JP2001300535A - Method for refining liquid - Google Patents

Method for refining liquid

Info

Publication number
JP2001300535A
JP2001300535A JP2000123753A JP2000123753A JP2001300535A JP 2001300535 A JP2001300535 A JP 2001300535A JP 2000123753 A JP2000123753 A JP 2000123753A JP 2000123753 A JP2000123753 A JP 2000123753A JP 2001300535 A JP2001300535 A JP 2001300535A
Authority
JP
Japan
Prior art keywords
liquid
adsorption
desorption
ionic material
ionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000123753A
Other languages
Japanese (ja)
Other versions
JP4148628B2 (en
Inventor
Toshiro Otowa
利郎 音羽
Naoto Tanaka
直人 田中
Akira Shiraki
明 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Kurita Water Industries Ltd
Kansai Coke and Chemicals Co Ltd
Original Assignee
Nippon Rensui Co
Kurita Water Industries Ltd
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co, Kurita Water Industries Ltd, Kansai Coke and Chemicals Co Ltd filed Critical Nippon Rensui Co
Priority to JP2000123753A priority Critical patent/JP4148628B2/en
Publication of JP2001300535A publication Critical patent/JP2001300535A/en
Application granted granted Critical
Publication of JP4148628B2 publication Critical patent/JP4148628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for refining liquid, by which the refined liquid of the desired quality can be continuously withdrawn at the prescribed speed uninterruptedly while keeping in the respective fixed values or higher the removal ratio of an ionic material from an ionic material-containing liquid and the recovery ratio of the refined liquid after the ionic material is removed and which is usable on a commercial base. SOLUTION: This method for refining liquid comprises separating the ionic material- containing undiluted solution (L) into the refined liquid (L1) poor in ionic material content and a high concentration liquid (L2) rich in ionic material content by using a refining apparatus provided with liquid-passable condensers (1). The adsorption of the ionic material by an electrical charge and the desorption of the adsorbed ionic material by a short circuit or a counter electrical charge are carried out at the prescribed pattern by using three or more condensers (1) while interlocking with the connection among the condensers (1) and the switchover between introduction of the solution (L) and withdrawal of the liquids (L1 and L2) with respect to the respective condensers (1). As a result, the solution (L) is continuously refined at the prescribed flow speed and the liquid (L1) of the prescribed quality and the liquid (L2) are continuously withdrawn at the prescribed respective flow speeds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通液型電気二重層
コンデンサを備えた精製装置を用いて、イオン性物質を
含む原液を、イオン性物質の割合が低められた精製液
と、イオン性物質の割合が高められた高濃度液とに分離
する液体の精製処理方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for purifying an undiluted solution containing an ionic substance by using a purification apparatus provided with a flow-through type electric double layer capacitor, and a purified liquid having a reduced ratio of the ionic substance. The present invention relates to a method for purifying a liquid to be separated into a high-concentration liquid having an increased proportion of a substance.

【0002】[0002]

【従来の技術】電気二重層コンデンサを用い、静電力を
利用して、イオン性物質を含む水中からそのイオン性物
質を除去する方法(たとえば、食塩を含む水の脱塩方
法)が知られている。
2. Description of the Related Art A method of removing an ionic substance from water containing an ionic substance using an electric double layer capacitor and utilizing electrostatic force (for example, a method of desalinating water containing salt) is known. I have.

【0003】米国特許第5192432号、米国特許第
5196115号には、液体の精製を目的とする定電荷
クロマトグラフ用カラムに用いる通液型コンデンサであ
って、第1の導電性支持層、第1の高表面積導電性層、
第1の非導電性多孔質のスペーサ層、第2の導電性支持
層、第2の高表面積導電性層、第2の非導電性多孔質の
スペーサ層などを含む複数の隣接層群をスパイラル状に
巻回した通液型コンデンサが示されている。また同明細
書には、このコンデンサはたとえば塩化ナトリウム等の
イオン性物質を含む水の精製に用いうることも示されて
いる。
US Pat. No. 5,192,432 and US Pat. No. 5,196,115 disclose a flow-through type capacitor used in a column for constant charge chromatography for purifying a liquid, which comprises a first conductive support layer and a first conductive support layer. High surface area conductive layer,
Spiral a plurality of adjacent layers including a first non-conductive porous spacer layer, a second conductive support layer, a second high surface area conductive layer, a second non-conductive porous spacer layer, etc. A flow-through condenser wound in a zigzag is shown. The specification also discloses that the condenser can be used for purifying water containing an ionic substance such as sodium chloride.

【0004】本出願人の出願にかかる特開平5−258
992号公報(米国特許第5200068号に対応)に
は、捲回型の通液型コンデンサのほかに、ワッシャ型の
電極を積層した通液型コンデンサが示されている。
Japanese Patent Application Laid-Open No. 5-258 filed by the present applicant
Japanese Patent No. 992 (corresponding to U.S. Pat. No. 5,200,068) discloses a flow-through type capacitor in which washer-type electrodes are stacked in addition to a wound-type flow-through type capacitor.

【0005】本出願人の出願にかかる特開平6−325
983号公報(米国特許第5538611号に対応)に
は、電気絶縁性多孔質通液性シートからなるセパレータ
を挟んで、高比表面積活性炭を主材とする活性炭層を配
置し、その活性炭層の外側に集電極を配置し、さらにそ
の集電極の外側に押え板を配置した構成を有する平板形
状の通液型電気二重層コンデンサが示されている。ま
た、この平板形状の通液型電気二重層コンデンサにイオ
ン性物質を含む液体を通液しながら、集電極への直流定
電圧の印加と、両集電極間のショートまたは逆接続とを
交互に繰り返すようにした液体の処理方法が示されてい
る。
JP-A-6-325 filed by the applicant of the present invention
No. 983 (corresponding to US Pat. No. 5,538,611) discloses that an activated carbon layer mainly composed of activated carbon having a high specific surface area is disposed with a separator made of an electrically insulating porous liquid-permeable sheet interposed therebetween. A flat-plate, liquid-flow type electric double-layer capacitor having a configuration in which a collecting electrode is disposed outside and a pressing plate is disposed outside the collecting electrode is shown. In addition, while passing a liquid containing an ionic substance through the flat plate-shaped liquid-flow type electric double layer capacitor, the application of a DC constant voltage to the collector and the short-circuit or reverse connection between the collectors are alternately performed. A method of treating the liquid to be repeated is shown.

【0006】本出願人の出願にかかる特表平9−509
880号公報(米国特許第5748437号に対応)に
は、液体の精製を目的とする定電荷クロマトグラフ用カ
ラムに用いる通液型コンデンサであって、第1の導電性
支持層、第1の高表面積導電性材料層、第1の非導電性
支持層、第2の導電性支持層、第2の高表面積導電性材
料層、第2の非導電性支持層のスペーサなどを含む複数
の隣接層群を、ワッシャ型に積層したり、スパイラル状
に巻回したりした通液型コンデンサが示されている。
[0006] Japanese Patent Application No. 9-509 filed by the present applicant
No. 880 (corresponding to U.S. Pat. No. 5,748,437) discloses a flow-through type capacitor used in a column for constant charge chromatography for purifying a liquid, comprising a first conductive support layer and a first conductive support layer. A plurality of adjacent layers including a surface area conductive material layer, a first non-conductive support layer, a second conductive support layer, a second high surface area conductive material layer, a spacer for the second non-conductive support layer, and the like. A liquid-passing type capacitor in which the groups are stacked in a washer type or spirally wound is shown.

【0007】また本出願人は、特開2000−9116
9号公報として、セパレータ、電極および集電極のいず
れをも折り畳まれたまたはフラットなシートで構成した
通液型コンデンサおよびそれを用いた液体の処理方法に
つき特許出願を行っている。
[0007] The present applicant has disclosed in Japanese Patent Application Laid-Open No. 2000-9116.
In Japanese Patent Application Publication No. 9, a patent application is filed for a flow-through capacitor in which all of the separator, the electrode and the collector are formed of a folded or flat sheet and a method of treating a liquid using the same.

【0008】[0008]

【発明が解決しようとする課題】上に引用した文献の装
置や方法は、いずれも、通液型コンデンサを用い、静電
力を利用して、イオン性物質を含む液体からそのイオン
性物質を除去するものである。またこれらいずれの文献
も、本出願人または本出願人のアメリカでの協力先の出
願にかかるものである。
All of the devices and methods of the above-cited documents use a flow-through condenser and use electrostatic force to remove the ionic substance from the liquid containing the ionic substance. Is what you do. All of these documents are related to the applicant or the applicant's application in the United States.

【0009】しかしながら、これらの文献には、その原
理や構造が示されているにとどまり(単機では、イオン
性物質が除去された製品液は間欠的に出てくることにな
る)、実稼動時に重要なイオン性物質の除去率および除
去後の製品液の回収率を考慮した装置の運転方法につい
ては、まだ充分には開示されていない。
[0009] However, these documents only show the principle and structure (in a single machine, the product liquid from which the ionic substance has been removed will intermittently appear). A method of operating the apparatus in consideration of the removal rate of the important ionic substance and the recovery rate of the product liquid after the removal has not yet been sufficiently disclosed.

【0010】本発明は、このような背景下において、イ
オン性物質を含む液体からのイオン性物質の除去率を一
定値以上に確保することができ、除去後の精製液の回収
率を一定値以上に確保することができ、かつ所望の品質
の精製液を途切れることなく所定の速度で連続的に取り
出すことができるようにした工業性ある精製処理方法を
提供することを目的とするものである。
[0010] Under such a background, the present invention can secure the removal rate of the ionic substance from the liquid containing the ionic substance at a certain value or more, and can maintain the recovery rate of the purified liquid after the removal at a certain value. It is an object of the present invention to provide an industrial purification treatment method which can ensure the above and can continuously extract a purified liquid of a desired quality at a predetermined speed without interruption. .

【0011】[0011]

【課題を解決するための手段】本発明の液体の精製処理
方法は、通液型電気二重層コンデンサ(1) を備えた精製
装置を用いて、イオン性物質を含む原液(L) を、イオン
性物質の割合が低められた精製液(L1)とイオン性物質の
割合が高められた高濃度液(L2)とに分離するにあたり、
前記コンデンサ(1) を3基以上用いること、および、充
電によるイオン性物質の吸着と、短絡または逆充電によ
る吸着したイオン性物質の脱離とを、各コンデンサ(1)
間の連結および各コンデンサ(1) に対する液の導入と導
出との切り替え、と連動させながら所定のパターンで行
うこと、これにより、原液(L) が所定の流速で連続的に
処理されると共に、所定の品質の精製液(L1)および高濃
度液(L2)が所定の流速で連続的に取り出されるようにし
たことを特徴とするものである。
According to the method for purifying a liquid of the present invention, an undiluted solution (L) containing an ionic substance is converted into an ionic liquid using a purifying apparatus provided with a flow-through type electric double layer capacitor (1). Upon separation into a purified liquid (L 1 ) with a reduced proportion of ionic substances and a high-concentration liquid (L 2 ) with an increased proportion of ionic substances,
The use of three or more capacitors (1) and the adsorption of ionic substances by charging and the desorption of ionic substances by short-circuiting or reverse charging can be performed by each capacitor (1).
In a predetermined pattern while interlocking with the connection between and switching between the introduction and the derivation of the liquid to each condenser (1), the stock solution (L) is continuously processed at a predetermined flow rate, It is characterized in that a purified liquid (L 1 ) and a high-concentration liquid (L 2 ) of a predetermined quality are continuously taken out at a predetermined flow rate.

【0012】[0012]

【発明の実施の形態】以下本発明を詳細に説明する。な
お、説明の簡単化のためないし理解の容易さのため、イ
オン性物質の吸着除去を「脱塩」、吸着されているイオ
ン性物質の脱離を「洗浄」、精製液(L1)を「製品液」、
高濃度液(L2)を「排出液」と称することがある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. For simplicity of explanation or for easy understanding, the ionic substance is adsorbed and removed by `` desalting '', the adsorbed ionic substance is desorbed by `` washing '', and the purified liquid (L 1 ) is used. "Product liquid",
The high concentration liquid (L 2 ) may be referred to as “effluent”.

【0013】《精製処理方法》本発明の液体の精製処理
方法は、通液型電気二重層コンデンサ(1) を備えた精製
装置を用いて、イオン性物質を含む原液(L) を、イオン
性物質の割合が低められた精製液(L1)とイオン性物質の
割合が高められた高濃度液(L2)とに分離する方法に適用
される。以下においては、まず精製処理方法について説
明し、精製装置については後述する。
<< Purification Treatment Method >> The liquid purification treatment method of the present invention uses a purification apparatus provided with a flow-through type electric double layer capacitor (1) to convert an undiluted solution (L) containing an ionic substance into an ionic substance. The present invention is applied to a method of separating into a purified liquid (L 1 ) having a reduced substance ratio and a high-concentration liquid (L 2 ) having an increased ionic substance ratio. Hereinafter, a purification treatment method will be described first, and a purification device will be described later.

【0014】〈液体、イオン性物質〉液体の精製処理と
は、水の浄化、海水の淡水化、廃液の脱窒素のような精
製処理があげられ、そのほか、貴金属の回収、無機塩の
精製、溶存するイオン性物質の定量などイオン性物質の
捕捉・回収のための処理なども含む。液体としては、水
やその他の無機系溶媒、有機系溶媒、あるいはこれらの
混合溶媒を媒体とするものがあげられ、血液などであっ
てもよい。イオン性物質としては、金属塩、アミン塩、
アンモニウム塩、無機酸、有機酸など液中で解離可能な
電解質や帯電性物質があげられる。
<Liquid and ionic substances> The liquid purification treatment includes purification treatment such as water purification, seawater desalination, and denitrification of waste liquid. In addition, recovery of precious metals, purification of inorganic salts, It also includes processes for capturing and recovering ionic substances such as quantification of dissolved ionic substances. Examples of the liquid include those using water or other inorganic solvents, organic solvents, or a mixed solvent thereof as a medium, such as blood. Ionic substances include metal salts, amine salts,
Examples thereof include an electrolyte and a chargeable substance which can be dissociated in a liquid such as an ammonium salt, an inorganic acid, and an organic acid.

【0015】〈コンデンサ(1) の数、吸着と脱離〉本発
明においては、コンデンサ(1) を3基以上、たとえば3
基または4基用いる。コンデンサ(1) を3基以上用いる
ことにより、連続的な精製処理が達成できる。
<Number of Capacitors (1), Adsorption and Desorption> In the present invention, three or more capacitors (1), for example, 3
Or four groups. By using three or more capacitors (1), continuous purification can be achieved.

【0016】吸着は、コンデンサ(1) に通電して充電す
ると共に、通液することにより行われる。吸着したイオ
ン性物質の脱離は、 ・イオン性物質を吸着しているコンデンサ(1) の電極間
を短絡させて、充電された電気エネルギーを該コンデン
サ(1) から放出させること、 ・イオン性物質を吸着しているコンデンサ(1) の電極間
を短絡させ、充電時とは逆方向に電流を流し、充電され
た電気エネルギーを該コンデンサ(1) から放出させるこ
と のいずれかにより行うことができる。
The adsorption is carried out by energizing and charging the condenser (1) and passing the liquid. The desorption of the adsorbed ionic substance is as follows: short-circuit between the electrodes of the capacitor (1) adsorbing the ionic substance, and discharge the charged electric energy from the capacitor (1); This can be done by short-circuiting the electrodes of the capacitor (1) that adsorbs the substance, passing a current in the opposite direction to that during charging, and discharging the charged electrical energy from the capacitor (1). it can.

【0017】〈3塔式の場合/その1〉コンデンサ(1)
としてA、B、Cの3基を用いたときには、典型的に
は、「吸着1→吸着1→脱離1→脱離2→吸着2→吸着
2」の6段の操作を、A、B、Cのそれぞれにつき、こ
の順に2段ずつずらしながら実施することが好ましい。
<Three tower type / Part 1> Condenser (1)
When three groups of A, B and C are used, typically, a six-stage operation of “adsorption 1 → adsorption 1 → desorption 1 → desorption 2 → adsorption 2 → adsorption 2” is performed by A, B , And C, it is preferable to carry out the process while shifting two stages in this order.

【0018】図1および図2には、3基のコンデンサ
(1) を用いた場合(3塔式)の精製装置の運転時の液の
流れと工程ごとの役割を示してある。このときの運転
は、2段の吸着(脱塩)工程と2段の脱離(洗浄)工程
からなる。
FIGS. 1 and 2 show three capacitors.
The flow of liquid and the role of each process during operation of the refining apparatus when (1) is used (three-column type) are shown. The operation at this time includes a two-stage adsorption (desalting) step and a two-step desorption (washing) step.

【0019】(イ)吸着工程 吸着工程は、吸着1が2段、吸着2が2段の合計4段の
工程からなっている。吸着1は、原液(L) を通液してイ
オン性物質を除去(脱塩)する工程である。吸着2は、
他のコンデンサ(1) の吸着1(脱塩1段目)で除去しき
れなかった低濃度のイオン性物質を除去(脱塩)する工
程である。イオン性物質を含む液体(原液(L) )を処理
するにあたり、コンデンサ(1) は2基とも充電状態にあ
る。コンデンサ(1) を2基連結することにより、吸着1
にてイオン性物質が相当量除去された液体が吸着2に導
かれることになる。従って、吸着2への負荷は極めて小
さくなっている。
(A) Adsorption Step The adsorption step is composed of a total of four stages, two stages for adsorption 1 and two stages for adsorption 2. The adsorption 1 is a step of removing (desalting) an ionic substance by passing a stock solution (L). Adsorption 2
This is a step of removing (desalinating) low-concentration ionic substances that could not be completely removed by adsorption 1 (the first stage of desalting) of another condenser (1). In processing a liquid containing an ionic substance (stock solution (L)), both capacitors (1) are charged. By connecting two capacitors (1), adsorption 1
The liquid from which a considerable amount of the ionic substance has been removed is led to the adsorption 2. Therefore, the load on the adsorption 2 is extremely small.

【0020】吸着工程の終了は、精製液(L1)純度(製品
純度)が吸着2の出口のイオン性物質の濃度で決定され
ることから、吸着2出口のイオン性物質の濃度が所定の
値を越えた時点で吸着操作、すなわち充電を終了すれば
よい。あるいは、吸着1が主としてイオン性物質を除去
していることから、吸着1出口のイオン性物質の濃度を
基準として充電の終了を決定してもよい。あるいはま
た、吸着1および吸着2のコンデンサ(1) の充電時の電
流値あるいは電圧の値により、吸着(充電)時間を決定
してもよい。
At the end of the adsorption step, since the purity of the purified liquid (L 1 ) (product purity) is determined by the concentration of the ionic substance at the outlet of the adsorption 2, the concentration of the ionic substance at the exit of the adsorption 2 is a predetermined value. The suction operation, that is, the charging may be terminated when the value exceeds the value. Alternatively, the end of charging may be determined based on the concentration of the ionic substance at the outlet of the adsorption 1 because the adsorption 1 mainly removes the ionic substance. Alternatively, the suction (charging) time may be determined based on the current value or voltage value of the capacitor (1) of the suction 1 and the suction 2 when charging.

【0021】(ロ)脱離工程 脱離工程は、脱離1と脱離2の合計2段の工程からなっ
ている。脱離1は、コンデンサ(1) の電極上に捕捉され
たイオン性物質を原液(L) で洗浄する工程である。脱離
2においては、精製液(L1)(製品液)の一部を流し、電
極の洗浄をさらに徹底させる。
(B) Desorption Step The desorption step comprises two steps, desorption 1 and desorption 2. Desorption 1 is a step of washing the ionic substance captured on the electrode of the condenser (1) with a stock solution (L). In the desorption 2, a part of the purified liquid (L 1 ) (product liquid) is allowed to flow to further thoroughly wash the electrodes.

【0022】なお脱離工程中コンデンサ(1) は短絡状態
にしてあり、電極からイオン性物質が脱離しやすいよう
になっている。またこの際、充電時とは逆方向に電流を
適宜流せば(逆充電すれば)、イオン性物質の電極から
の脱離がさらに加速される。
During the desorption step, the capacitor (1) is in a short-circuit state, so that the ionic substance is easily desorbed from the electrodes. Also, at this time, if a current is appropriately passed in the opposite direction to that during charging (if reverse charging is performed), desorption of the ionic substance from the electrode is further accelerated.

【0023】〈3塔式の場合/その2〉コンデンサ(1)
としてA、B、Cの3基を用いたときには、典型的に
は、「吸着1→吸着2→脱離」の3段の操作を、A、
B、Cのそれぞれにつき、この順に1段ずつずらしなが
ら実施することもできる。
<Three tower type / Part 2> Condenser (1)
When three groups of A, B and C are used, typically, a three-stage operation of “adsorption 1 → adsorption 2 → desorption” is performed by A, B
For each of B and C, it is also possible to carry out the process while shifting one stage at a time in this order.

【0024】図3および図4には、3基のコンデンサ
(1) を用いた場合(3塔式)の精製装置の運転時の液の
流れと工程ごとの役割を示してある。このときの運転
は、2段の吸着(脱塩)工程と1段の脱離(洗浄)工程
からなる。
FIGS. 3 and 4 show three capacitors.
The flow of liquid and the role of each process during operation of the refining apparatus when (1) is used (three-column type) are shown. The operation at this time includes a two-stage adsorption (desalination) step and a one-step desorption (washing) step.

【0025】〈4塔式の場合〉コンデンサ(1) として
A、B、C、Dの4基を用いたときには、典型的には、
「吸着1→吸着2→脱離1→脱離2」の4段の操作を、
A、B、C、Dのそれぞれにつき、この順に1段ずつず
らしながら実施する。
<Four-Tower Type> When four units of A, B, C, and D are used as the condenser (1), typically,
The four-stage operation of “Adsorption 1 → Adsorption 2 → Desorption 1 → Desorption 2”
For each of A, B, C, and D, the process is performed while shifting one stage at a time in this order.

【0026】図5および図6には、4基のコンデンサ
(1) を用いた場合(4塔式)の精製装置の運転時の水の
流れと工程ごとの役割を示してある。このときの運転
は、2段の吸着(脱塩)工程と2段の脱離(洗浄)工程
からなる。
FIGS. 5 and 6 show four capacitors.
The flow of water and the role of each process during the operation of the refining device when (1) is used (four-tower type) are shown. The operation at this time includes a two-stage adsorption (desalting) step and a two-step desorption (washing) step.

【0027】(イ)吸着工程 吸着1は、原液(L) を通液してイオン性物質を除去(脱
塩)する工程である。吸着2は、他のコンデンサ(1) の
洗浄液で比較的原液(L) に近い部分のものを利用する工
程である。この吸着2の操作は、回収率を確保する目的
も兼ねている。
(A) Adsorption Step Adsorption 1 is a step of passing an undiluted solution (L) to remove (desalinate) ionic substances. The adsorption 2 is a step of using a cleaning solution for the other condenser (1) which is relatively close to the stock solution (L). The operation of the adsorption 2 also serves to secure the recovery rate.

【0028】(ロ)脱離工程 脱離1は、電極上に捕捉されたイオン性物質を他のコン
デンサ(1) からの脱離液で洗浄する工程である。脱離2
においては、原液(L) で洗浄する。なお脱離工程中コン
デンサ(1) は短絡状態にしてあるが、3塔式の場合と同
様に、適宜逆充電することにより、イオン性物質の電極
からの脱離をさらに加速させることもできる。
(B) Desorption Step Desorption 1 is a step of washing the ionic substance trapped on the electrode with a desorbing liquid from another capacitor (1). Desorption 2
In, wash with undiluted solution (L). Although the capacitor (1) is in a short-circuit state during the desorption step, the desorption of the ionic substance from the electrode can be further accelerated by appropriately reverse charging as in the case of the three-tower type.

【0029】〈3塔式と4塔式との対比〉3塔式と4塔
式とを比較した場合、3塔式(その1)は、吸着段階を
重視した運転パターンであり、精製液(L1)純度(製品液
純度)を高く保つために有効な手段であると言うことが
できる。一方、3塔式(その2)は、脱離段階を重視し
た運転パターンであり、比較的高い回収率が得られるよ
うになっている。
<Comparison between the three-column type and the four-column type> When the three-column type and the four-column type are compared, the three-column type (No. 1) is an operation pattern in which the adsorption step is emphasized, and the purified liquid ( L 1 ) It can be said that this is an effective means for keeping the purity (product liquid purity) high. On the other hand, the three-tower type (No. 2) is an operation pattern in which the desorption stage is emphasized, and a relatively high recovery rate can be obtained.

【0030】4塔式は、脱離段階を重視した運転パター
ンであり、コンデンサ(1) の状態を清浄に保つために有
効な手段であると言うことができる。また4塔式では、
比較的高い回収率が得られるようになっている。
The four-tower type is an operation pattern emphasizing the desorption stage, and can be said to be an effective means for keeping the state of the condenser (1) clean. In the four-tower system,
Relatively high recoveries can be obtained.

【0031】典型的な負荷量が、図1、図3および図5
の中に書き入れてある。図1の3塔式では原液(L) 1.5
aに対して平均的な負荷量がaとなり、図3の3塔式で
は原液(L) aに対して平均的な負荷量が0.33aとなり、
図5の4塔式では原液(L) 2.5aに対して平均的な負荷
量がaとなる(入口基準1塔当りで表記、aは定数)。
精製液(L1)(製品液)回収率は、図1の3塔式では67
%、図3の3塔式では80%、図5の4塔式では81%
になる。
Typical load values are shown in FIGS. 1, 3 and 5
It is written in. In the three-column system shown in Fig. 1, undiluted solution (L) 1.5
The average load amount is a for a, and in the three-column system of FIG. 3, the average load amount is 0.33a for the undiluted solution (L) a,
In the four-column system of FIG. 5, the average load amount is 2.5a for the undiluted solution (L) 2.5a (represented per one inlet reference column, a is a constant).
The recovery rate of the purified liquid (L 1 ) (product liquid) was 67 in the three-column system of FIG.
%, 80% for the three tower system of FIG. 3, and 81% for the four tower system of FIG.
become.

【0032】従って、原液(L) の性状、脱塩性能、精製
液(L1)(製品液)の要求液質などを考慮して、適切な運
転方式を選択すればよい。なお、高濃度液(L2)(排出
液)については、これを排液として廃棄処理してもよ
く、これからイオン性物質を回収して回収製品として再
利用してもよい。
Therefore, an appropriate operation method may be selected in consideration of the properties of the undiluted solution (L), desalination performance, required liquid quality of the purified liquid (L 1 ) (product liquid), and the like. The high-concentration liquid (L 2 ) (effluent) may be discarded as an effluent, or an ionic substance may be collected from the waste liquid and reused as a collected product.

【0033】《精製装置》上記の精製処理方法は、通液
型電気二重層コンデンサ(1) を備えた精製装置を用いて
行う。コンデンサ(1) の数は、先にも述べたように3基
以上とする。
<< Purification Apparatus >> The above-mentioned purification treatment method is carried out using a purification apparatus equipped with a flow-through type electric double layer capacitor (1). The number of capacitors (1) should be three or more as described above.

【0034】通液型電気二重層コンデンサ(1) として
は、導電性支持層(11)、高表面積導電性層(12)および非
導電性多孔質スペーサ層(13)を備えているものが用いら
れる。従来の技術の項で述べた文献(いずれも本出願人
または本出願人のアメリカでの協力先の出願にかかるも
のである)に記載の装置も、本発明の精製処理方法のた
めに用いることができる。
As the flow-through type electric double layer capacitor (1), one having a conductive support layer (11), a high surface area conductive layer (12) and a non-conductive porous spacer layer (13) is used. Can be The apparatuses described in the prior art section (all of which are related to the applicant or the applicant's application in the United States of America) may also be used for the purification treatment method of the present invention. Can be.

【0035】コンデンサ(1) の構造のうち最も簡単なも
のは、「導電性支持層(11)/高表面積導電性層(12)/非
導電性多孔質スペーサ層(13)/高表面積導電性層(12)/
導電性支持層(11)」の構成を有するものである。実際に
はこれらを多重に重ねて、効率を増す。導電性支持層(1
1)は集電極の役割を果たし、高表面積導電性層(12)はイ
オン性物質を吸着する役割を果たし、非導電性多孔質ス
ペーサ層(13)はセパレータの役割を果たす。
The simplest structure of the capacitor (1) is "conductive support layer (11) / high surface area conductive layer (12) / non-conductive porous spacer layer (13) / high surface area conductive layer (13)". Layer (12) /
It has the configuration of the “conductive support layer (11)”. In practice, these are multiplexed to increase the efficiency. Conductive support layer (1
1) plays a role of a collector, the high surface area conductive layer (12) plays a role of adsorbing ionic substances, and the non-conductive porous spacer layer (13) plays a role of a separator.

【0036】ここで導電性支持層(11)としては、たとえ
ば、銅板、アルミニウム板、SUS板、カーボン板、フ
ォイル状グラファイトのような電気良導体であって、高
表面積導電性層(12)との緊密な接触が可能なものが用い
られる。印加を容易にするため、導電性支持層(11)には
端子(リード)を設けるのが通常である。導電性支持層
(11)の厚みには限定はないが、0.01〜0.2mm 程度のもの
を用いることが多い。
Here, the conductive support layer (11) is, for example, an electric conductor such as a copper plate, an aluminum plate, a SUS plate, a carbon plate, or a foil-like graphite, and is made of a material having a high surface area and a conductive layer (12). Those capable of close contact are used. Usually, terminals (leads) are provided on the conductive support layer (11) to facilitate application. Conductive support layer
Although the thickness of (11) is not limited, a thickness of about 0.01 to 0.2 mm is often used.

【0037】高表面積導電性層(12)としては、たとえ
ば、高比表面積活性炭を主材とする層が好適に用いられ
る。高比表面積活性炭とは、BET比表面積が1000
m2/g以上、好ましくは1200m2/g以上、さらに好まし
くは1300m2/g以上の活性炭を言う。BET比表面積
が余りに小さいときは、イオン性物質を含む液体を通し
たときのイオン性物質の除去率が低下する。なおBET
比表面積が余りに大きくなるとイオン性物質の除去率が
かえって低下する傾向があるので、BET比表面積を必
要以上に大きくするには及ばない。BET比表面積の上
限は2500m2/g程度までである。使用する活性炭の形
状は、粉粒状、繊維状など任意である。粉粒状の場合に
は平板状またはシート状に成形して用い、繊維状の場合
には布状に加工して用いる。平板状またはシート状への
成形は、たとえば、粉粒状活性炭をバインダー成分(ポ
リテトラフルオロエチレン、フェノール樹脂、カーボン
ブラック等)および/または分散媒(溶媒等)と混合し
て板状に成形してから、適宜圧延処理または熱処理する
ことにより得られる。平板状またはシート状のものを用
いる場合は、必要に応じこれに穿孔加工を施しておくこ
ともできる。高表面積導電性層(12)の厚みは、 0.3〜2
mm程度、殊に 0.5〜1mm程度とすることが多いが、必ず
しもこの範囲内に限られるものではない。
As the high surface area conductive layer (12), for example, a layer mainly composed of activated carbon having a high specific surface area is suitably used. High specific surface area activated carbon has a BET specific surface area of 1000
m 2 / g or more, preferably 1200 m 2 / g or more, more preferably refer to 1300 m 2 / g or more activated carbon. When the BET specific surface area is too small, the removal rate of the ionic substance when passing through the liquid containing the ionic substance decreases. BET
If the specific surface area is too large, the removal rate of the ionic substance tends to be rather lowered, so that it is not sufficient to increase the BET specific surface area more than necessary. The upper limit of the BET specific surface area is up to about 2500 m 2 / g. The shape of the activated carbon to be used is arbitrary, such as powdery and granular, and fibrous. In the case of a powdery or granular form, it is used after being formed into a flat plate or a sheet. In the case of a fibrous form, it is used after being processed into a cloth. For the formation into a flat plate or a sheet, for example, powdered granular activated carbon is mixed with a binder component (polytetrafluoroethylene, phenol resin, carbon black, etc.) and / or a dispersion medium (solvent, etc.) and formed into a plate shape. From a suitable rolling or heat treatment. In the case of using a flat plate or a sheet, a perforation process can be performed on the plate if necessary. The thickness of the high surface area conductive layer (12) is 0.3 to 2
It is often about mm, especially about 0.5 to 1 mm, but is not necessarily limited to this range.

【0038】非導電性多孔質スペーサ層(13)としては、
たとえば、ろ紙、多孔質高分子膜、織布、不織布など、
液体の通過が容易でかつ電気絶縁性を有する有機質また
は無機質のシートからなるものが用いられる。非導電性
多孔質スペーサ層(13)の厚みは、0.01〜0.5mm 程度、殊
に0.02〜0.3mm 程度が適当である。
As the non-conductive porous spacer layer (13),
For example, filter paper, porous polymer membrane, woven fabric, non-woven fabric, etc.
A sheet made of an organic or inorganic sheet that allows easy passage of a liquid and has electrical insulation properties is used. The thickness of the non-conductive porous spacer layer (13) is suitably about 0.01 to 0.5 mm, especially about 0.02 to 0.3 mm.

【0039】《作用》通液型電気二重層コンデンサを用
いてイオン性物質を含む液体の精製処理を行うときの原
理を、イオン性物質を含む液体が食塩水である場合を例
にとって説明する。
<Operation> The principle of purifying a liquid containing an ionic substance using a liquid-flow type electric double layer capacitor will be described by taking a case where the liquid containing an ionic substance is a saline solution as an example.

【0040】電圧印加時には、通水した水中のナトリウ
ンムイオンはアノード側の導電性支持層(11)(集電極)
に接する高表面積導電性層(12)(活性炭層)に電気的に
吸着され、塩素イオンはカソード側の導電性支持層(11)
(集電極)に接する高表面積導電性層(12)(活性炭層)
に電気的に吸着され、その結果出口水中の食塩濃度は著
減する。通水を続けると高表面積導電性層(12)(活性炭
層)に対する両イオンの吸着は飽和に達するので、出口
における食塩濃度は原液のそれに近くなる。適当なタイ
ミングを見てカソード側とアノード側とを短絡させるか
逆接続すれば、高表面積導電性層(12)(活性炭層)に吸
着されていたナトリムイオンおよび塩素イオンが脱離
し、原液中の食塩濃度よりはるかに高濃度の食塩水が出
口より排出される。
At the time of applying a voltage, the sodium ions in the passed water are converted into the conductive support layer (11) (collector electrode) on the anode side.
Is electrically adsorbed to the high surface area conductive layer (12) (activated carbon layer) that is in contact with the surface, and the chlorine ion is conductively supported on the cathode side (11)
High surface area conductive layer in contact with (collector electrode) (12) (activated carbon layer)
And the salt concentration in the outlet water is significantly reduced. If water is continued, the adsorption of both ions to the high surface area conductive layer (12) (activated carbon layer) reaches saturation, so that the salt concentration at the outlet is close to that of the stock solution. If the cathode side and the anode side are short-circuited or reverse-connected at an appropriate timing, the sodium ions and chlorine ions adsorbed on the high surface area conductive layer (12) (activated carbon layer) are desorbed, and A saline solution having a concentration much higher than the salt concentration is discharged from the outlet.

【0041】[0041]

【実施例】次に実施例をあげて本発明をさらに説明す
る。
The present invention will be further described with reference to the following examples.

【0042】装置例 図7は実施例で用いた通液型電気二重層コンデンサ(1)
の分解図である。図7中、(14)は押さえ板、(15)はガス
ケット、(16)は液入口、(17)は液出口、(18)はボルト孔
である。ボルト孔(18)に差し込んで押さえ板(14), (14)
間を締結するボルトや、そのボルトと共に用いるナット
については、図示を省略してある。
Example of Apparatus FIG. 7 shows a flow-through type electric double layer capacitor (1) used in the embodiment.
FIG. In FIG. 7, (14) is a holding plate, (15) is a gasket, (16) is a liquid inlet, (17) is a liquid outlet, and (18) is a bolt hole. Insert the bolt hole (18) into the holding plate (14), (14)
Bolts for fastening the spaces and nuts used with the bolts are not shown.

【0043】導電性支持層(11)(集電極)としては、厚
さ125μm のフォイル状のグラファイトを用いた。一
方の集電極の下半分には径1mm程度の通液孔(11a) を穿
設してあり、他方の集電極の上半分には同様の通液孔(1
1a) を穿設してある。また、これらの集電極にはいずれ
も端子(11b) を付設してある。
As the conductive support layer (11) (collector electrode), foil-like graphite having a thickness of 125 μm was used. A liquid passage hole (11a) having a diameter of about 1 mm is formed in the lower half of one collector electrode, and a similar liquid passage hole (1a) is formed in the upper half of the other collector electrode.
1a) is drilled. Each of these collector electrodes is provided with a terminal (11b).

【0044】高表面積導電性層(12)としては、繊維状活
性炭を板状にした層であって、BET比表面積1500
m2/g、大きさ120mm×120mm、厚み0.38mm、比重0.
47のもの2枚を用いた。この高表面積導電性層(12)2枚
の活性炭重量は 5.2gであった。
The high surface area conductive layer (12) is a layer made of fibrous activated carbon in a plate shape and has a BET specific surface area of 1500.
m 2 / g, size 120 mm × 120 mm, thickness 0.38 mm, specific gravity 0.
Two of 47 sheets were used. The activated carbon weight of the two high surface area conductive layers (12) was 5.2 g.

【0045】非導電性多孔質スペーサ層(13)としては、
厚み約 0.2mmのろ紙を用いた。
As the non-conductive porous spacer layer (13),
A filter paper having a thickness of about 0.2 mm was used.

【0046】実施例1 上記のコンデンサ(1) 3基を備えた精製装置を用い、図
1および図2に従って精製処理を行った。流速の設定お
よび流路の切り替えは、図示せざるポンプおよびバルブ
類を用いて行った。また、あるコンデンサ(1) における
吸着から脱離への切り替えは、短絡により行った。
Example 1 Purification treatment was performed according to FIG. 1 and FIG. 2 using a purification apparatus provided with three condensers (1). The setting of the flow rate and the switching of the flow path were performed using a pump and valves not shown. Switching from adsorption to desorption in a certain capacitor (1) was performed by a short circuit.

【0047】導電性支持層(11)(集電極)への端子を2
ボルトの直流電源とつなぎ、印加した。図1において、
流速はa=15ml/min(原液(L) の導入量は 1.5a=2
2.5ml/min)とし、I、II、III 、IV、V、VIの各工程
の所要時間はそれぞれ10分とした。原液(L) として
は、濃度10mmol/lの食塩水を用いた。このときの結果
を表1に示す。
Two terminals are connected to the conductive support layer (11) (collector electrode).
It was connected to a volt DC power supply and applied. In FIG.
The flow rate is a = 15 ml / min (the introduced amount of stock solution (L) is 1.5a = 2
2.5 ml / min), and the required time for each of the steps I, II, III, IV, V and VI was 10 minutes. As the stock solution (L), a saline solution having a concentration of 10 mmol / l was used. Table 1 shows the results.

【0048】[0048]

【表1】 精製液(L1) 高濃度液(L2) 流 量 NaCl濃度 流 量 NaCl濃度 (ml/min) (mmol/l) (ml/min) (mmol/l) 図1のI 15.0 1.6 7.5 26 図1のII 14.8 1.6 7.7 26 図1のIII 15.2 1.8 7.3 26 図1のIV 15.4 1.8 7.1 27 図1のV 14.8 1.5 7.7 26 図1のVI 14.8 1.5 7.7 26 (平均) 15.0 1.6 7.5 26 (注)NaCl濃度は、10分間に得られた液についての値。[Table 1]  Purified liquid (L 1 ) High concentration liquid (L 2 )  Flow NaCl concentration Flow NaCl concentration(ml / min) (mmol / l) (ml / min) (mmol / l)  1 in Fig. 1 15.0 1.6 7.5 26 II in Fig. 1 14.8 1.6 7.7 26 III in Fig. 1 15.2 1.8 7.3 26 IV in Fig. 1 15.4 1.8 7.1 27 V in Fig. 1 14.8 1.5 7.7 26VI in Fig. 1 14.8 1.5 7.7 26  (Average) 15.0 1.6 7.5 26  (Note) The NaCl concentration is the value for the liquid obtained in 10 minutes.

【0049】表1から、コンデンサ(1) 3基用いたとき
には、常に一定の流速で精製液(L1)および高濃度液(L2)
が得られること、このときの精製液(L1)の脱塩率は 100
×(10-1.6)/10 =84%、精製液(L1)の回収率は 100×
15.0/(15.0+7.5) =67%、高濃度液(L2)の濃縮率は 1
00×26/10 =260%であることがわかる。そして、精
製液(L1)の脱塩率が特に良好であることがわかる。
As shown in Table 1, when three condensers (1) were used, the purified liquid (L 1 ) and the highly concentrated liquid (L 2 ) were always kept at a constant flow rate.
Is obtained, and at this time, the desalting rate of the purified liquid (L 1 ) is 100.
× (10−1.6) / 10 = 84%, the recovery rate of the purified liquid (L 1 ) was 100 ×
15.0 / (15.0 + 7.5) = 67%, the concentration of high concentration liquid (L 2 ) is 1
It can be seen that 00 × 26/10 = 260%. And it turns out that the desalting rate of the purified liquid (L 1 ) is particularly good.

【0050】実施例2 上記のコンデンサ(1) 3基を備えた精製装置を用い、図
3および図4に従って精製処理を行った。流速の設定お
よび流路の切り替えは、図示せざるポンプおよびバルブ
類を用いて行った。また、あるコンデンサ(1) における
吸着から脱離への切り替えは、短絡により行った。
Example 2 Purification was performed according to FIGS. 3 and 4 using a purification apparatus having three condensers (1). The setting of the flow rate and the switching of the flow path were performed using a pump and valves not shown. Switching from adsorption to desorption in a certain capacitor (1) was performed by a short circuit.

【0051】導電性支持層(11)(集電極)への端子を2
ボルトの直流電源とつなぎ、印加した。図3において、
流速はa=20ml/min(原液(L) の導入量もa=20ml
/min)とし、I、II、III の各工程の所要時間はそれぞ
れ10分とした。原液(L) としては、濃度10mmol/lの
食塩水を用いた。このときの結果は 精製液(L1)の流量: 平均で 16 ml/min 精製液(L1)のNaCl濃度: 平均で 2.0 mmol/l 高濃度液(L2)の流量: 平均で 4.0 ml/min 高濃度液(L2)のNaCl濃度:平均で 42 mmol/l であり、精製液(L1)の脱塩率は 100×(10-2.0)/10 =8
0%、精製液(L1)の回収率は 100×16/(16+4) =80
%、高濃度液(L2)の濃縮率は 100×42/10 =420%で
あった。
The terminal to the conductive support layer (11) (collector electrode) is
It was connected to a volt DC power supply and applied. In FIG.
The flow rate is a = 20 ml / min (the introduction amount of the stock solution (L) is also a = 20 ml / min)
/ min), and the required time for each of the steps I, II and III was 10 minutes. As the stock solution (L), a saline solution having a concentration of 10 mmol / l was used. The result at this time is the flow rate of the purified liquid (L 1 ): 16 ml / min on average The NaCl concentration of the purified liquid (L 1 ): 2.0 mmol / l on average The flow rate of the high concentration liquid (L 2 ): 4.0 ml on average / min NaCl concentration of high concentration liquid (L 2 ): 42 mmol / l on average, and desalting rate of purified liquid (L 1 ) is 100 × (10-2.0) / 10 = 8
0%, the recovery rate of the purified liquid (L 1 ) is 100 × 16 / (16 + 4) = 80
%, The concentration of the high concentration liquid (L 2 ) was 100 × 42/10 = 420%.

【0052】実施例3 上記のコンデンサ(1) 4基を備えた精製装置を用い、図
5および図6に従って精製処理を行った。流速の設定お
よび流路の切り替えは、図示せざるポンプおよびバルブ
類を用いて行った。また、あるコンデンサ(1) における
吸着から脱離への切り替えは、短絡により行った。
Example 3 Purification treatment was performed according to FIGS. 5 and 6 using a purifying apparatus having four condensers (1). The setting of the flow rate and the switching of the flow path were performed using a pump and valves not shown. Switching from adsorption to desorption in a certain capacitor (1) was performed by a short circuit.

【0053】導電性支持層(11)(集電極)への端子を2
ボルトの直流電源とつなぎ、印加した。図5の流速はa
=15ml/min(原液(L) の導入量は 2.5a=37.5ml/mi
n)とし、I、II、III 、IVの各工程の所要時間はそれ
ぞれ10分とした。原液(L) としては、濃度10mmol/l
の食塩水を用いた。このときの結果を表2に示す。
Two terminals are connected to the conductive support layer (11) (collector electrode).
It was connected to a volt DC power supply and applied. The flow velocity in FIG.
= 15ml / min (Introduction of stock solution (L) is 2.5a = 37.5ml / mi
n), and the required time for each of the steps I, II, III and IV was 10 minutes. The stock solution (L) has a concentration of 10 mmol / l
Was used. Table 2 shows the results.

【0054】[0054]

【表2】 精製液(L1) 高濃度液(L2) 流 量 NaCl濃度 流 量 NaCl濃度 (ml/min) (mmol/l) (ml/min) (mmol/l) 図5のI 30.0 2.0 7.5 40 図5のII 31.0 2.2 6.5 45 図5のIII 31.0 2.1 6.5 47 図5のIV 30.0 2.0 7.5 42 (平均) 30.5 2.1 7.0 43.5 (注)NaCl濃度は、10分間に得られた液についての値。[Table 2]  Purified liquid (L 1 ) High concentration liquid (L 2 )  Flow NaCl concentration Flow NaCl concentration(ml / min) (mmol / l) (ml / min) (mmol / l)  I 30.0 2.0 7.5 40 in FIG. 5 II 31.0 2.2 6.5 45 in FIG. 5 III 31.0 2.1 6.5 47 in FIG.IV in Fig. 5 30.0 2.0 7.5 42  (Average) 30.5 2.1 7.0 43.5  (Note) The NaCl concentration is the value for the liquid obtained in 10 minutes.

【0055】表2から、コンデンサ(1) 4基用いたとき
には、常に一定の流速で精製液(L1)および高濃度液(L2)
が得られること、このときの精製液(L1)の脱塩率は 100
×(10-2.1)/10 =79%、精製液(L1)の回収率は 100×
30.5/(30.5+7.0) =81%、高濃度液(L2)の濃縮率は 1
00×43.5/10 =435%であることがわかる。そして、
精製液(L1)の回収率が特に良好であることがわかる。
As can be seen from Table 2, when four condensers (1) were used, the purified liquid (L 1 ) and the highly concentrated liquid (L 2 ) were always kept at a constant flow rate.
Is obtained, and at this time, the desalting rate of the purified liquid (L 1 ) is 100.
× (10-2.1) / 10 = 79%, the recovery rate of the purified liquid (L 1 ) is 100 ×
30.5 / (30.5 + 7.0) = 81%, the concentration of high concentration liquid (L 2 ) is 1
It can be seen that 00 × 43.5 / 10 = 435%. And
It can be seen that the recovery rate of the purified liquid (L 1 ) is particularly good.

【0056】[0056]

【発明の効果】本発明によれば、 ・イオン性物質を含む液体からのイオン性物質の除去率
を一定値以上に確保することができること、 ・除去後の精製液の回収率を一定値以上に確保すること
ができること、 ・しかも、所望の品質の精製液を、途切れることなく所
定の速度で連続的に取り出すことができること、 ・従って、工業性ある精製処理が可能になること、など
のすぐれた効果を奏する。
According to the present invention, it is possible to secure the removal rate of the ionic substance from the liquid containing the ionic substance at a certain value or more, and to achieve the recovery rate of the purified liquid after the removal at a certain value or more. That a purified liquid of a desired quality can be continuously taken out at a predetermined speed without interruption, and that an industrial purification process can be performed. It has the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】3基のコンデンサ(1) を用いた場合(3塔式)
の精製装置の運転時の液の流れを示した説明図である。
Fig. 1 When three capacitors (1) are used (three tower type)
FIG. 4 is an explanatory diagram showing a flow of a liquid during operation of the purification device of FIG.

【図2】3基のコンデンサ(1) を用いた場合(3塔式)
の精製装置の運転時の工程ごとの役割を示した説明図で
ある。
Fig. 2 When three capacitors (1) are used (three tower type)
It is an explanatory view showing a role for each process at the time of operation of a purification device.

【図3】3基のコンデンサ(1) を用いた場合(3塔式)
の精製装置の運転時の液の流れを示した説明図である。
FIG. 3 When three capacitors (1) are used (three tower type)
FIG. 4 is an explanatory diagram showing a flow of a liquid during operation of the purification device of FIG.

【図4】3基のコンデンサ(1) を用いた場合(3塔式)
の精製装置の運転時の工程ごとの役割を示した説明図で
ある。
Fig. 4 When three capacitors (1) are used (three tower type)
It is an explanatory view showing a role for each process at the time of operation of a purification device.

【図5】4基のコンデンサ(1) を用いた場合(4塔式)
の精製装置の運転時の液の流れを示した説明図である。
Fig. 5 When four capacitors (1) are used (four tower type)
FIG. 4 is an explanatory diagram showing a flow of a liquid during operation of the purification device of FIG.

【図6】4基のコンデンサ(1) を用いた場合(4塔式)
の精製装置の運転時の工程ごとの役割を示した説明図で
ある。
[Fig. 6] When four capacitors (1) are used (four tower type)
It is an explanatory view showing a role for each process at the time of operation of a purification device.

【図7】実施例で用いた通液型電気二重層コンデンサ
(1) の分解図である。
FIG. 7 is a flow-through type electric double layer capacitor used in Examples.
It is an exploded view of (1).

【符号の説明】[Explanation of symbols]

(1) …コンデンサ、 (11)…導電性支持層、 (11a) …通液孔、(11b) …端子、 (12)…高表面積導電性層、 (13)…非導電性多孔質スペーサ層、 (14)…押さえ板、 (15)…ガスケット、 (16)…液入口、 (17)…液出口、 (18)…ボルト孔、 (L) …原液、 (L1)…精製液、 (L2)…高濃度液(1) ... condenser, (11) ... conductive support layer, (11a) ... liquid passage hole, (11b) ... terminal, (12) ... high surface area conductive layer, (13) ... non-conductive porous spacer layer , (14) ... holding plate, (15) ... gasket, (16) ... liquid inlet, (17) ... liquid outlet, (18) ... bolt hole, (L) ... stock solution, (L 1) ... purified solution, ( L 2 )… High concentration liquid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 直人 兵庫県明石市魚住町錦が丘1丁目10番地の 4 (72)発明者 白木 明 兵庫県西宮市東鳴尾町1丁目4−1−203 Fターム(参考) 4D017 AA01 BA11 BA12 CA03 CB05 DA02 DB04 EA01 EB03 EB06 4D061 DA04 DA08 DB13 DB18 EA02 EB05 EB18 EB19 EB23 EB29 EB37 GA12 GA14 GA21 GC15 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naoto Tanaka 1-10-10 Nishigaoka, Uozumi-cho, Akashi-shi, Hyogo Prefecture (Reference) 4D017 AA01 BA11 BA12 CA03 CB05 DA02 DB04 EA01 EB03 EB06 4D061 DA04 DA08 DB13 DB18 EA02 EB05 EB18 EB19 EB23 EB29 EB37 GA12 GA14 GA21 GC15

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】通液型電気二重層コンデンサ(1) を備えた
精製装置を用いて、イオン性物質を含む原液(L) を、イ
オン性物質の割合が低められた精製液(L1)とイオン性物
質の割合が高められた高濃度液(L2)とに分離するにあた
り、 前記コンデンサ(1) を3基以上用いること、および、充
電によるイオン性物質の吸着と、短絡または逆充電によ
る吸着したイオン性物質の脱離とを、各コンデンサ(1)
間の連結および各コンデンサ(1) に対する液の導入と導
出との切り替え、と連動させながら所定のパターンで行
うこと、 これにより、原液(L) が所定の流速で連続的に処理され
ると共に、所定の品質の精製液(L1)および高濃度液(L2)
が所定の流速で連続的に取り出されるようにしたことを
特徴とする液体の精製処理方法。
An undiluted solution (L) containing an ionic substance is converted into a purified liquid (L 1 ) having a reduced ratio of an ionic substance by using a purification apparatus provided with a flow-through type electric double layer capacitor ( 1 ). In separating into high-concentration liquid (L 2 ) in which the ratio of ionic substances is increased, three or more capacitors (1) are used, and adsorption of ionic substances by charging, short-circuit or reverse charging The desorption of ionic substances adsorbed by the
In a predetermined pattern while interlocking with the connection between and the switching between introduction and derivation of the liquid to each condenser (1), whereby the stock solution (L) is continuously processed at a predetermined flow rate, Purified liquid (L 1 ) and high concentration liquid (L 2 ) of specified quality
Wherein the liquid is continuously taken out at a predetermined flow rate.
【請求項2】コンデンサ(1) としてA、B、Cの3基を
用い、「吸着1→吸着1→脱離1→脱離2→吸着2→吸
着2」の6段の操作を、A、B、Cのそれぞれにつき、
この順に2段ずつずらしながら実施することを特徴とす
る請求項1記載の精製処理方法。
2. Three operations of A, B, and C are used as the condenser (1), and a six-stage operation of “adsorption 1 → adsorption 1 → desorption 1 → desorption 2 → adsorption 2 → adsorption 2” is performed by A , B, and C,
2. The purification method according to claim 1, wherein the steps are performed while being shifted by two stages in this order.
【請求項3】コンデンサ(1) としてA、B、Cの3基を
用い、「吸着1→吸着2→脱離」の3段の操作を、A、
B、Cのそれぞれにつき、この順に1段ずつずらしなが
ら実施することを特徴とする請求項1記載の精製処理方
法。
3. A three-stage operation of “adsorption 1 → adsorption 2 → desorption” is performed by using three units of A, B and C as the condenser (1).
2. The method according to claim 1, wherein the steps B and C are carried out while being shifted one by one in this order.
【請求項4】コンデンサ(1) としてA、B、C、Dの4
基を用い、「吸着1→吸着2→脱離1→脱離2」の4段
の操作を、A、B、C、Dのそれぞれにつき、この順に
1段ずつずらしながら実施することを特徴とする請求項
1記載の精製処理方法。
4. Capacitors (1) of A, B, C, D
Using a group, the four-stage operation of “adsorption 1 → adsorption 2 → desorption 1 → desorption 2” is performed for each of A, B, C, and D while shifting one stage in this order. The purification method according to claim 1, wherein
【請求項5】通液型電気二重層コンデンサ(1) が、導電
性支持層(11)、高表面積導電性層(12)および非導電性多
孔質スペーサ層(13)より構成されている請求項1記載の
精製処理方法。
5. A liquid-permeable electric double layer capacitor (1) comprising a conductive support layer (11), a high surface area conductive layer (12) and a non-conductive porous spacer layer (13). Item 4. The purification method according to Item 1.
JP2000123753A 2000-04-25 2000-04-25 Liquid purification process Expired - Lifetime JP4148628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000123753A JP4148628B2 (en) 2000-04-25 2000-04-25 Liquid purification process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000123753A JP4148628B2 (en) 2000-04-25 2000-04-25 Liquid purification process

Publications (2)

Publication Number Publication Date
JP2001300535A true JP2001300535A (en) 2001-10-30
JP4148628B2 JP4148628B2 (en) 2008-09-10

Family

ID=18633992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000123753A Expired - Lifetime JP4148628B2 (en) 2000-04-25 2000-04-25 Liquid purification process

Country Status (1)

Country Link
JP (1) JP4148628B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200165A (en) * 2002-01-04 2003-07-15 Kurita Water Ind Ltd Desalting method
US7368191B2 (en) 2001-07-25 2008-05-06 Biosource, Inc. Electrode array for use in electrochemical cells
US7833400B2 (en) 2001-04-18 2010-11-16 Biosource, Inc. Method of making a flow through capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833400B2 (en) 2001-04-18 2010-11-16 Biosource, Inc. Method of making a flow through capacitor
US8002963B2 (en) 2001-04-18 2011-08-23 Biosource, Incorporated Charge barrier flow-through capacitor-based method of deionizing a fluid
US7368191B2 (en) 2001-07-25 2008-05-06 Biosource, Inc. Electrode array for use in electrochemical cells
JP2003200165A (en) * 2002-01-04 2003-07-15 Kurita Water Ind Ltd Desalting method

Also Published As

Publication number Publication date
JP4148628B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP3302443B2 (en) Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same
JP4286931B2 (en) Liquid-permeable capacitor and liquid processing method using the same
CN102060359B (en) Capacitive desalination module
CN106044965B (en) Device and method for recovering heavy metals in electroplating wastewater
JP3893740B2 (en) Electrolytic capacitor type desalting apparatus and desalting method
JP2004537411A (en) Movable electrode flow-through capacitor
JP5342468B2 (en) Liquid-flowing capacitor and method of operating the same
AU2019237168B2 (en) Deionization device and method for at least partially deionizing a feed liquid in which an electrolyte is dissolved, and apparatuses using such devices
JP4148628B2 (en) Liquid purification process
JP4135802B2 (en) Desalination equipment
JP2003200166A (en) Operation method for liquid passing type electric double- layered condenser desalting apparatus
US5647969A (en) Method and system for removing ionic species from water
JP2003200164A (en) Winding and liquid passing type condenser for removing charged matter from liquid and liquid treatment apparatus
JP2001058182A (en) Method and apparatus for passing liquid into liquid passing type capacitor
JP4090640B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP2002336859A (en) Desalted water making method
JP2002336863A (en) Method and apparatus for making desalted water
WO2014195897A1 (en) Method and device to remove ions from an electrolytic media, such as water desalination, using suspension of divided materials in a flow capacitor
KR100439431B1 (en) Method and Device for manufacturing the electrode cell of electrophoresis
EP2640669A1 (en) Flow-through condenser cell for purifying a fluid
JP4121226B2 (en) Liquid passing method and apparatus for liquid passing capacitor
DE60121444T2 (en) Replaceable flow condensers for removing charged types of liquids
JP4135801B2 (en) Liquid passing method and apparatus for liquid passing capacitor
RU2181107C1 (en) Process of controllable electric sorption of organic substances and cations of heavy metals from aqueous solutions
JP2005087898A (en) Electrostatic deionization apparatus and electrostatic deionization method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060720

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4148628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term