JP2001279330A - High strength cold rolled steel sheet and steel tube excellent in formability and producing method therefor - Google Patents

High strength cold rolled steel sheet and steel tube excellent in formability and producing method therefor

Info

Publication number
JP2001279330A
JP2001279330A JP2000092015A JP2000092015A JP2001279330A JP 2001279330 A JP2001279330 A JP 2001279330A JP 2000092015 A JP2000092015 A JP 2000092015A JP 2000092015 A JP2000092015 A JP 2000092015A JP 2001279330 A JP2001279330 A JP 2001279330A
Authority
JP
Japan
Prior art keywords
steel sheet
cold
rolled steel
strength
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000092015A
Other languages
Japanese (ja)
Other versions
JP4418077B2 (en
Inventor
Naoki Yoshinaga
直樹 吉永
Manabu Takahashi
学 高橋
Nobuhiro Fujita
展弘 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000092015A priority Critical patent/JP4418077B2/en
Publication of JP2001279330A publication Critical patent/JP2001279330A/en
Application granted granted Critical
Publication of JP4418077B2 publication Critical patent/JP4418077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for improving the r-value in the L direction which has been the point at issue in a high strength cold rolled steel sheet which can not only be applied for a high strength cold rolled steel sheet, but is also suitable for a steel tube for hydroform. SOLUTION: Si and Mn are added to extra-low carbon steel in which a fixed amount or more of Ti is added so as to satisfy Si/Mn=0.5 to 2.0, and also, the content of P is controlled to <=0.02%, the high strength cold rolled steel sheet high in the r-value in the L direction can be obtained. Moreover, by making this into a steel tube, the high strength steel tube high in the r-value in the axial direction can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車のパ
ネル類、足廻り、メンバーなどに用いられる冷延鋼板と
鋼管およびその製造方法に関するものである。鋼管の場
合には、特にハイドロフォーム成形(特開平10-175027
号公報参照)の用途に好適である。本発明の冷延鋼板と
鋼管は、表面処理をしないものと、防錆のために溶融亜
鉛めっき、電気めっきなどの表面処理を施したものの両
方を含む。亜鉛めっきとは、純亜鉛のほか、主成分が亜
鉛である合金のめっきも含む。本発明による冷延鋼板お
よび鋼管は、強度と加工性を兼ね備えており、使用に当
たっては今までの鋼板より板厚を減少できること、すな
わち車体の軽量化が可能となる。したがって、地球環境
保全に寄与できるものと考えられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold-rolled steel sheet and a steel pipe used for, for example, panels, undercarriages, members and the like of an automobile, and a method of manufacturing the same. In the case of steel pipes, in particular, hydroform molding (JP-A-10-175027)
No. 1). The cold-rolled steel sheet and the steel pipe of the present invention include both those not subjected to surface treatment and those subjected to surface treatment such as hot-dip galvanizing and electroplating for rust prevention. Zinc plating includes plating of an alloy whose main component is zinc, in addition to pure zinc. The cold-rolled steel sheet and the steel pipe according to the present invention have both strength and workability, and can be used in a smaller thickness than conventional steel sheets, that is, the weight of the vehicle body can be reduced. Therefore, it is considered that it can contribute to global environmental conservation.

【0002】[0002]

【従来の技術】自動車の軽量化ニーズに伴い、鋼板の高
強度化が望まれている。高強度化することで板厚減少に
よる軽量化や衝突時の安全性向上が可能となる。また、
最近では、複雑な形状の部位について、高強度鋼の素鋼
板または鋼管からハイドロフォーム法を用いて成形加工
する試みが行われている。これは、自動車の軽量化や低
コスト化のニーズに伴い、部品数の減少や溶接フランジ
箇所の削減などを狙ったものである。このように、ハイ
ドロフォームなどの新しい成形加工方法が実際に採用さ
れれば、コストの削減や設計の自由度が拡大されるなど
の大きなメリットが期待される。このようなハイドロフ
ォーム成形のメリットを充分に生かすためには、これら
の新しい成形法に適した材料が必要となる。例えば、第
50回塑性加工連合講演大会(1999 、447 頁) にあるよう
にハイドロフォーム成形に及ぼすr値の影響が示されて
いる。これによれば、ハイドロフォーム成形時に軸力が
働く場合には、rL(圧延方向のr値,以下rLとも言
う)が高いことが重要であることが示されている。r値
のL方向は、深絞り用の軟質冷延鋼板ではrLとrC
(圧延方向RDに対して平面内90°方向のr値)に比
較してrD(圧延方向RDに対して平面内45°方向の
r値)の方が低い、いわゆるV型のr値の異方性を示す
のに対して、MnおよびPで強化された高強度冷延鋼板
では、rLがrCやrDよりも低い特殊な異方性を示す
ことが指摘されている(The fourth International Con
ference on Recrystallization and Related Phenomen
a, Tsukuba,JIM, (1999), p. 393. 参照)。同文献によ
れば、高強度冷延鋼板においても熱延条件などを厳密に
制限すれば、rLをrDよりも若干高めることが可能で
あることが述べられているがその効果は小さく、また、
製造条件も特殊であり現実的とは言えないものである。
また、本発明者らは、特願平12-52574号において、rL
が高い鋼管を提供する技術について出願している。しか
しながら、これは温間での縮径加工によって製造される
ので、製造コストが高いという問題点がある。
2. Description of the Related Art With the need to reduce the weight of automobiles, it is desired to increase the strength of steel sheets. By increasing the strength, it is possible to reduce the weight by reducing the plate thickness and to improve the safety in the event of a collision. Also,
Recently, attempts have been made to form a complex-shaped portion from a high-strength steel plate or a steel pipe by a hydroforming method. This is aimed at reducing the number of parts and reducing the number of welding flanges in response to the need for lighter and lower cost automobiles. As described above, if a new forming method such as hydroforming is actually adopted, great merits such as reduction of costs and expansion of design freedom are expected. In order to fully utilize the merits of such hydroform molding, materials suitable for these new molding methods are required. For example,
The effect of r value on hydroform forming is shown in the 50th Joint Lecture on Plastic Working (1999, p. 447). According to this, it is shown that it is important that rL (r value in the rolling direction, hereinafter also referred to as rL) is high when an axial force acts during hydroforming. The L direction of the r value is rL and rC for a soft drawn steel sheet for deep drawing.
The difference in the r-value of the so-called V-shape is lower in rD (r-value in the 45 ° direction in the plane with respect to the rolling direction RD) than in r-value in the 90 ° direction in the plane with respect to the rolling direction RD. On the other hand, it has been pointed out that rL of the high-strength cold-rolled steel sheet reinforced with Mn and P exhibits a special anisotropy lower than that of rC or rD (the fourth International Con
ference on Recrystallization and Related Phenomen
a, Tsukuba, JIM, (1999), p. 393.). According to the document, it is stated that, even in a high-strength cold-rolled steel sheet, it is possible to slightly increase rL than rD by strictly restricting hot rolling conditions and the like, but the effect is small, and
Manufacturing conditions are also special and are not realistic.
Further, the present inventors have disclosed in Japanese Patent Application No. 12-52574 that rL
Has filed an application for a technology to provide high-quality steel pipes. However, since this is manufactured by diameter reduction processing in a warm state, there is a problem that the manufacturing cost is high.

【0003】[0003]

【発明が解決しようとする課題】以上のように、既存の
高強度冷延鋼板は、rLが低いため、これを向上させる
ことが急務である。さらに高強度冷延鋼板を電縫溶接し
て鋼管とし、ハイドロフォーム成形用として供する場合
にも、rLを向上せしめることが必須である。本発明
は、高強度鋼板が脚光を浴びる中で発生した、rLを向
上させるという新しい課題を解決すべく、鋭意検討の結
果、達成されたものである。
As described above, the existing high-strength cold-rolled steel sheet has a low rL, and therefore it is urgently necessary to improve it. Further, even when a high-strength cold-rolled steel sheet is welded by electric resistance welding to form a steel pipe and is used for hydroforming, it is essential to improve rL. The present invention has been achieved as a result of intensive studies in order to solve a new problem of improving rL, which occurred while a high-strength steel plate was in the spotlight.

【0004】本発明は、従来の高強度冷延鋼板では得ら
れなかった優れたrLを有する高強度冷延鋼板及び鋼管
並びにそれらを高いコストをかけることなく製造する方
法を提供することを目的とする。
An object of the present invention is to provide a high-strength cold-rolled steel sheet and a steel pipe having excellent rL, which cannot be obtained by a conventional high-strength cold-rolled steel sheet, and a method of manufacturing them without increasing costs. I do.

【0005】[0005]

【課題を解決するための手段】本発明では、rLの高い
高強度冷延鋼板および鋼管ならびにその方法に関するも
のである。特に本発明による鋼管は、ハイドロフォーム
成形性に優れている。本発明の要旨とするところは、 (1)重量%で、C=0.010%以下、Si=0.2〜2.5%、Mn=0.4
〜2.5%、Si/Mn=0.5 〜2.0 、P=0.02% 以下、S=0.015%以
下、Al=0.005〜0.2%、N=0.0070% 以下、Ti=(3.4N+4C)〜
0.20% を含有し、残部Feおよび不可避的不純物からな
る化学組成を有し、引張強度が320MPa以上600MPa以下、
鋼板の圧延方向(RD)のr値(rL)が1.3以上で
あることを特徴とする高強度冷延鋼板。 (2)重量%で、Nb=0.001〜0.019%を含有することを特
徴とする上記(1)に記載の高強度冷延鋼板。 (3)重量%で、B=0.0001〜0.0009% を含有することを
特徴とする上記(1)または(2)に記載の高強度冷延
鋼板。 (4)重量%で、V=0.002 〜0.04% 、W=0.002 〜0.05%
、Mo=0.003〜0.25% 、Sn:0.002〜0.5%、Cu:0.003〜0.5
%未満、Cr:0.005〜2.0%、Ni:0.005〜0.3%、Ca:0.0002
〜0.02% 、Zr:0.002〜0.04% 、Mg:0.0005 〜0.02% のう
ち1種又は2種以上を含有することを特徴とする上記
(1)〜(3)のいずれか1項に記載の高強度冷延鋼
板。 (5)上記(1)〜(4)のいずれか1項に記載の亜鉛
めっきを施したことを特徴とする高強度冷延鋼板。 (6)上記(1)〜(4)のいずれか1項に記載の化学
成分及び引張強度を有し,軸方向(φ方向)のr値(r
φ)が1.3以上であることを特徴とする鋼管。 (7)上記(6)記載の鋼管に亜鉛めっきを施したこと
を特徴とする鋼管。 (8)上記(1)〜(4)のいずれか1項に記載の化学
組成を有するスラブを熱間圧延し、次いで圧下率が80
% 以下となるように冷間圧延を施し、650 ℃以上1100℃
以下の温度で焼鈍することを特徴とする高強度冷延鋼板
の製造方法。 (9)上記(1)〜(4)のいずれか1項に記載の化学
組成を有するスラブを熱間圧延し、次いで圧下率が75%
以下となるように冷間圧延を施し、650 ℃以上1100℃以
下の温度で焼鈍後、さらに電気亜鉛メッキ又は溶融亜鉛
メッキを施すことを特徴とする高強度溶融亜鉛めっき冷
延鋼板の製造方法。 (10)上記(8)又は(9)記載の方法によって製造
された冷延鋼板を素材として、冷延鋼板のRD方向が鋼
管のφ方向と一致するように電縫溶接又は鍛接すること
を特徴とする鍛接鋼管の製造方法。にある。 ( 11) 上記10記載の方法によって製造された鋼管に
電気亜鉛メッキまたは溶融亜鉛メッキすることを特徴と
する鋼管の製造方法。
The present invention relates to a high-strength cold-rolled steel sheet and a steel pipe having a high rL and a method therefor. In particular, the steel pipe according to the present invention is excellent in hydroform formability. The gist of the present invention is as follows: (1) By weight%, C = 0.010% or less, Si = 0.2 to 2.5%, Mn = 0.4
2.5%, Si / Mn = 0.5-2.0, P = 0.02% or less, S = 0.015% or less, Al = 0.005-0.2%, N = 0.0070% or less, Ti = (3.4N + 4C) ~
Contains 0.20%, has a chemical composition consisting of the balance Fe and unavoidable impurities, and has a tensile strength of 320 MPa or more and 600 MPa or less,
A high-strength cold-rolled steel sheet, wherein the r value (rL) in the rolling direction (RD) of the steel sheet is 1.3 or more. (2) The high-strength cold-rolled steel sheet according to (1), wherein Nb = 0.001 to 0.019% by weight. (3) The high-strength cold-rolled steel sheet according to the above (1) or (2), wherein the content of B is 0.0001 to 0.0009% by weight. (4) V = 0.002 to 0.04%, W = 0.002 to 0.05% by weight
, Mo = 0.003-0.25%, Sn: 0.002-0.5%, Cu: 0.003-0.5
%, Cr: 0.005 to 2.0%, Ni: 0.005 to 0.3%, Ca: 0.0002
The composition according to any one of the above (1) to (3), wherein one or more of Zr: 0.002 to 0.02%, Mg: 0.0005 to 0.02% are contained. Strength cold rolled steel sheet. (5) A high-strength cold-rolled steel sheet, wherein the zinc plating according to any one of the above (1) to (4) is applied. (6) It has the chemical composition and tensile strength described in any one of the above (1) to (4), and has an r value (r
φ) is 1.3 or more. (7) A steel pipe obtained by subjecting the steel pipe according to (6) to galvanization. (8) The slab having the chemical composition according to any one of the above (1) to (4) is hot-rolled, and then the reduction ratio is 80.
%, And cold-rolled to 650 ° C to 1100 ° C
A method for producing a high-strength cold-rolled steel sheet, comprising annealing at the following temperature. (9) The slab having the chemical composition according to any one of the above (1) to (4) is hot-rolled, and then the reduction is 75%.
A method for producing a high-strength hot-dip galvanized cold-rolled steel sheet, comprising performing cold rolling so as to be as follows, annealing at a temperature of 650 ° C. to 1100 ° C., and further performing electrogalvanizing or hot-dip galvanizing. (10) Using the cold-rolled steel sheet manufactured by the method according to the above (8) or (9) as a raw material, electric resistance welding or forging is performed such that the RD direction of the cold-rolled steel sheet matches the φ direction of the steel pipe. Method of manufacturing forged steel pipe. It is in. (11) A method for producing a steel pipe, wherein the steel pipe produced by the method according to the above (10) is electrogalvanized or hot-dip galvanized.

【0006】[0006]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。Cはr値を劣化させるので少ない方が良い。Cが0.
01% 超となるとこれを無害化するためのTiが多量に必要
となりコストアップになるばかりか、伸びなども劣化す
る。したがって、より好ましくは、0.0040% が上限であ
る。下限は特に限定するものではないが、製鋼技術の観
点からは、0.0005% が実質的な下限である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. Since C degrades the r value, it is better that C is small. C is 0.
If it exceeds 01%, a large amount of Ti is required to detoxify it, which not only increases the cost but also deteriorates the elongation. Therefore, more preferably, the upper limit is 0.0040%. The lower limit is not particularly limited, but from the viewpoint of steelmaking technology, 0.0005% is a practical lower limit.

【0007】Siは本願発明において重要である。通常
の高強度冷延鋼板では劣悪となるrLがSiを活用する
ことによって飛躍的に向上するという新事実を見いだし
た。Siのこのような効果を発揮させるためには最低で
も0.2%添加せねばならない。さらにSi安価に強度を増
加させる元素でもある。その添加量は狙いとする強度レ
ベルによっても変化するが、本発明においては後述のよ
うに基本的にはPを使わないので、320MPa以上の引張強
度を得るためには、0.2%以上の添加が必須である。0.5%
がより好ましい下限である。添加量が2.5%超となる
と延性が低下するのでこれを上限とする。また、化成処
理性の低下を招くこともある。したがって2.0%がよ
り望ましい上限である。また、溶融亜鉛めっきを施す場
合には、めっき密着性の低下、合金化反応の遅延による
生産性の低下などの問題が生ずるので1.0% 以下とす
ることが好ましい。
[0007] Si is important in the present invention. A new fact has been found that rL, which is inferior to ordinary high-strength cold-rolled steel sheets, is dramatically improved by utilizing Si. In order to exert such an effect of Si, it is necessary to add at least 0.2%. Further, Si is an element that increases strength at a low cost. The amount of addition varies depending on the intended strength level, but in the present invention, since P is not basically used as described later, in order to obtain a tensile strength of 320 MPa or more, the addition of 0.2% or more is required. Required. 0.5%
Is a more preferred lower limit. If the addition amount exceeds 2.5%, ductility decreases, so this is made the upper limit. Further, the chemical conversion property may be reduced. Therefore, 2.0% is a more desirable upper limit. When hot-dip galvanizing is performed, problems such as a reduction in plating adhesion and a reduction in productivity due to a delay in alloying reaction occur. Therefore, the content is preferably 1.0% or less.

【0008】Mnは強度を増加させるのに有効な固溶体
強化元素である。また、Mnは本質的にはrLを劣化さ
せない元素である。すなわち、詳細な検討を行った結
果、Mnは多量のPと共存することによって初めてrL
を劣化させることが明らかとなった。さらにMnはMnS
を形成し熱延時のSによる耳割れを抑制する。したがっ
て、0.4%以上添加する。一方、2.5%を超えると延性が劣
化したり、rLも低下するのでこれを上限とする。0.7%
以上2.0%以下がさらに好ましい範囲である。
Mn is a solid solution strengthening element effective for increasing the strength. Mn is an element that does not essentially deteriorate rL. That is, as a result of a detailed study, Mn was found to coexist with a large amount of P, and
It was clarified that it deteriorated. Mn is MnS
To suppress the edge cracking due to S during hot rolling. Therefore, 0.4% or more is added. On the other hand, if it exceeds 2.5%, ductility is deteriorated and rL is also reduced. 0.7%
A range of at least 2.0% is a more preferable range.

【0009】Pは0.02% を超えて添加するとrLを顕著
に低下させることが明らかとなったので、0.02% を上限
とする。この理由は必ずしも明らかではないが、固溶し
たPが偏析し再結晶時の方位選択に影響するものと考え
られる。また、Pが0.02% を超えると、鋼管を製造する
際の電縫溶接や自動車部材として使用される際のスポッ
ト溶接やアーク溶接などの溶接を行った際の溶接部の強
度が十分でなくなったり、溶接部の疲労強度が顕著に低
下する。さらにはハイドロフォーム成形時のバーストの
原因ともなる。したがって、0.01% がより好ましい上限
である。
It has been found that adding P in excess of 0.02% significantly reduces rL, so the upper limit is made 0.02%. Although the reason for this is not necessarily clear, it is considered that the solid solution P segregates and affects the orientation selection during recrystallization. On the other hand, if P exceeds 0.02%, the strength of the welded portion when welding such as electric resistance welding when manufacturing steel pipes, spot welding when used as automobile parts, and arc welding may be insufficient. In addition, the fatigue strength of the weld is significantly reduced. Further, it may cause a burst during hydroform molding. Therefore, 0.01% is a more preferred upper limit.

【0010】Si/Mnは本発明において重要である。
すなわち良好なrLを実現するためには、SiとMnの
両方が同時にかつ適切なバランスで添加されなくてはな
らず、この範囲は、Si/Mn=0.5 〜2.0 である。このよう
にSi/Mn に最適値が存在する理由は必ずしも明らかでは
ないが、Si量とMn量のバランスが不適切であると熱
延板の結晶粒径が過度に細かくなったり逆に粗大になっ
たりすることに起因するものと推測される。さらにSi
/Mnは鋼管を製造する際の電縫溶接や自動車部材とし
て使用される際のスポット溶接やアーク溶接などの溶接
を行った際の溶接部の機械的性質に対しても重要であ
る。すなわち、Si/Mnが不適切であると、溶接部が
硬くなり過ぎたり、逆に軟化しすぎたりして溶接部の強
度や疲労強度が劣化したり、ハイドロフォーム成形時の
バーストの原因ともなる。
[0010] Si / Mn is important in the present invention.
That is, in order to realize good rL, both Si and Mn must be added simultaneously and in an appropriate balance, and the range is Si / Mn = 0.5 to 2.0. Although the reason why the optimum value exists in Si / Mn is not necessarily clear, if the balance between the Si amount and the Mn amount is inappropriate, the crystal grain size of the hot-rolled sheet becomes excessively fine or conversely coarse. It is presumed that it is caused by the loss. Furthermore, Si
/ Mn is also important for the mechanical properties of the weld when welding such as ERW when manufacturing a steel pipe or spot welding or arc welding when used as an automobile member. That is, if the Si / Mn ratio is inappropriate, the welded portion becomes too hard or too soft, resulting in deterioration of the strength and fatigue strength of the welded portion and also causes a burst during hydroforming. .

【0011】Sは0.015%超では、熱間割れの原因となっ
たり、加工性を劣化させるので0.015%を上限とする。好
ましくは0.01% 以下とする。Alは脱酸調製に使用する
が、0.005%未満ではその効果が不十分である。一方、0.
2%超になるとコストアップを招いたり、表面性状の劣化
を招くので上限を0.2%とする。
If S exceeds 0.015%, it causes hot cracking and deteriorates workability, so the upper limit is 0.015%. Preferably, it is 0.01% or less. Al is used for the preparation of deoxidation, but if it is less than 0.005%, its effect is insufficient. On the other hand, 0.
If it exceeds 2%, the cost is increased and the surface properties are deteriorated. Therefore, the upper limit is set to 0.2%.

【0012】Nは多すぎるとNを固定するためのに多量
のTi,Al が必要になったり、加工性が劣化したりするの
で0.0070% を上限値とする。Tiはr値を高めるのに極
めて有効な元素であるので積極的に添加する。その添加
量は最低でもCとNを固定するのに必要な量に相当する
(3.4N+4C)%を添加する必要がある。一方、
0.20%超添加しても特段の効果は望めないばかり
か、コストアップとなり、また表面性状や溶融亜鉛メッ
キ後のパウダリング性が劣化したり、延性が劣化するの
これを上限とする。rLを高めるという課題に対して
は、Tiを{(3.4N+4C)+0.01}%〜0.
10%がより好適な範囲である。
If the amount of N is too large, a large amount of Ti and Al is required for fixing N, and the workability is deteriorated. Therefore, the upper limit is set to 0.0070%. Ti is an element that is extremely effective in increasing the r value, and is therefore actively added. It is necessary to add at least (3.4N + 4C)% corresponding to the amount necessary for fixing C and N. on the other hand,
Even if it is added in excess of 0.20%, no particular effect can be expected, the cost is increased, and the surface properties and the powdering properties after hot-dip galvanizing are degraded and the ductility is degraded. To solve the problem of increasing rL, Ti is added to {(3.4N + 4C) +0.01}% to 0.1%.
10% is a more preferred range.

【0013】NbもTiと同様にr値を高める効果を有
するが、本発明のようにMnとSiを活用して高強度化
する場合にはNb量を添加しないか、もしくは微量の添
加に止めることが必須であることを見いだした。すなわ
ち、Nbを添加する際には、0.001〜0.019%
の範囲内とする必要がある。Nbが0.001%未満で
は特段の効果を奏するものではなく、またNbが0.0
19%を超えて添加されるとr値の平均値(rL+rC
+2rD)/4はほとんど変わらないが、rLは顕著に
低下することが明らかとなった。したがって、これを上
限とする。0.002〜0.009%がrLを維持また
は向上せしめるためのさらに適正な範囲である。また、
Nbは溶接部の接合強度や疲労強度を向上させる効果も
ある。
Nb also has the effect of increasing the r value like Ti, but in the case of using Mn and Si to increase the strength as in the present invention, the amount of Nb is not added or only a small amount is added. Was found to be essential. That is, when Nb is added, 0.001 to 0.019%
Must be within the range. When Nb is less than 0.001%, no particular effect is exhibited, and when Nb is 0.01% or less.
When more than 19% is added, the average value of r values (rL + rC
(+ 2rD) / 4 hardly changed, but rL was found to be significantly reduced. Therefore, this is the upper limit. 0.002-0.009% is a more appropriate range for maintaining or improving rL. Also,
Nb also has the effect of improving the joint strength and fatigue strength of the weld.

【0014】Bは鋼板や鋼管の2次加工脆性を抑制した
り、溶接部の接合強度や疲労強度を向上させる効果を有
するので添加しても良い。この様な効果を発現させるに
は最低でも0.0001%の添加が必要である。一方、
B量が多すぎると鋼板や鋼管の延性が劣化するばかり
か、本発明で特に重要なrLをも低下させてしまう。し
たがって上限を0.0009%とする。0.0002〜
0.0006%がrLに対してより適切な範囲である。
B may be added because it has an effect of suppressing the brittleness of secondary working of a steel plate or a steel pipe and improving the joining strength and fatigue strength of a welded portion. In order to exert such an effect, it is necessary to add at least 0.0001%. on the other hand,
If the amount of B is too large, not only does the ductility of the steel sheet or steel pipe deteriorate, but also the rL, which is particularly important in the present invention, decreases. Therefore, the upper limit is made 0.0009%. 0.0002-
0.0006% is a more appropriate range for rL.

【0015】これらを主成分とする鋼にV,W,Mo,Sn,Cu,C
r,Ni,Ca,Zr,Mg をV=0.002 〜0.04%、W=0.002 〜0.05%
、Mo=0.003〜0.25% 、Sn:0.002〜0.5%、Cu:0.003〜0.5
%未満、Cr:0.005〜2.0%、Ni:0.005〜0.3%、Ca:0.0002
〜0.02% 、Zr:0.002〜0.04% 、Mg:0.0005 〜0.02% の範
囲で含有しても構わない。V、W、Zr、Moにはr値
を高める効果がある反面、添加しすぎると逆にr値、特
にrLを損なうので上記のような範囲とする。Sn、C
u、Cr、Niは、高強度化に有効で、上記の範囲であ
ればr値を格段に損なうことはないので、上記の範囲で
添加しても良い。Caは、Ca硫化物を形成するため、
MnSが減少し、延性を向上させたり、脱酸元素として
も有効である反面、多すぎると表面性状を劣化させた
り、コストアップとなるので0.0002〜0.02%
の範囲とする。Mgは脱酸元素として有効で、かつ凝固
組織を改善し加工性を向上せしめる反面、多すぎるとコ
ストアップになるので0.0005〜0.02% の範囲とする。
V, W, Mo, Sn, Cu, C
V = 0.002 to 0.04%, W = 0.002 to 0.05% for r, Ni, Ca, Zr, Mg
, Mo = 0.003-0.25%, Sn: 0.002-0.5%, Cu: 0.003-0.5
%, Cr: 0.005 to 2.0%, Ni: 0.005 to 0.3%, Ca: 0.0002
-0.02%, Zr: 0.002-0.04%, Mg: 0.0005-0.02%. V, W, Zr, and Mo have the effect of increasing the r value, but if added too much, conversely impair the r value, especially rL, so that the above range is set. Sn, C
Since u, Cr, and Ni are effective for increasing the strength and do not significantly impair the r value within the above range, they may be added in the above range. Since Ca forms Ca sulfide,
MnS is reduced, ductility is improved, and it is also effective as a deoxidizing element. On the other hand, if it is too much, the surface properties are degraded and the cost is increased, so that 0.0002 to 0.02%
Range. Mg is effective as a deoxidizing element and improves the workability by improving the solidification structure. On the other hand, if it is too much, the cost increases, so the content is made 0.0005 to 0.02%.

【0016】本発明によって得られる冷延鋼板または鋼
管の引張強度は、320MPa以上、600MPa以下
である。引張強度が320MPa未満の場合には、特段
の方策を採らなくとも良好なrLを得られるため、本発
明の対象外である。また、引張強度が600MPaを超
えると、延性が極端に低下し、またrLも低下するので
これを上限とする。特に引張強度が380〜550MP
aの範囲ではrLを向上させることが非常に困難となっ
てくるので本発明の有用性が極めて顕著となる。引張強
度の評価は、冷延鋼板の場合にはJIS5号試験片を用
いて評価すればよいし、鋼管の場合には、鋼管からJI
S12号弧状試験片を切り出して評価しても良いし、管
のままJIS11号試験片で評価しても良い。さらに、
本発明によって得られる冷延鋼板のrLおよび鋼管のr
φは1.3以上であり、1.5以上であればハイドロフ
ォーム成形に対してより一層好適である。
[0016] The tensile strength of the cold rolled steel sheet or the steel pipe obtained by the present invention is from 320 MPa to 600 MPa. When the tensile strength is less than 320 MPa, a good rL can be obtained without taking any special measures, and thus is out of the scope of the present invention. If the tensile strength exceeds 600 MPa, the ductility is extremely reduced and the rL is also reduced. Especially 380-550MP tensile strength
In the range of a, it becomes very difficult to improve rL, so that the usefulness of the present invention becomes extremely remarkable. The evaluation of the tensile strength may be performed using a JIS No. 5 test piece in the case of a cold-rolled steel sheet, or in the case of a steel pipe, using a JI from a steel pipe.
An S12 arc-shaped test piece may be cut out and evaluated, or a JIS No. 11 test piece may be evaluated as a tube. further,
RL of cold rolled steel sheet and r of steel pipe obtained by the present invention
φ is 1.3 or more, and 1.5 or more is more suitable for hydroform molding.

【0017】rL及びrφの上限は特に定めることなく
本発明の効果を得ることができるが、これらが高すぎる
と他の方向のr値が極端に低くなるので、rLは5.0
以下、rφも5.0以下とすることが好ましい。次に、
製造条件の限定理由について述べる。熱間圧延に供する
スラブは特に限定するものではない。すなわち、連続鋳
造スラブや薄スラブキャスターなどで製造したものであ
ればよい。また、鋳造後に直ちに熱間圧延を行う連続鋳
造−直接圧延(CC−DR)のようなプロセスにも適合
する。熱間圧延における粗圧延後は、シートバーを接合
して連続的に熱間仕上げ圧延を行っても良い。
Although the effects of the present invention can be obtained without specifying the upper limits of rL and rφ, if these are too high, the r value in other directions will be extremely low, so that rL is 5.0.
Hereinafter, it is preferable that rφ be 5.0 or less. next,
The reason for limiting the manufacturing conditions will be described. The slab to be subjected to hot rolling is not particularly limited. That is, it may be any one manufactured with a continuous cast slab or a thin slab caster. It is also suitable for processes such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting. After the rough rolling in the hot rolling, the sheet bars may be joined and the hot finish rolling may be continuously performed.

【0018】熱延の加熱温度は特に限定するものではな
いが、熱延時の変形抵抗を小さくするために900 ℃以上
とし、一方、表面スケールの過度の生成を抑制するため
に1350℃以下とすることが好ましい。熱延の仕上げ温度
は特に限定するものではない。すなわち、通常のAr3
変態温度以上のγ相単相域で行ってもよいし、Ar3 点
未満のα+γ2相域またはα単相域で行っても良い。い
ずれの場合にも潤滑を施しても構わない。特にα+γ2
相域やα単相域で熱間圧延する場合には、潤滑を行うと
製品のrLが高くなる。
The heating temperature of the hot rolling is not particularly limited, but is set to 900 ° C. or more to reduce the deformation resistance at the time of hot rolling, and 1350 ° C. or less to suppress excessive generation of surface scale. Is preferred. The finishing temperature of hot rolling is not particularly limited. That is, ordinary Ar3
It may be carried out in a γ-phase single-phase region at or above the transformation temperature, or in an α + γ2-phase region or an α-single-phase region below the Ar 3 point. In any case, lubrication may be performed. Especially α + γ2
When hot rolling is performed in the phase region or α single phase region, lubrication increases the rL of the product.

【0019】熱延後の冷却は、限定するものではない
が、熱延の仕上げをAr3 点以上で行った場合には、熱延
仕上温度から550℃までの平均冷却速度を50℃/s未
満とすることが製品のrLを高めるのに望ましい。巻取
り温度は特に限定しないが、650 〜800 ℃とすることが
望ましい。これによってTiC の形成、成長が促され良好
なrLが確保される。
Cooling after hot rolling is not limited, but when hot rolling is performed at an Ar3 point or higher, the average cooling rate from the hot rolling finishing temperature to 550 ° C. is less than 50 ° C./s. Is desirable to increase the rL of the product. The winding temperature is not particularly limited, but is desirably 650 to 800 ° C. This promotes the formation and growth of TiC, and secures a good rL.

【0020】冷間圧延は、本発明において重要である。
冷間圧延率が80%超となるとrLが顕著に低下するの
でこれを上限とする。下限は特に限定しないが、rLを
1.3以上とするには圧下率30%程度の冷間圧延を行
うことが好ましい。40〜75%がより望ましい範囲で
ある。連続焼鈍あるいはライン内焼鈍方式の連続溶融亜
鉛めっき設備の焼鈍温度は、650〜1100℃の範囲
で再結晶分率が90%以上となる温度を選択する。焼鈍
温度が650℃未満では再結晶が十分に進行しないた
め、延性が劣悪となるばかりではなく、rLも1.3に
は到底及ばない。焼鈍温度が1100℃を超えると生産
性を損ないコストアップとなるのでこれを上限とする。
また、焼鈍温度は通常のα単相域のほかα+γ2相域で
も構わない。さらにMnが1%以上添加されている場合
にはγ単相域で焼鈍しても良好なr値が確保されるので
γ単相域の焼鈍でも構わない。焼鈍は上述の連続焼鈍の
他、箱焼鈍でも構わない。
[0020] Cold rolling is important in the present invention.
When the cold rolling reduction exceeds 80%, rL is remarkably reduced. Although the lower limit is not particularly limited, it is preferable to perform cold rolling at a rolling reduction of about 30% in order to make rL 1.3 or more. 40-75% is a more desirable range. As the annealing temperature of the continuous galvanizing equipment of the continuous annealing or the in-line annealing method, a temperature at which the recrystallization fraction becomes 90% or more in the range of 650 to 1100 ° C is selected. If the annealing temperature is lower than 650 ° C., recrystallization does not proceed sufficiently, so that not only the ductility is deteriorated, but also the rL is far below 1.3. If the annealing temperature exceeds 1100 ° C., the productivity is impaired and the cost increases, so this is made the upper limit.
The annealing temperature may be in the α + γ2 phase region in addition to the normal α single phase region. Further, when Mn is added in an amount of 1% or more, even if annealing is performed in the γ single phase region, a good r value is secured, so annealing in the γ single phase region may be performed. Annealing may be box annealing in addition to the continuous annealing described above.

【0021】焼鈍後の冷却条件は特に限定するものでは
ない。ただし焼鈍温度がα+γ2相域またはγ単相域の
場合には、冷却速度を50℃/s未満とした方が延性を確
保しやすい。冷却後の過時効処理は集合組織の形成には
影響しないので、必要に応じて行えば良い。
The cooling conditions after annealing are not particularly limited. However, when the annealing temperature is in the α + γ2 phase region or the γ single phase region, it is easier to ensure ductility if the cooling rate is less than 50 ° C./s. The overaging treatment after cooling does not affect the formation of the texture, and may be performed as needed.

【0022】電気亜鉛めっきを施す場合は電気メッキセ
ル内でZn,Zn−Ni,Zn−Fe層などを電析させ
る。連続溶融亜鉛めっきを施す場合には、冷却後めっき
浴に浸漬し、更に亜鉛めっきをFeと合金化する必要が
あれば、460 〜600 ℃の温度で1秒以上熱処理を行う。
460 ℃未満では、合金化が十分に進行せず、600 ℃超で
は、合金化が進行し過ぎてプレス加工により自動車用部
材とする際にパウダダリングなどの問題が発生するので
合金化温度を前記の範囲とする。合金化時間は特に限定
しないが、生産効率の観点から60秒以内とすることが好
ましい。
When electrogalvanizing is performed, a Zn, Zn—Ni, Zn—Fe layer or the like is deposited in an electroplating cell. In the case of continuous hot-dip galvanizing, it is immersed in a plating bath after cooling, and if it is necessary to alloy the zinc plating with Fe, heat treatment is performed at a temperature of 460 to 600 ° C. for 1 second or more.
If the temperature is lower than 460 ° C, the alloying does not proceed sufficiently.If the temperature is higher than 600 ° C, the alloying proceeds excessively, which causes problems such as powdering when forming a member for automobiles by press working. Range. The alloying time is not particularly limited, but is preferably within 60 seconds from the viewpoint of production efficiency.

【0023】焼鈍後は形状矯正や耐時効性の確保のため
にスキンパス圧延を施してもよい。このように製造され
た冷延鋼板に溶接を施して鋼管としても良い。鋼管製造
にあたっては、電縫溶接、ないし鍛接溶接が適している
が、その他にTIG、MIG、レーザー溶接、UOや鍛
接等の溶接・造管手法等を用いることが出来る。これら
の溶接鋼管製造に於いて溶接熱影響部は必要とする特性
に応じて局部的な固溶化熱処理を単独あるいは複合し
て、場合によっては複数回繰り返し行っても良く、本発
明の効果をさらに高める。この熱処理は溶接部と溶接熱
影響部のみに付加することが目的であって、製造時にオ
ンラインであるいはオフラインで施行できる。また、縮
径におけるAc3 点以下の加熱は電気炉、誘導加熱を用い
ることが出来、ストレッチリデューサー等を用いて縮径
できる。また、縮径時に潤滑を施すことは成形性向上の
点で望ましい。また、造管や縮径による加工硬化で伸び
やn値が鋼板製造前の冷延鋼板に比較して劣化した場合
には、α域での歪み取り焼鈍やAc1 点以上での熱処理
を適宜行っても良い。
After annealing, skin pass rolling may be performed to correct the shape and secure aging resistance. The cold rolled steel plate manufactured in this way may be welded to form a steel pipe. In the production of steel pipes, electric resistance welding or forging welding is suitable, but other welding and pipe forming methods such as TIG, MIG, laser welding, UO and forging welding can be used. In the production of these welded steel pipes, the heat-affected zone of the weld may be subjected to local solution heat treatment alone or in combination depending on the required properties, and may be repeated a plurality of times in some cases, further enhancing the effects of the present invention. Enhance. This heat treatment is intended to be applied only to the welded portion and the heat affected zone, and can be performed online or offline during manufacturing. In addition, an electric furnace or induction heating can be used for heating below the Ac 3 point in the diameter reduction, and the diameter can be reduced using a stretch reducer or the like. Further, it is desirable to provide lubrication at the time of diameter reduction from the viewpoint of improving formability. If the elongation or n-value is deteriorated as compared with the cold-rolled steel sheet before the steel sheet is manufactured by work hardening due to pipe forming or diameter reduction, the strain relief annealing in the α region and the heat treatment at one or more points of Ac are appropriately performed. You may go.

【0024】鋼管には必要に応じて電気亜鉛メッキや溶
融亜鉛メッキを施しても良い。本発明によって得られる
冷延鋼板は高強度でありながら、rLが1.3以上と高
くプレス成形性に優れる。また、鋼管もrφが高いので
例えばハイドロフォーム成形には好適である。次に本発
明を実施例にて説明する。
The steel pipe may be subjected to electrogalvanizing or galvanizing as required. The cold rolled steel sheet obtained by the present invention has high rL of 1.3 or more and excellent press formability while having high strength. Further, since the steel pipe also has a high rφ, it is suitable for, for example, hydroforming. Next, the present invention will be described with reference to examples.

【0025】[0025]

【実施例】<実施例1>表1に示す組成を有する鋼を溶
製し、スラブ加熱温度1250℃、仕上げ温度Ar 3 点以
上、巻取り温度700 ℃で熱間圧延し、6.9mm 厚の鋼帯と
した。酸洗後、約68% の圧下率の冷間圧延を施し2.2mm
厚の冷延板とし、ついで連続焼鈍設備にて10℃/sで加
熱し、種々の温度で60秒の焼鈍後、焼鈍温度から550
℃までの平均冷却速度を15℃/sで冷却した。得られた
冷延鋼板からJIS5号引張試験片を採取しr値(10%または
15% 引張) を測定した。また引張強度、降伏強度、全伸
びもJIS5号引張試験片を用いて評価した。
<Example 1> A steel having a composition shown in Table 1 was melted.
Slab heating temperature 1250 ° C, finishing temperature Ar ThreePoint
Top, hot rolled at a winding temperature of 700 ° C and a 6.9mm thick steel strip
did. After pickling, cold-rolled at a rolling reduction of about 68% to 2.2 mm
Thick cold-rolled sheet, then heated at 10 ° C / s with continuous annealing equipment
After heating and annealing at various temperatures for 60 seconds, the annealing temperature is reduced to 550
The average cooling rate to 15 ° C was cooled at 15 ° C / s. Got
A JIS No. 5 tensile test piece was sampled from a cold-rolled steel sheet and the r value (10% or
15% tensile). Also, tensile strength, yield strength, total elongation
Evaluated using JIS No. 5 tensile test pieces.

【0026】結果を表2に示す。表2より明らかなとお
り、本発明鋼は良好なrLを示すが、本発明の範囲外の
比較鋼はrLが1.3未満となった。
The results are shown in Table 2. As is clear from Table 2, the steel of the present invention shows a good rL, but the comparative steel outside the range of the present invention had an rL of less than 1.3.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】<実施例2>表1の鋼A,I,Kを用い、
表3のように冷間圧延率を種々変化させた。焼鈍条件は
全て830℃で50秒保持することによって行い、その
際の加熱冷却速度は実施例1に従った。なお、Aには溶
融亜鉛メッキを,Iには電気Zn−Niメッキを,Kに
は電気Zn−Fe系メッキを施した。これらの亜鉛メッ
キ冷延鋼板よりJIS5号引張試験片を採取し、r値を
測定した。表3より明らかなように、本発明の範囲内の
冷間圧延率の場合、高いrLが得られるのに対して、本
発明の範囲外の条件で冷延を行うと、rLが劣化するこ
とが分かる。
<Example 2> Using steels A, I and K shown in Table 1,
As shown in Table 3, the cold rolling reduction was changed variously. The annealing conditions were all maintained at 830 ° C. for 50 seconds, and the heating and cooling rates at that time were in accordance with Example 1. Note that A was hot-dip galvanized, I was electroplated Zn-Ni, and K was electroplated Zn-Fe. JIS No. 5 tensile test pieces were collected from these galvanized cold-rolled steel sheets, and the r value was measured. As is clear from Table 3, when the cold rolling reduction is within the range of the present invention, a high rL is obtained, whereas when cold rolling is performed under conditions outside the range of the present invention, the rL deteriorates. I understand.

【0030】[0030]

【表3】 [Table 3]

【0031】<実施例3>実施例1で作製した2.2m
m厚の冷延鋼板を外径が50〜100mmとなるように
電縫溶接を用いて造管した。その後800℃にて歪みを
除去するための焼鈍を行った。ハイドロフォーム成形
は、軸押し量1mm、100bar/mmの条件で行い、バース
トに至るまで行った。表4に各鋼の電縫溶接鋼管の機械
的性質およびハイドロフォーム成形におけるバーストま
での拡管率(= バースト時点の最大径/元管の径)を示
す。
Example 3 2.2 m produced in Example 1
A cold-rolled steel sheet having a thickness of m was formed using ERW to have an outer diameter of 50 to 100 mm. Thereafter, annealing was performed at 800 ° C. to remove distortion. The hydroform molding was performed under the conditions of a shaft pushing amount of 1 mm and 100 bar / mm until a burst was reached. Table 4 shows the mechanical properties of the ERW welded steel pipes of each steel and the pipe expansion rate up to the burst in hydroforming (= maximum diameter at the time of the burst / diameter of the original pipe).

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【発明の効果】本発明は、高強度冷延鋼板の問題点であ
ったL方向のr値を向上せしめる技術を提供するもので
ある。本発明は高強度冷延鋼板のみならず鋼管にも適用
でき、ハイドロフォーム用の鋼管としても適している。
The present invention provides a technique for improving the r value in the L direction, which has been a problem of a high-strength cold-rolled steel sheet. The present invention can be applied not only to high-strength cold-rolled steel sheets but also to steel pipes, and is also suitable as a steel pipe for hydroforming.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 展弘 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K037 EA01 EA02 EA04 EA09 EA11 EA13 EA14 EA15 EA16 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA28 EA31 EA32 EA33 EA35 EB02 EB03 FA01 FA02 FA03 FC07 FD01 FD02 FD03 FE03 FE05 FJ04 FJ05 FJ06 FJ07 GA05  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Nobuhiro Fujita 20-1 Shintomi, Futtsu-shi, Chiba F-term in the Technology Development Division, Nippon Steel Corporation 4K037 EA01 EA02 EA04 EA09 EA11 EA13 EA14 EA15 EA16 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA28 EA31 EA32 EA33 EA35 EB02 EB03 FA01 FA02 FA03 FC07 FD01 FD02 FD03 FE03 FE05 FJ04 FJ05 FJ06 FJ07 GA05

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C=0.010%以下、Si=0.2〜2.5
%、Mn=0.4〜2.5%、Si/Mn=0.5 〜2.0 、P=0.02% 以下、
S=0.015% 以下、Al=0.005〜0.2%、N=0.0070%以下、Ti=
(3.4N+4C)〜0.20% を含有し、残部Feおよび不可避的
不純物からなる化学組成を有し、引張強度が320MPa以上
600MPa以下、鋼板の圧延方向(RD)のr値(rL)が
1.3以上であることを特徴とする高強度冷延鋼板。
(1) In mass%, C = 0.010% or less, Si = 0.2-2.5%
%, Mn = 0.4-2.5%, Si / Mn = 0.5-2.0, P = 0.02% or less,
S = 0.015% or less, Al = 0.005-0.2%, N = 0.0070% or less, Ti =
(3.4N + 4C) ~ 0.20%, with chemical composition consisting of balance Fe and unavoidable impurities, tensile strength of 320MPa or more
A high-strength cold-rolled steel sheet, wherein the r value (rL) in the rolling direction (RD) of the steel sheet is not more than 1.3 MPa.
【請求項2】 質量%で、Nb=0.001〜0.019%を含有する
ことを特徴とする請求項1記載の高強度冷延鋼板。
2. The high-strength cold-rolled steel sheet according to claim 1, comprising Nb = 0.001 to 0.019% by mass%.
【請求項3】 質量%で、B=0.0001〜0.0009% を含有す
ることを特徴とする請求項1または2に記載の高強度冷
延鋼板。
3. The high-strength cold-rolled steel sheet according to claim 1, wherein B = 0.0001 to 0.0009% by mass%.
【請求項4】 質量%で、V=0.002 〜0.04% 、W=0.002
〜0.05% 、Mo=0.003〜0.25% 、Sn:0.002〜0.5%、Cu:0.0
03〜0.5%未満、Cr:0.005〜2.0%、Ni:0.005〜0.3%、Ca:
0.0002 〜0.02% 、Zr:0.002〜0.04% 、Mg:0.0005 〜0.0
2% のうち1種又は2種以上を含有することを特徴とす
る請求項1〜3のいずれか1項に記載の高強度冷延鋼
板。
4. In mass%, V = 0.002 to 0.04%, W = 0.002
~ 0.05%, Mo = 0.003-0.25%, Sn: 0.002-0.5%, Cu: 0.0
03-less than 0.5%, Cr: 0.005-2.0%, Ni: 0.005-0.3%, Ca:
0.0002 to 0.02%, Zr: 0.002 to 0.04%, Mg: 0.0005 to 0.0
The high-strength cold-rolled steel sheet according to any one of claims 1 to 3, wherein the steel sheet contains one or more of 2%.
【請求項5】 請求項1〜4のいずれか1項に記載の高
強度冷延鋼板に亜鉛めっきを施したことを特徴とする高
強度冷延鋼板。
5. A high-strength cold-rolled steel sheet, wherein the high-strength cold-rolled steel sheet according to claim 1 is galvanized.
【請求項6】 請求項1〜4の何れか1項に記載の化学
成分及び引張強度を有し,軸方向(φ方向)のr値(r
φ)が1.3以上であることを特徴とする鋼管。
6. It has the chemical composition and tensile strength according to claim 1, and has an r value (r) in an axial direction (φ direction).
φ) is 1.3 or more.
【請求項7】 請求項6記載の鋼管に亜鉛めっきを施し
たことを特徴とする鋼管。
7. A steel pipe according to claim 6, wherein the steel pipe is galvanized.
【請求項8】 請求項1〜4のいずれか1項に記載の化
学組成を有するスラブを熱間圧延し、次いで圧下率が8
0% 以下となるように冷間圧延を施し、650℃以上1100
℃以下の温度で焼鈍することを特徴とする高強度冷延鋼
板の製造方法。
8. A slab having the chemical composition according to claim 1, which is hot-rolled, and then the slab has a reduction ratio of 8%.
0% or less, cold-rolled to 650 ° C or more
A method for producing a high-strength cold-rolled steel sheet, comprising annealing at a temperature of not more than ℃.
【請求項9】 請求項1〜4のいずれか1項に記載の化
学組成を有するスラブを熱間圧延し、次いで圧下率が75
% 以下となるように冷間圧延を施し、650 ℃以上1100℃
以下の温度で焼鈍後、さらに電気亜鉛メッキ又は溶融亜
鉛メッキを施すことを特徴とする高強度冷延鋼板の製造
方法。
9. A slab having the chemical composition according to any one of claims 1 to 4, which is hot-rolled, and then a reduction ratio of 75 is obtained.
%, And cold-rolled to 650 ° C to 1100 ° C
A method for producing a high-strength cold-rolled steel sheet, comprising annealing at the following temperature and further performing electrogalvanizing or hot-dip galvanizing.
【請求項10】 請求項8又は9記載の方法によって製
造された冷延鋼板を素材として、冷延鋼板の圧延方向が
鋼管の管軸方向と一致するように電縫溶接又は鍛接する
ことを特徴とする鋼管の製造方法。
10. A cold-rolled steel sheet produced by the method according to claim 8 or 9, wherein the cold-rolled steel sheet is subjected to ERW or forging so that the rolling direction of the cold-rolled steel sheet coincides with the pipe axis direction of the steel pipe. Steel pipe manufacturing method.
【請求項11】 請求項10記載の方法によって製造さ
れた鋼管に電気亜鉛メッキまたは溶融亜鉛メッキするこ
とを特徴とする鋼管の製造方法。
11. A method for producing a steel pipe, wherein the steel pipe produced by the method according to claim 10 is electrogalvanized or hot-dip galvanized.
JP2000092015A 2000-03-29 2000-03-29 Steel pipe with excellent formability and manufacturing method thereof Expired - Fee Related JP4418077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000092015A JP4418077B2 (en) 2000-03-29 2000-03-29 Steel pipe with excellent formability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000092015A JP4418077B2 (en) 2000-03-29 2000-03-29 Steel pipe with excellent formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001279330A true JP2001279330A (en) 2001-10-10
JP4418077B2 JP4418077B2 (en) 2010-02-17

Family

ID=18607413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000092015A Expired - Fee Related JP4418077B2 (en) 2000-03-29 2000-03-29 Steel pipe with excellent formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4418077B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211158A (en) * 2002-12-27 2004-07-29 Nippon Steel Corp Galvanized steel for welding, and electric resistance welded tube thereof
JP2006219737A (en) * 2005-02-14 2006-08-24 Nippon Steel Corp High-strength cold-rolled steel sheet excellent in deep drawability and method for producing the same
JP2007332452A (en) * 2006-05-17 2007-12-27 Nissan Motor Co Ltd High-tensile steel sheet for resistance welding and joining process therefor
KR100985285B1 (en) 2008-04-18 2010-10-04 주식회사 포스코 Extremely Low Carbon Steel Sheet, Galvanized Steel Sheet with High Strength and Excellent Surface Properties and Manufacturing Method Thereof
EP2143816A4 (en) * 2007-04-11 2015-05-06 Nippon Steel & Sumitomo Metal Corp Hot-dip metal coated high-strength steel sheet for press working excellent in low-temperature toughness and process for production thereof
WO2024122042A1 (en) * 2022-12-09 2024-06-13 日本製鉄株式会社 Cold rolled steel sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211158A (en) * 2002-12-27 2004-07-29 Nippon Steel Corp Galvanized steel for welding, and electric resistance welded tube thereof
JP2006219737A (en) * 2005-02-14 2006-08-24 Nippon Steel Corp High-strength cold-rolled steel sheet excellent in deep drawability and method for producing the same
JP4537865B2 (en) * 2005-02-14 2010-09-08 新日本製鐵株式会社 High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP2007332452A (en) * 2006-05-17 2007-12-27 Nissan Motor Co Ltd High-tensile steel sheet for resistance welding and joining process therefor
EP2143816A4 (en) * 2007-04-11 2015-05-06 Nippon Steel & Sumitomo Metal Corp Hot-dip metal coated high-strength steel sheet for press working excellent in low-temperature toughness and process for production thereof
KR100985285B1 (en) 2008-04-18 2010-10-04 주식회사 포스코 Extremely Low Carbon Steel Sheet, Galvanized Steel Sheet with High Strength and Excellent Surface Properties and Manufacturing Method Thereof
WO2024122042A1 (en) * 2022-12-09 2024-06-13 日本製鉄株式会社 Cold rolled steel sheet

Also Published As

Publication number Publication date
JP4418077B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
JP6443593B1 (en) High strength steel sheet
JP6443592B1 (en) High strength steel sheet
JP4555693B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
CN103370434B (en) Austenitic light-high-strength steel plate with high yield tensile ratio and ductility and preparation method thereof
US8137487B2 (en) Method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability
JP4772927B2 (en) High-strength steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet having excellent fatigue characteristics and elongation and impact characteristics, and methods for producing them
JP4041296B2 (en) High strength steel plate with excellent deep drawability and manufacturing method
EP1431407A1 (en) Steel plate exhibiting excellent workability and method for producing the same
KR20140068198A (en) Hot-dip galvanized steel sheet and method for producing same
WO2017203312A1 (en) Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
JP5394306B2 (en) High-strength steel plate with excellent plating properties and manufacturing method thereof
JP4280078B2 (en) High-strength cold-rolled steel sheet and plated steel sheet excellent in deep drawability, steel pipes excellent in workability, and production methods thereof
JPH10130776A (en) High ductility type high tensile strength cold rolled steel sheet
JP2003231941A (en) HOT-ROLLED STEEL SHEET SUPERIOR IN FORMABILITY AFTER WELDING, WITH HIGH STRENGTH HAVING TENSILE STRENGTH OF 780 MPa OR HIGHER, OF MAKING HEAT AFFECTED ZONE HARDLY BE SOFTENED, COLD-ROLLED STEEL SHEET WITH HIGH STRENGTH, AND SURFACE-TREATED STEEL SHEET WITH HIGH STRENGTH
JP4537865B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
RU2749270C2 (en) Method for manufacturing hot or cold strip and/or flexibly rolled flat steel product from high-strength manganese steel and flat steel product manufactured using this method
JP2011080126A (en) Hot-dip galvannealed steel sheet and method for manufacturing the same
JP4041295B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and its manufacturing method
JP4418077B2 (en) Steel pipe with excellent formability and manufacturing method thereof
JP4171281B2 (en) Steel plate excellent in workability and method for producing the same
JP3549483B2 (en) Hydroform forming steel pipe excellent in processability and manufacturing method
JP4102206B2 (en) High-strength steel pipe with excellent workability and its manufacturing method
JP4171296B2 (en) Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability
JP2004084024A (en) Galvanized steel tube having excellent workability and corrosion resistance, automobile part and production method therefor
JP2978007B2 (en) High tensile strength steel sheet for deep drawing excellent in surface treatment property and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091127

R151 Written notification of patent or utility model registration

Ref document number: 4418077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees