through a separation membrane; After controlling the pH and the dissolved oxygen concentration to convert the soluble manganese into insoluble manganese dioxide, the produced manganese dioxide particles are subjected to a filtration treatment together with the turbidity by the separation membrane, and the washing wastewater of the separation membrane is discharged. It is characterized in that the washing wastewater containing the turbid substance is concentrated by performing a filtration treatment with a particulate filter medium.

【0005】[0005]

【発明の実施の形態】図1は本発明の膜ろ過洗浄排水の
濃縮方法を適用した膜分離設備の一例を示す系統図であ
る。この膜分離設備は、分離膜11によってろ過処理を
行う膜分離装置12と、原水にアルカリを添加混合する
混合槽13と、分離膜11の洗浄排水を受ける排水槽1
4と、粒状ろ過材、例えば砂を充填した砂ろ過槽15と
を備えている。また、本形態例では、排水槽内の洗浄排
水を砂ろ過槽15に供給するためのポンプ16と、砂ろ
過槽15における水頭を調節するためのオーバーフロー
槽17とが設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram showing an example of a membrane separation facility to which a method for concentrating membrane filtration washing wastewater of the present invention is applied. This membrane separation equipment includes a membrane separation device 12 that performs a filtration treatment by a separation membrane 11, a mixing tank 13 that adds and mixes alkali to raw water, and a drain tank 1 that receives washing and drainage of the separation membrane 11.
4 and a sand filter tank 15 filled with a particulate filter material, for example, sand. Further, in this embodiment, a pump 16 for supplying the cleaning wastewater in the drainage tank to the sand filtration tank 15 and an overflow tank 17 for adjusting the head in the sand filtration tank 15 are provided.

【0006】溶解性マンガンを含有する原水は、経路2
1を通って混合槽13に流入する。この混合槽13内又
は流入部には、pH測定器及び溶存酸素測定器等の測定
器13aが設けられており、混合槽13内の原水のpH
や流入原水のpH、溶存酸素濃度等が測定できるように
形成されている。
[0006] Raw water containing soluble manganese can be obtained from route 2
1 and flows into the mixing tank 13. A measuring device 13a such as a pH measuring device and a dissolved oxygen measuring device is provided in the mixing tank 13 or in the inflow portion.
It is formed so as to be able to measure the pH, dissolved oxygen concentration and the like of the inflowing raw water.

【0007】混合槽13には、アルカリ供給経路22か
ら所定量のアルカリ性物質、例えば水酸化ナトリウム水
溶液が供給され、混合槽13から流出する原水が所定p
Hになるように制御される。pHの制御は、前記溶解性
マンガンが不溶性の二酸化マンガンとなり、かつ、原水
中のカルシウムが析出しない程度のpH、通常はpH9
〜10、好ましくはpH9.7程度になるように行われ
る。また、マンガンと結合する酸素は、原水中に通常含
まれる溶存酸素で十分であり、特定の濃度範囲に制御す
る必要はないが、溶存酸素濃度が極めて低い原水、ある
いは、マンガン等の酸素結合物質の含有量が極めて多い
原水を処理する場合は、溶存酸素測定器を設けて溶存酸
素濃度を測定し、酸素分が少ない場合はアルカリ添加に
よって反応を促進することができる。
A predetermined amount of an alkaline substance, for example, an aqueous solution of sodium hydroxide is supplied to the mixing tank 13 from an alkali supply path 22, and the raw water flowing out of the mixing tank 13 is supplied to a predetermined p
H is controlled. The pH is controlled such that the soluble manganese becomes insoluble manganese dioxide and the pH is such that calcium in the raw water does not precipitate, usually pH 9
The reaction is carried out so as to have a pH of about 10, preferably about 9.7. Oxygen that binds to manganese is sufficient to be dissolved oxygen that is usually contained in raw water, and it is not necessary to control the concentration to a specific concentration range. In the case of treating raw water having an extremely high content of, the dissolved oxygen concentration is measured by providing a dissolved oxygen meter, and when the oxygen content is small, the reaction can be promoted by adding an alkali.

【0008】pHが所定値に制御され、溶存酸素濃度が
所要量以上に制御された原水は、混合槽13から経路2
3を通って膜分離装置12に供給され、分離膜11によ
って原水中の濁質及び生成した二酸化マンガンが捕捉さ
れて原水のろ過処理が行われる。使用する分離膜11は
任意に選択することができ、例えば、公称分画径0.1
μmの中空糸精密ろ過膜を使用することができる。ま
た、膜分離装置12の形態も、デッドエンド運転方式の
外圧式膜分離装置やクロスフロー運転方式の内圧式膜分
離装置等を適宜に選択することができる。
[0008] Raw water whose pH is controlled to a predetermined value and whose dissolved oxygen concentration is controlled to a required amount or more flows from the mixing tank 13 through a path 2.
The turbidity in the raw water and the produced manganese dioxide are captured by the separation membrane 11 through the separation membrane 11, and the raw water is filtered. The separation membrane 11 to be used can be arbitrarily selected.
A μm hollow fiber microfiltration membrane can be used. As for the form of the membrane separation device 12, an external pressure type membrane separation device of a dead end operation type, an internal pressure type membrane separation device of a cross flow operation type, or the like can be appropriately selected.

【0009】分離膜11を透過した水(膜ろ過水)は経
路24を通って流出し、このろ過処理の経過に伴って膜
表面に濁質や二酸化マンガンが堆積するので、所定時期
にエアースクラビングによる分離膜11の洗浄を行う。
膜分離装置12内の水は、分離膜表面から剥離した濁質
等を含む洗浄排水となり、膜分離装置12から経路25
を通って排水槽14に送られる。
The water (membrane filtered water) which has passed through the separation membrane 11 flows out through a passage 24, and turbidity and manganese dioxide accumulate on the membrane surface as the filtration process progresses. Of the separation membrane 11 is performed.
The water in the membrane separation device 12 becomes washing wastewater containing turbidity and the like separated from the surface of the separation membrane.
Through the drain tank 14.

【0010】排水槽14内の洗浄排水は、ポンプ16に
より砂ろ過槽15に供給され、ろ材層15a内を流下し
てろ過処理が行われる。ろ材層15aを通過した砂ろ過
水は、オーバーフロー槽17を経て経路26から流出
し、浄水施設の原水槽等の適宜な位置に戻される。これ
により、洗浄排水中の濁質等がろ材層15aの粒状ろ過
材に捕捉される。粒状ろ過材としては、洗浄排水の状態
に応じて砂以外の適宜な粒状物を使用することができる
が、例えば、有効径0.6mm、均等係数1.4のろ過
砂を適当な厚さにして使用することができる。また、砂
ろ過槽15のろ過速度は、オーバーフロー槽17の流出
部17aの高さ(圧損h)により調節できる。
The washing wastewater in the drainage tank 14 is supplied to a sand filtration tank 15 by a pump 16 and flows down in a filter medium layer 15a to perform a filtration treatment. The sand filtered water that has passed through the filter medium layer 15a flows out of the path 26 through the overflow tank 17, and is returned to an appropriate position such as a raw water tank of a water purification facility. As a result, turbidity and the like in the washing wastewater are captured by the particulate filter material of the filter medium layer 15a. Appropriate granular materials other than sand can be used as the granular filter material according to the state of the washing drainage. For example, filter sand having an effective diameter of 0.6 mm and a uniformity coefficient of 1.4 is formed into an appropriate thickness. Can be used. Further, the filtration speed of the sand filtration tank 15 can be adjusted by the height (pressure loss h) of the outflow portion 17a of the overflow tank 17.

【0011】そして、砂ろ過水の濁度が上昇する前に砂
ろ過操作を終了し、粒状ろ過材を洗浄して濁質等を回収
する。この粒状ろ過材の洗浄操作は、砂ろ過槽15とし
て使用するろ過装置の形態や洗浄排水量、ろ過処理頻度
等に応じて適当な方法で行えるが、本形態例に示すよう
な筒状の砂ろ過槽15の場合は、粒状ろ過材を槽外に取
出して別容器で行うこともできる。このとき使用する洗
浄水としては前記砂ろ過水を使用することができ、この
砂ろ過水の使用量を、ろ過処理した洗浄排水量より少な
くすることにより、結果的に洗浄排水を濃縮したことに
なる。
Then, the sand filtration operation is completed before the turbidity of the sand filtration water rises, and the particulate filter material is washed to collect turbidity and the like. The operation of washing the particulate filter material can be performed by an appropriate method according to the form of the filtration device used as the sand filtration tank 15, the amount of washing drainage, the frequency of filtration treatment, and the like. In the case of the tank 15, the granular filter material can be taken out of the tank and performed in a separate container. As the washing water to be used at this time, the sand filtration water can be used, and by reducing the amount of the sand filtration water to be smaller than the filtration amount of the washing wastewater, the washing wastewater is condensed as a result. .

【0012】このようにして洗浄排水を濃縮することに
より、小規模浄水施設で発生した洗浄排水を大規模な排
水処理施設に容易に移送、搬送することができ、該排水
処理施設における沈殿処理等の固液分離も容易に行うこ
とが可能となる。
By concentrating the washing wastewater in this way, the washing wastewater generated in a small-scale water purification facility can be easily transferred and transported to a large-scale wastewater treatment facility. Can also be easily performed.

【0013】また、一部の濁質は、排水槽14内で沈殿
して洗浄排水から分離するので、これを少量の洗浄排水
と共に排水槽14から経路27に抜出すことにより、こ
こでも洗浄排水の濃縮が行われることになり、砂ろ過槽
15における負荷を軽減して粒状ろ過材の洗浄頻度を少
なくすることができる。
Further, since some of the turbid matter precipitates in the drainage tank 14 and is separated from the washing wastewater, the wastewater is extracted from the drainage tank 14 together with a small amount of washing wastewater to the passage 27, thereby again washing the wastewater. Is concentrated, the load on the sand filtration tank 15 is reduced, and the frequency of washing the particulate filter material can be reduced.

【0014】なお、分離膜11を透過した膜ろ過水は、
分離膜11の性能に応じた従来と同様の固液分離処理が
行われており、pH及び溶存酸素濃度を適当に制御する
ことにより、溶解性マンガンも上水としての規定値以下
に除去することができる。
[0014] The membrane filtered water that has passed through the separation membrane 11 is:
The same solid-liquid separation treatment as in the past according to the performance of the separation membrane 11 is performed, and by properly controlling the pH and the dissolved oxygen concentration, the soluble manganese can be removed to a specified value or less as clean water. Can be.

【0015】[0015]

【実施例】実施例1 pH6.8の原水(マンガン量約0.5mg/L、懸濁
物量(濁度:SS)約10NTU、溶存酸素濃度約8.
2〜8.5mg/L)をそのまま膜分離装置に供給し、
公称分画径0.1μmの中空糸精密ろ過膜を使用して膜
ろ過を行い、定期的に逆洗を行って洗浄排水を排水槽に
貯留した。また、砂ろ過槽として、内径15mmの円筒
体に、有効径0.6mm、均等係数1.4のろ過砂を厚
さ100mm及び厚さ200mmに充填したものを2本
用意した。
EXAMPLES Example 1 Raw water of pH 6.8 (manganese amount: about 0.5 mg / L, suspension amount (turbidity: SS): about 10 NTU, dissolved oxygen concentration: about 8.8)
2-8.5 mg / L) as it is to the membrane separation device,
Membrane filtration was performed using a hollow fiber microfiltration membrane having a nominal fraction diameter of 0.1 μm, and backwashing was periodically performed to store the washing wastewater in a drainage tank. Further, two sand filtration tanks each having a cylindrical body having an inner diameter of 15 mm filled with filtered sand having an effective diameter of 0.6 mm and a uniformity coefficient of 1.4 to a thickness of 100 mm and a thickness of 200 mm were prepared.

【0016】排水槽内の洗浄排水を、各砂ろ過槽に12
0m/日で60時間通してろ過処理を行った。砂ろ過槽
に供給したときの洗浄排水の水温は16.3℃、pHは
6.8〜7.5、マンガン量は2.28mg/L、懸濁
物量は170.0NTUであった。ろ過処理終了後、砂
ろ過槽を転倒させてろ材量の3倍量の水で洗浄した。ろ
材洗浄水中のSS濃度を測定したところ、ろ材厚さ10
0mmでは2137.5mg/L、ろ材厚さ200mm
では7012.5mg/Lであった。
The washing wastewater in the drainage tank is supplied to each sand filter tank for 12 hours.
The filtration treatment was performed at 0 m / day for 60 hours. The water temperature of the washing wastewater when supplied to the sand filtration tank was 16.3 ° C, the pH was 6.8 to 7.5, the amount of manganese was 2.28 mg / L, and the amount of suspended matter was 170.0 NTU. After completion of the filtration treatment, the sand filtration tank was turned over and washed with water three times the amount of the filter medium. When the SS concentration in the filter medium washing water was measured, the filter medium thickness was 10
At 0 mm, 2137.5 mg / L, filter media thickness 200 mm
Was 7012.5 mg / L.

【0017】実施例2 水酸化ナトリウム水溶液を添加混合して原水のpHを
8.5に調節した以外は実施例1と同様にして洗浄排水
を排水槽に貯留し、この洗浄排水を、実施例1と同じ2
本の砂ろ過槽を使用して実施例1と同様にしてろ過処理
を行った。砂ろ過槽に供給したときの洗浄排水の水温は
18.1℃、pHは8.0、マンガン量は3.57mg
/L、懸濁物量は166.0NTUであった。実施例1
と同じようにしてろ材を洗浄したろ材洗浄水中のSS濃
度は、ろ材厚さ100mmでは3405.8mg/L、
ろ材厚さ200mmでは10379.3mg/Lであっ
た。
Example 2 Washing wastewater was stored in a drainage tank in the same manner as in Example 1 except that the pH of the raw water was adjusted to 8.5 by adding and mixing an aqueous sodium hydroxide solution. 2 same as 1
Filtration was performed in the same manner as in Example 1 using the sand filter tank. The water temperature of the washing wastewater when supplied to the sand filtration tank is 18.1 ° C., the pH is 8.0, and the amount of manganese is 3.57 mg.
/ L, the amount of the suspension was 166.0 NTU. Example 1
The SS concentration in the filter medium washing water obtained by washing the filter medium in the same manner as described above is 3405.8 mg / L at a filter medium thickness of 100 mm,
At a filter material thickness of 200 mm, the value was 10379.3 mg / L.

【0018】実施例3 原水のpHを9.7に調節した以外は実施例1と同様に
して洗浄排水を排水槽に貯留し、この洗浄排水を、実施
例1と同じ2本の砂ろ過槽を使用して実施例1と同様に
してろ過処理を行った。砂ろ過槽に供給したときの洗浄
排水の水温は15.9℃、pHは8.2、マンガン量は
0.73mg/L、懸濁物量は35.4NTUであっ
た。実施例1と同じようにしてろ材を洗浄したろ材洗浄
水中のSS濃度は、ろ材厚さ100mmでは1286.
5mg/L、ろ材厚さ200mmでは1716.0mg
/Lであった。
Example 3 Washing wastewater was stored in a drainage tank in the same manner as in Example 1 except that the pH of the raw water was adjusted to 9.7, and this washing wastewater was used in the same two sand filtration tanks as in Example 1. And filtration was performed in the same manner as in Example 1. The water temperature of the washing wastewater when supplied to the sand filtration tank was 15.9 ° C., the pH was 8.2, the amount of manganese was 0.73 mg / L, and the amount of suspended matter was 35.4 NTU. The SS concentration in the filter medium washing water obtained by washing the filter medium in the same manner as in Example 1 was 1286.000 when the filter medium thickness was 100 mm.
5mg / L, 1716.0mg for 200mm filter media thickness
/ L.

【0019】実施例4 膜分離装置に供給する原水のpHを変化させて実施例1
と同様の操作を行い、砂ろ過水中の濁度及びマンガン量
を測定した。その結果を図2(ろ材厚さ100mm)及
び図3(ろ材厚さ200mm)にそれぞれ示す。この結
果から、原水のpHが高いほど濁質及びマンガンの除去
率が上昇していることがわかる。これは、生成した二酸
化マンガンが凝集剤として作用したことによるものであ
る。
Example 4 Example 1 wherein the pH of raw water supplied to a membrane separation device was changed.
The turbidity and manganese content in the filtered sand water were measured in the same manner as described above. The results are shown in FIG. 2 (filter media thickness 100 mm) and FIG. 3 (filter media thickness 200 mm), respectively. From this result, it can be seen that the higher the pH of the raw water, the higher the turbidity and manganese removal rates. This is because the produced manganese dioxide acted as a flocculant.

【0020】この結果から、前記実施例3において、砂
ろ過槽に供給される洗浄排水中のマンガン量や懸濁物量
が少ないのは、他の実施例に比べて原水のpHを高くし
たので二酸化マンガンが大量に生成し、これが凝集剤と
なって濁質の凝集が促進され、排水槽内で沈殿したため
であることがわかる。すなわち、図4に示すように、原
水のpHに対する懸濁物質除去速度係数とマンガン除去
速度係数との関係は、片対数グラフにおいて略直線上に
並ぶものとなる。
From these results, it can be seen that in Example 3 the manganese and suspended solids content in the washing wastewater supplied to the sand filtration tank was small because the pH of the raw water was higher than in the other Examples. It can be seen that a large amount of manganese was generated, which became a coagulant, promoted the coagulation of the turbid matter, and precipitated in the drainage tank. That is, as shown in FIG. 4, the relationship between the suspended matter removal rate coefficient and the manganese removal rate coefficient with respect to the pH of the raw water is substantially linear on a semilogarithmic graph.

【0021】これらの結果から、上記砂ろ過槽15にお
ける処理条件等の関係は、次式に表すことができる。
From these results, the relationship between the processing conditions and the like in the sand filtration tank 15 can be expressed by the following equation.

【0022】[0022]

【式1】 (Equation 1)

【0023】 式中、C:懸濁物及びマンガン濃度(mg/L) C:初期懸濁物及びマンガン濃度(mg/L) μ:除去係数(1/m) μ:除去速度係数(1/hr) L:ろ層高さ(m) V:ろ過流速(m/hr) t:ろ過時間(hr)In the formula, C: concentration of suspension and manganese (mg / L) C 0 : concentration of initial suspension and manganese (mg / L) μ 1 : removal coefficient (1 / m) μ 2 : removal rate coefficient (1 / hr) L: Filter layer height (m) V: Filtration flow rate (m / hr) t: Filtration time (hr)

【0024】したがって、これらの関係から、図5に示
すような演算装置において、入力部31にろ過流速、ろ
過時間、ろ層高さをそれぞれ入力し、演算部32で膜ろ
過洗浄排水の処理規模を条件として計算することによ
り、目標値33としての粒状ろ過処理水の濃度及び粒状
ろ過最終汚泥の濃縮率を求めることができる。
Therefore, based on these relationships, in the arithmetic unit as shown in FIG. 5, the filtering flow rate, the filtering time, and the filter layer height are respectively input to the input unit 31 and the processing unit 32 processes the membrane filtration washing wastewater. , The concentration of the granular filtration treatment water and the concentration rate of the granular filtration final sludge as the target value 33 can be obtained.

【0025】[0025]

【発明の効果】以上説明したように、本発明の膜ろ過洗
浄排水の濃縮方法によれば、分離膜の洗浄排水濃度を2
0〜60倍にも濃縮することが可能であり、洗浄排水の
処理を容易に行うことが可能となる。
As described above, according to the method for concentrating membrane filtration washing wastewater of the present invention, the concentration of washing wastewater of the separation membrane is reduced to 2%.
It is possible to concentrate by a factor of 0 to 60, and it is possible to easily carry out the treatment of the washing wastewater.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の膜ろ過洗浄排水の濃縮方法を適用し
た膜分離設備の一例を示す系統図である。
FIG. 1 is a system diagram showing an example of a membrane separation facility to which the method for concentrating membrane filtration washing wastewater of the present invention is applied.

【図2】 実施例4のろ材厚さ100mmにおける濁度
及びマンガンの除去率を示す図である。
FIG. 2 is a graph showing the turbidity and the removal rate of manganese at a filter material thickness of 100 mm in Example 4.

【図3】 実施例4のろ材厚さ200mmにおける濁度
及びマンガンの除去率を示す図である。
FIG. 3 is a diagram showing the turbidity and the removal rate of manganese at a filter media thickness of 200 mm in Example 4.

【図4】 原水のpHに対する懸濁物質除去速度係数及
びマンガン除去速度係数の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a suspended matter removal rate coefficient and a manganese removal rate coefficient with respect to the pH of raw water.

【図5】 粒状ろ過処理水の濃度及び粒状ろ過最終汚泥
の濃縮率を求めるための演算装置のブロック図である。
FIG. 5 is a block diagram of an arithmetic unit for determining the concentration of the granular filtration treatment water and the concentration ratio of the granular sludge final sludge.

【符号の説明】[Explanation of symbols]

11…分離膜、12…膜分離装置、13…混合槽、14
…排水槽、15…砂ろ過槽、16…ポンプ、17…オー
バーフロー槽、22…アルカリ供給経路
11: separation membrane, 12: membrane separation device, 13: mixing tank, 14
... drain tank, 15 ... sand filtration tank, 16 ... pump, 17 ... overflow tank, 22 ... alkali supply path

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年5月11日(2000.5.1
1)
[Submission Date] May 11, 2000 (2000.5.1)
1)

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 11/12 C02F 11/12 E B01D 23/16 Fターム(参考) 4D006 GA07 HA18 HA19 JA31A JA56A KA03 KA43 KA63 KA72 KB15 KC03 KC14 KD17 KE12Q KE15Q KE16Q MA01 MA22 PA02 PB08 PB27 4D038 AA08 AB66 BB09 BB13 BB16 BB17 BB18 4D041 BA02 BB04 CA01 CB04 4D059 AA11 BE13 BE42 BF14 EB05 4D066 AA05 AA07 AB04 BA03 BB02 BB20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C02F 11/12 C02F 11/12 E B01D 23/16 F term (Reference) 4D006 GA07 HA18 HA19 JA31A JA56A KA03 KA43 KA63 KA72 KB15 KC03 KC14 KD17 KE12Q KE15Q KE16Q MA01 MA22 PA02 PB08 PB27 4D038 AA08 AB66 BB09 BB13 BB16 BB17 BB18 4D041 BA02 BB04 CA01 CB04 4D059 AA11 BE13 BE42 BF14 BA05 ABB04A03 A03

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶解性マンガンを含有する原水中の濁質
を分離膜によってろ過処理するにあたり、前記原水のp
H及び溶存酸素濃度を制御して前記溶解性マンガンを不
溶性の二酸化マンガンにした後、生成した二酸化マンガ
ンの粒子を前記濁質と共に前記分離膜によりろ過処理を
行い、該分離膜の洗浄排水を粒状ろ過材によってろ過処
理を行うことにより、前記濁質を含む洗浄排水を濃縮す
ることを特徴とする膜ろ過洗浄排水の濃縮方法。
When filtering suspended matter in raw water containing soluble manganese through a separation membrane, the raw water contains p.
After controlling the H and dissolved oxygen concentrations to convert the soluble manganese into insoluble manganese dioxide, the resulting manganese dioxide particles are filtered together with the turbid matter through the separation membrane, and the washing wastewater of the separation membrane is granulated. A method for concentrating membrane filtration washing wastewater, wherein the washing wastewater containing turbid matter is concentrated by performing a filtration treatment with a filter material.
JP2000138182A 2000-03-31 2000-05-11 Method for concentrating membrane filtered washing wastewater Pending JP2001340853A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000096645 2000-03-31
JP2000-96645 2000-03-31
JP2000138182A JP2001340853A (en) 2000-03-31 2000-05-11 Method for concentrating membrane filtered washing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000138182A JP2001340853A (en) 2000-03-31 2000-05-11 Method for concentrating membrane filtered washing wastewater

Publications (1)

Publication Number Publication Date
JP2001340853A true JP2001340853A (en) 2001-12-11

Family

ID=26589053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000138182A Pending JP2001340853A (en) 2000-03-31 2000-05-11 Method for concentrating membrane filtered washing wastewater

Country Status (1)

Country Link
JP (1) JP2001340853A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066492A (en) * 2013-09-27 2015-04-13 独立行政法人土木研究所 Method for suppressing propagation of algae
CN104973711A (en) * 2014-04-12 2015-10-14 上海子征环保科技有限公司 Sewage impurity separation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066492A (en) * 2013-09-27 2015-04-13 独立行政法人土木研究所 Method for suppressing propagation of algae
CN104973711A (en) * 2014-04-12 2015-10-14 上海子征环保科技有限公司 Sewage impurity separation method
CN104973711B (en) * 2014-04-12 2017-01-18 上海子征环保科技有限公司 Sewage impurity separation method

Similar Documents

Publication Publication Date Title
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
JP4241684B2 (en) Membrane module cleaning method
WO2014151354A1 (en) Process for water treatment prior to reverse osmosis
KR20040002594A (en) Liquid treatment method and apparatus
JP3735883B2 (en) Membrane separation apparatus and membrane module cleaning method
JP2013085983A (en) Organic wastewater collection processing device and collection processing method
RU2222371C1 (en) The improvements brought in filtration using membranes
JP4071364B2 (en) Pretreatment device for reverse osmosis membrane separator
JPH10225682A (en) Method of removing boron in reverse osmosis seawater desalination
JP2007196137A (en) Treatment method and apparatus for biologically treated water
JP2007268359A (en) Membrane separation method
JP2001340853A (en) Method for concentrating membrane filtered washing wastewater
JP2004074146A (en) Method and equipment for treating impurity-containing liquid
JP2006043611A (en) Method and device for recovering activated sludge treated water
JPH11104696A (en) Production of purified water
JP2002346347A (en) Method and apparatus for filtration
JP2003334566A (en) Method and device for treating drain containing fluorine
JP2000263063A (en) Method and apparatus for treating fluorine-containing waste liquid
JP2000042307A (en) Water purification plant water treatment system
JP2007098270A (en) Method and apparatus for producing pure water
JP2006167611A (en) Water cleaning system
JP3172726B2 (en) Low pollution water treatment equipment
JPH11169851A (en) Water filter and its operation
JP3185398B2 (en) Water purification equipment
JP3079604B2 (en) Water treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623