JP2001287159A - Surface condition measuring method and measuring device, polishing machine, and semiconductor device manufacturing method - Google Patents

Surface condition measuring method and measuring device, polishing machine, and semiconductor device manufacturing method

Info

Publication number
JP2001287159A
JP2001287159A JP2000102944A JP2000102944A JP2001287159A JP 2001287159 A JP2001287159 A JP 2001287159A JP 2000102944 A JP2000102944 A JP 2000102944A JP 2000102944 A JP2000102944 A JP 2000102944A JP 2001287159 A JP2001287159 A JP 2001287159A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
waveform
measuring
polishing
method
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000102944A
Other languages
Japanese (ja)
Inventor
Kenji Takiguchi
Takehiko Ueda
武彦 上田
健二 瀧口
Original Assignee
Nikon Corp
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical measuring method, a measuring device, and a polishing machine capable of measuring a polishing end point or the remaining film thickness rapidly, easily and accurately by comparing a signal waveform with a reference value even if the signal waveform, has noise, variation of the signal waveform to the wavelength is gentle, or variation in the signal waveform is extremely minute and fine around the polishing end point. SOLUTION: This measuring method measures the surface condition of the substrate surface based on the extent of agreement of the signal waveform obtained from a reflected signal beam or a transmission signal beam by irradiating beams on the substrate surface with the reference waveform. The signal waveform is a spectral waveform after noise elimination or standardization, the reference waveform is one or more spectral waveforms obtained by other measurement or calculation, and the extent of agreement is calculated using cross correlation.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、例えば、LSIなどの半導体デバイス製造プロセスに於いて、半導体ウェハ上への成膜工程やウェハ上の薄膜の研磨工程等の除去工程でその残膜厚や工程終了点を測定する測定装置、及び測定方法、及び研磨装置、更には前記研磨装置を用いた半導体デバイスの製造方法を提供することである。 BACKGROUND OF THE INVENTION The present invention is, for example, in the semiconductor device manufacturing processes such as LSI, the residual film thickness Ya in the step of removing the polishing step, etc. of the thin film on the film forming process and the wafer onto the semiconductor wafer measuring device for measuring a step end point and the measuring method, and a polishing apparatus, further is to provide a method of manufacturing a semiconductor device using the polishing apparatus.

【0002】 [0002]

【従来の技術】半導体デバイスが高密度化するにつれ、 As BACKGROUND ART Semiconductor devices are high density,
多層配線と、これに伴う層間絶縁膜形成や、プラグ、ダマシンなどの電極形成の技術の重要度は増加している。 And the multilayer wiring, an interlayer insulating film formation and associated therewith, the plug, the importance of the electrode formation techniques such as damascene is increasing.
これに伴い、これら層間絶縁膜や電極の金属膜の平坦化プロセスの重要度が増しており、この平坦化プロセスのための効率的な技術として、CMPと呼ばれる研磨工程がある。 Accordingly, it has increased the importance of the planarization process of a metal film of the interlayer insulating film and the electrode, as an efficient technology for the planarization process, a polishing process called CMP.

【0003】CMP(Chemical Mechanical PolishingまたはPlanarization)は、物理的研磨に、化学的な作用( [0003] CMP (Chemical Mechanical Polishing or Planarization) is physically polishing, chemical action (
研磨剤溶液による溶かし出し) とを併用して、ウェハの表面凹凸を除いていく工程で、グローバル平坦化技術の有力な候補となっている。 Abrasives out dissolved by a solution) and a combination of, in the step of gradually except surface unevenness of the wafer has become a leading candidate for a global flattening technique. 具体的には、酸、アルカリなどの、被研磨物の可溶性溶媒中に、研磨粒( シリカ、アルミナ、酸化セリウムなどが一般的) を分散させたスラリーと呼ばれる研磨剤を用い、適当な研磨布で、ウェハ表面を加圧し、相対運動により摩擦することにより研磨を進行させる。 Specifically, acids, such as alkali and soluble in a solvent workpiece, abrasive particles and abrasive used to (silica, alumina, and cerium oxide generally) called slurry obtained by dispersing a suitable polishing cloth in, advancing the polishing by rubbing the wafer surface pressed by the relative movement. ウェハ全面において、加圧と相対運動速度を一様とすることで面内に一様な研磨が可能になる。 In the entire wafer surface, it is possible to uniform polishing within the plane by uniform pressurization and relative motion speed.

【0004】ここで、プラグやダマシン等を正しく埋め込むために、研磨終了点の検知の重要度が増している。 [0004] In this case, in order to embed the plug and damascene, etc. correctly, the importance of the detection of the polishing end point is increasing.

【0005】この検知のために、従来は一般的な膜厚計測装置を用いることが多い。 [0005] For this detection, the prior art often use a general thickness measuring device. CMP研磨工程後洗浄されたウェハの、デバイスパターンが無いブランク部分を測定場所として選択して種々の方式で計測している。 The wafer is cleaned after CMP polishing step, select the device pattern has no blank portion as measured location is measured in a variety of ways. 他の方法として、目的研磨層と異なった層へ研磨が進んだ場合の摩擦変動を、ウェハ回転やパッドの回転のモータートルクの変化によって検出する方法がある。 Alternatively, the friction variation when the progress in the polishing to the desired abrasive layer and different layers, there is a method of detecting a change of the motor torque of the rotation of the wafer rotating and pads. この方式は、簡便で高速ではあるが、明確に異なる層への研磨開始を検知する場合にのみ有効で、しかも精度の上で不十分である。 This method, albeit at a high speed in a simple, effective only when detecting the polishing start to distinctly different layers, yet is insufficient on the accuracy. また、他の方法として、光学干渉利用の膜厚計測の方法( レーザ光を照射し、反射光量の時間変動を追跡する方法) においても、ウェハのデバイスパターンの特定の測定位置にレーザ光を微小スポットに絞って照射することの困難性のために、工程終了点を明確に判断することが困難であることが指摘されている。 Also, small as another method, a method of film thickness measurement of the optical interference utilized in (irradiated with laser light, a method of tracking time variations in the amount of reflected light), laser light in a specific measurement position of the device pattern on the wafer for difficulty in irradiating focused spot, to clearly determine the process endpoint it has been pointed out to be difficult.

【0006】以上のような問題に対処するために、本発明者等は、ブランク膜だけでなく、デバイスパターン( [0006] To address the above problems, the present inventors have not only the blank film, the device pattern (
下地パターン) が存在するウェハであって、2次元的に一様でないパターンを有するウェハであっても光学的に、その場で膜厚または研磨終了点を測定する方法を開発した。 A wafer base pattern) is present, optically even wafers having a two-dimensionally non-uniform pattern, we developed a method of measuring a film thickness or polishing endpoint in situ. この方法は、ウェハに光を照射したときの反射光または透過光の分光特性を参照波形として事前測定するか理論計算して求めておき、研磨中にウェハに光を当てて、ウェハからの反射光または透過光の実測された分光特性の信号波形と、前記参照波形との一致度の比較を行うことにより測定を行うものであり、この方法は、特開平11−33901号に開示されている。 This method in advance is calculated in either the theoretical pre measured as reference waveform the spectral characteristics of the reflected light or transmitted light when irradiated with light on the wafer, by applying a light to the wafer during polishing, reflection from the wafer and performs a signal waveform of the actually measured spectral characteristics of the light or the transmitted light, the measurement by comparing the degree of coincidence between the reference waveform, this method is disclosed in JP-a-11-33901 . 本方法は、パターンの最小寸法よりも大きなスポット径の光をウェハに照射し、その反射または透過信号光の分光波形をもとに残膜厚や工程終了点の測定をするものであり、 This method is for the light of larger spot diameter than the minimum dimension of the pattern is irradiated on the wafer, the measurement of the reflection or based on residual film thickness and step end point spectral waveform of the transmitted signal light,
この方法により正確な測定が可能となった。 It has become can be accurately measured by this method.

【0007】 [0007]

【発明が解決しようとする課題】しかしながら、従来の研磨終了点測定方法には、実測信号波形と参照波形との比較のための具体的な演算式等の方法が何ら明示されていなかった。 [SUMMARY OF THE INVENTION However, the conventional polishing endpoint measurement method, a specific method of computing equation or the like for comparison with the measured signal waveform and the reference waveform was not explicitly any. 更に、一般に反射信号光はスラリー層を通過してくるので、信号波形にはスラリーの濃度やスラリー層の厚みの変動の影響を受けたノイズ成分を含んでいるために生じる測定精度の悪化の問題に答えを与えていなかった。 Furthermore, since in general the reflected signal light coming through the slurry layer, the signal waveform of the measurement accuracy caused because it contains a noise component influenced by fluctuations in the thickness of the slurry concentration and the slurry layer of worse problems It did not give the answer to. 更に、ある種類のウェハでは実測して取得される分光波形が波長に対して緩やかにしか変化しないために、実測信号と参照信号との比較によって高精度に測定することが困難であるという問題があった。 Furthermore, since the spectral waveform obtained by actually measuring in some kind of the wafer changes only slowly with respect to the wavelength, is a problem that it is difficult to measure with high accuracy by comparing the measured signal and the reference signal there were. 更にまた、ある種類のウェハを研磨するプロセスに於いては研磨終了点前後での信号波形の変化は極めて微小であるために、比較による測定精度が悪化する問題があった。 Furthermore, for some change in the signal waveform before and after the polishing end point at the type of process for polishing a wafer is extremely small, there is a problem that the measurement accuracy by comparing deteriorates.

【0008】本発明の目的は以上の課題を解決し、参照値と実測値との一致度を有効に判定できる結果、高精度に測定を行うことが出来、更には、信号波形にノイズがあっても、更にまた、分光波形が波長に対して緩やかにしか変化しない場合でも、信号波形の変化が研磨終了点の前後で微小の場合でも、精度良く研磨終了点または残膜厚を迅速簡便に測定出来る、測定方法、測定装置、研磨装置、更には前記研磨装置を用いた半導体デバイスの製造方法を提供することである。 An object of the present invention is to solve the above problems, the reference values ​​and the measured values ​​and the effective determination can result degree of coincidence, it is possible to perform measurement with high accuracy, further, there is noise in the signal waveform be, furthermore, even if the spectral waveform changes only slowly with respect to the wavelength, even if the minute before and after the change of the signal waveform of the polishing endpoint, quickly easily accurately polishing endpoint or remaining film thickness measurements can, measurement method, measurement apparatus, the polishing apparatus further is to provide a method of manufacturing a semiconductor device using the polishing apparatus.

【0009】 [0009]

【課題を解決するための手段】以上の課題を解決するために本発明では第一に、基板面に光を照射し、そこから反射または透過する信号光から得られる信号波形と、参照波形との一致度に基づいて前記基板面の表面状態を測定する方法であり、前記信号波形が、雑音除去処理または規格化が行われた分光波形であり、前記参照波形が、 Firstly the present invention to solve the above problems, there is provided a means for solving], light is irradiated to the substrate surface, and a signal waveform obtained from the reflected or transmitted signal light therefrom, a reference waveform a method of measuring the surface state of the substrate surface based on the matching degree, the signal waveform is a spectral waveform noise removing or normalized is performed, the reference waveform,
別途測定または計算から得られる一つまたは複数の分光波形であり、前記一致度が、相互相関を用いて計算されることを特徴とする測定方法を提供する第二に、基板面に光を照射し、そこから反射または透過する信号光から得られる信号波形と、参照波形との一致度に基づいて前記基板面の表面状態を測定する方法であり、前記信号波形が、前記信号光の分光波形の1次以上の微分波形であり、前記参照波形が、一つ以上の、別途測定または計算から得られる分光波形の1次以上の微分波形であることを特徴とする測定方法を提供する。 Is one or more spectral waveform obtained from separately measured or calculated, the irradiation the degree of coincidence, the second to provide a measuring method characterized in that it is calculated using the cross-correlation, the light on the substrate surface and a signal waveform obtained from the reflected or transmitted signal light therefrom, based on the degree of coincidence between the reference waveform is a method of measuring the surface state of the substrate surface, the signal waveform, the spectral waveform of the signal light a primary or a differential waveform, the reference waveform, one or more, to provide a measuring method which is a first order or more differential waveform of the spectral waveform obtained from separately measured or calculated.

【0010】第三に、基板面に光を照射し、そこから反射または透過する信号光から得られる信号波形と、参照波形との一致度に基づいて前記基板面の表面状態を測定する方法であり、前記信号波形が、前記信号光の分光波形をフーリエ変換した周波数波形であり、前記参照波形が、一つ以上の、別途測定または計算から得られる分光波形をフーリエ変換した周波数波形であることを特徴とする測定方法を提供する。 [0010] Third, in a manner that light is irradiated to the substrate surface is measured and a signal waveform obtained from the reflected or transmitted signal light, the surface condition of the substrate surface based on degree of coincidence between the reference waveform therefrom There, said signal waveform is the spectral waveform of the signal light is Fourier transformed frequency waveform, the reference waveform, one or more, the frequency waveform obtained by Fourier transform of the spectral waveform obtained from separately measured or calculated to provide a measuring method characterized by.

【0011】第四に、前記一致度が、限定された一つあるいは複数の波長範囲において計算されることを特徴とする請求項1〜3何れか1項記載の測定方法を提供する。 [0011] Fourth, the degree of coincidence, provides a measuring method of claims 1 to 3, any one, wherein a is computed in a limited one or more wavelength ranges.

【0012】第五に、請求項1〜4の測定方法から選ばれた二つ以上を併用して測定を行うことを特徴とする測定方法を提供する。 [0012] Fifth, to provide a measurement method and performing measurements in combination of two or more selected from the measurement method of claims 1-4.

【0013】第六に、前記基板面の表面状態の測定が、 [0013] Sixth, the measurement of the surface condition of the substrate surface,
基板上の絶縁膜あるいは金属電極膜の膜厚の測定であり、請求項1〜5の測定方法から選ばれた一つの測定方法を用いて測定を行うことを特徴とする測定装置を提供する。 Is a measure of the thickness of the insulating film or a metal electrode film on the substrate, to provide a measuring device, characterized in that the measurement is conducted by the one measurement method selected from the measuring method of claims 1 to 5.

【0014】第七に、前記基板面の表面状態の測定が、 [0014] Seventh, the measurement of the surface condition of the substrate surface,
基板上への絶縁膜もしくは金属電極膜の成膜工程、または前記膜の除去工程における膜厚の測定または工程終了点の測定であり、請求項1〜5の測定方法から選ばれた一つの測定方法を用いて測定を行うことを特徴とする測定装置を提供する。 An insulating film forming step of film or metal electrode film or measurement of the film thickness measurement or process end point in the removal step of the film, on a substrate, one measurement selected from the measurement method of claims 1 to 5 providing a measuring device, characterized in that the measurement is conducted by the method.

【0015】第八に、基板を保持する保持部と、研磨体と、請求項7記載の測定装置とを具え、前記基板と前記研磨体との間に研磨剤を介在させた状態で、前記基板と前記研磨体との間に荷重を加え、双方の間に相対運動を与えることにより基板を研磨する際に、膜厚の測定または研磨終了点の測定が可能なようにされたことを特徴とする研磨装置を提供する。 [0015] Eighth, a holding portion for holding the substrate, and polishing body, comprising a measuring device according to claim 7, in a state in which a polishing agent is interposed between the polishing body and the substrate, wherein the load was applied between the substrate and the polishing body, characterized in that when polishing a substrate by providing relative movement between both, which is to allow the measurement of the film thickness measurement or polishing endpoint to provide a polishing apparatus according to.

【0016】第九に、請求項8記載の研磨装置を用いて半導体ウェハの表面を研磨する段階を具えることを特徴とする半導体デバイス製造方法を提供する。 [0016] Ninth, to provide a semiconductor device manufacturing method characterized by comprising the step of polishing a surface of a semiconductor wafer using a polishing apparatus according to claim 8.

【0017】 [0017]

【発明の実施の形態】図2は、本発明の測定装置20の光学系10の一例を示す詳細図であり、図1は、この測定装置10をCMP研磨装置に取り付けた状態を示す概要図である。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Figure 2 is a detailed diagram showing an example of an optical system 10 of the measuring apparatus 20 of the present invention, FIG. 1 is a schematic view showing a state in which the measuring device 10 attached to the CMP polishing apparatus it is. 図1に於いて、研磨されるウェハ2は研磨ヘッド1に保持されている。 In Figure 1, a wafer 2 to be polished is held on the polishing head 1. また、ウェハ2を研磨する研磨パッド3は定盤4に固定されている。 The polishing pad 3 for polishing the wafer 2 is fixed to the base 4. 定盤4は回転ω Tしており、また研磨ヘッド1もウェハ2を研磨パッド3に押しつけながら、回転ω Platen 4 is rotated omega T, also while pressing the polishing head 1 also wafer 2 against the polishing pad 3, the rotation omega Hすると共に揺動運動3 Rocking motion 3 while H
2をし、且つスラリー供給機構30からスラリー31を供給しながらウェハ2を研磨する。 2 was, and polishing the wafer 2 while supplying slurry 31 from the slurry supply mechanism 30. 研磨パッド3及び定盤4は透光窓5を具え、透光窓5の研磨パッド3側には透明石英ガラス21が嵌め込まれている。 The polishing pad 3 and the surface plate 4 comprises a transparent window 5, the polishing pad 3 on the side transparent quartz glass 21 optical window 5 is fitted. また、透光窓5の下方には測定装置の光学系10が配置されている。 Further, the optical system 10 of the measuring device is disposed below the transparent window 5.
図1の中で光学系10はレンズや回折格子等の光学部材が省略して示されている。 Optical system 10 in Figure 1 is an optical member such as a lens or a diffraction grating is shown omitted. 照射光源7から発した照射光は透光窓5を通してウェハ2の表面に照射され、ウェハ2からの反射信号光は透光窓5を通して光学系10に導かれる。 Irradiation light emitted from the illumination light source 7 is irradiated to the surface of the wafer 2 through the translucent window 5, the reflected signal light from the wafer 2 is guided to the optical system 10 through the transparent window 5.

【0018】図2に於いて、7は照射光源であり、照射光源7としては多成分の波長を発する光源を用いる。 [0018] In FIG. 2, 7 is irradiation light source, using a light source which emits wavelengths of the multi-component as an irradiation light source 7. 具体的には、白色光源が好ましく、キセノンランプやハロゲンランプやタングステンランプが特に好ましい。 Specifically, the white light source is preferred, xenon lamp or a halogen lamp or a tungsten lamp is particularly preferred. 照射光源7から放射された光は、レンズ9により平行光束にされ、スリット22により光束サイズを調整され、レンズ11を透過し、ビームスプリッタ12を透過し、レンズ13を透過し、図1に示された透光窓5の透明石英ガラス21を透過してウェハ2上に照射される。 Light emitted from the illumination light source 7 is a parallel light beam by a lens 9, is adjusted the light beam size by the slits 22, transmitted through the lens 11, passes through the beam splitter 12, transmitted through the lens 13, shown in Figure 1 It is irradiated on the wafer 2 through the transparent quartz glass 21 of light transmitting window 5 which is. ここで、 here,
ウェハ上への照射スポットサイズは、デバイスパターンの寸法に適合するよう調節され、更に、照射光の空間コヒーレンス長は、この最小繰り返し単位寸法よりも大きくなるよう光学系が調節されている。 Irradiation spot size on the wafer is adjusted to fit the size of the device pattern, further, spatial coherence length of the illumination light is larger so that the optical system than the minimal repeating unit size is adjusted. ウェハ2からの反射信号光は、再び透光窓5(図1)の透明石英ガラス2 Reflected signal light from the wafer 2 again transparent window 5 (FIG. 1) of transparent quartz glass 2
1(図1)を透過して、レンズ13を透過して、ビームスプリッタ12により反射され、レンズ14を透過し、 It passes through the 1 (FIG. 1), passes through the lens 13, is reflected by the beam splitter 12, transmitted through the lens 14,
ミラー15により反射され、レンズ16でピンホール1 It is reflected by the mirror 15, a pinhole 1 lens 16
7の開口部に集光される。 7 is focused on the opening of the. 反射信号光はこのピンホール17で散乱光や1次以上の回折光等が除去され、レンズ18を透過して回折格子19に投射され、回折格子19 Reflected signal light is scattered light and first-order or higher order diffracted light, such as a pin hole 17 is removed, it is projected onto the diffraction grating 19 passes through the lens 18, diffraction grating 19
により波長分解され、異なった方向に異なった波長の光が向かうようにされ、リニアセンサ6に入射し、反射光の分光特性が検出される。 By the wavelength-resolved, is as light of different wavelengths in different directions is directed incident on the linear sensor 6, the spectral characteristics of the reflected light is detected. この分光特性信号は、図1に示す信号処理用コンピュータ8に送られ、信号処理用コンピュータ8は、この分光特性信号から所望の信号波形を得、この信号波形を事前に測定もしくは事前に計算して取得した参照信号との一致度に基づいてウェハ上の薄膜の膜厚または研磨終了点の測定を行う。 The spectral characteristics signal is sent to a signal processing computer 8 shown in FIG. 1, the signal processing computer 8, to give the desired signal waveform from the spectral characteristic signal, measuring or calculate in advance the signal waveform in advance the measurement of thin film having a thickness or polishing endpoint on the wafer based on the degree of coincidence between the reference signal acquired Te. この参照信号は、所定数の所定間隔の膜厚または所定数の研磨状態に対応する数の分だけ事前に取得されており、これらの参照信号の中で、信号波形と最も一致度の高い信号に対応する膜厚または研磨状態を測定値と判定する。 This reference signal, the number of minutes that corresponding to the polished state thickness or a predetermined number of a predetermined number of predetermined intervals are acquired in advance, in these reference signals, the highest degree of coincidence with the signal waveform signals the corresponding thickness or polishing state determines that the measured value.

【0019】[実施形態1]ここで重要なのは、実測値と参照値との一致度の計算の方法である。 [0019] [Embodiment 1] The key here is the method of calculating the degree of coincidence between the reference and measured values. 一致度の計算のアルゴリズムの善し悪しによって膜厚や研磨終了点の測定精度が左右されるといえる。 Measurement accuracy of the film thickness and the polishing endpoint by quality of the matching degree algorithm of calculations can be said to be influenced. 本実施形態では、この一致度の計算のために、実測された分光特性波形と別途計測または計算により導出した一つあるいは複数の分光特性波形(参照波形)との、相互相関係数を求める。 In the present embodiment, for the calculation of the degree of matching with one derived by separately measuring or calculating the actually measured spectral characteristic waveform or a plurality of spectral characteristics waveform (reference waveform) to determine the cross-correlation coefficient. 相互相関係数としては、次式に示した正規化線形相関を用いて計算することが好ましい。 The cross-correlation coefficient, it is preferable to be calculated using the normalized linear correlation shown in the following equation.

【0020】 [0020]

【数1】 [Number 1]

【0021】上式に於いて、x iは、実測された信号波形を示すデータ列であり、添字のiは、波長に相当し、 [0021] In the above equation, x i is a data string showing measured signal waveform, subscripts i corresponds to a wavelength,
i番目のデータであることを示す。 Indicating that it is the i-th data. Nはデータ数であり、xバー(bar)はデータ列x iの平均値である。 N is the number of data, x bar (bar) is the average value of the data sequence x i.
また、y iは別途計測または計算により導出した参照波形を示すデータ列であり、添字のiは波長に相当し、i Also, y i is a data string indicating a reference waveform derived by a separate measurement or calculation, subscript i corresponds to a wavelength, i
番目のデータであることを示す。 Indicating that the second data. 同様に、Nはデータ数であり、yバー(bar)はデータ列y iの平均値である。 Similarly, N is the number of data, y bar (bar) is the average value of the data sequence y i.

【0022】上式により計算される相互相関係数は−1 The cross-correlation coefficients calculated by the above formula -1
から+1の値を持つ。 From having a value of +1. 最も一致度が高い場合に+1の値を取り、逆に最も一致度が低い場合に−1の値をとる。 Most if the degree of coincidence is high in a value of +1, if the least degree of coincidence in the reverse takes a value of -1.
従って、実測された信号波形と複数の各膜厚に対する各参照波形との各相互相関係数を各々計算した中で、相互相関係数が最も大きい参照波形を実測された信号波形に最も近似した波形であると判断でき、この参照波形に対する膜厚を、実測された信号波形の膜厚とすることができるので、この測定を研磨工程の中で繰り返せば、残膜厚の推移や、工程終了点の判定を行うことができる。 Thus, in that each calculating each correlation coefficient between the measured signal waveform a plurality of the reference waveform for each film thickness was closest correlation coefficient is largest reference waveform measured signal waveform it can be determined that a waveform, the film thickness for this reference waveform, it is possible to the film thickness of the measured signal waveform, by repeating this measurement in the polishing step, transition or residual film thickness, process termination it is possible to determine the point. なお、相互相関係数の計算方法としては、上に示した正規化線形相関以外に、次式に示すスペアマン(Spearman) As the method of calculating the cross-correlation coefficient, in addition to the normalized linear correlation shown above, Spearman shown in the following equation (Spearman)
順位相関も好ましい。 Rank correlation is also preferred.

【0023】 [0023]

【数2】 [Number 2]

【0024】上式に於いて、R iは実測された信号波形のデータ列x iの順位であり、S iは別途計測または計算により導出した参照波形のデータ列y iの順位である。 [0024] In the above formula, R i is the order of the data sequence x i of the measured signal waveform, S i is the order of the data sequence y i of the derived reference waveform by a separate measurement or calculation. Rバー(bar)はR iの平均値であり、Sバー(bar)はS iの平均値であり、Nはデータ数である。 R bar (bar) is the average value of R i, S bar (bar) is the average value of S i, N is the number of data.

【0025】以上、正規化線形相関及びスペアマン(Sp The above, normalized linear correlation and Spearman (Sp
earman)順位相関は、計算される相関係数の大きさが、 EarMan) rank correlation, the magnitude of the correlation coefficients calculated,
信号波形のDC成分の影響を受けないので、スラリーの変動の影響等のために信号レベルが変化する場合でも規格化が不要である。 Since not affected by the DC component of the signal waveform, standardization is not necessary even if the signal level for the influence of the variation of the slurry is changed.

【0026】相互相関係数の計算方法としては、この他に、Kendall 相関などの方法も、測定対象のウェハの種類によっては有効であり、また、以上に挙げた種類以外の相互相関の計算方法を用いても良い。 [0026] As a calculation method of cross-correlation coefficient is In addition, a method such as Kendall correlation is effective depending on the type of measurement target wafer, also, calculation of cross-correlation than the type mentioned above it may also be used.

【0027】ここで、これら相互相関係数の計算をするに先立ち、実測された信号波形と別途計測または計算により導出した参照波形は、以後の処理結果を正確にするために、好ましくは雑音除去処理がなされる。 [0027] Here, prior to these cross-correlation coefficient calculation, reference waveform derived by separately measuring or calculation and the measured signal waveform, in order to accurately subsequent processing results, preferably denoising processing is performed. この雑音除去処理により、スラリーによる散乱や測定系の振動等に起因する原信号(実測信号波形や参照波形の原信号) The noise removing the original signal due to the vibration of the scattering by the slurry and the measurement system (original signal of the measured signal waveform and the reference waveform)
中の雑音の影響を低減させるので、相互相関関係がより顕著になり、相互相関係数による膜厚測定精度がより一層向上する。 Since reduced to the effects of noise in the mutual correlation becomes more pronounced, the film thickness measurement accuracy of cross-correlation coefficient is further improved. 雑音除去処理方式としては、好ましくは、 The noise removing method, preferably,
移動平均法による平滑化処理、同期加算法によるガウス性雑音の圧縮、フーリエ変換によるローパスフィルタリングなどの群から選ばれた一つ以上の方法が取られる。 Smoothing by the moving average method, the compression of Gaussian noise by the synchronous addition process, one or more methods selected from the group such as a low-pass filtering by Fourier transform is taken.

【0028】また、相互相関係数の計算をするに先立ち、実測された信号波形と別途計測または計算により導出した参照波形は、スラリー厚やスラリ濃度の変動やウェハの種類等に起因する波形の振幅(大きさ)の変動の影響を除去するために、波形の規格化を行うことが好ましい。 Further, prior to the cross correlation coefficient calculation, reference waveform derived by separately measuring or calculation and the measured signal waveform, the waveform due to the type of change and the wafer of the slurry thickness and the slurry concentration, etc. in order to eliminate the effect of variations in the amplitude (magnitude), it is preferable to perform normalization of the waveform. 規格化を施すことにより、原信号(信号波形や参照波形の原信号)のレベル差の影響を低減させ、相互相関関係がより顕著になり、相互相関係数による膜厚測定精度がより一層向上する。 By performing normalization reduces the influence of the level difference of the original signal (original signal of the signal waveform and the reference waveform), cross-correlation becomes more pronounced, more improved film thickness measurement accuracy of the cross-correlation coefficient to. 規格化のための、好ましくは特定の波長における分光反射率値で各波長の分光反射率値を減算あるいは除算するが、この例に限られるものではない。 For normalization, although preferably subtracts or dividing the spectral reflectance values ​​at each wavelength by the spectral reflectance value at a particular wavelength is not limited to this example. 本例の規格化の場合、規格化により、特定の波長における分光反射率値が定数値とされるので、スラリー等の変動の影響を受けない。 For standardization of the present example, the normalization, since the spectral reflectance value at a particular wavelength is a constant value, not affected by the fluctuations such as slurry. 尚、相互相関係数の計算に正規化線形相関やスペアマン(Spearman)順位相関を用いる場合には規格化が不要である。 In the case of using the normalized linear correlation and Spearman (Spearman) rank correlation to the cross correlation coefficient calculation normalization it is not required.

【0029】以上説明した、雑音除去処理と規格化処理は、片方のみの処理でも効果があるが、両方を処理した方が正確な測定のためにより有効である。 [0029] described above, the noise elimination process and the normalization process has an effect even in the processing of one only, is better to process both more effective in for accurate measurements. [実施形態2]ところで、図5の波形を見れば分かるように、これらの波形は、波長に対して反射率が比較的緩やかに変化しており、更にまた明確なピークや谷を示していない。 [Embodiment 2] Incidentally, as can be seen from the waveform of FIG. 5, these waveforms, the reflectivity has changed relatively slowly with respect to the wavelength does not show furthermore clear peak and valleys . このような波形に対しては、相互相関係数による高精度な測定が困難になることがある。 For such a waveform, high-accuracy measurement by cross-correlation coefficient may be difficult.

【0030】更に、波形が、研磨終了点の前後で大きく変化しない場合に高精度な測定が困難になる。 Furthermore, waveform, accurate measurement becomes difficult if not largely changed before and after the polishing endpoint. このような場合には、波形(分光波形)を波長で微分した波形を信号波形または参照波形として相互相関係数を計算する。 In such a case, calculating the cross-correlation coefficient waveform obtained by differentiating the waveform of the (spectral waveform) at a wavelength as the signal waveform or reference waveform. 微分係数としては1次でも、2次以上の微分波形を用いても良く、この次数はウェハの種類によって適するものを選ぶ。 In primary as derivative, may be used a second-order or more differentiated waveform, the order is chosen to be suitable depending on the type of wafer.

【0031】本実施形態の場合、一致度として相互相関による以外に、最小二乗法や、差の絶対値の和の最小を与えるパラメータを与える方法等も用いることが出来る。 [0031] In this embodiment, except by the cross-correlation as the degree of matching, least squares, a method such as to provide a parameter giving the minimum sum of the absolute values ​​of the differences can also be used. [実施形態3]ウェハパターンからの分光信号が波長に対して大きく変化しない場合や明確な山や谷を示さない場合、更にはウェハパターンからの反射率が低い場合やウェハパターンの金属層部分の面積比率が大きい場合のように薄膜干渉や回折による成分が小さく、フリンジが出にくい場合に有効である。 [Embodiment 3] If spectral signals from the wafer pattern does not show a case and clear peaks and valleys that do not change significantly with respect to the wavelength, even the metal layer portion of the case and the wafer pattern is low reflectance from the wafer pattern small component due to thin film interference or diffraction as in a larger area ratio is effective when the fringe is not easily appear.

【0032】本実施形態では、実測及び、別途測定または計算から得られた分光波形に対してフーリエ変換などのスペクトル分析手法を適用する。 [0032] In this embodiment, actual measurement and applies the spectral analysis techniques such as Fourier transform to the spectral waveforms obtained from separately measured or calculated. この結果得られる分光波形の周波数特性の相互相関を用いることも有効である。 It is also effective to use a cross-correlation of the frequency characteristic of the resulting spectral waveform.

【0033】本実施形態の場合、一致度として相互相関による以外に、最小二乗法や、差の絶対値の和の最小を与えるパラメータを与える方法等も用いることが出来る。 In the case of this embodiment, except by the cross-correlation as the degree of matching, least squares, a method such as to provide a parameter giving the minimum sum of the absolute values ​​of the differences can also be used. [実施形態4]本実施形態では、相互相関係数を計算する際に、相関をより強く判別する波長範囲を一つまたは複数選択して限定することにより、相関関係をより強調させるものである。 In Embodiment 4 In this embodiment, when calculating the cross-correlation coefficient, by limiting the wavelength range to determine more strongly correlated one or more selected and is intended to further emphasize the correlation . これの例としては、第一には、スラリーが及ぼす信号光中のノイズは、長波長側よりも短波長側において大きいので、この短波長側の波長域、第二には、例えばスラリーの特定の波長域で発生するフォトルミネッセンス光の波長域、第三には、その波長での信号(分光波形)の大きさが研磨終了点の前後で膜厚変化に対して余り変化しない波長域、また第四には、波長よりも小さいパターン等の測定で起こることがあるモデル計算が実測値と合わない波長域、以上第一〜第四の波長域から選ばれた一つ以上の波長域を相互相関係数の計算から除去する。 Examples of this, the first, the noise in the signal light slurry on is greater at the short wavelength side than the long wavelength side, the wavelength band of the short wavelength side, the second, for example, a slurry of a particular wavelength region of photoluminescence light generated in the wavelength region of, the third wavelength range does not change much with respect to the film thickness change before and after the size of the polishing end point of the signal at that wavelength (spectral waveform), also the fourth, cross one or more wavelength ranges model calculations selected wavelength ranges that do not fit the measured values, from first to fourth wavelength range over which may occur in the measurement of small patterns such than the wavelength removing from the calculation of the correlation coefficient. これにより相互相関係数等の計算により高い一致度が得られる。 Thus degree of coincidence by calculation, such as the cross-correlation coefficient is obtained.

【0034】以上実施形態1、2、3、4による測定方法を説明した。 The described measuring method according to above embodiments 1, 2, 3, 4. これらの方法から、ウェハの種類、必要な測定精度等を考慮して最適なものが選択されるが、これらの方法は組み合わせて用いても良く、例えば各測定方法の結果の平均や加重平均等を用いて判断する。 These methods, type of wafer, but optimal in view of the required measurement accuracy or the like is selected, be used in combination of these methods may, for example, an average or a weighted average or the like of the result of each measurement method It is determined using.

【0035】更に、以上の実施形態1、2、3、4で説明した測定方法を用いた測定装置は、研磨装置、等に設けて研磨終了点または残膜厚等の工程状態の測定に用いられるのみならず、単独で、ウェハ等の基板上の膜厚を測定するための膜厚計として用いることが出来る。 Furthermore, the above measurement apparatus using the measuring method described in Embodiment 1, 2, 3, 4, the polishing apparatus, used to measure the process conditions such as polishing endpoint or residual film thickness is provided at equal not only is alone, it can be used as a film thickness meter for measuring the film thickness on a substrate such as a wafer. また、他のイオンエッチング等の除去工程、更にはCV Moreover, removal step such as another ion etching, even CV
D、スパッタリング等の成膜工程の工程終了点の検知にも用いることが出来る。 D, it can also be used for the detection step end point of the film forming process such as sputtering. ここで言う工程終了点は、例えば一般的な薄膜の除去工程に於ける工程の完了点のみならず、異なる材料層に除去工程が進行したタイミング等の中間工程の終了点も含む。 Step end point as referred to herein, also includes the end point, for example, a general thin film not only completion point of in process step of removing, such as timing removing step different material layers is advanced intermediate step.

【0036】更にまた、本発明は、図1のように透光窓5を通して測定する場合のみならず、研磨ヘッドの揺動運動の振幅を大きくし、ウェハを研磨パッドからはみ出させ、そのはみ出し部分に光を照射して測定する場合も含まれる。 [0036] Furthermore, the present invention not only when measuring through transparent window 5 as shown in FIG. 1, the amplitude of the swinging motion of the polishing head is increased, thereby protrude the wafer from the polishing pad, the portion protruding thereof also included when measuring by irradiating light to the. この場合は透光窓が不要である。 In this case, the transparent window is not required. さらに、研磨パッドがウェハよりも小さい研磨装置においては、ウェハが研磨パッドからはみ出して露出している部分に対して測定することもできる。 Further, in the polishing pad polishing apparatus smaller than the wafer may also be determined for the portion of the wafer is exposed to protrude from the polishing pad.

【0037】また、図1の測定装置は光を半導体デバイスのパターン面側から照射しているが、光はウェハの裏面側から照射することも出来る。 Further, the measuring apparatus of FIG. 1 has been irradiated with light from the pattern surface side of the semiconductor device, the light may also be irradiated from the back side of the wafer. この場合、光源は赤外域での多波長成分光源が必要になる。 In this case, the light source is needed multi wavelength component light in the infrared region. [実施形態5]本実施形態は、本発明の研磨装置を用い半導体デバイスを製造する方法に関するものである。 [Embodiment 5] This embodiment relates to a method of manufacturing a semiconductor device using the polishing apparatus of the present invention.

【0038】図9は、半導体デバイス製造プロセスを示すフローチャートである。 [0038] FIG. 9 is a flowchart showing a semiconductor device manufacturing process. 半導体デバイス製造プロセスをスタートして、まずステップS200で、次に挙げるステップS201〜S204の中から適切な処理工程を選択する。 Switching on the semiconductor device manufacturing process, first, in step S200, to select the appropriate processing steps from the next mentioned steps S201 to S204. 選択に従って、ステップS201〜S204 According to the selection, step S201~S204
のいずれかに進む。 Proceed to one of the.

【0039】ステップS201はシリコンウェハの表面を酸化させる酸化工程である。 [0039] Step S201 is an oxidation process for oxidizing the surface of the silicon wafer. ステップS202はCV Step S202 is CV
D、等によりシリコンウェハ表面に絶縁膜を形成するC D, C of forming an insulating film on a silicon wafer surface by such
VD工程である。 It is a VD process. ステップS203はシリコンウェハ上に電極膜を蒸着、等の工程で形成する電極膜形成工程である。 Step S203 is deposited an electrode film on a silicon wafer, an electrode film forming step of forming in the process and the like. ステップS204はシリコンウェハにイオンを打ち込むイオン打ち込み工程である。 Step S204 is an ion injection process in which ions are injected into the silicon wafer.

【0040】CVD工程もしくは電極膜形成工程の後で、ステップS209に進み、CMP工程を行うかどうかを判断する。 [0040] After the CVD process or electrode film forming step, the process proceeds to step S209, it is determined whether to perform CMP process. 行わない場合はステップS206に進むが、行う場合はステップS205に進む。 Although the case of not performing the process proceeds to step S206, in the case of performing the process proceeds to step S205. ステップS2 Step S2
05はCMP工程であり、この工程では、本発明の研磨装置を用いて層間絶縁膜の平坦化や、半導体デバイスの表面の金属膜の研磨によるダマシン(damascene )の形成等が行われる。 05 is a CMP step, In this step, planarization and the interlayer insulating film using a polishing apparatus of the present invention, such as formation of a damascene by the polishing of the metal film of a semiconductor device surface (damascene) is performed.

【0041】CMP工程または酸化工程の後でステップS206に進む。 The process proceeds to step S206 after the CMP process or oxidation process. ステップS206はフォトリソ工程である。 Step S206 is a photolithographic process. フォトリソ工程では、シリコンウェハへのレジストの塗布、露光装置を用いた露光によるシリコンウェハへの回路パターンの焼き付け、露光したシリコンウェハの現像が行われる。 The photolithographic process, applying a resist to the silicon wafer, baking of the circuit pattern to the silicon wafer by exposure using an exposure apparatus, developing the exposed silicon wafer is performed. さらに次のステップS207は、現像したレジスト像以外の部分をエッチングにより削り、 Furthermore the next step S207, scraping portions other than the developed resist image are etched,
その後レジスト剥離を行い、エッチングが済んで不要となったレジストを取り除くエッチング工程である。 Then perform resist removal, an etching step of removing unnecessary resist after etching.

【0042】次にステップS208で必要な全工程が完了したかを判断し、完了していなければステップS20 [0042] Then if the determined overall process required is completed in step S208, if not completed Step S20
0に戻り、説明済のステップを繰り返して、シリコンウエハ上に回路パターンが形成される。 Returning to 0, repeat the description already processes, circuit patterns on a silicon wafer is formed. ステップS208 Step S208
で全工程が完了したと判断されればエンドとなる。 In the end if it is determined that the entire process is completed.

【0043】本発明に係る半導体デバイス製造方法では、CMP工程において本発明に係る研磨装置を用いているため、CMP工程での研磨終了点の検知精度が向上することにより、CMP工程での歩留まりが向上する。 [0043] In the semiconductor device manufacturing method according to the present invention, the use of the polishing apparatus according to the present invention in the CMP process, by improving the detection accuracy of the polishing end point of the CMP process, the yield of the CMP process improves.
これにより、従来の半導体デバイス製造方法に比べて低コストで半導体デバイスを製造することができるという効果がある。 Thus, there is an effect that it is possible to manufacture a semiconductor device at a lower cost than in conventional semiconductor device manufacturing methods.

【0044】なお、本発明の研磨装置によるCMP工程は、図9に示した半導体デバイス製造プロセスの他の半導体デバイス製造プロセスにも用いることが出来る。 [0044] Incidentally, CMP process by the polishing apparatus of the present invention can also be used for other semiconductor device manufacturing process of a semiconductor device manufacturing process shown in FIG.

【0045】本発明に係る半導体デバイスは、本発明に係る半導体デバイス製造方法により製造される。 The semiconductor device according to the present invention is manufactured by the semiconductor device manufacturing method according to the present invention. これにより、従来の半導体デバイス製造方法に比べて高品質且つ低コストで半導体デバイスを製造することができ、半導体デバイスの製造原価を低下することができるという効果がある。 This makes it possible to manufacture a semiconductor device with high quality and low cost in comparison with conventional semiconductor device manufacturing method, there is an effect that it is possible to reduce the manufacturing cost of the semiconductor device.

【0046】以上、実施形態1、2、3、4、5の発明を図を用いて説明したが、本発明の範囲はこれらの図に示される範囲に限定されるものではなく、また、本発明は、以上の説明に限定されるものでもない。 The invention has been described with reference to figure invention embodiments 1, 2, 3, 4, the scope of the present invention is not limited to the range indicated in these figures, also, the invention, nor is it intended to be limited to the above description.

【0047】 [0047]

【実施例】[実施例1]図10にパターン断面の概要を示した、6インチウェハ上にTEOS層としてSiO 2 EXAMPLES Example 1 outlines the pattern cross section in FIG. 10, SiO 2 as a TEOS layer on a 6-inch wafer
層43をプラズマCVDで約600nmの厚みに形成し、その上にバリア層としてTaN層42を約40nm The layers 43 are formed to a thickness of about 600nm by plasma CVD, about 40nm to TaN layer 42 as a barrier layer thereon
の厚みに形成してパターン加工後に、Cu層41を約1 Formation to later patterned in thickness, the Cu layer 41 about 1
μm形成した銅TEGウェハを図1に示すようなCMP The μm formed copper TEG wafer as shown in FIG. 1 CMP
研磨装置によって研磨し、その研磨終了点検出を試みた。 Polished by the polishing apparatus was attempted the polishing endpoint detection. 図1のCMP研磨装置にて、7はキセノンランプであり、キセノンランプ7から放射した光は、デバイスウェハ2上に約3mmφのスポット径で照射された。 By CMP polishing apparatus of FIG. 1, 7 is a xenon lamp, light emitted from the xenon lamp 7 was irradiated with a spot size of about 3mmφ on device wafer 2. 研磨中にウェハ2は回転しているので、反射信号光の取得時間を長くすることにより3mmφのスポットをウェハ上に20mm走査することにより、スポットの照射領域を実質的に3×20に調整して測定を行った。 Since the wafer 2 during polishing is rotating, by 20mm scanning spot 3mmφ on the wafer by increasing the acquisition time of the reflected signal light is adjusted to substantially 3 × 20 the irradiated area of ​​the spot It was measured Te. 6は光ダイオード型のリニアセンサ(256素子) であり、計測波長範囲は約400nm から800nm であった。 6 is a photodiode linear sensor (256 elements), the measurement wavelength range was 800nm ​​approximately 400 nm.

【0048】被測定ウェハとしては、図10に示すように、シリコン基板40上にTEOS層としてSiO 2層43をプラズマCVDで約500nmの厚みに形成し、 [0048] As the measured wafer, as shown in FIG. 10, the SiO 2 layer 43 was formed to a thickness of about 500nm by plasma CVD as a TEOS layer on the silicon substrate 40,
その上にバリア層としてTaN層42を約50nmの厚みに形成してパターン加工後に、Cu層41を約1μm Moreover the TaN layer 42 after forming to patterning to a thickness of about 50nm as a barrier layer, about 1μm of Cu layer 41
形成したものを用いた。 It was used as the formation.

【0049】研磨は、研磨パッド3として無発泡の硬質の研磨パッドを、そして研磨剤( スラリー) としては、 The polishing, the polishing pad of the rigid non-foamed as a polishing pad 3, and a polishing agent (slurry),
アルミナ粒を酸溶媒に分散させたものを用い、約100g/c Using a dispersion of alumina particles in an acid solvent, about 100 g / c
m 2の研磨圧で行った。 It was performed with a polishing pressure of m 2.

【0050】このときの信号波形(分光波形)の変化の様子を図3に示す。 [0050] showing changes of a signal waveform obtained in this (spectral waveform) in FIG. 図3に於いて、実線は研磨以前の信号波形であり、破線は研磨終了点の信号波形であり、実測信号波形( 分光波形) は、研磨前の状態である実線の波形から研磨終了点である破線の波形にまで変化した。 In Figure 3, the solid line is the polishing previous signal waveform, the dashed line is a signal waveform of the polishing endpoint, measured signal waveform (spectral waveform) is a polishing endpoint from the solid line waveform in the state before polishing It has changed to a certain dashed waveform.
この研磨終了点における膜厚に対応する信号波形は、事前に参照波形として取得されているので、図4に示すように、研磨終了点に於ける信号波形と事前に取得された所定の数の研磨状態即ち膜厚に対応する参照波形との間の相互相関係数の計算により、研磨終了点を判断することができた。 Signal waveform corresponding to the film thickness at the polishing end point, because it is obtained as pre-reference waveform, as shown in FIG. 4, a predetermined number of obtained pre and in signal waveform polishing endpoint the cross correlation coefficient calculation between the polishing state i.e. reference waveform corresponding to the film thickness, it was possible to determine the polishing endpoint. このようにして判定された研磨終了点の信号の例を図4に示す。 An example of the thus determined signal polishing end point in FIG. 図4に於いて、参照波形は事前測定で得られたものであり、このときの相互相関係数は0.752であった。 In FIG. 4, the reference waveform are those obtained by preliminary measurement, the cross-correlation coefficient at this time was 0.752. 相互相関係数の計算には式1の正規化線型相関を用いた。 The cross correlation coefficient calculation using normalized linear correlation equation 1.

【0051】[実施例2]実施例1と同様の計測を行いながら、本例では、平滑化処理後の波形に対して正規化線型相関を計算し、判定パラメータとすることを行ったところ、図5に示したように、実測信号波形、参照波形、どちらの信号も原信号に存在する雑音による影響が低減され、その結果、相互相関係数が0.752から0.836へと大幅に高まり、一層高精度な測定が可能になることが確認された。 [0051] while same measurement as Example 2 Example 1, in this example, was subjected to the normalized linear correlation calculated for waveform after smoothing processing, the determination parameter, as shown in FIG. 5, the measured signal waveform, the reference waveform, which signal also is reduced the influence of noise present in the original signal, as a result, the cross-correlation coefficient from 0.752 significantly to 0.836 growing, was confirmed to be possible even highly accurate measurement.

【0052】[実施例3]実施例1と同様の計測を行いながら、本実施例では、1次微分を計算した結果の波形に対して相互相関を計算し、判定パラメータとした結果を図6に示す。 [0052] while same measurement as Example 3 Example 1, in this embodiment, FIG. The results of cross-correlation is calculated, and a determination parameter for the first derivative was calculated result waveform 6 to show. 図6は、横軸を波長、縦軸を分光波形の波長による微分係数とした微分波形であり、実線は実測値に対するものであり、点線は参照値に対するものである。 6, the wavelength on the horizontal axis, the vertical axis is the differential waveform obtained by the differential coefficient by the wavelength of the spectral waveform, a solid line is for the measured values, the dotted line is for reference values. このように微分波形とすることにより、波形が波長に対して急激に変化するようになり、ピークや谷が明確になった。 By this way a differential waveform, the waveform is now rapidly changes with respect to the wavelength became clear peaks and valleys. その結果、正規化線型相関係数が実施例2の場合の0.836から0.895へと更に大幅に高まり、より正確なマッチングが可能であるために、一層高精度な測定が可能になることが確認された。 As a result, further enhanced greatly normalized linear correlation coefficient to 0.836 from 0.895 in the case of Example 2, in order to be more accurate matching allows more accurate measurement it has been confirmed.

【0053】[実施例4]実施例1の測定と、同様の計測を行いながら、分光波形信号をFFT(高速フーリエ変換)によりフーリエ変換した結果の振幅スペクトルに対して、相互相関を計算し、判定パラメータとすることを行った。 [0053] the measurement of Example 4 Example 1, while the same measurement, the amplitude spectrum of the result of Fourier transform of the spectral waveform signal by FFT (fast Fourier transform), and calculating the cross-correlation, We went to a determination parameter. この方法を図5の分光波形に対して適用した例を図7に示す。 An example of application against spectral waveform of FIG. 5 the method in FIG. 図7にて実線は実測分光波形のスペクトル波形(実測信号波形)を、点線は参照分光波形のスペクトル波形(参照波形)を示す。 Solid line in FIG. 7 is the spectrum waveform (measured signal waveform) of the measured spectral waveform, the dotted line shows the spectrum waveform of the reference spectral waveform (reference waveform). この実施形態では、 In this embodiment,
波形の変化が各周波数における振幅成分の変化としてあらわれ、正規化線型相関係数が0.912と更に高まり、より正確なマッチングが可能であるために、一層高精度な測定が可能となる可能性があることが確認できた。 Appears a change in the waveform as a variation of the amplitude component at each frequency, the normalized linear correlation coefficient is further increased and 0.912, in order to be more accurate matching, may become possible to more accurate measurement it was confirmed that there is.

【0054】[実施例5]波長範囲を、実施例1の場合の500nmから800nmの範囲から、500nmから700nmの範囲に限定した以外は実施例1と同様の測定を行いながら限定した相互相関係数を計算し、判定パラメータとすることを行った。 [0054] [Example 5] wavelength range, the range 500nm from 800nm ​​for Example 1, the cross-correlation, except for limited from 500nm in the range of 700nm is limited while the same measurements as in Example 1 calculate the number, it went to a determination parameter. この方法の一例を図8 Figure An example of this method 8
に示す。 To show. 図8は、図5と同じ分光波形であるが、図5とは相互相関係数を計算する波長範囲を限定した点で異なる。 Figure 8 is the same spectral waveform as FIG. 5, the Figure 5 differs in that for limiting the wavelength range to compute the cross-correlation coefficient. 本方法に依れば、図5の場合の0.836から0. According to the present method, 0 to 0.836 in the case of FIG.
863へと正規化線型相関係数を高めることができ、より正確なマッチングが可能であるために、一層高精度な測定が可能となることが確認できた。 To 863 can increase the normalized linear correlation coefficient, in order to be more accurate matching, it was confirmed that it is possible to more accurate measurements.

【0055】 [0055]

【発明の効果】[請求項1]本発明では、雑音除去処理または規格化が行われた実測波形と参照波形との相互相関を用いて測定するので、スラリーの変動等で信号にノイズがあるばあいでも、信号レベル自体が変化する場合でも、相互相関係数が高まり、より正確なマッチングが可能であるので、測定を高精度に行うことができる。 [Effect of the Invention] In the Claim 1] The present invention, since measured using a cross-correlation between the measured waveform and the reference waveform noise removing or standardization has been performed, there is a noise signal with a slurry of fluctuation even if, even when the signal level itself changes, increased cross-correlation coefficient, so it is possible to more accurate matching, it is possible to measure with high accuracy. [請求項2]本発明では、信号波形及び参照波形として、分光波形の1次以上の微分波形を用いているので、 In the second aspect the present invention, as a signal waveform and a reference waveform, because of the use of first-order or more differential waveform of the spectral waveform,
波長に対して緩やかに変化する分光波形に対しても、相互相関係数を高め、より正確なマッチングを行うことが出来るので、測定を高精度で行うことができる。 Even for slowly changing spectral waveform to the wavelength, increasing the cross-correlation coefficient, it is possible to perform more accurate matching, measurement can be performed with high accuracy. [請求項3]本発明では、信号波形及び参照波形として、分光波形をフーリエ変化したスペクトル波形を用いるので、ウェハパターンからの分光信号が波長に対して大きく変化しない場合や明確な山や谷を示さない場合、 In the third aspect the present invention, as a signal waveform and a reference waveform, since use of the spectrum waveform of the spectral waveform by Fourier changes, or if clear peaks and valleys spectral signals from the wafer pattern does not change significantly with respect to the wavelength If you do not show,
更にはウェハパターンからの反射率が低い場合やウェハパターンの金属層部分の面積比率が大きい場合のように薄膜干渉や回折による成分が小さくフリンジが出にくい場合に有効である。 Further is effective if it is difficult out fringe small component due to thin film interference or diffraction as in the area ratio of the metal layer portion of the case and the wafer pattern reflectance is low is large from the wafer pattern. [請求項4]本発明では、相関をより強く判別する波長範囲を一つまたは複数選択して限定するので、相互相関係数を高め、より正確なマッチングを行うことが出来るので、測定を高精度で行うことができる。 In the fourth aspect the present invention, since limiting the wavelength range to determine more strongly correlated one or more selected to enhance the cross-correlation coefficient, the more accurate matching can be performed, high measurement it can be carried out in accuracy. [請求項5]本発明では、何れか二つ以上を併用して測定を行うので、各方法の結果から総合的に測定することができので、誤測定を行う危険が低い。 In the fifth aspect the present invention, since the measurement in combination of any two or more, since it is possible to comprehensively determined from the results of each method, a low risk of performing erroneous measurements. [請求項6]本発明の測定装置は、請求項1〜5から選ばれた一つ以上の方法で測定を行うので、膜厚測定精度が高い。 Measuring device [Claim 6] The present invention, since the measurement at one or more methods selected from claims 1 to 5, a high film thickness measurement accuracy. [請求項7]本発明の測定装置は、請求項1〜5から選ばれた一つ以上の方法で測定を行うので、工程状態や残膜厚の測定精度が高い。 Measuring device [Claim 7] The present invention, since the measurement at one or more methods selected from claims 1 to 5, a high measurement accuracy of the process conditions and the remaining film thickness. [請求項8]本発明の研磨装置は、請求項7記載の測定装置を具えるので、デバイスパターンを有するウェハを高精度に、または歩留り良く研磨できる。 Polishing apparatus [Claim 8] The present invention, therefore comprises a measuring apparatus according to claim 7, the wafer having a device pattern with high accuracy, or high yield can be polished. [請求項9]本発明では、請求項8記載の研磨装置により半導体デバイスを研磨するので、半導体デバイスを高品質にまたは安価にできる。 In the ninth aspect the present invention, since polishing a semiconductor device by polishing apparatus according to claim 8, can be a semiconductor device or inexpensive high quality.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の研磨装置の概要図である。 1 is a schematic view of a polishing apparatus of the present invention.

【図2】本発明の研磨装置に用いる測定装置の光学系の詳細図である。 2 is a detailed view of the optical system of the measuring device used in the polishing apparatus of the present invention.

【図3】研磨前と研磨終了点での信号波形変化を示す。 3 shows a signal waveform change in the polishing end point and before polishing.

【図4】実測値と参照値との間の相互相関関係を示す。 4 shows a cross-correlation between the measured value and the reference value.

【図5】平滑化による雑音除去処理後の、実測値と参照値との間の相互相関関係を示す。 [Figure 5] after the noise removal processing by the smoothing shows the cross correlation between the reference and measured values.

【図6】微分処理後の、実測値と参照値との間の相互相関関係を示す。 [Figure 6] after differentiation processing, showing a cross-correlation between the reference and measured values.

【図7】FFTにより振幅スペクトル化された、実測値と参照値との間の相互相関関係を示す。 [Figure 7] is amplitude spectrum by FFT, showing the cross-correlation between the reference and measured values.

【図8】波長範囲を限定した場合の、実測値と参照値との間の相互相関関係を示す。 [8] in the case of limiting the wavelength range, indicating a cross-correlation between the reference and measured values.

【図9】半導体デバイス製造プロセスの例のフロー図を示す。 9 shows a flow diagram of an example of a semiconductor device fabrication process.

【図10】実施例の被研磨ウェハのパターンの断面の概要図を示す。 10 shows an outline view of a cross section of the pattern to be polished wafers of Example.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 研磨ヘッド 2 基板(ウェハ) 3 研磨パッド 4 定盤 5 透光窓 6 受光部(リニアセンサ) 7 照射光源(キセノンランプ) 8 信号処理用コンピュータ 9 レンズ 10 測定装置の光学系 11 レンズ 12 ビームスプリッタ 13 レンズ 14 レンズ 15 ミラー 16 レンズ 17 ピンホール 18 レンズ 19 回折格子 20 測定装置 21 透明石英ガラス 30 研磨剤供給機構 31 研磨剤 32 揺動運動を示す ω H研磨ヘッドの回転運動を示す ω T定盤の回転運動を示す 40 シリコン基板 41 Cu層 42 TaN層 43 TEOS層(SiO 2層) 1 polishing head 2 the substrate (wafer) 3 polishing pad 4 platen 5 translucent window 6 light receiving portion (linear sensor) 7 irradiation light source (xenon lamp) 8 optical system 11 lenses signal processing computer 9 lens 10 measuring device 12 beam splitter omega T platen showing the rotational movement of omega H polishing head showing a 13 lens 14 lens 15 mirror 16 lens 17 pin hole 18 lens 19 grating 20 measuring device 21 transparent quartz glass 30 polishing agent supply mechanism 31 abrasive 32 oscillating motion 40 a silicon substrate 41 Cu layer 42 TaN layer 43 TEOS layer showing the rotational motion of the (SiO 2 layer)

フロントページの続き Fターム(参考) 2F065 AA00 AA30 AA49 BB02 BB03 BB22 BB23 CC00 CC19 CC31 CC32 DD03 DD04 DD06 DD12 FF42 GG02 GG03 GG24 HH04 JJ02 JJ18 JJ25 LL04 LL12 LL28 LL30 LL42 LL46 PP13 PP22 QQ16 QQ18 QQ27 QQ41 RR03 3C034 AA13 BB93 CA05 CA22 CB03 DD20 3C058 AA07 AC02 BA09 BB09 BC02 CA01 CB01 CB03 DA12 4M106 AA01 BA04 CA27 CA48 DH03 DH55 DH57 DJ13 DJ17 DJ18 DJ20 Front page of the continued F-term (reference) 2F065 AA00 AA30 AA49 BB02 BB03 BB22 BB23 CC00 CC19 CC31 CC32 DD03 DD04 DD06 DD12 FF42 GG02 GG03 GG24 HH04 JJ02 JJ18 JJ25 LL04 LL12 LL28 LL30 LL42 LL46 PP13 PP22 QQ16 QQ18 QQ27 QQ41 RR03 3C034 AA13 BB93 CA05 CA22 CB03 DD20 3C058 AA07 AC02 BA09 BB09 BC02 CA01 CB01 CB03 DA12 4M106 AA01 BA04 CA27 CA48 DH03 DH55 DH57 DJ13 DJ17 DJ18 DJ20

Claims (9)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】基板面に光を照射し、そこから反射または透過する信号光から得られる信号波形と、参照波形との一致度に基づいて前記基板面の表面状態を測定する方法であり、前記信号波形が、雑音除去処理または規格化が行われた分光波形であり、前記参照波形が、別途測定または計算から得られる一つまたは複数の分光波形であり、前記一致度が、相互相関を用いて計算されることを特徴とする測定方法。 1. A light is irradiated to the substrate surface, a method of measuring a signal waveform obtained from the reflected or transmitted signal light, the surface condition of the substrate surface based on degree of coincidence between the reference waveform therefrom, the signal waveform is a spectral waveform noise removing or normalized is performed, the reference waveform is one or more spectral waveform obtained from separately measured or calculated, the degree of coincidence, the cross-correlation measurement method characterized in that it is calculated using.
  2. 【請求項2】基板面に光を照射し、そこから反射または透過する信号光から得られる信号波形と、参照波形との一致度に基づいて前記基板面の表面状態を測定する方法であり、前記信号波形が、前記信号光の分光波形の1次以上の微分波形であり、前記参照波形が、一つ以上の、 Wherein the light is irradiated to the substrate surface, a method of measuring a signal waveform obtained from the reflected or transmitted signal light, the surface condition of the substrate surface based on degree of coincidence between the reference waveform therefrom, the signal waveform is a first order or more differential waveform of the spectral waveform of the signal light, the reference waveform, one or more,
    別途測定または計算から得られる分光波形の1次以上の微分波形であることを特徴とする測定方法。 Measuring method which is a first order or more differential waveform of the spectral waveform obtained from separately measured or calculated.
  3. 【請求項3】基板面に光を照射し、そこから反射または透過する信号光から得られる信号波形と、参照波形との一致度に基づいて前記基板面の表面状態を測定する方法であり、前記信号波形が、前記信号光の分光波形をフーリエ変換した周波数波形であり、前記参照波形が、一つ以上の、別途測定または計算から得られる分光波形をフーリエ変換した周波数波形であることを特徴とする測定方法。 3. A light irradiating the substrate surface, a method of measuring a signal waveform obtained from the reflected or transmitted signal light, the surface condition of the substrate surface based on degree of coincidence between the reference waveform therefrom, wherein the signal waveform is a frequency waveform of the spectral waveform obtained by Fourier transform of the signal beam, the reference waveform, one or more, the frequency waveform obtained by Fourier transform of the spectral waveform obtained from separately measured or calculated measurement method to.
  4. 【請求項4】前記一致度が、限定された一つあるいは複数の波長範囲において計算されることを特徴とする請求項1〜3何れか1項記載の測定方法。 Wherein said degree of coincidence, limited one or more measuring method of claims 1 to 3 any one of claims, characterized in that calculated in the wavelength range.
  5. 【請求項5】請求項1〜4の測定方法から選ばれた二つ以上を併用して測定を行うことを特徴とする測定方法。 5. A method for measuring and performing measurements in combination of two or more selected from the measurement method of claims 1-4.
  6. 【請求項6】前記基板面の表面状態の測定が、基板上の絶縁膜あるいは金属電極膜の膜厚の測定であり、請求項1〜5の測定方法から選ばれた一つの測定方法を用いて測定を行うことを特徴とする測定装置。 Is 6. The measurement of the surface condition of the substrate surface, is a measure of the thickness of the insulating film or a metal electrode film on a substrate, using a single measurement method selected from the measuring method of claims 1 to 5 measuring apparatus characterized by performing measurements Te.
  7. 【請求項7】前記基板面の表面状態の測定が、基板上への絶縁膜もしくは金属電極膜の成膜工程、または前記膜の除去工程における膜厚の測定または工程終了点の測定であり、請求項1〜5の測定方法から選ばれた一つの測定方法を用いて測定を行うことを特徴とする測定装置。 7. The measurement of the surface condition of the substrate surface is a measure of the insulating film or the step of forming the metal electrode film or film thickness measurement or process end point in the removal step of the film, on a substrate, measuring device characterized in that the measurement is conducted by the one measurement method selected from the measuring method of claims 1 to 5.
  8. 【請求項8】基板を保持する保持部と、研磨体と、請求項7記載の測定装置とを具え、前記基板と前記研磨体との間に研磨剤を介在させた状態で、前記基板と前記研磨体との間に荷重を加え、双方の間に相対運動を与えることにより基板を研磨する際に、膜厚の測定または研磨終了点の測定が可能なようにされたことを特徴とする研磨装置。 8. A holder for holding a substrate, and the polishing body, comprising a measuring device according to claim 7, in a state in which a polishing agent is interposed between the polishing body and the substrate, and the substrate wherein a load between the polishing body addition, when polishing a substrate by providing relative movement between both, characterized in that it is so capable of measuring the film thickness measurement or polishing endpoint polishing apparatus.
  9. 【請求項9】請求項8記載の研磨装置を用いて半導体ウェハの表面を研磨する段階を具えることを特徴とする半導体デバイス製造方法。 9. A semiconductor device manufacturing method characterized by comprising the step of polishing a surface of a semiconductor wafer using a polishing apparatus according to claim 8.
JP2000102944A 2000-04-05 2000-04-05 Surface condition measuring method and measuring device, polishing machine, and semiconductor device manufacturing method Pending JP2001287159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000102944A JP2001287159A (en) 2000-04-05 2000-04-05 Surface condition measuring method and measuring device, polishing machine, and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000102944A JP2001287159A (en) 2000-04-05 2000-04-05 Surface condition measuring method and measuring device, polishing machine, and semiconductor device manufacturing method

Publications (1)

Publication Number Publication Date
JP2001287159A true true JP2001287159A (en) 2001-10-16

Family

ID=18616720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000102944A Pending JP2001287159A (en) 2000-04-05 2000-04-05 Surface condition measuring method and measuring device, polishing machine, and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP2001287159A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058294A (en) * 2004-08-23 2006-03-02 Samsung Electronics Co Ltd Inspection method of pattern formed on substrate, and inspection apparatus for implementing same
WO2006126420A1 (en) * 2005-05-26 2006-11-30 Nikon Corporation Method for detecting polishing end in cmp polishing device, cmp polishing device, and semiconductor device manufacturing method
JP2007090511A (en) * 2005-09-05 2007-04-12 Mitsubishi Materials Corp Machining method and machining apparatus for cutting tool
WO2007024807A3 (en) * 2005-08-22 2007-07-12 Applied Materials Inc Apparatus and methods for spectrum based monitoring of chemical mechanical polishing
US7406394B2 (en) 2005-08-22 2008-07-29 Applied Materials, Inc. Spectra based endpointing for chemical mechanical polishing
US7409260B2 (en) 2005-08-22 2008-08-05 Applied Materials, Inc. Substrate thickness measuring during polishing
US7444198B2 (en) 2006-12-15 2008-10-28 Applied Materials, Inc. Determining physical property of substrate
JP2010016016A (en) * 2008-06-30 2010-01-21 Tokyo Seimitsu Co Ltd Method for detecting polishing end point and polishing apparatus
JP2010519771A (en) * 2007-02-23 2010-06-03 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Determination of the polishing end point using the spectrum
US7764377B2 (en) 2005-08-22 2010-07-27 Applied Materials, Inc. Spectrum based endpointing for chemical mechanical polishing
US7840375B2 (en) 2007-04-02 2010-11-23 Applied Materials, Inc. Methods and apparatus for generating a library of spectra
JP2011017553A (en) * 2009-07-07 2011-01-27 Fuji Xerox Co Ltd Detector and program
US7998358B2 (en) 2006-10-31 2011-08-16 Applied Materials, Inc. Peak-based endpointing for chemical mechanical polishing
JP2011205070A (en) * 2010-03-02 2011-10-13 Ebara Corp Method of monitoring polishing, polishing method, polishing monitoring apparatus, and polishing apparatus
WO2012019044A2 (en) * 2010-08-06 2012-02-09 Applied Materials, Inc. Techniques for matching measured spectra to reference spectra for in-situ optical monitoring
JP2012507146A (en) * 2008-10-27 2012-03-22 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Adaptability in the spectral monitoring of the substrate during processing
US8260446B2 (en) 2005-08-22 2012-09-04 Applied Materials, Inc. Spectrographic monitoring of a substrate during processing using index values
JP2012256912A (en) * 2005-08-22 2012-12-27 Applied Materials Inc Device and method for monitoring chemical and mechanical polishing according to spectrum
US8352061B2 (en) 2008-11-14 2013-01-08 Applied Materials, Inc. Semi-quantitative thickness determination
JP2013531227A (en) * 2010-05-18 2013-08-01 マーポス、ソチエタ、ペル、アツィオーニMarposs S.P.A. Optically methods for measuring and apparatus by the thickness of the object interferometry
JP2013541827A (en) * 2010-07-23 2013-11-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 2-dimensional tracking of spectral features for endpoint detection
KR101389532B1 (en) 2013-12-19 2014-04-25 주식회사 케이씨텍 Device of measuring wafer metal layer thickness in chemical mechanical polishing apparatus and method thereof
US8954186B2 (en) 2010-07-30 2015-02-10 Applied Materials, Inc. Selecting reference libraries for monitoring of multiple zones on a substrate
US8977379B2 (en) 2009-11-03 2015-03-10 Applied Materials, Inc. Endpoint method using peak location of spectra contour plots versus time
JP2017515307A (en) * 2014-04-30 2017-06-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Continuous characteristic tracking for endpoint detection

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058294A (en) * 2004-08-23 2006-03-02 Samsung Electronics Co Ltd Inspection method of pattern formed on substrate, and inspection apparatus for implementing same
WO2006126420A1 (en) * 2005-05-26 2006-11-30 Nikon Corporation Method for detecting polishing end in cmp polishing device, cmp polishing device, and semiconductor device manufacturing method
US7981309B2 (en) 2005-05-26 2011-07-19 Nikon Corporation Method for detecting polishing end in CMP polishing device, CMP polishing device, and semiconductor device manufacturing method
KR101361875B1 (en) * 2005-05-26 2014-02-12 가부시키가이샤 니콘 Method for detecting polishing end in cmp polishing device, cmp polishing device, and semiconductor device manufacturing method
US8088298B2 (en) 2005-08-22 2012-01-03 Applied Materials, Inc. Spectra based endpointing for chemical mechanical polishing
US7409260B2 (en) 2005-08-22 2008-08-05 Applied Materials, Inc. Substrate thickness measuring during polishing
US7406394B2 (en) 2005-08-22 2008-07-29 Applied Materials, Inc. Spectra based endpointing for chemical mechanical polishing
JP2009505847A (en) * 2005-08-22 2009-02-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Apparatus and method for monitoring based on the spectrum of the chemical mechanical polishing
US9117751B2 (en) 2005-08-22 2015-08-25 Applied Materials, Inc. Endpointing detection for chemical mechanical polishing based on spectrometry
JP2015079984A (en) * 2005-08-22 2015-04-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Apparatus and methods for spectrum based monitoring of chemical mechanical polishing
US8874250B2 (en) 2005-08-22 2014-10-28 Applied Materials, Inc. Spectrographic monitoring of a substrate during processing using index values
US7764377B2 (en) 2005-08-22 2010-07-27 Applied Materials, Inc. Spectrum based endpointing for chemical mechanical polishing
WO2007024807A3 (en) * 2005-08-22 2007-07-12 Applied Materials Inc Apparatus and methods for spectrum based monitoring of chemical mechanical polishing
US8554351B2 (en) 2005-08-22 2013-10-08 Applied Materials, Inc. Spectrographic monitoring of a substrate during processing using index values
US8518827B2 (en) 2005-08-22 2013-08-27 Applied Materials, Inc. Spectrum based endpointing for chemical mechanical polishing
JP2013048259A (en) * 2005-08-22 2013-03-07 Applied Materials Inc Apparatus and methods for spectrum based monitoring of chemical mechanical polishing
US9583405B2 (en) 2005-08-22 2017-02-28 Applied Materials, Inc. Endpointing detection for chemical mechanical polishing based on spectrometry
JP2012256911A (en) * 2005-08-22 2012-12-27 Applied Materials Inc Device and method for monitoring chemical and mechanical polishing according to spectrum
JP2012256912A (en) * 2005-08-22 2012-12-27 Applied Materials Inc Device and method for monitoring chemical and mechanical polishing according to spectrum
US8260446B2 (en) 2005-08-22 2012-09-04 Applied Materials, Inc. Spectrographic monitoring of a substrate during processing using index values
US7774086B2 (en) 2005-08-22 2010-08-10 Applied Materials, Inc. Substrate thickness measuring during polishing
US8815109B2 (en) 2005-08-22 2014-08-26 Applied Materials, Inc. Spectra based endpointing for chemical mechanical polishing
JP2007090511A (en) * 2005-09-05 2007-04-12 Mitsubishi Materials Corp Machining method and machining apparatus for cutting tool
US8591698B2 (en) 2006-10-31 2013-11-26 Applied Materials, Inc. Peak-based endpointing for chemical mechanical polishing
US9564377B2 (en) 2006-10-31 2017-02-07 Applied Materials, Inc. Peak-based endpointing for chemical mechanical polishing
US7998358B2 (en) 2006-10-31 2011-08-16 Applied Materials, Inc. Peak-based endpointing for chemical mechanical polishing
US9799578B2 (en) 2006-10-31 2017-10-24 Applied Materials, Inc. Peak-based endpointing for chemical mechanical polishing
US8014004B2 (en) 2006-12-15 2011-09-06 Applied Materials, Inc. Determining physical property of substrate
US7746485B2 (en) 2006-12-15 2010-06-29 Applied Materials, Inc. Determining physical property of substrate
US7444198B2 (en) 2006-12-15 2008-10-28 Applied Materials, Inc. Determining physical property of substrate
JP2010519771A (en) * 2007-02-23 2010-06-03 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Determination of the polishing end point using the spectrum
US8569174B2 (en) 2007-02-23 2013-10-29 Applied Materials, Inc. Using spectra to determine polishing endpoints
US9142466B2 (en) 2007-02-23 2015-09-22 Applied Materials, Inc. Using spectra to determine polishing endpoints
US7952708B2 (en) 2007-04-02 2011-05-31 Applied Materials, Inc. High throughput measurement system
US7840375B2 (en) 2007-04-02 2010-11-23 Applied Materials, Inc. Methods and apparatus for generating a library of spectra
JP2010016016A (en) * 2008-06-30 2010-01-21 Tokyo Seimitsu Co Ltd Method for detecting polishing end point and polishing apparatus
JP2012507146A (en) * 2008-10-27 2012-03-22 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Adaptability in the spectral monitoring of the substrate during processing
US8718810B2 (en) 2008-11-14 2014-05-06 Applied Materials, Inc. Semi-quantitative thickness determination
US8352061B2 (en) 2008-11-14 2013-01-08 Applied Materials, Inc. Semi-quantitative thickness determination
JP2011017553A (en) * 2009-07-07 2011-01-27 Fuji Xerox Co Ltd Detector and program
US8977379B2 (en) 2009-11-03 2015-03-10 Applied Materials, Inc. Endpoint method using peak location of spectra contour plots versus time
US9886026B2 (en) 2009-11-03 2018-02-06 Applied Materials, Inc. Endpoint method using peak location of spectra contour plots versus time
JP2011205070A (en) * 2010-03-02 2011-10-13 Ebara Corp Method of monitoring polishing, polishing method, polishing monitoring apparatus, and polishing apparatus
US9079283B2 (en) 2010-05-18 2015-07-14 Marposs Societa′ per Azioni Method and apparatus for optically measuring by interferometry the thickness of an object
JP2013531227A (en) * 2010-05-18 2013-08-01 マーポス、ソチエタ、ペル、アツィオーニMarposs S.P.A. Optically methods for measuring and apparatus by the thickness of the object interferometry
JP2013541827A (en) * 2010-07-23 2013-11-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 2-dimensional tracking of spectral features for endpoint detection
US8954186B2 (en) 2010-07-30 2015-02-10 Applied Materials, Inc. Selecting reference libraries for monitoring of multiple zones on a substrate
WO2012019044A3 (en) * 2010-08-06 2012-05-18 Applied Materials, Inc. Techniques for matching measured spectra to reference spectra for in-situ optical monitoring
CN103155110A (en) * 2010-08-06 2013-06-12 应用材料公司 Techniques for matching measured spectra to reference spectra for in-situ optical monitoring
WO2012019044A2 (en) * 2010-08-06 2012-02-09 Applied Materials, Inc. Techniques for matching measured spectra to reference spectra for in-situ optical monitoring
KR101389532B1 (en) 2013-12-19 2014-04-25 주식회사 케이씨텍 Device of measuring wafer metal layer thickness in chemical mechanical polishing apparatus and method thereof
JP2017515307A (en) * 2014-04-30 2017-06-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Continuous characteristic tracking for endpoint detection

Similar Documents

Publication Publication Date Title
US6623991B2 (en) Method of measuring meso-scale structures on wafers
US5499733A (en) Optical techniques of measuring endpoint during the processing of material layers in an optically hostile environment
US6004187A (en) Method and apparatus for measuring film thickness and film thickness distribution during polishing
US6676717B1 (en) Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
US6537133B1 (en) Method for in-situ endpoint detection for chemical mechanical polishing operations
US7097537B1 (en) Determination of position of sensor measurements during polishing
US20100093260A1 (en) Method of making diagram for use in selection of wavelength of light for polishing endpoint detection, method and apparatus for selecting wavelength of light for polishing endpoint detection, polishing endpoint detection method, polishing endpoint detection apparatus, and polishing monitoring method
US6719818B1 (en) Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
US5964643A (en) Apparatus and method for in-situ monitoring of chemical mechanical polishing operations
US7409260B2 (en) Substrate thickness measuring during polishing
EP0738561A1 (en) Apparatus and method for in-situ endpoint detection and monitoring for chemical mechanical polishing operations
US6426232B1 (en) Optical techniques of measuring endpoint during the processing of material layers in an optically hostile environment
US20070042675A1 (en) Spectrum based endpointing for chemical mechanical polishing
US20070039925A1 (en) Spectra based endpointing for chemical mechanical polishing
US7315382B2 (en) Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures
US6753972B1 (en) Thin film thickness measuring method and apparatus, and method and apparatus for manufacturing a thin film device using the same
US6664557B1 (en) In-situ detection of thin-metal interface using optical interference
EP1176631A1 (en) Method and apparatus for monitoring polishing state, polishing device, process wafer, semiconductor device, and method of manufacturing semiconductor device
US20080206993A1 (en) Using Spectra to Determine Polishing Endpoints
US6806948B2 (en) System and method of broad band optical end point detection for film change indication
US20090182528A1 (en) Analyzing surface structure using scanning interferometry
US5413941A (en) Optical end point detection methods in semiconductor planarizing polishing processes
US6897964B2 (en) Thickness measuring apparatus, thickness measuring method, and wet etching apparatus and wet etching method utilizing them
US20030022400A1 (en) Method and apparatus for measuring thickness of thin film and device manufacturing method using same
US20050057755A1 (en) Method of measuring meso-scale structures on wafers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407