JP2001308026A - Method for manufacturing silicon carbide semiconductor element - Google Patents

Method for manufacturing silicon carbide semiconductor element

Info

Publication number
JP2001308026A
JP2001308026A JP2000120910A JP2000120910A JP2001308026A JP 2001308026 A JP2001308026 A JP 2001308026A JP 2000120910 A JP2000120910 A JP 2000120910A JP 2000120910 A JP2000120910 A JP 2000120910A JP 2001308026 A JP2001308026 A JP 2001308026A
Authority
JP
Japan
Prior art keywords
silicon carbide
impurity
ion
manufacturing
carbide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000120910A
Other languages
Japanese (ja)
Other versions
JP4370678B2 (en
Inventor
Takashi Tsuji
崇 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000120910A priority Critical patent/JP4370678B2/en
Publication of JP2001308026A publication Critical patent/JP2001308026A/en
Application granted granted Critical
Publication of JP4370678B2 publication Critical patent/JP4370678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a silicon carbide semiconductor element, capable of maintaining an ion implanted impurity profile, by preventing external or internal diffusion of the ion implanted impurities or particularly a boron (B) at a high-temperature annealing time. SOLUTION: The method for manufacturing the silicon carbide semiconductor element comprise the steps of generating silicon(Si) holes near an impurity ion implanted region, and reducing Si interstitial atoms. The method further comprises the steps of (1) ion implanting an argon(Ar) deeper than G and high temperature annealing, before or after the ion implantation, (2) carbon(C) ion implanting a surface layer, (3) high-temperature annealing in a state without silicon carbide container, after the Ar ion implanting, and (4) epitaxially growing a surface vicinity part in a state in which an Si/C ratio is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭化けい素(以下S
iCと記す)を材料とする半導体素子の製造方法に関す
る。
The present invention relates to silicon carbide (hereinafter referred to as S)
iC) as a material.

【0002】[0002]

【従来の技術】近年、けい素(以下Siと記す)に代わ
る半導体材料の一つとしてSiCが注目されている。S
iCは、バンドギャップが4H−SiCで3.25eV
と、Siのそれ(1.12eV)に比べて3倍近く大きい
ため、動作上限温度を高くできる。また、絶縁破壊電界
強度が4H−SiCで3.0MV/cm と、Siのそれ
(0.25MV/cm)に比べて約1桁大きいため、絶縁破
壊電界強度の3乗の逆数で効いてくるオン抵抗(=通電
時の順方向電圧/順方向電流)が低減され、定常状態で
の損失を低減できる。更に、熱伝導度も4H−SiCで
4.9W/cmK とSiのそれ(1.5W/cmK )に比べて3
倍以上高いので、熱冷却効果が高く冷却装置を小型化で
きるという利点も生まれる。飽和ドリフト速度が2×1
7cm/sと大きいため、高速動作にも優れている。
2. Description of the Related Art In recent years, SiC has attracted attention as one of semiconductor materials replacing silicon (hereinafter referred to as Si). S
iC has a band gap of 3.25 eV in 4H-SiC.
And approximately three times as large as that of Si (1.12 eV), so that the operating upper limit temperature can be increased. In addition, since the breakdown electric field strength of 4H-SiC is 3.0 MV / cm, which is about one digit larger than that of Si (0.25 MV / cm), the effect is obtained by the reciprocal of the cube of the breakdown electric field strength. On-resistance (= forward voltage / current in energization) is reduced, and loss in a steady state can be reduced. Furthermore, the thermal conductivity of 4.9 W / cmK for 4H-SiC is 3 times that of Si (1.5 W / cmK).
Since it is more than twice as high, there is an advantage that the heat cooling effect is high and the cooling device can be downsized. 2 × 1 saturation drift speed
As large as 0 7 cm / s, it is excellent in high speed operation.

【0003】このようなことからSiCは、電力用半導
体素子(以下パワーデバイスと称する)や高周波デバイ
ス、高温動作デバイスなどへの応用が期待されている。
現在、MOSFET、pnダイオード、ショットキーダ
イオード等が試作され、絶縁耐圧とオン抵抗に関して
は、Si半導体の特性を越えるデバイスが続出してい
る。
[0003] For these reasons, SiC is expected to be applied to power semiconductor elements (hereinafter referred to as power devices), high-frequency devices, high-temperature operating devices, and the like.
At present, MOSFETs, pn diodes, Schottky diodes, and the like have been prototyped, and devices that exceed the characteristics of Si semiconductors in terms of withstand voltage and on-resistance continue to appear.

【0004】このような素子作成には、選択的された領
域において導電型やキャリア濃度を制御し、或いは接合
を形成する技術が必要である。その方法には、熱拡散法
とイオン注入法とがある。Si半導体素子では、数μm
以上の深い接合を形成する場合には熱拡散法が、深さ1
μm 以下の比較的浅い接合を形成する場合にはイオン注
入法が一般的に用いられる。しかしSiC中において
は、不純物の拡散係数が非常に小さいため、熱拡散法の
適用は難しく、ほとんど全ての場合に、イオン注入法が
用いられているのが現状である。
[0004] In order to produce such an element, a technique for controlling the conductivity type and carrier concentration in a selected region or forming a junction is required. The methods include a thermal diffusion method and an ion implantation method. Several μm for Si semiconductor devices
In the case of forming a deep junction as described above, the thermal diffusion method uses a depth of 1
When a relatively shallow junction of μm or less is formed, an ion implantation method is generally used. However, in SiC, the diffusion coefficient of impurities is very small, so it is difficult to apply the thermal diffusion method. In almost all cases, the ion implantation method is used at present.

【0005】イオン注入用のp型ドーパントとしては、
アルミニウム(以下Alと記す)またはほう素(以下B
と記す)が多く用いられている。BはAlよりも原子量
が小さいためにより深い注入をすることができる。しか
し、Bの場合、電気的に活性化するために必要なアニー
ル温度は、Alより200℃程度高く、約1700℃以
上にしなければならないことが知られている[例えば、
T.Kimoto, A.Itoh, N.Inoue, O.Takemura, T.Yamamot
o, T.Nakajima and H.Matsunami : Materials Science
Forum vols.264-268, pp.675-680 (1998)参照]。
[0005] As a p-type dopant for ion implantation,
Aluminum (hereinafter referred to as Al) or boron (hereinafter referred to as B
Is often used. Since B has a smaller atomic weight than Al, deeper implantation can be performed. However, in the case of B, it is known that the annealing temperature required for electrically activating must be about 200 ° C. higher than that of Al and about 1700 ° C. or higher [for example,
T.Kimoto, A.Itoh, N.Inoue, O.Takemura, T.Yamamot
o, T. Nakajima and H. Matsunami: Materials Science
Forum vols. 264-268, pp. 675-680 (1998)].

【0006】また、RBS法などで、SiC中に注入さ
れたB或いはAlイオンの分布を測定すると、Bの方が
Alより注入時の結晶へのダメージが少ないことが知ら
れている[例えば、 T.Kimoto, A.Itoh, H.Matsunami,
T.Nakata and M.Watanabe :J.Electron.Mater., vol.2
5, no.5, pp.879-884 (1996)参照]。一方、デバイス特
性の面から見ると、例えばpnダイオードにおいては、
Bをイオン注入したダイオードの方が、Al注入のもの
と比べ、オン抵抗が若干高くなるが、絶縁耐圧が高く、
リーク電流が少ないという特徴がある[例えば、T.Kimo
to, O.Takemura, H.Matsunami, T.Nakata and M.Inoue
: J.Electron.Mater.,vol.27, no.4, pp.358-364 (199
8)参照]。
Further, when the distribution of B or Al ions implanted into SiC is measured by the RBS method or the like, it is known that B has less damage to the crystal at the time of implantation than Al. T.Kimoto, A.Itoh, H.Matsunami,
T.Nakata and M.Watanabe: J.Electron.Mater., Vol.2
5, no. 5, pp. 879-884 (1996)]. On the other hand, from the viewpoint of device characteristics, for example, in a pn diode,
The diode implanted with B has a slightly higher on-resistance than the diode implanted with Al, but has a higher dielectric strength,
It is characterized by low leakage current [for example, T.Kimo
to, O.Takemura, H.Matsunami, T.Nakata and M.Inoue
: J. Electron. Mater., Vol.27, no.4, pp.358-364 (199
8)].

【0007】このように、Al、Bにはどちらにもそれ
ぞれ利点があるので、p型ドーパントとして両方ともに
必要であり、用途によって二種類を使い分けるのが賢明
である。先に記したようにイオン注入した後に、注入さ
れたBを電気的に活性化するためには、1700℃以上
の高温アニールを行う必要がある。
As described above, since both Al and B have advantages, both are required as p-type dopants, and it is prudent to use two types depending on the application. As described above, after the ion implantation, in order to electrically activate the implanted B, it is necessary to perform high-temperature annealing at 1700 ° C. or more.

【0008】その高温アニールの際、SiC基板の表面
近傍の原子が蒸発して表面荒れや、組成ずれが起きるの
を防止するため、通常、SiC結晶板を多結晶SiCか
らなる容器中に入れて高温アニールをおこなう。また、
高温アニールの際、SiC基板表面に酸化膜があると、
酸化膜中の酸素と反応して表面のエッチングが起きるの
で、それを防ぐため、表面の酸化膜をあらかじめ除去し
ておくことが重要である。
At the time of the high-temperature annealing, an SiC crystal plate is usually placed in a container made of polycrystalline SiC in order to prevent atoms near the surface of the SiC substrate from evaporating and causing surface roughness and composition deviation. Perform high temperature annealing. Also,
During the high temperature annealing, if there is an oxide film on the SiC substrate surface,
Since the surface is etched by reacting with oxygen in the oxide film, it is important to remove the oxide film on the surface in advance to prevent the etching.

【0009】[0009]

【発明が解決しようとする課題】SiC結晶板にBがイ
オン注入されている場合、高温アニール時にBは、外方
拡散によって、基板表面から外に脱離したり、少ないな
がらも内方拡散を生じる。これらの拡散現象のために、
深さ方向において均一な濃度分布を得ることや、浅い接
合を形成すること、高濃度のp型層を形成することが困
難になるという問題がある。
In the case where B is ion-implanted into a SiC crystal plate, B is desorbed from the substrate surface due to outward diffusion during the high-temperature annealing, or generates a small amount of inward diffusion. . Because of these diffusion phenomena,
There is a problem that it is difficult to obtain a uniform concentration distribution in the depth direction, to form a shallow junction, and to form a high-concentration p-type layer.

【0010】高温アニール時におけるBの拡散について
は、kick-outメカニズムが提唱されている[ M.Laube,
G.Pensl and H.Itoh : Appl.Phys.Lett., vol.74, no.1
6, pp.2292-2294 (1999)参照]。このメカニズムは、以
下のような平衡式で表される。 B(S) +Si(I) ⇔B(I) [式1] ここで、(I) は(Interstitial = 格子間) 、(S) は(Sub
stitutional = 置換)の略で、B(I) は格子間位置のB
を、Si(I) は格子間位置のSiを、B(S) はSiC基
板中のSi位置を置換したBである。そして、この式の
意味するところは、SiC基板中のSi位置を置換して
電気的に活性になっているB原子すなわち B(S) は、
格子間位置のSi(I) によってその位置を追い出され、
拡散係数の大きい格子間原子のB(I) となってしまうと
いうことである。
Regarding the diffusion of B during high-temperature annealing, a kick-out mechanism has been proposed [M. Laube,
G. Pensl and H. Itoh: Appl. Phys. Lett., Vol. 74, no. 1
6, pp.2292-2294 (1999)]. This mechanism is expressed by the following equilibrium equation. B (S) + Si (I) ⇔B (I) [Equation 1] Here, (I) is (Interstitial = interstitial), and (S) is (Sub)
B (I) is the B at the interstitial position.
, Si (I) is Si at the interstitial position, and B (S) is B substituted for the Si position in the SiC substrate. The meaning of this equation is that the B atom that is electrically active by replacing the Si position in the SiC substrate, that is, B (S) is:
The position is driven out by the interstitial Si (I),
That is, B (I) of an interstitial atom having a large diffusion coefficient is obtained.

【0011】この機構は注入された不純物がどのような
原子であっても起こり得るが、特にBのような比較的原
子量の小さい原子の場合、イオン注入後の高温アニール
時に外方・内方拡散するという問題は大きい。イオン注
入深さが浅い場合には、外方拡散により表面から不純物
原子が容易に真空中に抜け出してしまう。このような問
題に鑑み本発明の目的は、アニール時の不純物の拡散を
抑制し、濃度プロファイルを保って、良好な特性のデバ
イスを作製する方法を提供することにある。
This mechanism can occur regardless of the type of the implanted impurity. Particularly, in the case of an atom having a relatively small atomic weight, such as B, during the high-temperature annealing after the ion implantation, the outward / inward diffusion occurs. The problem of doing so is big. If the ion implantation depth is shallow, impurity atoms easily escape from the surface into vacuum due to outward diffusion. In view of such a problem, an object of the present invention is to provide a method for manufacturing a device having excellent characteristics while suppressing diffusion of impurities during annealing and maintaining a concentration profile.

【0012】[0012]

【課題を解決するための手段】上に記した[式1]から
Bを始めとする不純物原子の拡散を抑えるためには、格
子間位置のSi(I) を減少させることが有効であると考
えられる。そこで上記の課題を解決するため本発明は、
炭化けい素エピタキシャル結晶板のエピタキシャル層の
表面層に、不純物のイオン注入とその後のアニールによ
り不純物領域を形成する炭化けい素半導体素子の製造方
法において、不純物のイオン注入前または後に、不純物
のイオン注入領域近傍の格子間原子濃度を低める手段を
おこなうものとする。
In order to suppress the diffusion of impurity atoms such as B from [Equation 1] described above, it is effective to reduce Si (I) at interstitial positions. Conceivable. Therefore, in order to solve the above problems, the present invention
In a method for manufacturing a silicon carbide semiconductor device in which an impurity region is formed by ion implantation of impurities and subsequent annealing in a surface layer of an epitaxial layer of a silicon carbide epitaxial crystal plate, ion implantation of impurities is performed before or after ion implantation of impurities. Means for reducing the concentration of interstitial atoms in the vicinity of the region shall be provided.

【0013】不純物のイオン注入領域近傍の格子間原子
濃度を低める手段としては、不純物のイオン注入領域近
傍のシリコン原子の空孔濃度を高めることが有効であ
る。第二の不純物イオン、例えば希ガス元素を不純物、
例えばBのイオン注入領域より深くイオン注入すると、
イオンの注入方向への飛程(以下Rp と記す)より浅い
領域においては、Si、Cの空孔が生じ、Rp より深い
領域においては、格子間位置のSi、Cを生じることが
知られている[例えば、 M.V.Rao, J.A.Gardner, P.H.C
hi, O.W.Holland, G.Kelner, J.Kretchmer and M.Ghezz
o : J.Appl.Phys., 81巻, no.10,6635-6641 頁、(1997
年)参照]。
As a means for lowering the interstitial atom concentration near the impurity ion implantation region, it is effective to increase the vacancy concentration of silicon atoms near the impurity ion implantation region. A second impurity ion, for example, a rare gas element as an impurity,
For example, if ions are implanted deeper than the ion implantation region of B,
It is known that Si and C vacancies are generated in a region shallower than the range in the direction of ion implantation (hereinafter referred to as Rp), and Si and C are generated at interstitial positions in a region deeper than Rp. [For example, MVRao, JAGardner, PHC
hi, OWHolland, G. Kelner, J. Kretchmer and M. Ghezz
o: J. Appl. Phys., 81, no.10, 6635-6641, (1997
Year)].

【0014】従って、希ガス元素の注入深さをBの注入
深さよりも十分深くすれば、注入されたBの周囲では、
多くのSi、Cの空孔が存在しており、Bは格子間位置
のSi原子にたたき出されることなく安定にSi格子位
置に存在できるため、Bの外方・内方拡散が抑制され
る。また、第二の不純物のイオン注入の実施前または後
に、エピタキシャル層の表面層にCの注入をおこなうと
良い。
Therefore, if the implantation depth of the rare gas element is made sufficiently deeper than the implantation depth of B, the periphery of the implanted B becomes
Since many Si and C vacancies are present and B can be stably present at the Si lattice position without being knocked out by Si atoms at interstitial positions, outward and inward diffusion of B is suppressed. . Before or after the ion implantation of the second impurity, C may be implanted into the surface layer of the epitaxial layer.

【0015】Cのイオン注入によって、C空孔を減少さ
せることができ、不純物を電気的に活性なSi格子位置
に安定して入れることができる。また、不純物のイオン
注入領域近傍のシリコン原子の空孔濃度を高める方法と
しては、SiC基板に第二の不純物イオンを注入した
後、多結晶SiC容器が存在しない状態において高温ア
ニールをおこなっても良い。
By C ion implantation, C vacancies can be reduced and impurities can be stably introduced into electrically active Si lattice positions. As a method for increasing the vacancy concentration of silicon atoms in the vicinity of the impurity ion-implanted region, high-temperature annealing may be performed in the absence of a polycrystalline SiC container after the second impurity ions are implanted into the SiC substrate. .

【0016】イオン注入によりSi−C結合を切断し、
その後高温でアニールすることによりCより飽和蒸気圧
の高いSiがイオン注入領域から蒸発していくので、イ
オン注入領域にはSi空孔が形成される。その後に不純
物のイオン注入をおこなえば、格子間原子の不純物、S
iともこれらのSi空孔に捕獲されることが多く、格子
間位置のSiによってSi位置を置換している不純物が
たたき出される確率が小さくなり、不純物の拡散が抑制
される。
The Si—C bond is broken by ion implantation,
Thereafter, by annealing at a high temperature, Si having a higher saturated vapor pressure than C evaporates from the ion implantation region, so that Si vacancies are formed in the ion implantation region. After that, if ion implantation of impurities is performed, impurities of interstitial atoms, S
Both i are often captured by these Si vacancies, and the probability of knocking out the impurities replacing the Si positions by Si at interstitial positions is reduced, thereby suppressing the diffusion of the impurities.

【0017】また、不純物のイオン注入領域近傍のシリ
コン原子の空孔濃度を高める方法としては、エピタキシ
ャル成長時にエピタキシャル層の表面近傍のみで、Si
/C比を下げるようにガス流量を制御しても良い。Si
/C比を下げることによって、Si空孔が形成され、そ
こに格子間位置のSiが捕獲されるので、結果的に格子
間位置のSi原子が減少して、格子間位置にたたき出さ
れる不純物は減少し、拡散も抑制される。
As a method for increasing the vacancy concentration of silicon atoms in the vicinity of the impurity ion-implanted region, a method of increasing the concentration of silicon only in the vicinity of the surface of the epitaxial layer during epitaxial growth.
The gas flow rate may be controlled so as to lower the / C ratio. Si
By lowering the / C ratio, Si vacancies are formed, and Si at interstitial positions are trapped therein, so that Si atoms at interstitial positions are reduced as a result and impurities ejected at interstitial positions Is reduced and diffusion is suppressed.

【0018】第二の不純物イオンとしては、希ガス元素
が良い。希ガス元素は比較的重く、原子空孔を発生し易
い。一方高温アニールにより、容易に脱離する。更に、
ほう素イオンは原子半径が小さく拡散し易いので、本発
明の方法により最も顕著な効果が得られる元素である。
The second impurity ion is preferably a rare gas element. Rare gas elements are relatively heavy and tend to generate atomic vacancies. On the other hand, it is easily desorbed by high-temperature annealing. Furthermore,
Boron ion is an element which has the most remarkable effect by the method of the present invention since it has a small atomic radius and is easily diffused.

【0019】[0019]

【発明の実施の形態】以下実施例に基づき、本発明の実
施の形態を説明する。 [実施例1]図1は本発明第一の製造方法を説明する断
面図である。ウェハとしては、(0001)Si面から8°オ
フした面のn型4H−SiCの下地基板1上にエピタキ
シャル層2を成長したエピタキシャル結晶板を用いた。
下地基板1のキャリア濃度は1×1018cm-3であり、エ
ピタキシャル層2のキャリア濃度は1×1016cm -3
厚さ10μm である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples. [Embodiment 1] FIG. 1 is a sectional view for explaining a first manufacturing method of the present invention. As the wafer, an epitaxial crystal plate in which the epitaxial layer 2 was grown on an n-type 4H—SiC base substrate 1 at a plane 8 ° off the (0001) Si plane was used.
The carrier concentration of the underlying substrate 1 is 1 × 10 18 cm −3 , the carrier concentration of the epitaxial layer 2 is 1 × 10 16 cm −3 ,
The thickness is 10 μm.

【0020】この基板にドーズ量5×1014cm-2、注入
エネルギー1MeV の条件にてアルゴン(以下Arと記
す)イオンの室温注入をおこなう。この時、Arの注入
方向への飛程(以下Rp と記す)は約1μmとなり、Rp
より深い領域にはSi、Cの格子間原子Si(I) 、C
(I) が多数存在する格子間原子層3が、Rp より浅い領
域にはSi、Cの空孔Si(V) 、C(V) が多数存在する
原子空孔層4が形成される。これらの注入層の境界は二
次イオンスペクトロメトリー(SIMS)法による不純
物の深さ方向分析におけるArのピーク位置から分か
る。
At room temperature, argon (hereinafter referred to as Ar) ions are implanted into the substrate at a dose of 5 × 10 14 cm −2 and an implantation energy of 1 MeV. At this time, the range (hereinafter referred to as Rp) in the Ar injection direction is about 1 μm, and Rp
Deeper regions include Si and C interstitial atoms Si (I) and C
In the interstitial atomic layer 3 in which many (I) exist, an atomic vacancy layer 4 in which many Si and C vacancies Si (V) and C (V) exist in a region shallower than Rp is formed. The boundaries of these implanted layers can be seen from the peak positions of Ar in the impurity depth direction analysis by secondary ion spectrometry (SIMS).

【0021】次に、格子間原子層3と原子空孔層4との
境界より浅くなるように、Bの室温イオン注入をおこな
った。注入エネルギーとドーズ量は、100keV /2.
8×1013cm-2、60keV /1.4×1013cm-2、30
keV /8×1012cm-2の3段注入である。このイオン注
入によりB層5を形成した。なお、100keV における
BのRp は、約0.3μmとなる。
Next, B ion implantation was performed at room temperature so as to be shallower than the boundary between the interstitial atomic layer 3 and the atomic vacancy layer 4. The implantation energy and dose are 100 keV / 2.
8 × 10 13 cm -2, 60keV /1.4×10 13 cm -2, 30
This is a three-stage injection of keV / 8 × 10 12 cm −2 . The B layer 5 was formed by this ion implantation. The Rp of B at 100 keV is about 0.3 μm.

【0022】その後、Bを活性化するために多結晶Si
C容器中にて1700℃、30分間、常圧Ar雰囲気中
においてアニールを行った。以上の方法で注入したBイ
オンについて、イオン注入直後と、活性化アニール後の
深さ方向の濃度分布をSIMS分析により測定した。そ
の結果を図4に示す。横軸はSiC基板の表面からの深
さ、縦軸は対数表示したB濃度である。比較のため同図
に、Arイオン注入をおこなわない従来方法による濃度
分布も載せた。
Thereafter, in order to activate B, polycrystalline Si
Annealing was performed in a C container at 1700 ° C. for 30 minutes in an Ar atmosphere at normal pressure. For the B ions implanted by the above method, the concentration distributions in the depth direction immediately after the ion implantation and after the activation annealing were measured by SIMS analysis. FIG. 4 shows the results. The horizontal axis is the depth from the surface of the SiC substrate, and the vertical axis is the logarithmic B concentration. For comparison, the same figure also shows the concentration distribution according to the conventional method without performing Ar ion implantation.

【0023】イオン注入直後は、濃度2×1018cm-3
深さ0.3μmの箱型(box )プロフィルであった[図
4(a)]。Arイオン注入を実施しない場合は、活性
化アニール後の分布は、表面直下に厚さの極めて薄い高
濃度層が見られるだけであり、その下方の不純物濃度
は、1017cm-3より低くなってしまっている[ 同図
(c)]。この分布は外方・内方拡散が顕著に現れたた
めである。
Immediately after ion implantation, the concentration is 2 × 10 18 cm −3 ,
It was a box profile having a depth of 0.3 μm [FIG. 4 (a)]. When the Ar ion implantation is not performed, the distribution after the activation annealing is such that only a very thin high-concentration layer is found immediately below the surface, and the impurity concentration therebelow is lower than 10 17 cm −3. [(C) in the same figure]. This distribution is due to the remarkable outward / inward diffusion.

【0024】しかしながら、本発明の手法を用いた場合
には、活性化アニール後でもBの拡散は抑制され、箱型
プロフィルが保たれたことがわかる[同図(b)]。念
のため、注入されたB原子が電気的に活性化されている
かどうかを、CV(容量−電圧)法により測定したとこ
ろ、アクセプタ濃度が1.5×1018cm-3となり、活性
化率も83%とかなり高いことがわかった。
However, when the method of the present invention was used, it was found that the diffusion of B was suppressed even after the activation annealing, and the box-shaped profile was maintained [FIG. As a precaution, whether or not the implanted B atoms were electrically activated was measured by the CV (capacitance-voltage) method. As a result, the acceptor concentration was 1.5 × 10 18 cm −3 , and the activation rate was 1.5%. Was found to be quite high at 83%.

【0025】Arイオン注入をBイオン注入の後におこ
なった場合も同様の結果が得られた。 [実施例2]実施例1と同様の基板を用い、同様の条件
にてArのイオン注入を行った後、Bのイオン注入の前
に、Cのイオン注入を加速電圧130keV 、ドーズ量
2.8×1013cm-2、80keV /1.4×1013cm-2
40keV /8×1012cm-2の条件にて実施した。その後
のB注入条件、活性化アニール条件は実施例1と同様で
ある。〔図2〕 実施例1と同様に注入したBの箱型プロフィルが高温ア
ニール後もほぼそのまま保たれ、しかも100% 近く活
性化されて、高濃度領域を形成できることが確認され
た。
Similar results were obtained when Ar ion implantation was performed after B ion implantation. [Example 2] Using the same substrate as in Example 1 and performing Ar ion implantation under the same conditions, prior to B ion implantation, C ion implantation was performed at an acceleration voltage of 130 keV and a dose of 2. 8 × 10 13 cm -2, 80keV /1.4×10 13 cm -2,
The test was performed under the conditions of 40 keV / 8 × 10 12 cm −2 . Subsequent B implantation conditions and activation annealing conditions are the same as in the first embodiment. [FIG. 2] It was confirmed that the box profile of B implanted in the same manner as in Example 1 was maintained almost as it was even after the high-temperature annealing, and was activated by nearly 100% to form a high concentration region.

【0026】[実施例3]実施例1と同様の基板上にA
rイオン注入を加速電圧200keV 、ドーズ量5×10
14cm-2でおこなった。この時の投影飛程は約0.2μm
になる。続いて、Bイオン注入条件としては30keV/1
×1014cm-2の浅いイオン注入を行った。このときの投
影飛程は約0.07μmになる。
[Embodiment 3] On the same substrate as in Embodiment 1, A
r ion implantation is performed at an accelerating voltage of 200 keV and a dose of 5 × 10
Performed at 14 cm -2 . The projection range at this time is about 0.2 μm
become. Subsequently, the condition of B ion implantation is 30 keV / 1.
A shallow ion implantation of × 10 14 cm −2 was performed. The projection range at this time is about 0.07 μm.

【0027】その後、多結晶SiC容器を用いずにアニ
ール炉に入れて1700℃、30分間、真空中にてアニ
ールを行った。この時、Arイオン注入層から蒸気圧の
高いSiが選択的に脱離し、イオン注入層にはSiの空
孔であるSi(V) が多数生じる。実施例1より効果は少
なかったが、従来よりはBの箱型プロフィルが保たれる
傾向が見られた。方法が簡単で、容易に実施できる利点
がある。
Then, annealing was performed in a vacuum at 1700 ° C. for 30 minutes in an annealing furnace without using a polycrystalline SiC container. At this time, Si having a high vapor pressure is selectively desorbed from the Ar ion implanted layer, and a large number of Si (V), which are vacancies of Si, are generated in the ion implanted layer. Although the effect was less than that of Example 1, the box profile of B was more likely to be maintained than before. There is an advantage that the method is simple and can be easily implemented.

【0028】[実施例4]実施例1と同様の基板上にさ
らに1μm程度Si/C比を下げて、エピタキシャル層
の成長をおこなった。通常Si/C比=0.25〜0.
5で成長をおこなうのに対し、この例ではSi/C比=
0.1とした。具体的なガス流量は、プロパン(C3
8 ) :モノシラン(SiH4 )=1:0.3sccm、成長
温度1500℃である。この方法により、Si空孔を多
く含有したエピタキシャル成長層7が形成される[図
3]。その後のBイオン注入条件、活性化アニール条件
は実施例1の場合と同様である。
Example 4 An epitaxial layer was grown on the same substrate as in Example 1 by further reducing the Si / C ratio by about 1 μm. Usually, Si / C ratio = 0.25-0.
5, while in this example the Si / C ratio =
0.1. The specific gas flow rate is propane (C 3 H
8 ): Monosilane (SiH 4 ) = 1: 0.3 sccm, growth temperature 1500 ° C. By this method, an epitaxial growth layer 7 containing a lot of Si vacancies is formed [FIG. 3]. Subsequent B ion implantation conditions and activation annealing conditions are the same as in the first embodiment.

【0029】実施例1より効果は少なかったが、従来よ
りはBの箱型プロフィルが保たれ、活性化率も高かっ
た。この方法も容易に実施できる利点がある。この例の
機構は、次のように理解される。ガス流量を制御して、
エピタキシャル成長層の表面近傍のみで、Si/C比を
下げることにより、不純物のイオン注入領域近傍のシリ
コン原子の空孔Si(V) の濃度を高めることができる。
多数のSi(V) が形成され、そこに格子間位置のSi
(I) が捕獲されるので、結果的にSi(I) が減少する。
そして、置換位置から格子間位置にたたき出されるBす
なわちB(I) が減少し、拡散も抑制されるのである。
Although the effect was less than that of Example 1, the box-shaped profile of B was maintained and the activation rate was higher than before. This method also has an advantage that it can be easily implemented. The mechanism of this example is understood as follows. Controlling the gas flow rate,
By lowering the Si / C ratio only near the surface of the epitaxial growth layer, the concentration of vacancies Si (V) of silicon atoms in the vicinity of the impurity ion-implanted region can be increased.
Numerous Si (V) are formed, and Si (V)
Since (I) is captured, Si (I) is reduced as a result.
Then, the amount of B, ie, B (I), knocked out from the replacement position to the interstitial position is reduced, and diffusion is suppressed.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、不
純物のイオン注入前後に、例えば稀ガスイオンを注入す
ることによって、不純物領域近傍のシリコン空孔濃度が
高められて、シリコン格子間原子が減り、その結果、不
純物格子間原子が減って、不純物の外方、内方への拡散
を大幅に低減することができることを示した。
As described above, according to the present invention, the concentration of silicon vacancies in the vicinity of the impurity region is increased by, for example, implanting rare gas ions before and after the impurity ion implantation, and the It has been shown that, as a result, the number of impurity interstitial atoms is reduced, and the diffusion of impurities outward and inward can be greatly reduced.

【0031】特に、原子半径が小さいため、格子間原子
になりやすく、しかも活性化しにくいほう素のドーピン
グにおいて、イオン注入後の箱型プロフィルが、高温ア
ニール後もほぼそのまま保たれ、しかも活性化率も高く
て、高濃度を実現できることが確認された。シリコン空
孔濃度を高める方法としては他に、SiC容器を用いな
いで高温アニールする方法や、エピタキシャル層の成長
時に、Si/C比の低いガス条件で成長する等の方法も
有効であった。
In particular, in the case of boron doping, which is likely to be an interstitial atom due to a small atomic radius and is hard to be activated, the box-shaped profile after ion implantation is substantially maintained even after high-temperature annealing, and the activation rate , And it was confirmed that a high concentration could be realized. Other methods for increasing the silicon vacancy concentration include a method of annealing at a high temperature without using a SiC container, and a method of growing the epitaxial layer under a gas condition with a low Si / C ratio.

【0032】よって本発明は、炭化けい素半導体素子の
発展、普及に大きな貢献をなすものである。
Thus, the present invention makes a great contribution to the development and spread of silicon carbide semiconductor devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明第一の実施例の方法によるSiC半導体
素子の断面図
FIG. 1 is a cross-sectional view of a SiC semiconductor device according to a method of a first embodiment of the present invention.

【図2】本発明第二の実施例の方法によるSiC半導体
素子の断面図
FIG. 2 is a sectional view of a SiC semiconductor device according to a method of a second embodiment of the present invention.

【図3】本発明第四の実施例の方法によるSiC半導体
素子の断面図
FIG. 3 is a sectional view of a SiC semiconductor device according to a method of a fourth embodiment of the present invention.

【図4】SIMS法によるB濃度プロフィル、(a)は
アニール前、(b)は本発明第一の実施例の方法による
もの、(c)は従来の製造方法によるもの
FIG. 4 shows a B concentration profile obtained by a SIMS method, (a) before the annealing, (b) by the method of the first embodiment of the present invention, and (c) by a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1… 下地基板(1018cm -3) 2… エピタキシャル層(1016cm -3-10 μm) 3… 格子間原子層 4… 原子空孔層 5… Bイオン注入層 6… Cイオン注入層 7… Si空孔を多く含有したエピタキシャル層1 ... base substrate (10 18 cm -3) 2 ... epitaxial layer (10 16 cm -3 -10 μm) 3 ... interstitial layer 4 ... vacancies layer 5 ... B ion implanted layer 6 ... C ion implantation layer 7 … Epitaxial layer containing many Si vacancies

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】炭化けい素エピタキシャル結晶板のエピタ
キシャル層の表面層に、不純物のイオン注入とその後の
アニールにより不純物領域を形成する炭化けい素半導体
素子の製造方法において、不純物のイオン注入前または
後に、その不純物のイオン注入領域近傍の格子間原子濃
度を低める手段をおこなうことを特徴とする炭化けい素
半導体素子の製造方法。
In a method for manufacturing a silicon carbide semiconductor device in which an impurity region is formed in a surface layer of an epitaxial layer of a silicon carbide epitaxial crystal plate by ion implantation of impurities and subsequent annealing, before or after ion implantation of impurities. And means for reducing the concentration of interstitial atoms in the vicinity of the ion-implanted region of the impurity.
【請求項2】不純物のイオン注入領域近傍の格子間原子
濃度を低める手段として、不純物のイオン注入領域近傍
のシリコン原子の空孔濃度を高める方法をおこなうこと
を特徴とする請求項1に記載の炭化けい素半導体素子の
製造方法。
2. The method according to claim 1, wherein the means for lowering the interstitial atomic concentration in the vicinity of the impurity ion-implanted region is a method of increasing the vacancy concentration of silicon atoms in the vicinity of the impurity ion-implanted region. A method for manufacturing a silicon carbide semiconductor device.
【請求項3】エピタキシャル層の不純物のイオン注入領
域より深い領域に、異なる第二の不純物イオンの注入を
おこなうことを特徴とする請求項2に記載の炭化けい素
半導体素子の製造方法。
3. The method for manufacturing a silicon carbide semiconductor device according to claim 2, wherein a different second impurity ion is implanted into a region deeper than the impurity ion implantation region of the epitaxial layer.
【請求項4】第二の不純物イオンのイオン注入の前後
に、エピタキシャル層の表面層に炭素原子をイオン注入
することを特徴とする請求項3に記載の炭化けい素半導
体素子の製造方法。
4. The method for manufacturing a silicon carbide semiconductor device according to claim 3, wherein carbon atoms are ion-implanted into the surface layer of the epitaxial layer before and after the ion implantation of the second impurity ions.
【請求項5】第二の不純物イオンをイオン注入した後、
多結晶炭化けい素容器が存在しない状態において高温ア
ニールすることを特徴とする請求項3または4に記載の
炭化けい素半導体素子の製造方法。
5. After the second impurity ions are implanted,
5. The method for manufacturing a silicon carbide semiconductor device according to claim 3, wherein high-temperature annealing is performed in a state where the polycrystalline silicon carbide container does not exist.
【請求項6】第二の不純物イオンとして希ガス元素を用
いることを特徴とする請求項3ないし5のいずれかに記
載の炭化けい素半導体素子の製造方法。
6. The method for manufacturing a silicon carbide semiconductor device according to claim 3, wherein a rare gas element is used as the second impurity ion.
【請求項7】エピタキシャル成長時に、エピタキシャル
層の表面層のみシリコン/炭素原子比を下げるようにガ
ス流量を制御することを特徴とする請求項2に記載の炭
化けい素半導体素子の製造方法。
7. The method of manufacturing a silicon carbide semiconductor device according to claim 2, wherein during epitaxial growth, the gas flow rate is controlled so as to lower the silicon / carbon atomic ratio only in the surface layer of the epitaxial layer.
【請求項8】不純物イオンがほう素イオンであることを
特徴とする請求項1ないし7のいずれかに記載の炭化け
い素半導体素子の製造方法。
8. The method for manufacturing a silicon carbide semiconductor device according to claim 1, wherein the impurity ions are boron ions.
JP2000120910A 2000-04-21 2000-04-21 Method for manufacturing silicon carbide semiconductor device Expired - Fee Related JP4370678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000120910A JP4370678B2 (en) 2000-04-21 2000-04-21 Method for manufacturing silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000120910A JP4370678B2 (en) 2000-04-21 2000-04-21 Method for manufacturing silicon carbide semiconductor device

Publications (2)

Publication Number Publication Date
JP2001308026A true JP2001308026A (en) 2001-11-02
JP4370678B2 JP4370678B2 (en) 2009-11-25

Family

ID=18631649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000120910A Expired - Fee Related JP4370678B2 (en) 2000-04-21 2000-04-21 Method for manufacturing silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP4370678B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008025475A2 (en) * 2006-08-30 2008-03-06 Siltronic Ag Multilayered semiconductor wafer and process for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102437779B1 (en) 2015-08-11 2022-08-30 삼성전자주식회사 Three dimensional semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008025475A2 (en) * 2006-08-30 2008-03-06 Siltronic Ag Multilayered semiconductor wafer and process for manufacturing the same
EP1901345A1 (en) * 2006-08-30 2008-03-19 Siltronic AG Multilayered semiconductor wafer and process for manufacturing the same
WO2008025475A3 (en) * 2006-08-30 2008-07-31 Siltronic Ag Multilayered semiconductor wafer and process for manufacturing the same
US8039361B2 (en) 2006-08-30 2011-10-18 Siltronic Ag Multilayered semiconductor wafer and process for manufacturing the same
CN101501836B (en) * 2006-08-30 2012-08-22 硅电子股份公司 Multilayered semiconductor wafer and process for manufacturing the same
US8395164B2 (en) 2006-08-30 2013-03-12 Siltronic Ag Multilayered semiconductor wafer and process for manufacturing the same

Also Published As

Publication number Publication date
JP4370678B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
US8815708B2 (en) Method for improving the quality of a SiC crystal
US20190237558A1 (en) Sic semiconductor device having pn junction interface and method for manufacturing the sic semiconductor device
JP2004247545A (en) Semiconductor device and its fabrication process
US20170140934A1 (en) Semiconductor device manufacturing method and semiconductor device
JP2001068428A (en) Manufacture of silicon carbide semiconductor element
WO2001018872A1 (en) SiC WAFER, SiC SEMICONDUCTOR DEVICE, AND PRODUCTION METHOD OF SiC WAFER
JP2005167035A (en) Silicon carbide semiconductor device and manufacturing method thereof
WO2007032214A1 (en) Process for producing silicon carbide semiconductor device
JP2011109018A (en) Bipolar semiconductor element
JP2012028565A (en) Bipolar semiconductor device manufacturing method and bipolar semiconductor device
JP2008211171A (en) Bipolar semiconductor device, method for manufacturing the same and method for controlling zener voltage
JP2012033618A (en) Bipolar semiconductor element
JP2024055914A (en) Method for manufacturing silicon carbide semiconductor device and method for manufacturing silicon carbide epitaxial substrate
JP2004356257A (en) Manufacturing method for p-type iii nitride semiconductor
JP2015149346A (en) Method of manufacturing semiconductor device, and semiconductor device
JP4370678B2 (en) Method for manufacturing silicon carbide semiconductor device
CN106469646B (en) A kind of silicon carbide device forms highly doped manufacturing method with ion implanting
US9059197B2 (en) Electronic device structure with a semiconductor ledge layer for surface passivation
JP2011100890A (en) Manufacturing method of sic crystal growth layer and bipolar type semiconductor element
JP6276560B2 (en) Bipolar semiconductor device and manufacturing method thereof
JP4013660B2 (en) Method for manufacturing silicon carbide semiconductor device
JP4029466B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2007027630A (en) Bipolar semiconductor device and its manufacturing method
JP6686419B2 (en) Silicon germanium epitaxial wafer manufacturing method and silicon germanium epitaxial wafer
WO2024100958A1 (en) Semiconductor epitaxial substrate manufacturing method, semiconductor epitaxial substrate, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees