JP2001281582A - Laser oscillation device - Google Patents

Laser oscillation device

Info

Publication number
JP2001281582A
JP2001281582A JP2000101051A JP2000101051A JP2001281582A JP 2001281582 A JP2001281582 A JP 2001281582A JP 2000101051 A JP2000101051 A JP 2000101051A JP 2000101051 A JP2000101051 A JP 2000101051A JP 2001281582 A JP2001281582 A JP 2001281582A
Authority
JP
Japan
Prior art keywords
laser beam
laser
beam diameter
mirror
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000101051A
Other languages
Japanese (ja)
Inventor
Hitoshi Motomiya
均 本宮
Satoshi Eguchi
聡 江口
Hiroyuki Hayashikawa
洋之 林川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000101051A priority Critical patent/JP2001281582A/en
Publication of JP2001281582A publication Critical patent/JP2001281582A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/705Beam measuring device

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser oscillation device with which a fixed beam diameter can always be obtained in a machining position. SOLUTION: The device is provided with a concave mirror 2a and convex mirror 2b with which a laser beam 4 made incident satisfies prescribed reflecting conditions after being reflected twice or more, mirror driving devices 3a, 3b capable of changing and holding the distance and each angle between the concave mirror 2a and the convex mirror 2b in the sate where reflecting conditions are satisfied, a reflecting mirror 9 provided with a plurality of minute through- holes 9a which are provided on laser beam routes and detects the diameters of the laser beams, a photosensor 10 to detect the light intensity of the laser beam made incident on each through-hole 9a, an output part 11 to calculate the diameter of the laser beam by the output and to output it as the diameter signal of the laser beam, and a controller 6 to control the mirror driving devices 3a, 3b to obtain the preset value of the detected diameter of the laser beam.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ加工装置に
おいて、加工位置でのビーム径を常に一定に制御する事
により、常に安定した高品質な加工を提供するレーザ発
振装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser oscillating apparatus which always provides a stable and high quality processing by controlling a beam diameter at a processing position to be constant in a laser processing apparatus.

【0002】[0002]

【従来の技術】レーザ加工装置では、レーザ発振器から
取出されたレーザビームは、数枚の反射ミラーを介して
加工位置まで伝送され、加工ヘッド内に設けられた集光
レンズで一定の集光スポット径に集光される。集光され
たレーザビームは被加工材に照射され、レーザ加工が行
われる。
2. Description of the Related Art In a laser processing apparatus, a laser beam taken out of a laser oscillator is transmitted to a processing position via several reflection mirrors, and is condensed by a converging lens provided in a processing head. Focused on diameter. The condensed laser beam is irradiated on the workpiece to perform laser processing.

【0003】レーザ加工の加工品質は、レーザビームの
集光スポット径に大きく依存し、常にこの集光スポット
径を一定に保つことが、安定したレーザ加工を行う上で
必須となる。
[0003] The processing quality of laser processing largely depends on the diameter of the focused spot of the laser beam, and it is essential to keep the diameter of the focused spot constant for stable laser processing.

【0004】集光スポット径は、集光レンズに入射する
ビーム径、すなわち加工位置でのビーム径によって決ま
るため、もし加工位置でのビーム径が変化すると、集光
スポット径も変化し、加工品質が低下してしまう。よっ
て安定したレーザ加工を行うためには、常に加工位置で
のビーム径を一定に保つ必要がある。
Since the diameter of the focused spot is determined by the diameter of the beam incident on the focusing lens, that is, the beam diameter at the processing position, if the beam diameter at the processing position changes, the diameter of the focused spot also changes, and the processing quality increases. Will decrease. Therefore, in order to perform stable laser processing, it is necessary to always keep the beam diameter at the processing position constant.

【0005】レーザ発振器から取出されたレーザビーム
は、一定の発散角を持っているため、光路長が変わる
と、加工位置でのビーム径が変わってくる。光路長可変
タイプのレーザ加工装置においては、加工位置によっ
て、レーザ発振器からレーザ加工ヘツドまでの光路長が
変化するため、それに伴い加工位置でのビーム径が変化
し、加工性能が変化してしまうという問題がある。よっ
て光路長が変わっても加工位置でのビーム径が一定にな
るように、レーザビーム経路にビームコリメーションの
ための凹凸レンズの組み合わせや凹凸面鏡の組み合わせ
を挿入するという方法が従来手法として用いられてい
る。
[0005] Since the laser beam extracted from the laser oscillator has a constant divergence angle, if the optical path length changes, the beam diameter at the processing position changes. In an optical path length variable type laser processing device, the optical path length from the laser oscillator to the laser processing head changes depending on the processing position, and accordingly, the beam diameter at the processing position changes, and the processing performance changes. There's a problem. Therefore, a method of inserting a combination of concave and convex lenses and a combination of concave and convex mirrors for beam collimation into the laser beam path so that the beam diameter at the processing position is constant even if the optical path length changes has been used as a conventional method. I have.

【0006】[0006]

【発明が解決しようとする課題】しかし実際にはビーム
のコリメーションを行っても完全にビーム径を一定にす
ることは極めて困難であり、加工位置による加工品質の
変化を完全に抑えることは出来ていない。
However, in practice, it is extremely difficult to completely keep the beam diameter constant even if the beam is collimated, and a change in the processing quality due to the processing position can be completely suppressed. Absent.

【0007】これを解決するひとつの手法として、加工
位置が変わっても光路長変化が無いような光路長一定タ
イプのレーザ加工装置も用いられている。しかしこのタ
イプのレーザ加工装置においては、構造が複雑になる事
より、コスト面また信頼性の面から問題が多く、光路長
可変タイプにおいて、完全に加工位置でのビーム径を一
定にする手法が望まれていた。
As one method for solving this problem, a laser processing apparatus of a fixed optical path length type, which does not change the optical path length even when the processing position changes, has been used. However, this type of laser processing equipment has many problems in terms of cost and reliability due to its complicated structure. For the variable optical path length type, a method of completely keeping the beam diameter at the processing position constant is required. Was desired.

【0008】また光路長可変タイプ、および光路長一定
タイプの共通の問題として、レーザ発振器より取り出さ
れるレーザビーム径自体の経時変化の問題がある。レー
ザ発振器の共振系を構成しているミラーのうち、レーザ
ビームを取り出す出力鏡の大気側は、常に大気中のごみ
や粉塵などにさらされているため、次第に汚れが付着
し、そのことによる熱レンズ効果により、経時にレーザ
ビームの発散角が変化し、加工位置でのビーム径が小さ
くなってしまう。
As a common problem of the variable optical path length type and the fixed optical path length type, there is a problem of the temporal change of the diameter of the laser beam itself extracted from the laser oscillator. Of the mirrors that make up the resonance system of the laser oscillator, the air side of the output mirror that extracts the laser beam is constantly exposed to dirt and dust in the atmosphere, so that dirt gradually adheres to it and the resulting heat Due to the lens effect, the divergence angle of the laser beam changes over time, and the beam diameter at the processing position decreases.

【0009】これらの問題を解決するための手法とし
て、例えば特開平1−271087号に示す構成のよう
に、レーザ発振器とレーザビームを集光させる集光レン
ズとのレーザビーム経路途中に設けたセンサによりレー
ザビームの径を検知し、そのセンサとレーザ発振器との
間に設けられたコリメータを駆動装置により動かし、常
にレーザビームの径が一定になるように制御するという
アイデアも提案されている。しかしこのアイデア自体は
公知の事実の範疇を越えるものではなく、むしろこれを
実現するための具体手法が求められていた。
As a technique for solving these problems, for example, a sensor provided in the middle of a laser beam path between a laser oscillator and a condensing lens for condensing a laser beam as disclosed in Japanese Patent Application Laid-Open No. 1-271087. There is also proposed an idea of detecting the diameter of a laser beam by using the method, and moving a collimator provided between the sensor and the laser oscillator by a driving device so as to always control the diameter of the laser beam to be constant. However, the idea itself does not go beyond the category of known facts, but rather, a concrete method for realizing it was required.

【0010】本発明は上述のごとき問題に鑑みてなされ
たものであり、レーザ発振器とレーザビームを集光させ
る集光レンズとのレーザビーム経路途中に設けたセンサ
によりレーザビームの径を検知し、そのセンサとレーザ
発振器との間に設けられたコリメータを駆動装置により
動かし、レーザビーム品質を低下することなく、常にレ
ーザビームの径が一定になるように制御することができ
るレーザ発振装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and a laser beam diameter is detected by a sensor provided in a laser beam path between a laser oscillator and a condenser lens for condensing a laser beam. Provided is a laser oscillation device capable of moving a collimator provided between the sensor and a laser oscillator by a driving device and controlling the diameter of the laser beam to be always constant without deteriorating the laser beam quality. The purpose is to:

【0011】[0011]

【課題を解決するための手段】請求項1記載のレーザ発
振装置は、入射したレーザビームが2回以上反射された
後、入射方向に対して平行移動した位置に、入射方向と
同方向に出射されるような反射条件を満たすように、互
いに向かい合わせて配置された少なくとも一対の反射光
学系と、前記反射条件を満たした状態で前記一対の反射
光学系間の距離および各角度を変化させるミラー駆動装
置と、レーザビーム経路上に設けられた反射鏡を有しこ
の反射鏡の背面に位置して前記反射鏡に入射する光を検
知する光センサを有してレーザビーム径を検出するレー
ザビーム径検出装置と、前記レーザビーム径検出装置に
より検出したレーザビーム径が予め設定された値となる
ように前記ミラー駆動装置を制御する制御装置とを備え
たものである。
According to a first aspect of the present invention, there is provided a laser oscillating device, wherein an incident laser beam is reflected at least two times and then emitted in a direction parallel to the incident direction in the same direction as the incident direction. And at least a pair of reflecting optical systems arranged so as to face each other so as to satisfy the reflecting condition, and a mirror that changes the distance and each angle between the pair of reflecting optical systems in a state where the reflecting condition is satisfied. A laser beam having a driving device and a reflecting mirror provided on a laser beam path and having an optical sensor located on the back of the reflecting mirror and detecting light incident on the reflecting mirror, and detecting a laser beam diameter A diameter detection device; and a control device for controlling the mirror driving device such that the laser beam diameter detected by the laser beam diameter detection device has a preset value.

【0012】請求項1記載のレーザ発振装置によれば、
レーザビーム径を常時監視し、それに基づき加工位置で
のビーム径を常に一定に制御する事ができ、かつ反射光
学系を有するコリメーション部での収差の発生を常に最
小に抑える事が出来るため、光路長の変化や、経時的な
レーザ発振器のビーム径の変化などの外乱要素に依ら
ず、光センサによってレーザビーム品質を大きく低下す
ることもなく、常に加工位置にて一定のビーム径を得る
事が出来、長期に渡って高品質なレーザ加工を提供する
ことが出来る。
According to the laser oscillation device of the first aspect,
Since the laser beam diameter is constantly monitored, the beam diameter at the processing position can be constantly controlled based on the laser beam diameter, and the occurrence of aberration in the collimation section having a reflective optical system can always be minimized. Irrespective of disturbance factors such as a change in length or a change in the beam diameter of the laser oscillator over time, a constant beam diameter can always be obtained at the processing position without significantly lowering the laser beam quality by the optical sensor. And high-quality laser processing can be provided over a long period of time.

【0013】請求項2記載のレーザ発振装置は、請求項
1において、反射鏡が、複数個の微細な貫通穴を設け、
複数の光センサは各貫通穴に入射したレーザ光の光強度
を検出し、レーザ径検出装置は前記各光センサの出力よ
りレーザビーム径を算出しレーザビーム径信号として出
力する出力部を有するものである。
According to a second aspect of the present invention, in the first aspect, the reflecting mirror is provided with a plurality of fine through holes.
A plurality of optical sensors detect the light intensity of the laser light incident on each through-hole, and the laser diameter detecting device has an output section for calculating a laser beam diameter from the output of each optical sensor and outputting it as a laser beam diameter signal. It is.

【0014】請求項2記載のレーザ発振装置によれば、
請求項1と同様な効果がある。
According to the laser oscillation device of the second aspect,
This has the same effect as the first aspect.

【0015】請求項3記載のレーザ発振装置は、請求項
1において、反射鏡が、複数個の微細な貫通穴を設け、
光センサは各貫通穴に入射したレーザ光の光強度を検出
するものであり、前記レーザビーム径検出装置は前記光
センサを前記各貫通穴に渡って走査するための走査装置
と、前記光センサの出力よりレーザビーム径を算出しレ
ーザビーム径信号として出力する出力部とを有するもの
である。
According to a third aspect of the present invention, in the first aspect, the reflecting mirror is provided with a plurality of fine through holes.
The optical sensor is for detecting the light intensity of the laser beam incident on each through hole, and the laser beam diameter detecting device is a scanning device for scanning the optical sensor across each of the through holes, and the optical sensor And an output unit for calculating a laser beam diameter from the output of (1) and outputting it as a laser beam diameter signal.

【0016】請求項3記載のレーザ発振装置によれば、
請求項1と同様な効果がある。
According to the laser oscillation device of the third aspect,
This has the same effect as the first aspect.

【0017】[0017]

【発明の実施の形態】以下に本発明の実施の形態を図面
によって説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は本発明の第1の実施の形態であり請
求項1及び請求項2に関するレーザ発振装置の構成図で
ある。
FIG. 1 is a block diagram of a laser oscillation device according to a first embodiment of the present invention.

【0019】まず本装置の構成について説明する。レー
ザ発振器1より取り出されたレーザビーム4は、ビーム
コリメーション部、すなわち一対の反射系光学系の一例
として、反射面が凸の球面である凸面鏡2aおよび反射
面が凹の球面である凹面鏡2bにて、共に入射角10度
以下で2回反射された後、入射方向に対して平行移動し
た位置に、入射方向と同方向に出射された後、レーザビ
ーム径検出装置5を経て、加工位置にある集光レンズ7
に入射する。集光レンズ7で集光された後、被加工材8
に照射され、加工が行われる。
First, the configuration of the present apparatus will be described. The laser beam 4 extracted from the laser oscillator 1 is applied to a beam collimation unit, that is, a convex mirror 2a having a convex spherical surface and a concave mirror 2b having a concave spherical surface as an example of a pair of reflective optical systems. After being reflected twice at an incident angle of 10 degrees or less, the light is emitted in the same direction as the incident direction at a position shifted in parallel to the incident direction, and then is passed through the laser beam diameter detecting device 5 and is at the processing position. Condensing lens 7
Incident on. After being condensed by the condenser lens 7, the workpiece 8
And is processed.

【0020】凸面鏡2a〜凹面鏡2b間の距離および各
角度は、それぞれを保持可能に備えられた駆動装置3
a、3bによって調整可能となっており、駆動装置3
a、3bは、制御装置6によって制御されている。
The distance between the convex mirror 2a and the concave mirror 2b and the respective angles are determined by the driving device 3 provided so as to be able to hold the respective mirrors.
a, 3b, and can be adjusted.
a and 3b are controlled by the control device 6.

【0021】また凸面鏡2a〜凹面鏡2b間距離を変え
るときには、それに応じて制御装置6が所定の演算を行
い、レーザビーム4の入射、出射位置および方向が一定
に保たれるように、凸面鏡2a、凹面鏡2bの角度を変
化させるようになっている。この時入射角は常に10度
以下となるように各反射鏡2a、2bの位置は設定され
ている。
When changing the distance between the convex mirror 2a and the concave mirror 2b, the control device 6 performs a predetermined calculation in accordance with the change, and the convex mirror 2a, the incident position, the exit position and the direction of the laser beam 4 are kept constant. The angle of the concave mirror 2b is changed. At this time, the positions of the reflecting mirrors 2a and 2b are set so that the incident angle is always 10 degrees or less.

【0022】図2に球面鏡(2a、2b)へのレーザビ
ーム4の入射角θと、反射後のレーザビーム真円度との
関係を示す。球面鏡は基本的に入射角0度、すなわち入
射方向と反射方向が完全に正反対となる場合が、最も収
差の影響を受けにくく、反射後のレーザビーム4の真円
度は最良状態の100%となる。しかし現実的に入射角
0度で使用することは不可能であり、収差の影響を最小
限に抑えられる範囲で、ある程度の入射角を設ける必要
がある。図2より明らかなように入射角10度以下で
は、収差の影響はほとんど無く、レーザビーム真円度は
ほど100%を保っている。これより、本発明の構成に
おいては、凸面鏡2aおよび凹面鏡2bでの反射による
レーザビーム真円度の低下、すなわちレーザビーム品質
の低下を防ぐ事が出来ることが判る。
FIG. 2 shows the relationship between the angle of incidence θ of the laser beam 4 on the spherical mirror (2a, 2b) and the roundness of the laser beam after reflection. Basically, the spherical mirror is least affected by aberration when the incident angle is 0 degree, that is, when the incident direction and the reflection direction are completely opposite to each other, and the roundness of the reflected laser beam 4 is 100% of the best state. Become. However, it is practically impossible to use at an incident angle of 0 degree, and it is necessary to provide a certain incident angle within a range where the influence of aberration can be minimized. As is clear from FIG. 2, when the incident angle is 10 degrees or less, there is almost no influence of aberration, and the roundness of the laser beam is maintained at about 100%. From this, it can be seen that in the configuration of the present invention, it is possible to prevent a decrease in the roundness of the laser beam due to reflection by the convex mirror 2a and the concave mirror 2b, that is, a decrease in the quality of the laser beam.

【0023】レーザビーム径検出装置5には、複数個の
微細な貫通穴9aを設けた反射鏡9と、反射鏡9の背面
に位置して各貫通穴9aに入射したレーザ光の光強度を
検出する光センサ10と、光センサ10の出力よりレー
ザビーム径を算出し、レーザビーム径信号として出力す
る出力部11が設けてある。このレーザビーム径信号を
受け取った制御装置6は、あらかじめ与えられたレーザ
発振器のビーム特性、加工位置の光路長などの情報と合
わせ、加工位置でのレーザビーム径を所定の値に調整す
べく、駆動装置3a、3bを制御し、凸面鏡2a〜凹面
鏡2b間距離、および各球面鏡2a、2bの角度調整を
行う。
The laser beam diameter detecting device 5 includes a reflecting mirror 9 having a plurality of fine through holes 9a, and a light intensity of a laser beam incident on each through hole 9a located on the back of the reflecting mirror 9. An optical sensor 10 to be detected and an output unit 11 for calculating a laser beam diameter from an output of the optical sensor 10 and outputting the calculated laser beam diameter signal are provided. The control device 6, which has received the laser beam diameter signal, adjusts the laser beam diameter at the processing position to a predetermined value in accordance with information such as the beam characteristics of the laser oscillator and the optical path length at the processing position given in advance. By controlling the driving devices 3a and 3b, the distance between the convex mirror 2a and the concave mirror 2b and the angle of each spherical mirror 2a and 2b are adjusted.

【0024】本発明の構成により、光路長可変タイプの
レーザ加工装置において、加工位置の光路長変化に応じ
て、ビームコリメーション部の凸面鏡2a〜凹面鏡2b
間距離の調整を行う事で、常に加工位置のビーム径が一
定になり、且つ本発明の構成を採る事でレーザビーム経
路のずれや収差の影響も最小限に抑えられるため、常に
高品質なレーザビームが得られる事になる。
According to the configuration of the present invention, in the laser processing apparatus of the variable optical path length type, the convex mirror 2a to the concave mirror 2b of the beam collimation unit are changed according to the change in the optical path length at the processing position.
By adjusting the distance, the beam diameter at the processing position is always constant, and by adopting the configuration of the present invention, the influence of deviation and aberration of the laser beam path is minimized, so that high quality is always achieved. A laser beam will be obtained.

【0025】これに加え、レーザビーム自体に干渉せず
にビーム径を検出する手法を取る事が出来る為、レーザ
ビームの品質を低下させること無く、経時的なレーザビ
ームの発散角変化に応じて、常に加工位置のビーム径を
一定にする事が出来る。
In addition, since a method of detecting the beam diameter without interfering with the laser beam itself can be adopted, the divergence angle of the laser beam can be changed over time without deteriorating the quality of the laser beam. Thus, the beam diameter at the processing position can always be kept constant.

【0026】図3は、本発明の第1の実施の形態と従来
例とでの、経時的な加工品質の変化を示したものであ
る。従来例1はレーザビーム径のセンシング自体を行わ
ない場合を示しており、経時的にレーザ発振器より取り
出されるレーザビームの発散角が変化するに従い、加工
品質が低下していっている事が判る。従来例2は特開平
1−271087号に示されるように、レーザビーム経
路にセンサを挿入する形でレーザビーム径をセンシング
する構成を採った場合であり、経時的な加工品質の低下
は無いが、センシング自体によるレーザビーム品質の低
下が見られる。本発明の第1の実施の形態においては、
高い加工品質を、経時変化無く保つ事が出来ている。
FIG. 3 shows a change in processing quality over time between the first embodiment of the present invention and a conventional example. Conventional Example 1 shows a case in which the sensing of the laser beam diameter itself is not performed, and it can be seen that the processing quality decreases as the divergence angle of the laser beam extracted from the laser oscillator changes over time. Conventional example 2 is a case in which a laser beam diameter is sensed by inserting a sensor in a laser beam path as shown in Japanese Patent Application Laid-Open No. 1-271087, and there is no decrease in processing quality over time. However, the quality of the laser beam is degraded due to the sensing itself. In the first embodiment of the present invention,
High processing quality can be maintained without change over time.

【0027】図4は、本発明の第2の実施の形態であり
請求項1および請求項3に関するレーザ発振装置の構成
図である。レーザビーム径検出装置5には、複数個の微
細な貫通穴9aを設けた反射鏡9と、各貫通穴9aに入
射したレーザ光の光強度を検出する光センサ10と、光
センサ10を各貫通穴9aに渡って走査する走査装置1
2と、光センサ10の出力よりレーザビーム径を算出し
レーザビーム径信号として出力する出力部11が設けて
ある。このレーザビーム径信号を受け取った制御装置6
は、あらかじめ与えられたレーザ発振器のビーム特性、
加工位置の光路長などの情報と合わせ、加工位置でのレ
ーザビーム径を所定の値に調整すべく、駆動装置3a、
3bを制御し、凸面鏡2a〜凹面鏡2b間距離、および
各球面鏡(2a、2b)の角度調整を行う。
FIG. 4 is a block diagram of a laser oscillation device according to a second embodiment of the present invention. The laser beam diameter detecting device 5 includes a reflecting mirror 9 having a plurality of fine through holes 9a, an optical sensor 10 for detecting the light intensity of the laser light incident on each of the through holes 9a, and an optical sensor 10 for each. Scanning device 1 for scanning over through hole 9a
2 and an output unit 11 for calculating a laser beam diameter from the output of the optical sensor 10 and outputting the calculated laser beam diameter signal. The control device 6 that has received the laser beam diameter signal
Is the beam characteristic of the laser oscillator given in advance,
In order to adjust the laser beam diameter at the processing position to a predetermined value in accordance with information such as the optical path length at the processing position, the driving device 3a,
3b, and adjusts the distance between the convex mirror 2a and the concave mirror 2b and the angle of each spherical mirror (2a, 2b).

【0028】本発明の第2の実施の形態の特徴は、光セ
ンサが1個で構成できるため、レーザビーム径検出装置
の信頼性向上と経済性が期待できる。
A feature of the second embodiment of the present invention is that the reliability of the laser beam diameter detecting device can be improved and economy can be expected because one optical sensor can be constituted.

【0029】その他、第1の実施の形態と共通する部分
は第1の実施の形態と同じであり、図も同一符号を付し
ている。
The other parts common to the first embodiment are the same as those of the first embodiment, and the same reference numerals are used in the drawings.

【0030】また、光学系と凸面鏡と凹面鏡からなって
いるが、これらに限らずまた一対以上あればよい。
The optical system, the convex mirror and the concave mirror are not limited to these, but may be any pair or more.

【0031】[0031]

【発明の効果】請求項1記載のレーザ発振装置によれ
ば、レーザビーム径を常時監視し、それに基づき加工位
置でのビーム径を常に一定に制御する事ができ、かつ反
射光学系を有するコリメーション部での収差の発生を常
に最小に抑える事が出来るため、光路長の変化や、経時
的なレーザ発振器のビーム径の変化などの外乱要素に依
らず、光センサによってレーザビーム品質を大きく低下
することもなく、常に加工位置にて一定のビーム径を得
る事が出来、長期に渡って高品質なレーザ加工を提供す
ることが出来る。
According to the first aspect of the present invention, the laser beam diameter can be constantly monitored, and based on the laser beam diameter, the beam diameter at the processing position can always be controlled to be constant. Since the occurrence of aberrations in the laser section can always be minimized, the laser sensor greatly reduces the laser beam quality regardless of disturbance factors such as changes in the optical path length and changes in the beam diameter of the laser oscillator over time. Without this, a constant beam diameter can always be obtained at the processing position, and high-quality laser processing can be provided for a long period of time.

【0032】請求項2記載のレーザ発振装置によれば、
請求項1と同様な効果がある。
According to the laser oscillation device of the second aspect,
This has the same effect as the first aspect.

【0033】請求項3記載のレーザ発振装置によれば、
請求項1と同様な効果がある。
According to the laser oscillation device of the third aspect,
This has the same effect as the first aspect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態であり請求項1およ
び請求項2に関するレーザ発振装置の構成図である。
FIG. 1 is a configuration diagram of a laser oscillation device according to a first embodiment of the present invention, which relates to claims 1 and 2;

【図2】球面鏡へのレーザビームの入射角と、反射後の
レーザビーム真円度との関係を示した図である。
FIG. 2 is a diagram showing the relationship between the angle of incidence of a laser beam on a spherical mirror and the roundness of the laser beam after reflection.

【図3】本発明の第1の実施の形態と従来例との、経時
的な加工品質の変化を示した図である。
FIG. 3 is a diagram showing a change in processing quality over time between the first embodiment of the present invention and a conventional example.

【図4】本発明の第2の実施の形態であり請求項1およ
び請求項3に関するレーザ発振装置の構成図である。
FIG. 4 is a configuration diagram of a laser oscillation device according to a second embodiment of the present invention and according to claims 1 and 3;

【符号の説明】[Explanation of symbols]

1 レーザ発振器 2a 凸面鏡 2b 凹面鏡 3a 凸面鏡駆動装置 3b 凹面鏡駆動装置 4 レーザビーム 5 レーザビーム径検出装置 6 制御装置 7 集光レンズ 8 被加工材 9 複数個の微細な貫通穴を設けた反射鏡 10 光センサ 11 出力部 12 走査装置 DESCRIPTION OF SYMBOLS 1 Laser oscillator 2a Convex mirror 2b Concave mirror 3a Convex mirror drive device 3b Concave mirror drive device 4 Laser beam 5 Laser beam diameter detection device 6 Controller 7 Condenser lens 8 Workpiece 9 Reflector mirror provided with a plurality of fine through holes 10 Light Sensor 11 Output unit 12 Scanning device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林川 洋之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2H045 AB02 AB13 BA15 CB03 CB24 DA31 4E068 CA07 CB05 CC01 CD12 5F072 HH02 HH03 JJ05 KK05 MM08 MM09 YY06  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroyuki Hayashikawa 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F term (reference) 2H045 AB02 AB13 BA15 CB03 CB24 DA31 4E068 CA07 CB05 CC01 CD12 5F072 HH02 HH03 JJ05 KK05 MM08 MM09 YY06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 入射したレーザビームが2回以上反射さ
れた後、入射方向に対して平行移動した位置に、入射方
向と同方向に出射されるような反射条件を満たすよう
に、互いに向かい合わせて配置された少なくとも一対の
反射光学系と、前記反射条件を満たした状態で前記一対
の反射光学系間の距離および各角度を変化させるミラー
駆動装置と、レーザビーム経路上に設けられた反射鏡を
有しこの反射鏡の背面に位置して前記反射鏡に入射する
光を検知する光センサを有してレーザビーム径を検出す
るレーザビーム径検出装置と、前記レーザビーム径検出
装置により検出したレーザビーム径が予め設定された値
となるように前記ミラー駆動装置を制御する制御装置と
を備えたレーザ発振装置。
1. An incident laser beam is reflected at least two times and then opposed to each other at a position translated in parallel with the incident direction so as to satisfy a reflection condition of being emitted in the same direction as the incident direction. At least one pair of reflecting optical systems arranged in a mirror, a mirror driving device for changing the distance and each angle between the pair of reflecting optical systems in a state where the reflection condition is satisfied, and a reflecting mirror provided on a laser beam path A laser beam diameter detecting device that has a light sensor positioned on the back of the reflecting mirror and detects light incident on the reflecting mirror, and a laser beam diameter detecting device that detects a laser beam diameter, which is detected by the laser beam diameter detecting device. A control device for controlling the mirror driving device so that the laser beam diameter becomes a preset value.
【請求項2】 反射鏡は、複数個の微細な貫通穴を設
け、複数の光センサは各貫通穴に入射したレーザ光の光
強度を検出し、レーザ径検出装置は前記各光センサの出
力よりレーザビーム径を算出しレーザビーム径信号とし
て出力する出力部を有する請求項1記載のレーザ発振装
置。
2. A reflecting mirror provided with a plurality of fine through holes, a plurality of optical sensors detecting the light intensity of laser light incident on each of the through holes, and a laser diameter detecting device outputting the output of each of the optical sensors. 2. The laser oscillation device according to claim 1, further comprising an output unit for calculating a laser beam diameter and outputting the calculated laser beam diameter signal.
【請求項3】 反射鏡は、複数個の微細な貫通穴を設
け、光センサは各貫通穴に入射したレーザ光の光強度を
検出するものであり、前記レーザビーム径検出装置は前
記光センサを前記各貫通穴に渡って走査するための走査
装置と、前記光センサの出力よりレーザビーム径を算出
しレーザビーム径信号として出力する出力部とを有する
請求項1記載のレーザ発振装置。
3. The reflecting mirror is provided with a plurality of fine through holes, the optical sensor detects the light intensity of the laser beam incident on each of the through holes, and the laser beam diameter detecting device is the optical sensor. 2. The laser oscillation device according to claim 1, further comprising: a scanning device for scanning a laser beam across each of the through holes; and an output unit for calculating a laser beam diameter from an output of the optical sensor and outputting the calculated laser beam diameter as a laser beam diameter signal.
JP2000101051A 2000-04-03 2000-04-03 Laser oscillation device Pending JP2001281582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000101051A JP2001281582A (en) 2000-04-03 2000-04-03 Laser oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000101051A JP2001281582A (en) 2000-04-03 2000-04-03 Laser oscillation device

Publications (1)

Publication Number Publication Date
JP2001281582A true JP2001281582A (en) 2001-10-10

Family

ID=18615171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000101051A Pending JP2001281582A (en) 2000-04-03 2000-04-03 Laser oscillation device

Country Status (1)

Country Link
JP (1) JP2001281582A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205502B2 (en) * 2004-05-26 2007-04-17 Yamazaki Mazak Corporation Reflector-mirror drive shaft controller for laser beam machine
CN109317838A (en) * 2018-12-19 2019-02-12 哈尔滨理工大学 A kind of method that laser assisted processes the cutter of inner hole and adjusts laser incident angle
US20210154772A1 (en) * 2019-11-22 2021-05-27 Medtronic, Inc. Laser cutting system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205502B2 (en) * 2004-05-26 2007-04-17 Yamazaki Mazak Corporation Reflector-mirror drive shaft controller for laser beam machine
CN109317838A (en) * 2018-12-19 2019-02-12 哈尔滨理工大学 A kind of method that laser assisted processes the cutter of inner hole and adjusts laser incident angle
CN109317838B (en) * 2018-12-19 2020-12-11 哈尔滨理工大学 Cutter for laser-assisted machining of inner hole and method for adjusting laser incidence angle
US20210154772A1 (en) * 2019-11-22 2021-05-27 Medtronic, Inc. Laser cutting system
US11999014B2 (en) * 2019-11-22 2024-06-04 Medtronic, Inc. Laser cutting system

Similar Documents

Publication Publication Date Title
CA3026005C (en) Device for process monitoring during laser machining
JPH04272122A (en) Laser-beam machine
JP2000042779A (en) Laser beam machining device
WO2018105344A1 (en) Laser device
JPH1065256A (en) Laser
US4902122A (en) Optical system for determining the variation of curvature of an object on a zone of small dimensions
JP6794458B2 (en) Scan Reflective Mirror Surveillance System and Method, Focus Leveling System
JP2001281582A (en) Laser oscillation device
JP2001246489A (en) Laser material processing device
JPS6161178B2 (en)
JPH07185861A (en) Laser beam machining device
JP3179322B2 (en) High power laser transmission method and apparatus
JP2001281581A (en) Laser oscillation device
US7164108B2 (en) Detection system for optical beam pointing and shaping
US4687916A (en) Optical pick-up device for both focus and error tracking detection
JP2001293588A (en) Controller for laser beam diameter
JP2001304831A (en) Optical angle measuring apparatus
JPH07120697A (en) Laser beam scanning device
JP3301696B2 (en) High power laser transmission method and device
JP2001293587A (en) Laser oscillator
JPS62212508A (en) Method for measuring surface deflection
JP2002126888A (en) Laser beam equipment and control method therefor
JPH06235873A (en) Scanning optical device
JPH01178392A (en) Laser marking device
JPH09155577A (en) High output laser transmission method and device therefor