JP2001335307A - Method for synthesis of polycrystal of compound semi- conductor - Google Patents

Method for synthesis of polycrystal of compound semi- conductor

Info

Publication number
JP2001335307A
JP2001335307A JP2000154252A JP2000154252A JP2001335307A JP 2001335307 A JP2001335307 A JP 2001335307A JP 2000154252 A JP2000154252 A JP 2000154252A JP 2000154252 A JP2000154252 A JP 2000154252A JP 2001335307 A JP2001335307 A JP 2001335307A
Authority
JP
Japan
Prior art keywords
raw material
boat
group iii
compound semiconductor
polycrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000154252A
Other languages
Japanese (ja)
Inventor
Yasushi Sugano
保至 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000154252A priority Critical patent/JP2001335307A/en
Publication of JP2001335307A publication Critical patent/JP2001335307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for synthesis of polycrystal of a group III-V compound semi-conductor in which uniformity of thickness and increase of charging amount of raw materials are contrived. SOLUTION: This method for synthesis of a polycrystal of compound semiconductor comprises arranging a boat 10 filled with a group III raw material 40 at one end inside a seal pipe 6, and a group V raw material 90 at the other end, heating the whole seal pipe, reacting the group III raw material with the material gas generated from the group V raw material by locally heating the group III material at a higher temperature, and synthesizing a group III-V compound semiconductor polycrsytal while relatively shifting a high temperature part. In this case, the inside of the boat is compared into the regions 31, 32 and 33 in its longitudinal direction by arranging, along the width direction of the boat, the partition materials 21 and 22 which are formed of the group III-V compound semiconductor polycrystal, and the group III material is divided into three and filled in the comparted regions, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、GaP等のIII−
V族化合物半導体多結晶の合成方法に係り、特に、得ら
れるIII−V族化合物半導体多結晶についてその肉厚の
均一化が図れると共に原料投入量の増加が図れるIII−
V族化合物半導体多結晶の合成方法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a method for preparing III-
The present invention relates to a method for synthesizing a group V compound semiconductor polycrystal, and in particular, it is possible to achieve a uniform thickness of the obtained group III-V compound semiconductor polycrystal and an increase in raw material input amount.
The present invention relates to a method for synthesizing a group V compound semiconductor polycrystal.

【0002】[0002]

【従来の技術】GaP等のIII−V族化合物半導体は、
従来、レーザダイオード、発光ダイオードのようなオプ
トデバイスやHEMTのような高速デバイス等の材料に
利用されている。
2. Description of the Related Art Group III-V compound semiconductors such as GaP are
Conventionally, it is used for materials such as opto devices such as laser diodes and light emitting diodes, and high-speed devices such as HEMTs.

【0003】そして、このようなIII−V族化合物半導
体は、Ga等のIII族原料とP等のV族原料を直接反応
させて単結晶を成長させることが困難なため、III−V
族化合物半導体多結晶をまず合成し、次いでこのIII−
V族化合物半導体多結晶を用いてLEC法等によりIII
−V族化合物半導体単結晶を成長させる方法が採られて
いる。
[0003] In such a III-V compound semiconductor, it is difficult to directly react a group III material such as Ga with a group V material such as P to grow a single crystal.
First, a group III compound semiconductor polycrystal was synthesized, and then this III-
III using Group V compound semiconductor polycrystal by LEC method etc.
A method of growing a group V compound semiconductor single crystal has been employed.

【0004】ところで、上記III−V族化合物半導体多
結晶は、図4に示すように各原料が充填された石英等か
ら成る封管aを図5に示すような横型高圧炉b内に搬入
して合成する方法が採られている。
The III-V compound semiconductor polycrystal is loaded into a horizontal high-pressure furnace b as shown in FIG. 5 by placing a sealed tube a made of quartz or the like filled with each raw material as shown in FIG. And a method of synthesizing.

【0005】すなわち、図4に示すようにGa等のIII
族原料cは、舟型あるいはスリットdが設けられた円筒
型等の黒鉛ボートe(図6参照)内に充填されると共に
ボートe全体を石英等から成る内管f内に収容して上記
封管aの一端側に配置され、P等のV族原料gは、熱遮
蔽板hを介し上記封管aの他端側に配置される。尚、原
料等が充填された封管aは、その後真空にして封じ切ら
れる。
That is, as shown in FIG.
The group raw material c is filled in a boat boat or a cylindrical boat boat e (see FIG. 6) provided with a slit d, and the entire boat e is housed in an inner tube f made of quartz or the like and sealed. A group V raw material g such as P is disposed at one end of the tube a, and is disposed at the other end of the sealed tube a via a heat shielding plate h. The sealed tube a filled with the raw material and the like is then vacuum-sealed and sealed.

【0006】次に、真空にして封じ切られた上記封管a
は、中央に高周波コイルiを有しこの高周波コイルiを
中央に挟んでその両側に抵抗ヒータjを有する高圧容器
にて構成された横型高圧炉b内に搬入される。
Next, the above-mentioned sealed tube a which has been sealed by vacuum
Is carried into a horizontal high-pressure furnace b composed of a high-pressure vessel having a high-frequency coil i at the center and a resistance heater j on both sides of the high-frequency coil i at the center.

【0007】そして、横型高圧炉b内において封管a全
体が加熱され、上記高周波コイルiによりボートe内の
III族原料cが局所的に更に高温に加熱されると共に、
V族原料gから発生した原料ガスが上記熱遮蔽板hに取
付けられた導入管kを介し内管f内に導入されて上記II
I族原料cと反応し、かつ、上記封管aを矢印α方向へ
横型高圧炉b内を移動させるか封管aを固定して上記横
型高圧炉bを逆方向へ移動させる等して(すなわち、高
温部を相対移動させる)III−V族化合物半導体多結晶
が合成される。
Then, the entire sealed tube a is heated in the horizontal high-pressure furnace b, and the high-frequency coil i
While the group III raw material c is locally further heated to a high temperature,
The raw material gas generated from the group V raw material g is introduced into the inner tube f via the introducing tube k attached to the heat shield h, and
By reacting with the group I raw material c and moving the sealed tube a in the horizontal high-pressure furnace b in the direction of the arrow α or fixing the sealed tube a and moving the horizontal high-pressure furnace b in the opposite direction ( That is, a III-V group compound semiconductor polycrystal (relatively moving the high temperature portion) is synthesized.

【0008】[0008]

【発明が解決しようとする課題】ところで、上記封管a
や横型高圧炉bが適用されたIII−V族化合物半導体多
結晶の合成方法においては得られるIII−V族化合物半
導体多結晶の肉厚が不均一になり易い問題があった。特
に、反応始端部は薄く反応終端部は厚くなる傾向があ
り、極端な場合、両端部の肉厚差が15mm以上になる
ことがあった。
The above-mentioned sealed tube a
In the method of synthesizing a III-V compound semiconductor polycrystal to which the horizontal high-pressure furnace b is applied, there is a problem that the thickness of the obtained III-V compound semiconductor polycrystal tends to be non-uniform. In particular, the reaction start end portion tends to be thin, and the reaction end portion tends to be thick. In extreme cases, the difference in wall thickness between both end portions may be 15 mm or more.

【0009】また、上記肉厚差が大きいときには、反応
終端部において黒鉛ボートeから原料が零れてしまうこ
とがあり、品質低下や石英内管f並びに黒鉛ボートeが
破損する等トラブル発生の要因となる問題があった。特
に、石英外管(すなわち上記封管a)に影響が及んだ場
合には封管の破裂にもつながるため、経済的ダメージも
より一層大きくなる問題があった。
Further, when the difference in wall thickness is large, the raw material may spill from the graphite boat e at the end of the reaction, which causes problems such as deterioration of the quality and damage to the quartz inner tube f and the graphite boat e. There was a problem. In particular, there is a problem that when the quartz outer tube (that is, the sealed tube a) is affected, the sealed tube is ruptured, so that economic damage is further increased.

【0010】また、反応始端部の肉厚を大きくするため
にV族原料g側の温度を上げてその供給量を増やそうと
すると原料蒸気圧が高くなり、封管a内外の圧力差が大
きくなって破裂し易くなると共に温度コントロールも難
しくなる問題があった。
[0010] Further, if the temperature of the group V raw material g is increased to increase the supply amount in order to increase the wall thickness of the reaction start end, the raw material vapor pressure increases, and the pressure difference between the inside and outside of the sealed tube a increases. And the temperature control becomes difficult.

【0011】このため、原料投入量については合成され
るIII−V族化合物半導体多結晶の体積が黒鉛ボートe
の内容積に対し75%以下となるように抑えられてお
り、黒鉛ボートeの容量を十分に活用できない問題があ
った。
[0011] For this reason, the volume of the synthesized III-V compound semiconductor polycrystal is limited by the amount of the raw material charged to the graphite boat e.
Therefore, there was a problem that the capacity of the graphite boat e could not be fully utilized.

【0012】本発明はこの様な問題点に着目してなされ
たもので、その課題とするところは、得られるIII−V
族化合物半導体多結晶についてその肉厚の均一化が図れ
ると共に原料投入量の増加も図れるIII−V族化合物半
導体多結晶の合成方法を提供することにある。
The present invention has been made in view of such a problem.
It is an object of the present invention to provide a method for synthesizing a group III-V compound semiconductor polycrystal, which can make the thickness of the group III compound semiconductor polycrystal uniform and increase the amount of raw material input.

【0013】[0013]

【課題を解決するための手段】すなわち、請求項1に係
る発明は、封管内の一端側にIII族原料が充填されたボ
ートを配置し、また上記封管内の他端側にV族原料を配
置し、上記封管全体を加熱すると共にボート内のIII族
原料を局所的に更に高温に加熱してV族原料から発生し
た原料ガスと上記III族原料を反応させ、かつ、上記高
温部を徐々に相対移動させながらIII−V族化合物半導
体多結晶を合成する化合物半導体多結晶の合成方法を前
提とし、III−V族化合物半導体多結晶により構成され
た1以上の仕切り材をボートの幅方向に沿って配置して
上記ボート内をその長さ方向に亘り2以上の領域に区画
すると共に、区画された各領域内に上記III族原料を分
配してそれぞれ充填するようにしたことを特徴とするも
のである。
That is, according to the first aspect of the present invention, a boat filled with a Group III raw material is disposed at one end in a sealed tube, and a Group V raw material is placed at the other end in the sealed tube. Arrange, heat the entire sealed tube and locally heat the Group III raw material in the boat to a higher temperature to react the raw material gas generated from the Group V raw material with the Group III raw material, Assuming a method of synthesizing a compound semiconductor polycrystal in which a group III-V compound semiconductor polycrystal is synthesized while gradually moving relative to each other, one or more partition members made of the group III-V compound semiconductor polycrystal are placed in the width direction of the boat. Along with dividing the inside of the boat into two or more regions along its length, the group III raw material is distributed and filled in each of the divided regions. Is what you do.

【0014】この請求項1記載の発明に係る化合物半導
体多結晶の合成方法によれば、III−V族化合物半導体
多結晶により構成された1以上の仕切り材をボートの幅
方向に沿って配置して上記ボート内をその長さ方向に亘
り2以上の領域に区画すると共に、区画された各領域内
に上記III族原料を分配してそれぞれ充填するようにし
ているため、上記仕切り材で区画された各領域内におい
てIII−V族化合物半導体多結晶が個々に合成されると
共にIII−V族化合物半導体多結晶により構成された上
記仕切り材を介し全体が一体化される。
According to the method for synthesizing a compound semiconductor polycrystal according to the first aspect of the present invention, one or more partition members made of a group III-V compound semiconductor polycrystal are arranged along the width direction of the boat. The interior of the boat is divided into two or more regions along the length thereof, and the group III raw materials are distributed and filled in each of the divided regions. In each of the regions, the group III-V compound semiconductor polycrystals are individually synthesized, and the whole is integrated via the above-mentioned partition member made of the group III-V compound semiconductor polycrystal.

【0015】そして、III−V族化合物半導体多結晶に
より構成された上記仕切り材の作用により、反応始端部
結晶の成長度合の大小に拘わらずボート内に充填された
III族原料が終端部側に押しやられる現象(すなわち原
料の偏り現象)が解消されるため、得られるIII−V族
化合物半導体多結晶についてその肉厚の均一化が図れる
と共に、原料が押しやられることに起因する上記ボート
からの原料零れも防止でき、かつ、原料投入量の増加を
も図ることが可能となる。
[0015] By the action of the partition member made of polycrystalline III-V compound semiconductor, the boat was filled in the boat regardless of the degree of growth of the crystal at the beginning of the reaction.
Since the phenomenon that the group III raw material is pushed to the terminal end side (that is, the bias phenomenon of the raw material) is eliminated, the thickness of the obtained III-V compound semiconductor polycrystal can be made uniform and the raw material can be pushed. As a result, it is possible to prevent the raw material from spilling from the boat, and to increase the raw material input amount.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0017】すなわち、この実施の形態に係る化合物半
導体多結晶の合成方法は、図1に示すようにIII族原料
が充填されるボート内にIII−V族化合物半導体多結晶
により構成された2つの仕切り材が配置されてボート内
がその長さ方向に亘り3つの領域に区画されている点
と、区画された各領域内に上記III族原料が分配されて
それぞれ充填されている点を除き従来の合成方法と略同
一である。
That is, the method of synthesizing a compound semiconductor polycrystal according to the present embodiment comprises, as shown in FIG. 1, two boats formed of a group III-V compound semiconductor polycrystal in a boat filled with a group III raw material. Conventionally, except that the partitioning material is arranged and the inside of the boat is divided into three regions along its length direction, and that the group III raw material is distributed and filled in each of the divided regions. Is almost the same as the synthesis method.

【0018】まず、ボート10は、図2に示すように上
側外周面にスリット11が開設された黒鉛製の円筒形ボ
ート本体12と、この円筒形ボート本体12の両側開放
部を閉止する黒鉛製のキャップ13、14とで構成さ
れ、このボート10内にはIII−V族化合物半導体多結
晶により構成された略半円柱状の2つの仕切り材21、
22がその円弧側を下側にしてボート10の幅方向に沿
って配置されており、これ等仕切り材21、22により
上記ボート10内がその長さ方向に亘り3つの領域3
1、32、33に区画されていると共に、各領域31、
32、33内にはIII族原料40が分配されてそれぞれ
充填されている。尚、3つの領域31、32、33の各
体積と各領域に充填されるIII族原料40の各投入量は
それぞれ等しいことが原則望ましいが、必ずしも3等分
である必要はない。また、この例では2つの仕切り材2
1、22が配置されているが1以上なら任意である。
First, as shown in FIG. 2, the boat 10 has a cylindrical boat main body 12 made of graphite having a slit 11 formed in the upper outer peripheral surface, and a graphite boat closing both open portions of the cylindrical boat main body 12. The boat 10 has two substantially semi-cylindrical partition members 21 made of III-V compound semiconductor polycrystals.
22 are arranged along the width direction of the boat 10 with the arc side thereof facing downward, and the partitioning materials 21 and 22 divide the inside of the boat 10 into three regions 3 along its length direction.
1, 32, and 33, and each area 31,
Group III raw materials 40 are distributed and filled in 32 and 33, respectively. It is desirable that the volumes of the three regions 31, 32, and 33 and the amounts of the group III raw materials 40 charged in the respective regions be equal to each other in principle, but they are not necessarily required to be equally divided into three. In this example, two partition members 2
1 and 22 are arranged, but any number of 1 and 22 is optional.

【0019】そして、上記仕切り材21、22とIII族
原料40が入れられたボート10は石英内管5内に収納
され、図1に示すように石英内管5毎、石英封管(外
管)6内の一端側に配置されると共に、石英封管6の他
端側にはV族原料90が配置され、かつ、石英封管6の
略中央部には不透明石英製の熱遮蔽板71、72が配置
される。尚、これ等熱遮蔽板71、72には導入管80
が取付けられており、この導入管80を介してV族原料
90が配置された空間と石英内管5とが連通するように
なっている。
The boat 10 containing the partition members 21 and 22 and the group III raw material 40 is housed in a quartz inner tube 5, and as shown in FIG. 6), a group V raw material 90 is disposed at the other end of the quartz sealed tube 6, and a heat shield plate 71 made of opaque quartz is provided at substantially the center of the quartz sealed tube 6. , 72 are arranged. The heat shield plates 71 and 72 are provided with an introduction pipe 80.
The space in which the group V raw material 90 is arranged and the inner quartz tube 5 communicate with each other via the introduction tube 80.

【0020】次に、石英内管5、熱遮蔽板71、72お
よびV族原料90等が収納された石英封管(外管)6の
口を塞ぎ、真空引きを行なった後、封止切る。
Next, the mouth of the quartz sealed tube (outer tube) 6 containing the inner quartz tube 5, the heat shielding plates 71 and 72, and the group V raw material 90 and the like is closed, evacuated, and then sealed off. .

【0021】次に、中央に高周波コイル51を有しこの
高周波コイル51を中央に挟んでその両側に抵抗ヒータ
52、53を有する高圧容器54にて構成された横型高
圧炉50内に、封じ切られた上記石英封管(外管)6を
搬入し、横型高圧炉50の高圧容器54内に窒素等不活
性ガスを充填して高圧炉内を高圧状態に設定した後、抵
抗ヒータ52、53等を作用させて石英封管(外管)6
全体を加熱し、かつ、高周波コイル51を作用させてボ
ート10の領域33内におけるIII族原料40を局所的
に更に高温に加熱する。
Next, a high-frequency coil 51 is provided at the center, and the high-frequency coil 51 is provided at the center thereof. The quartz sealed tube (outer tube) 6 is carried in, and an inert gas such as nitrogen is filled in a high-pressure vessel 54 of a horizontal high-pressure furnace 50 to set the high-pressure furnace to a high-pressure state. The quartz sealed tube (outer tube) 6
The whole is heated, and the high-frequency coil 51 is operated to locally heat the group III raw material 40 in the region 33 of the boat 10 to a higher temperature.

【0022】そして、熱遮蔽板71、72に取付けられ
た導入管80を介し上記石英内管5内に導入されたV族
原料90からの原料ガスとボート10の領域33内にお
けるIII族原料40とを反応させ、かつ、上記石英封管
(外管)6若しくは横型高圧炉50を移動(すなわち、
高温部を相対移動)させ、ボート10内の領域33から
領域31に向け上記反応を順次進行させて一体化された
III−V族化合物半導体多結晶を合成する。
The raw material gas from the group V raw material 90 introduced into the quartz inner tube 5 through the introducing tube 80 attached to the heat shielding plates 71 and 72 and the group III raw material 40 in the region 33 of the boat 10 And move the quartz sealed tube (outer tube) 6 or the horizontal high-pressure furnace 50 (ie,
(The high-temperature portion is relatively moved), and the above reactions are sequentially advanced from the region 33 to the region 31 in the boat 10 to be integrated.
A III-V compound semiconductor polycrystal is synthesized.

【0023】この実施の形態に係る合成方法によれば、
III−V族化合物半導体多結晶により構成された上記仕
切り材21、22の作用により、領域33内における反
応始端部結晶の成長度合いの大小に拘らずボート10内
に充填されたIII族原料40が反応終端部側に押しやら
れる現象が解消されるため、得られるIII−V族化合物
半導体多結晶についてその肉厚の均一化が図れると共
に、III族原料40が押しやられることに起因する上記
ボート10からの原料零れも防止でき、かつ、原料投入
量の増加をも図ることが可能となる利点を有する。
According to the synthesizing method according to this embodiment,
Due to the action of the partition members 21 and 22 made of the polycrystalline group III-V compound semiconductor, the group III raw material 40 filled in the boat 10 is filled regardless of the degree of growth of the reaction start part crystal in the region 33. Since the phenomenon of being pushed to the reaction termination portion side is eliminated, the thickness of the obtained III-V compound semiconductor polycrystal can be made uniform, and the boat 10 caused by the pushing of the group III raw material 40 can be removed from the boat 10. This has the advantage that the raw material spill can be prevented, and the amount of raw material input can be increased.

【0024】尚、III−V族化合物半導体多結晶により
構成された上記仕切り材21、22の形状は、この仕切
り材が配置されるボート10内形状に対応させて適宜設
定され、例えば、ボート本体が円筒形状の場合には、ボ
ート内径と略同一の内径を有する略半円柱状の形状に設
定される。また、その高さはボート内径の半分以上あれ
ばよく、かつ、III−V族化合物半導体多結晶の組成状
態は任意である。
The shape of the partition members 21 and 22 made of a polycrystalline group III-V compound semiconductor is appropriately set according to the internal shape of the boat 10 on which the partition members are arranged. Is cylindrical, it is set to a substantially semi-cylindrical shape having an inside diameter substantially the same as the inside diameter of the boat. The height may be at least half the inner diameter of the boat, and the composition of the III-V compound semiconductor polycrystal is arbitrary.

【0025】[0025]

【実施例】以下、本発明の実施例について具体的に説明
する。
Embodiments of the present invention will be specifically described below.

【0026】[実施例1]まず、図2に示す外径48m
m、内径40mm、長さ745mmの円筒状黒鉛ボート
10内に、その幅方向に沿って径40mm、幅15m
m、高さ30mmのGaP多結晶で構成された仕切り材
21、22を配置し、上記ボート10内をその長さ方向
に亘り3等分に区画すると共に、3等分に区画された各
領域31、32、33内に、III族原料40であるガリ
ウム(Ga)2000gを3等分してそれぞれ充填し
た。
Embodiment 1 First, an outer diameter of 48 m shown in FIG.
m, 40 mm in diameter and 15 m in width along the width direction in a cylindrical graphite boat 10 having an inner diameter of 40 mm and a length of 745 mm.
m, partition members 21 and 22 made of GaP polycrystal having a height of 30 mm are arranged, and the inside of the boat 10 is divided into three equal parts along its length direction, and each divided into three equal parts Gallium (Ga), which is a Group III raw material 40, was divided into three equal portions and filled in 31, 32, and 33, respectively.

【0027】次に、上記仕切り材21、22とIII族原
料40が入れられたボート10を石英内管5内に収納
し、図1に示すように石英内管5毎、石英封管6内の一
端側に配置すると共に、石英封管6の他端側にはV族原
料90である赤燐(P)920gを配置した。尚、石英
封管6内には、V族原料90の原料ガスを石英内管5内
に導入するための導入管80が取付けられた不透明石英
製の熱遮蔽板71、72が配置されている。
Next, the boat 10 containing the partition members 21 and 22 and the group III raw material 40 is housed in the inner quartz tube 5 and, as shown in FIG. And 920 g of red phosphorus (P), which is a group V raw material 90, was placed at the other end of the quartz sealed tube 6. Note that, in the quartz sealed tube 6, opaque quartz heat shielding plates 71 and 72 to which an introduction tube 80 for introducing the raw material gas of the group V raw material 90 into the inner quartz tube 5 are arranged. .

【0028】次に、石英内管5、熱遮蔽板71、72お
よびV族原料90等が収納された石英封管6の口を塞
ぎ、中を10-6Torrオーダまで真空引きを行なった
後、封止切る。
Next, the opening of the quartz inner tube 5, the heat shielding plates 71 and 72, the quartz sealed tube 6 containing the group V raw material 90 and the like is closed, and the inside is evacuated to the order of 10 -6 Torr. Cut off the seal.

【0029】次に、中央に高周波コイル51を有しこの
高周波コイル51を中央に挟んでその両側に抵抗ヒータ
52、53を有する高圧容器54にて構成された横型高
圧炉50内に、封じ切られた上記石英封管6を搬入し、
横型高圧炉50の高圧容器54内に窒素ガスを充填して
高圧炉内を高圧状態(40kg/cm2)に設定した
後、抵抗ヒータ52、53を作用させ石英封管6全体を
加熱してV族原料90である赤燐(P)を300℃〜7
00℃に昇温し、かつ、ボート10内のIII族原料40
であるガリウム(Ga)を500℃〜600℃の範囲で
保持すると共に、高周波コイル51を作用させて上記ボ
ート10の領域33をGaPの融点である1470℃付
近の温度で保持する。
Next, the high-frequency coil 51 is provided at the center, and the high-frequency coil 51 is provided at the center thereof. The above quartz sealed tube 6 is carried in,
After filling the high-pressure vessel 54 of the horizontal high-pressure furnace 50 with nitrogen gas and setting the high-pressure furnace to a high-pressure state (40 kg / cm 2 ), resistance heaters 52 and 53 are operated to heat the entire quartz sealed tube 6. Red phosphorus (P), which is a group V raw material 90, is heated to 300 ° C. to 7
The temperature is raised to 00 ° C., and the group III raw material 40 in the boat 10
Gallium (Ga) is held in the range of 500 ° C. to 600 ° C., and the region 33 of the boat 10 is held at a temperature around 1470 ° C., which is the melting point of GaP, by operating the high-frequency coil 51.

【0030】そして、熱遮蔽板71、72に取付けられ
た導入管80を介し上記石英内管5内に導入されたV族
原料90からの原料ガスとボート10の領域33内にお
けるIII族原料40とを反応させ、かつ、上記石英封管
6を矢印α方向へ横型高圧炉50内を移動させ(すなわ
ち、高温部を相対移動させ)、ボート10内の領域33
から領域31に向け上記反応を順次進行させて一体化さ
れたIII−V族化合物半導体(GaP)多結晶を合成し
た。
The raw material gas from the group V raw material 90 introduced into the quartz inner tube 5 through the introducing tube 80 attached to the heat shielding plates 71 and 72 and the group III raw material 40 in the region 33 of the boat 10 And the quartz sealed tube 6 is moved in the horizontal high-pressure furnace 50 in the direction of the arrow α (that is, the high-temperature portion is relatively moved), and the region 33 in the boat 10 is moved.
From above to the region 31 to synthesize an integrated group III-V compound semiconductor (GaP) polycrystal.

【0031】尚、上記仕切り材21、22は、高温部で
加熱されるまでは仕切り材として機能し、高温部で加熱
された後、融解して各領域内で合成されたIII−V族化
合物半導体(GaP)多結晶と一体化される。
The partition members 21 and 22 function as partition members until they are heated in the high-temperature portion, and after being heated in the high-temperature portion, melted and synthesized in each region. It is integrated with a semiconductor (GaP) polycrystal.

【0032】そして、得られたIII−V族化合物半導体
(GaP)多結晶から結晶肉厚を求め、かつ、合成中に
おけるボート10からの原料の零れを調べると共に、黒
鉛ボートの活用率(%)も調べた。その結果を、以下の
表1に示す。
Then, the thickness of the crystal is determined from the obtained III-V compound semiconductor (GaP) polycrystal, the spillage of the raw material from the boat 10 during the synthesis is examined, and the utilization rate (%) of the graphite boat is measured. I also checked. The results are shown in Table 1 below.

【0033】[実施例2]III族原料40であるガリウ
ム(Ga)2100gを3等分して上記ボート10の各
領域31、32、33内に充填している点と、V族原料
90である赤燐(P)の投入量を960gに変更した点
を除き実施例1と略同一の条件でIII−V族化合物半導
体(GaP)多結晶を合成した。
Example 2 The fact that 2100 g of gallium (Ga), which is a group III raw material 40, was divided into three equal portions and charged into the respective regions 31, 32, and 33 of the boat 10, A III-V compound semiconductor (GaP) polycrystal was synthesized under substantially the same conditions as in Example 1 except that the input amount of a certain red phosphorus (P) was changed to 960 g.

【0034】そして、得られたIII−V族化合物半導体
(GaP)多結晶から結晶肉厚を求め、かつ、合成中に
おけるボート10からの原料の零れを調べると共に、黒
鉛ボートの活用率(%)も調べた。この結果も、以下の
表1に示す。
Then, the crystal thickness is determined from the obtained III-V compound semiconductor (GaP) polycrystal, the spillage of the raw material from the boat 10 during the synthesis is investigated, and the utilization rate (%) of the graphite boat is determined. I also checked. The results are also shown in Table 1 below.

【0035】[実施例3]III族原料40であるガリウ
ム(Ga)2250gを3等分して上記ボート10の各
領域31、32、33内に充填している点と、V族原料
90である赤燐(P)の投入量を1050gに変更した
点を除き実施例1と略同一の条件でIII−V族化合物半
導体(GaP)多結晶を合成した。
Example 3 Group 250 raw material gallium (Ga) (2250 g) was divided into three equal parts and charged into each of the regions 31, 32, and 33 of the boat 10; A group III-V compound semiconductor (GaP) polycrystal was synthesized under substantially the same conditions as in Example 1 except that the input amount of a certain red phosphorus (P) was changed to 1050 g.

【0036】そして、得られたIII−V族化合物半導体
(GaP)多結晶から結晶肉厚を求め、かつ、合成中に
おけるボート10からの原料の零れを調べると共に、黒
鉛ボートの活用率(%)も調べた。この結果も、以下の
表1に示す。
Then, the crystal thickness is determined from the obtained III-V compound semiconductor (GaP) polycrystal, the spillage of the raw material from the boat 10 during the synthesis is examined, and the utilization rate of the graphite boat (%) I also checked. The results are also shown in Table 1 below.

【0037】[比較例]GaP多結晶で構成された仕切
り材21、22が適用されていない点を除き実施例1と
略同一の条件でIII−V族化合物半導体(GaP)多結
晶を合成した。
Comparative Example A III-V compound semiconductor (GaP) polycrystal was synthesized under substantially the same conditions as in Example 1 except that the partition members 21 and 22 made of GaP polycrystal were not applied. .

【0038】そして、得られたIII−V族化合物半導体
(GaP)多結晶から結晶肉厚を求め、かつ、合成中に
おけるボート10からの原料の零れを調べると共に、黒
鉛ボートの活用率(%)も調べた。この結果も、以下の
表1に示す。
Then, the crystal thickness is determined from the obtained III-V compound semiconductor (GaP) polycrystal, the spillage of the raw material from the boat 10 during the synthesis is examined, and the utilization rate of the graphite boat (%) I also checked. The results are also shown in Table 1 below.

【0039】[0039]

【表1】 表1において「肉厚差」は合成されたIII−V族化合物
半導体(GaP)多結晶の最大肉厚値から最小肉厚値を
引いたものである。
[Table 1] In Table 1, "thickness difference" is obtained by subtracting the minimum thickness value from the maximum thickness value of the synthesized III-V compound semiconductor (GaP) polycrystal.

【0040】また、「原料零れ発生率」は合成数に対し
て原料零れが発生した数の割合である。
The “raw material spill rate” is the ratio of the number of spilled raw materials to the number of composites.

【0041】また、「黒鉛ボート活用率(%)」は黒鉛
ボートの内容積に対して合成されたIII−V族化合物半
導体(GaP)多結晶が占める割合である。
The "graphite boat utilization rate (%)" is the ratio of the synthesized III-V compound semiconductor (GaP) polycrystal to the internal volume of the graphite boat.

【0042】『確 認』表1の結果から以下のことが確
認できる。 (1)各実施例においては、合成されたIII−V族化合
物半導体(GaP)多結晶の最大肉厚値と最小肉厚値の
差(すなわち「肉厚差」)が5mm前後であり、比較例
の13.9mmと較べて飛躍的に肉厚差が小さくなって
いる。 (2)また、比較例に較べて合成されたIII−V族化合
物半導体(GaP)多結晶の最大肉厚値が小さくなって
いるため原料零れが防止されている。 (3)また、実施例3の黒鉛ボート活用率(%)は8
4.5%となっており、比較例に較べその活用率が10
%上がって原料投入量を13%増加できることが確認で
きる。
[Confirmation] From the results in Table 1, the following can be confirmed. (1) In each example, the difference between the maximum thickness value and the minimum thickness value of the synthesized III-V compound semiconductor (GaP) polycrystal (that is, the “thickness difference”) is about 5 mm. The difference in wall thickness is dramatically reduced as compared with the example of 13.9 mm. (2) In addition, since the maximum thickness of the synthesized III-V compound semiconductor (GaP) polycrystal is smaller than that of the comparative example, raw material spillage is prevented. (3) The utilization rate (%) of the graphite boat in Example 3 was 8
It is 4.5%, and the utilization rate is 10 compared with the comparative example.
It can be confirmed that the raw material input amount can be increased by 13%.

【0043】[0043]

【発明の効果】請求項1記載の発明に係る化合物半導体
多結晶の合成方法によれば、III−V族化合物半導体多
結晶により構成された1以上の仕切り材をボートの幅方
向に沿って配置して上記ボート内をその長さ方向に亘り
2以上の領域に区画すると共に、区画された各領域内に
III族原料を分配してそれぞれ充填するようにしている
ため、上記仕切り材で区画された各領域内においてIII
−V族化合物半導体多結晶が個々に合成されると共にII
I−V族化合物半導体多結晶により構成された上記仕切
り材を介し全体が一体化される。
According to the method for synthesizing a compound semiconductor polycrystal according to the first aspect of the present invention, at least one partition member made of a group III-V compound semiconductor polycrystal is arranged along the width direction of the boat. And divide the inside of the boat into two or more areas along the length of the boat.
Since the group III raw materials are distributed and filled respectively, in each region partitioned by the partition material,
-Group V compound semiconductor polycrystals are synthesized individually and II
The whole is integrated via the above-mentioned partition member made of polycrystalline group IV-compound semiconductor.

【0044】そして、III−V族化合物半導体多結晶に
より構成された上記仕切り材の作用により、反応始端部
結晶の成長度合の大小に拘わらずボート内に充填された
III族原料が終端部側に押しやられる現象(すなわち原
料の偏り現象)が解消されるため、得られるIII−V族
化合物半導体多結晶についてその肉厚の均一化が図れる
と共に、原料が押しやられることに起因する上記ボート
からの原料零れも防止でき、かつ、原料投入量の増加を
も図ることが可能となる効果を有する。
Then, by the action of the above-mentioned partition member made of the polycrystalline group III-V compound semiconductor, the boat was filled into the boat regardless of the degree of growth of the crystal at the beginning of the reaction.
Since the phenomenon that the group III raw material is pushed to the terminal end side (that is, the bias phenomenon of the raw material) is eliminated, the thickness of the obtained III-V compound semiconductor polycrystal can be made uniform and the raw material can be pushed. Therefore, there is an effect that it is possible to prevent the raw material from spilling from the boat due to the above, and it is possible to increase the raw material input amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る化合物半導体多結晶
の合成方法に適用される石英封管内の構成およびこの封
管内に配置されるIII族原料とV族原料の位置関係を示
す説明図。
FIG. 1 is an explanatory diagram showing a configuration in a quartz sealed tube applied to a method for synthesizing a compound semiconductor polycrystal according to an embodiment of the present invention, and a positional relationship between a group III material and a group V material arranged in the sealed tube. .

【図2】本発明の実施の形態に係る化合物半導体多結晶
の合成方法に適用されるボートとこの中に配置される仕
切り材を示す概略斜視図。
FIG. 2 is a schematic perspective view showing a boat applied to a method for synthesizing a compound semiconductor polycrystal according to an embodiment of the present invention and a partition member disposed therein.

【図3】本発明の実施の形態に係る化合物半導体多結晶
の合成方法を示す説明図。
FIG. 3 is an explanatory view showing a method for synthesizing a compound semiconductor polycrystal according to an embodiment of the present invention.

【図4】従来例に係る化合物半導体多結晶の合成方法に
適用される石英封管内の構成およびこの封管内に配置さ
れるIII族原料とV族原料の位置関係を示す説明図。
FIG. 4 is an explanatory diagram showing a configuration inside a quartz sealed tube applied to a method of synthesizing a compound semiconductor polycrystal according to a conventional example, and a positional relationship between a group III raw material and a group V raw material arranged in the sealed tube.

【図5】従来例に係る化合物半導体多結晶の合成方法を
示す説明図。
FIG. 5 is an explanatory view showing a method for synthesizing a compound semiconductor polycrystal according to a conventional example.

【図6】従来例に係る化合物半導体多結晶の合成方法に
適用されるボートの概略斜視図。
FIG. 6 is a schematic perspective view of a boat applied to a compound semiconductor polycrystal synthesis method according to a conventional example.

【符号の説明】[Explanation of symbols]

5 石英内管 6 石英封管 10 ボート 21 仕切り材 22 仕切り材 31 領域 32 領域 33 領域 40 III族原料 90 V族原料 Reference Signs List 5 inner quartz tube 6 sealed quartz tube 10 boat 21 partitioning material 22 partitioning material 31 region 32 region 33 region 40 Group III raw material 90 Group V raw material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】封管内の一端側にIII族原料が充填された
ボートを配置し、また上記封管内の他端側にV族原料を
配置し、上記封管全体を加熱すると共にボート内のIII
族原料を局所的に更に高温に加熱してV族原料から発生
した原料ガスと上記III族原料を反応させ、かつ、上記
高温部を徐々に相対移動させながらIII−V族化合物半
導体多結晶を合成する化合物半導体多結晶の合成方法に
おいて、 III−V族化合物半導体多結晶により構成された1以上
の仕切り材をボートの幅方向に沿って配置して上記ボー
ト内をその長さ方向に亘り2以上の領域に区画すると共
に、区画された各領域内に上記III族原料を分配してそ
れぞれ充填するようにしたことを特徴とする化合物半導
体多結晶の合成方法。
1. A boat filled with a group III raw material is disposed at one end of a sealed tube, and a group V raw material is disposed at the other end of the sealed tube. III
The group III source is locally heated to a higher temperature to cause the source gas generated from the group V source to react with the group III source, and the III-V compound semiconductor polycrystal is formed while gradually moving the high temperature part relatively. In the method for synthesizing a compound semiconductor polycrystal to be synthesized, one or more partition members composed of a group III-V compound semiconductor polycrystal are arranged along the width direction of the boat and the inside of the boat extends along the length direction. A method for synthesizing a compound semiconductor polycrystal, wherein the compound is divided into the above regions, and the group III raw material is distributed and filled in each of the divided regions.
JP2000154252A 2000-05-25 2000-05-25 Method for synthesis of polycrystal of compound semi- conductor Pending JP2001335307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000154252A JP2001335307A (en) 2000-05-25 2000-05-25 Method for synthesis of polycrystal of compound semi- conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000154252A JP2001335307A (en) 2000-05-25 2000-05-25 Method for synthesis of polycrystal of compound semi- conductor

Publications (1)

Publication Number Publication Date
JP2001335307A true JP2001335307A (en) 2001-12-04

Family

ID=18659380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000154252A Pending JP2001335307A (en) 2000-05-25 2000-05-25 Method for synthesis of polycrystal of compound semi- conductor

Country Status (1)

Country Link
JP (1) JP2001335307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018180456A1 (en) * 2017-03-28 2019-11-07 富士フイルム株式会社 III-V group semiconductor nanoparticle manufacturing method, III-V group semiconductor quantum dot manufacturing method, and flow reaction system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018180456A1 (en) * 2017-03-28 2019-11-07 富士フイルム株式会社 III-V group semiconductor nanoparticle manufacturing method, III-V group semiconductor quantum dot manufacturing method, and flow reaction system
US11492252B2 (en) 2017-03-28 2022-11-08 Fujifilm Corporation Method for producing group III-V semiconductor nanoparticle, method for producing group III-V semiconductor quantum dot, and flow reaction system

Similar Documents

Publication Publication Date Title
US5968261A (en) Method for growing large silicon carbide single crystals
JP4121555B2 (en) Apparatus and method for epitaxial growth of objects by CVD
US5746827A (en) Method of producing large diameter silicon carbide crystals
EP0573707B1 (en) Apparatus for gas source molecular beam epitaxy
JP5207427B2 (en) Method for producing liquid phase of single crystal silicon carbide, method for producing liquid phase epitaxial of single crystal silicon carbide substrate, method of producing single crystal silicon carbide substrate
TWI684680B (en) Bulk diffusion crystal growth process
US4439267A (en) Vapor-phase method for growing mercury cadmium telluride
EP0956381B1 (en) Apparatus for growing large silicon carbide single crystals
KR20140131312A (en) GaAs polycrystalline synthesis apparatus and method
JP2008239480A (en) Semiconductor crystal
JP2001335307A (en) Method for synthesis of polycrystal of compound semi- conductor
CN117187960A (en) Crucible for improving doping efficiency of large-size crystal and silicon carbide crystal doping method
US4764350A (en) Method and apparatus for synthesizing a single crystal of indium phosphide
JPH0319211A (en) Chemical vapor deposition device
JPH06298600A (en) Method of growing sic single crystal
JP2000053493A (en) Production of single crystal and single crystal production device
US20240044044A1 (en) Crystal growth device and method for growing a semiconductor
JPH054894A (en) Crystal growth of compound semi-conductor
KR20070089570A (en) Synthetic apparatus of semiconductor polycrystal compound and synthetic method of the same
JP2002308698A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP3551607B2 (en) Method for producing GaAs single crystal
CN115787076A (en) Method for preventing deposition at low crucible position in AlN single crystal growth process
US20060081856A1 (en) Novel wide bandgap material and method of making
JP2817298B2 (en) Vapor phase epitaxial growth equipment
JPH039077B2 (en)