JP2001271218A - Semiconductive fiber and its use - Google Patents

Semiconductive fiber and its use

Info

Publication number
JP2001271218A
JP2001271218A JP2000079591A JP2000079591A JP2001271218A JP 2001271218 A JP2001271218 A JP 2001271218A JP 2000079591 A JP2000079591 A JP 2000079591A JP 2000079591 A JP2000079591 A JP 2000079591A JP 2001271218 A JP2001271218 A JP 2001271218A
Authority
JP
Japan
Prior art keywords
fiber
semiconductive
powder
resistance value
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000079591A
Other languages
Japanese (ja)
Inventor
Hirobumi Yanagisawa
博文 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2000079591A priority Critical patent/JP2001271218A/en
Publication of JP2001271218A publication Critical patent/JP2001271218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Elimination Of Static Electricity (AREA)
  • Conductive Materials (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductive fiber or its nonwoven texture with much improved electric resistance of especially small dispersion and independence of an electric resistance from an impressed voltage. SOLUTION: This semiconductive fiber is characterized by comprising a thermoplastic resin (e.g. fluorine-based resin) fiber containing an electroconductive carbon black (e.g. <=100 nm particle diameter, <=0.5% hydrogen content and <=101 Ω.cm volume resistance value) spun in a substantially undrawn state. The fiber is a nonwoven texture and is produced, for example, by a melt-blown method. The nonwoven texture is effectively used, for example, as a member for removal of electricity of a toner copy image apparatus and/or a member for electrification.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に電気抵抗バラ
ツキと印加電圧に対する電気抵抗非依存性に関し、大き
く改良された半導電性繊維とその使用に関する。該繊維
を不織組織にして、これをトナ−複写画像装置の除電用
部材又は/及び帯電用部材として有効に使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly improved semiconductive fiber, and more particularly to a semi-conductive fiber having improved electric resistance and an electric resistance independent of an applied voltage. The fiber is made into a non-woven structure, which is effectively used as a member for static elimination and / or a member for charging in a toner-copy image apparatus.

【0002】[0002]

【従来の技術】導電性カ−ボンブラツク含有の半導電性
繊維及び該繊維を、例えばトナ−複写機の帯電用ブラシ
(部材)として使用することについては、例えば特開平
7−5745号公報に記載されていて公知である。同号
公報は該繊維(ブラシ状、植毛状、不織布状を例示)を
特に吸水率0.2%以下に特定するものである。一方、
該半導電性繊維として例えば植毛状、織状又は不織布状
繊維を基体としてこの表面に金属フイラ−、カ−ボン含
有の導電性ポリマをコ−テングしたものを用い、これを
該複写機の感光体と離して対向して使用するものとして
特開平7−20681号公報がある。
2. Description of the Related Art Japanese Patent Laid-Open No. 7-5745 discloses a semiconductive fiber containing a conductive carbon black and the use of the fiber as a charging brush (member) of a toner copying machine. It is known. The same publication specifies the fibers (brush-like, flocking-like, non-woven fabric-like examples) particularly with a water absorption of 0.2% or less. on the other hand,
As the semiconductive fiber, for example, a fiber-coated, woven or non-woven fiber base and a metal fiber or a carbon-containing conductive polymer coated on its surface are used as the semiconductive fiber. Japanese Patent Application Laid-Open No. Hei 7-20681 is used as a device which is used facing away from the body.

【0003】[0003]

【発明が解決しようとする課題】本発明は、前記を含め
従来技術には知られていない技術によって、バラツキの
ない電気抵抗と電圧の繰り返し印加と、より高電圧に対
してもその抵抗に変化のない(電圧非依存性)半導電性
繊維を得ることを目的として鋭意検討した結果見出され
たものである。この課題達成の手段は次の通りである。
SUMMARY OF THE INVENTION According to the present invention, a technique which is not known in the prior art including the above is used to repeatedly apply electric resistance and voltage without variation, and to change the resistance even with a higher voltage. It has been found as a result of intensive studies for the purpose of obtaining a semiconductive fiber having no (voltage independent) non-conductive. The means for achieving this task are as follows.

【0004】[0004]

【課題を解決するための手段】即ち本発明は、請求項1
に記載するもので、実質的に無延伸状態で紡糸された導
電性カ−ボンブラック(以下単にCB粉体と呼ぶ)を含
む熱可塑性樹脂繊維であることを特徴とする半導電性繊
維である。そして請求項1に従属する発明として、請求
項2〜5に記載する発明も提供する。更に該半導電性繊
維の有効な使用法の1つとして請求項6も提供する。本
発明を以下の実施形態でより詳細に説明する。
That is, the present invention provides a first aspect of the present invention.
Wherein the semiconductive fiber is a thermoplastic resin fiber containing conductive carbon black (hereinafter simply referred to as CB powder) spun in a substantially undrawn state. . The invention according to claims 2 to 5 is also provided as an invention dependent on claim 1. Claim 6 is also provided as one of the effective uses of the semiconductive fiber. The present invention is described in more detail in the following embodiments.

【0005】[0005]

【発明の実施形態】まずマトリツクス樹脂としての熱可
塑性樹脂は、基本的には繊維成形能を有する熱可塑性樹
脂であれば特に制限はない。例示するとポリエチレンテ
レフタレ−ト、ポリブチレンテレフタレ−ト等のポリエ
ステル、ナイロン(6、66、610、11、12
等)、ポリエチレン、ポリプロピレン、エチレン/プロ
プレンの共重合ポリマ等のポリオレフイン、フッ素系樹
脂、ポリエ−テルエ−テルケトン、ポリエ−テルサルホ
ン等。しかし中でもフッ素系樹脂が好ましい。この理由
は本発明に言う作用効果、つまりバラツキのない電気抵
抗と電圧非依存性において、改良効果が他の樹脂よりも
より大きく現れることと、例えば動く相手を接触しつつ
帯電するとか、除電するような使用形態を採る場合に、
これが接点で飛び跳ねて接触不良を起こす危険性とか、
摩耗・損傷に対する耐性も優れているからである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The thermoplastic resin as a matrix resin is not particularly limited as long as it is basically a thermoplastic resin having a fiber forming ability. For example, polyester such as polyethylene terephthalate and polybutylene terephthalate, nylon (6, 66, 610, 11, 12)
Etc.), polyolefins such as polyethylene, polypropylene, and copolymers of ethylene / propylene, fluororesins, polyetheretherketone, and polyethersulfone. However, among them, a fluororesin is preferred. The reason for this is that the effect of the present invention, that is, in terms of electrical resistance and voltage independence without variation, the improvement effect appears larger than other resins, and, for example, charging or discharging while contacting a moving partner. When adopting such a usage form,
There is a danger that this will jump at the contact and cause poor contact,
This is because the resistance to wear and damage is also excellent.

【0006】前記フッ素系樹として具体的には、ポリビ
ニリデンフルオライド、ポリ3フッ化塩化エチレン等の
単独ポリマ、エチレンと3フッ化塩化エチレン又は4フ
ッ化エチレンとの2元コポリマ、4フッ化エチレンと6
フッ化プロピレンとの2元コポリマ、4フッ化エチレン
とパ−フッ化アルキルビニルエ−テルと6フッ化プロピ
レンとの3元コポリマ等が例示できる。この中でも更に
好ましいポリマは、該2元コポリマに代表して見られる
コポリマである。
Specific examples of the fluorine-based resin include a single polymer such as polyvinylidene fluoride and poly (trifluorochloroethylene), a binary copolymer of ethylene and trifluorochloroethylene or tetrafluoroethylene, and tetrafluoride. Ethylene and 6
Binary copolymers of propylene fluoride, terpolymers of tetrafluoroethylene, perfluoroalkylvinyl ether and propylene hexafluoride, etc. can be exemplified. Among these, a more preferable polymer is a copolymer represented by the binary copolymer.

【0007】そして前記熱可塑性樹脂に混練して半導電
性を付与する導電性カ−ボンブラツク(以下単にCB粉
体と呼ぶ)としては、まず種々の物性(粒径、比表面
積,DBP吸収量、PH値、電気的特性、揮発分等)を
もって存在しているので、その中から本発明に有効なも
のを選択して使用するのが好ましい。この中で物性とし
て、粒径が100nm以下、好ましくは80nm以下、
更には50nm以下であって、且つ水素含有量が0.5
以下、体積抵抗値が約10Ω・cm以下、好ましくは
10Ω・cm以下を有するCB粉体であるのがより望
ましい。これは少なくともこの物性から外れるCB粉体
では、まず繊維成形自体が円滑に行われなくなる(糸切
れとか、気泡の抱含等)傾向になることと、より少量の
CB粉体の添加で、より低い電気抵抗を有する繊維を得
ることが困難になるからである。
As the conductive carbon black (hereinafter simply referred to as CB powder) which imparts semi-conductivity by kneading with the thermoplastic resin, first, various physical properties (particle size, specific surface area, DBP absorption amount, etc.) (PH value, electrical characteristics, volatile components, etc.), and it is preferable to select and use those effective for the present invention. Among these, as physical properties, the particle size is 100 nm or less, preferably 80 nm or less,
Furthermore, it is 50 nm or less and the hydrogen content is 0.5
Hereinafter, a volume resistivity of about 10 1 Ω · cm or less, and more preferably preferably CB powder having the following 10 0 Ω · cm. This is because, at least in the case of CB powder that deviates from these physical properties, the fiber molding itself tends to be not smoothly performed (yarn breakage, inclusion of bubbles, etc.), and the addition of a smaller amount of CB powder leads to This is because it becomes difficult to obtain a fiber having a low electric resistance.

【0008】尚、CB粉体は製造方法(原料、燃焼条
件)によって種々(アセチレンブラツク、サ−マルブラ
ツク、フア−ネスブラツク、チヤンネルブラツク等)あ
るが、前記好ましく例示する粒径100nm以下、水素
含有量0.5%以下、体積抵抗値10Ω・cm以下の
CB粉体は、アセチレンを原料として熱分解(発熱)し
て得たアセチレンブラツクに多く見られる。
There are various types of CB powder (acetylene black, thermal black, furnace black, channel black, etc.) depending on the production method (raw material, combustion conditions). A CB powder having a volume resistance value of 0.5% or less and a volume resistance value of 10 1 Ω · cm or less is often found in acetylene black obtained by thermal decomposition (heat generation) using acetylene as a raw material.

【0009】前記に記載する熱可塑性樹脂にCB粉体を
混練して、これを溶融紡糸して繊維にすることで半導電
性を付与することができるが、しかし本発明では特に紡
糸後の条件として、通常とはことなる、実質的に延伸し
ないことを必須とするものである。ここで実質的に延伸
しない(無延伸)繊維とは、口金から吐出され冷却され
て固形状態を形成してからそれを積極的に延伸して引き
取る繊維ではないと言うことである。従って未だ該固形
状態にならない溶融状態にある間に引っ張られる(いわ
ゆるドロ−)ことは、本発明に言う延伸ではないので、
ドロ−はあっても良いと言うことである。しかし全くの
無延伸と言うことではなく、若干(例えば30%程度以
下)の延伸は許容される。この無延伸による作用は次ぎ
のように考えられる。まずもともと前記樹脂中に均一に
分散していたCB粉体が、延伸されることで不均一化
し、局在的な分散状態に変化する。またある一定のスト
ラクチヤ−をもって分散されたCB粉体にとっては、延
伸されることでそれが破壊されてしまう。このような分
散状態にある繊維では、電気抵抗が大きなバラツキとな
って現れ、そして電圧依存性も大きくなることに繋がっ
てくるためと考えられる。
[0009] Semi-conductivity can be imparted by kneading CB powder into the above-mentioned thermoplastic resin and melt-spinning it into fibers to obtain semi-conductivity. In other words, it is essential that the film is not substantially stretched. Here, the fiber that is not substantially drawn (not drawn) is not a fiber that is discharged from a die and cooled to form a solid state, and then actively drawn and drawn. Therefore, since it is not the stretching according to the present invention to be stretched (so-called draw) while in the molten state which does not yet become the solid state,
The draw is to say that it is OK. However, it does not mean that the film is not stretched at all, and a slight stretch (for example, about 30% or less) is allowed. The effect of this non-stretching is considered as follows. First, the CB powder originally dispersed uniformly in the resin becomes non-uniform by stretching, and changes to a localized dispersion state. Further, CB powder dispersed with a certain structure is broken by stretching. It is considered that the fibers in such a dispersed state show large variations in electric resistance and also lead to an increase in voltage dependency.

【0010】前記実質的に無延伸のCB粉体含有の半導
電性熱可塑性樹脂繊維Aの有する電気抵抗値は、該CB
粉体含有量を変えることで、例えば10〜1013Ω
・cmの範囲で容易に変えることができ、そしてバラツ
キの指標となる該抵抗値の桁数が±0.5以内、更には
±0.2以内にあると言うことである。つまり例えば1
Ω・cmオ−ダ−の該繊維であれば、どこをとって
みても105(±0. 5以内)Ω・cmに納まっている
ということである。
[0010] The electric resistance of the semi-conductive thermoplastic resin fiber A containing substantially undrawn CB powder is as follows:
By changing the powder content, for example, 10 2 to 10 13 Ω
-It can be easily changed in the range of cm, and the number of digits of the resistance value which is an indicator of the variation is within ± 0.5, and further within ± 0.2. That is, for example, 1
0 5 Ω · cm o - da - if the fiber of, where to take even try 10 5 (. ± 0 5 or less) is that it is accommodated in Ω · cm.

【0011】次に特定される半導電性熱可塑性樹脂繊維
の製造手段について説明する。まず前記熱可塑性樹脂に
所望する電気抵抗値を付与するに相当するCB粉体を混
合する。例えば粒径数十nm、体積抵抗値10〜10
−1Ω・cmのアセチレンブラツクを用いて体積抵抗値
10〜1013Ω・cmの繊維を得ようするならば、
該ブラツクの混合量は5〜20重量%程度である。両者
の混合手段は、好ましくは、まず両者粉体をハイミキサ
−等を使って十分混合し、そして得られた混合粉体を2
軸押出機で溶融混練しつつガットに押し出してこれをチ
ップ状にカットする。これを溶融紡糸の原料とするのが
良い。
Next, the means for producing the specified semiconductive thermoplastic resin fiber will be described. First, CB powder corresponding to imparting a desired electric resistance value to the thermoplastic resin is mixed. For example, a particle diameter of several tens nm, a volume resistance value of 10 1 to 10
If one wishes to obtain fibers having a volume resistivity of 10 2 to 10 13 Ω · cm using an acetylene black of −1 Ω · cm,
The mixing amount of the black is about 5 to 20% by weight. Preferably, the mixing means for the two powders is first sufficiently mixed using a high mixer or the like, and the resulting mixed powder is mixed for 2 hours.
It is extruded into a gut while being melt-kneaded by a screw extruder and cut into chips. This is preferably used as a raw material for melt spinning.

【0012】次に前記得られたチップを用いて所望する
繊維に成形されるが、その形態は使用目的によってモノ
フイラメント、マルチフイラメント、そしてその太さ、
断面形状等が決められる。これは一般に口金(孔数、大
きさ、形状)を変えることで行われる。尚、該口金から
吐出されたらほぼ吐出速度と同じ速度、つまり実質的無
延伸で冷却しつつ引き取るが、しかしドロ−は若干掛け
た方がよい。これは電気抵抗において、よりバラツキの
小さい安定した繊維として得やすいからである。
Next, the desired chips are formed into a desired fiber by using the obtained chips. The form is monofilament, multifilament, and its thickness depending on the purpose of use.
The cross-sectional shape and the like are determined. This is generally performed by changing the base (number of holes, size, shape). When the liquid is discharged from the die, the liquid is taken out while cooling at substantially the same speed as the discharge speed, that is, substantially without stretching, but it is better to slightly apply the drawer. This is because it is easy to obtain a stable fiber having less variation in electric resistance.

【0013】一方請求項4に記載するような不織組織で
使用するような場合には、それは例えば前記得られた連
続フイラメントを、連続して又は別工程で不織状に捕集
堆積する、いわゆるスパンボンド法によってつくられる
が、しかし次のような方法で実質的無延伸繊維の製造と
同時に、これを一挙に不織組織として得る方法が望まれ
る。これはほぼ完全に無延伸状態で繊維化することがで
きるので、より一層均一な電気抵抗(バラツキのない)
と電圧非依存性に優れる該組織とすることができる。つ
まりその方法は、メルトブロ−ン法である。該方法は、
一般に直径1mm未満の孔が孔間ピツチ約0.5mmで
1列に多数並んだものをダイとし、そして各孔の両側か
ら300°C以上の加熱ガスが高速で吹き出せるように
スリットが設けられる。各孔から吐出される溶融樹脂
は、該高速加熱ガスによって吹き飛ばされて繊維状にな
る。これを該孔から20〜50cm離れた捕集面に直接
受けて冷却して不織状のウエッブとするものである。
尚、該法は基本的には上記条件によって製造するが、C
B粉体が含有されているので、その分溶融した熱可塑性
樹脂が若干重くなり円滑に吹き出され難いとか、口金孔
詰まり等の危険性もあるので該ガスの供給速度はより大
きく、CB粉体の粒径もより小さく等の配慮をすること
が望まれる。
On the other hand, in the case of use in a nonwoven fabric as described in claim 4, for example, the obtained continuous filament is collected or deposited in a nonwoven form continuously or in a separate step. It is made by a so-called spunbond method. However, a method is desired in which a substantially non-oriented fiber is produced at the same time as a nonwoven structure at a time by the following method. Since it can be fiberized almost completely in an undrawn state, a more uniform electric resistance (without variation)
And excellent in voltage-independence. That is, the method is a meltblowing method. The method comprises:
In general, a die in which a number of holes having a diameter of less than 1 mm are arranged in a row with a pitch of about 0.5 mm between holes is used as a die, and slits are provided so that a heated gas of 300 ° C. or more can be blown out from both sides of each hole at a high speed. . The molten resin discharged from each hole is blown off by the high-speed heating gas to be in a fibrous form. This is directly received on a collecting surface 20 to 50 cm away from the hole and cooled to form a nonwoven web.
In addition, this method is basically manufactured under the above conditions,
Since the B powder is contained, the melted thermoplastic resin becomes slightly heavier and it is difficult to blow it out smoothly, or there is a risk of clogging of the base hole. It is desired to take into consideration such as making the particle size smaller.

【0014】前記により得られる不織組織の有する体積
抵抗値も基本的にはCB粉体の含有量によって変えられ
るが、繊度と目付け量によっても変わる。前記連続繊維
と同様に10〜1013Ω・cmの範囲にあって、且
つその桁数が±0.5以内になるように、これら因子も
加味して形成するのがよい。このような範囲に条件設定
されて得られる不織組織も、前記繊維と同様に種々の用
途で好ましく作用することになる。
The volume resistance value of the nonwoven structure obtained as described above can be basically changed by the content of the CB powder, but also by the fineness and the basis weight. Similar to the continuous fiber, it is preferable to form them in consideration of these factors so that they are in the range of 10 2 to 10 13 Ω · cm and the number of digits is within ± 0.5. The nonwoven structure obtained by setting the conditions in such a range also works favorably in various uses similarly to the above-mentioned fibers.

【0015】又、前記繊維又はこれを不織組織にして使
用する場合にその使用前に加熱処理しても良い。これは
実質的無延伸状態の中ではあるが、若干の延伸があった
場合とか、混合するCB粉体の種類等によっては、例え
ば電圧非依存性の点で若干悪くなる場合もある。かかる
状況にある繊維又はこれの不織組織にとっては勿論、そ
うでないものでもこの後加熱処理で改善することが可能
であるからである。尚、この加熱処理条件は、前記マト
リックス樹脂の融点(M)又は軟化点(S)よりも低温
であるが、M(又はS)−30°C程度を上限温度と
し、下限温度はM(又はS)温度の1/3程度としてこ
の範囲以内で行うのがよい。そして時間は温度等によっ
て異なるが、一般的には10分以内、5分前後といった
ところである。加熱手段は、加熱ロ−ルを通すか、連続
的に熱風を吹き付けるか等の方法によるのがよい。
In the case where the fibers or the fibers are used in a non-woven structure, they may be subjected to a heat treatment before use. This is in a substantially non-stretched state, but depending on the type of the CB powder to be mixed and the like, there may be a case where it is slightly worse in terms of, for example, voltage independence. This is because it is possible to improve the fiber or the non-woven structure in such a situation as well as the non-woven structure by the subsequent heat treatment. The heat treatment conditions are lower than the melting point (M) or softening point (S) of the matrix resin, but the upper limit temperature is about M (or S) -30 ° C, and the lower limit temperature is M (or S) It is preferable that the temperature is set within about 1/3 of the temperature and within this range. The time varies depending on the temperature and the like, but is generally within about 10 minutes and about 5 minutes. The heating means may be a method such as passing a heating roll or continuously blowing hot air.

【0016】前記得られた半導電性熱可塑性繊維は、前
記通り優れた電気抵抗特性が付与されているので、除電
又は/帯電用部材として、種々の形態で種々の用途に使
用される。例えば所定サイズにカットした該繊維を横長
の金属製把持具に挟んで、これを印刷機に取り付けて印
刷用紙の除電ブラシ、フイルムの除電ブラシ、各種電気
部品(製品)の除電ブラシ等の除電用部材としての使
用、電磁波シ−ルド部材としての使用、集塵部材(帯電
と除電作用の活用)としての使用がある。その他により
有効な使用法に請求項6に記載するようなトナ−複写画
像装置の除電用部材及び/又は帯電用部材がある。
Since the obtained semiconductive thermoplastic fiber has excellent electric resistance characteristics as described above, it is used in various forms and various applications as a member for static elimination or charging. For example, the fiber cut into a predetermined size is sandwiched between horizontally long metal grippers and attached to a printing machine to remove static electricity from a printing paper, from a film, from a variety of electrical components (products), and from other electrical components. There are a use as a member, a use as an electromagnetic wave shield member, and a use as a dust collecting member (utilization of charging and static elimination actions). Another more effective use is a member for static elimination and / or a member for charging of a toner-copy image apparatus as described in claim 6.

【0017】前記のトナ−複写画像装置の除・帯電用部
材としての使い方は次の通りである。一般に該装置に
は、感光ドラムを事前に帯電するための帯電器と帯電す
る前に除電するための除電器が設けられている。又中間
転写ベルトを用いて複写する、カラ−多重転写方式で
は、該ベルトにも帯電器と除電器とが設けられる。これ
らの帯電器、除電器には接触子があるが、この接触子に
本発明の繊維自身又はその不織組織を使うと言うもので
ある。この接触子としての使用形態は、一般には前記の
ようなブラシ状での使用で、これを適正な形態で加工
し、取り付ける。しかしより好ましいものは不織組織で
の使用である。不織組織での使用は、ブラシ状での使用
と異なり、まず感光ドラム又は中間転写ベルト面に対し
てより均一に接触できるので、効率よく帯電又は除電す
ることができること。放電の危険性が小さいのでオゾン
の発生が軽減されること。摺動接触による先端摩耗が軽
減されるので、経時変化によるバイアス電圧変化と
か、、接触子としての寿命が延びる等の点で有利である
からである。
The use of the toner-copying image apparatus as a member for removing and charging is as follows. In general, the apparatus is provided with a charger for charging the photosensitive drum in advance and a charge remover for removing electricity before charging. In the color multiple transfer system in which copying is performed using an intermediate transfer belt, the belt is also provided with a charger and a static eliminator. These chargers and static eliminators have contacts, and it is said that the fibers themselves of the present invention or the nonwoven fabric thereof are used for the contacts. This contact is generally used in the form of a brush as described above, and is processed and attached in an appropriate form. However, more preferred is use in non-woven tissues. When used in a non-woven structure, unlike in a brush-like structure, firstly, it can contact the photosensitive drum or the intermediate transfer belt more uniformly, so that it can be charged or discharged efficiently. Ozone generation should be reduced because the danger of discharge is small. This is because abrasion at the tip due to sliding contact is reduced, which is advantageous in that bias voltage changes due to aging, and that the life of the contact is extended.

【0018】又、前記繊維にしても不織組織にしても、
一般には同一のCB粉体で同一量を同一の前記樹脂に混
合し、これを同一のモノ又はマルチフィラメントにして
これをベ−スとして成形される。しかしこれが使用目的
によっては種々の組合せ組成からなる混合形態の場合も
ある。尚、不織組織の厚さは薄い布状から厚いフエルト
状の物まである。
In addition, the above-mentioned fibers or non-woven fabrics
In general, the same amount of the same CB powder is mixed with the same resin to form the same mono- or multi-filament, which is molded as a base. However, this may be a mixed form composed of various combinations depending on the purpose of use. The thickness of the non-woven tissue ranges from a thin cloth to a thick felt.

【0019】また前記のトナ−複写画像装置の帯電器、
除電器における接触子を不織組織で使用する場合は、全
て同一条件で形成された単一不織布の形で使用するのが
よい。これによる取り付けは、単に該不織布を適当にカ
ットし、これを金属製挟持具に挟んでカット面を感光ド
ラム又は中間転写ベルトに接触させる方法でも良いが、
それよりも該不織布を2重、3重に折ってこれを該把持
具に挟んで折り目部分を接触させる方法がよい。これは
該不織布を単にカットして、このカット面で接すると前
記のブラシ状での使用と同じような作用をし、前記の不
織組織での使用の効果が最大限に発現しなくなる傾向が
あるからである。
A charger for the toner-copier image device;
When the contacts in the static eliminator are used in a non-woven structure, they are preferably used in the form of a single non-woven fabric formed under the same conditions. The attachment by this may be a method of simply cutting the nonwoven fabric appropriately, sandwiching the nonwoven fabric with a metal holding tool, and bringing the cut surface into contact with the photosensitive drum or the intermediate transfer belt,
Rather, it is better to fold the nonwoven fabric two or three times, sandwich the nonwoven fabric between the grippers, and bring the folds into contact. This means that when the nonwoven fabric is simply cut and brought into contact with the cut surface, the nonwoven fabric acts in the same manner as the above-mentioned use in a brush shape, and the effect of the use in the nonwoven fabric does not tend to be maximized. Because there is.

【0020】又、前記不織組織としての使用の場合はこ
れを金属ロ−ラに倦着し、回転しながら接触することも
できる。尚、使用形態がブラシ状とか、不織組織状と
か、用途とかの如何に関わらず一般には除電と帯電では
必要な体積抵抗値は異なり、帯電は除電よりも大きく設
定する。その範囲は帯電では10〜1013Ω・c
m、除電では10〜10Ω・cm程度の範囲で選ら
ばれる。
When used as the nonwoven fabric, the nonwoven fabric may be adhered to a metal roller and contacted while rotating. Regardless of the use form, such as a brush form, a non-woven structure form, or an application, generally, the required volume resistance value is different between static elimination and electrification, and electrification is set to be larger than static elimination. The range is 10 4 to 10 13 Ω · c for charging.
m, for static elimination, it is selected in the range of about 10 2 to 10 5 Ω · cm.

【0021】[0021]

【実施例】以下比較例と共に、実施例によって更に詳述
する。尚、本例で言う体積抵抗値(Rv)(Ω・cm)
は、次のような方法で測定し、計算により算出したもの
である。但しフィラメントの絶縁抵抗値はR(Ω)は、
ヒュウレットパッカ−ド社製のハイレスタ・抵抗メ−タ
を用い、一方不織布のそれは三菱化学株式会社製の抵抗
測定計“ハイレスタ・HAブロ−ブを用いて測定した。 ◎繊維(フイラメント)の場合・・64本のモノフイラ
メントが収束されてなるマルチフイラメントを10cm
に離した2つの電極に密着し印加電圧100Vのもとで
絶縁抵抗値を測定し、Rv=R×(S/10)に代入し
算出した。但しSはモノフイラメントの断面積である。 ◎不織組織の場合・・目付けA(g/cm)、厚さt
(cm)の不織布をステ−ジ上に載置して、その片面に
電極面積19.6cmのリング状プロ−ブを密着し
て、印加電圧110Vの下で絶縁抵抗値を測定し、Rv
=(R/t)×(電極面積)×(1−空隙率)に代入し
算出した。但し空隙率は(1−A/t×モノフイラメン
トの密度)である。
The present invention will be described in more detail with reference to the following examples together with comparative examples. Incidentally, the volume resistance value (Rv) (Ω · cm) referred to in this example.
Is measured by the following method and calculated by calculation. However, the insulation resistance value of the filament is R (Ω),
A Hiresta resistance meter manufactured by Hewlett-Packard Co., Ltd. was used, while that of the nonwoven fabric was measured using a resistance meter “Hiresta HA probe” manufactured by Mitsubishi Chemical Corporation. In the case of fiber (filament) ..Multi-filament consisting of 64 monofilaments converged to 10 cm
The insulation resistance value was measured under an applied voltage of 100 V while being in close contact with the two electrodes separated from each other, and was calculated by substituting Rv = R × (S / 10). Here, S is the cross-sectional area of the monofilament. ◎ In the case of non-woven structure: weight per unit area A (g / cm 2 ), thickness t
(Cm) is placed on a stage, and a ring-shaped probe having an electrode area of 19.6 cm 2 is adhered to one side of the non-woven fabric, and the insulation resistance is measured under an applied voltage of 110 V.
= (R / t) x (electrode area) x (1-porosity). However, the porosity is (1−A / t × density of monofilament).

【0022】(実施例1)まず4フッ化エチレンと6フ
ッ化プロピレンとの共重合ポリマ(ダイキン工業株式会
社製 ネオフロンFEP,NP−22)粉体(平均粒径
100nm)にCB粉体(アセチレンブラツク、平均粒
径40nm、水素含有率0.03〜0.05%,体積抵
抗値10−1Ω・cmオ−ダ)10重量%を添加しハイ
ミキサ−で一次混合し、次にこの混合粉体を2軸押出機
(バレル温度225〜330°C)で溶融混練しつつ、
延伸動作することなくガツト状で押し出しこれをカット
してペレットとして得た。
(Example 1) First, a copolymer (neoflon FEP, NP-22, manufactured by Daikin Industries, Ltd.) of tetrafluoroethylene and propylene hexafluoride (average particle size: 100 nm) was powdered into CB powder (acetylene). Black, average particle size 40 nm, hydrogen content 0.03 to 0.05%, volume resistivity 10 -1 Ω · cm order) 10 wt% are added and primary mixed with a high mixer, then this mixed powder While melt kneading the body with a twin screw extruder (barrel temperature 225 to 330 ° C),
It was extruded in a gut shape without performing a stretching operation, and this was cut to obtain a pellet.

【0023】一方孔径0.3mmのノズルを64個ホ−
ル有する口金(温度380°C)を先端に取り付けた1
軸押出機(バレル温度225〜350°C)を準備し、
これに前記ペレツトを供給し、吐出量1540g/時間
で吐出し、ドロ−を掛けつつ(ドロ−速度200m/m
in)冷却し5%の延伸で巻き取り、64本からなる束
状マルチフイラメントを得た。このフイラメントの1本
の繊度は18dであった。
On the other hand, 64 nozzles having a hole diameter of 0.3 mm
1 with a base (temperature 380 ° C)
Prepare a screw extruder (barrel temperature 225-350 ° C)
The pellet is supplied thereto, and the pellet is discharged at a discharge rate of 1540 g / hour.
in) The film was cooled and wound up by stretching at 5% to obtain a bundle of 64 filaments. The fineness of one filament of this filament was 18d.

【0024】そしてこれの500mに渡って100ヶ所
で絶縁抵抗値を測定し、これをもって体積抵抗値を求め
たところ、104.32〜104.99Ω・cmの範囲
にあり、バラツキのない所望する半導電性繊維を得るこ
とができた。尚、前記フイラメントは5%の延伸が掛か
っているが、この体積抵抗値の結果からも、後述の比較
例からも判るように、実質的無延伸で得られていること
が判る。
Then, the insulation resistance was measured at 100 points over 500 m of this, and the volume resistance was obtained. The volume resistance was found to be in the range of 10 4.32 to 10.4.9 Ω · cm, and there was no variation. The desired semiconductive fibers could be obtained. Although the filament was stretched by 5%, it can be seen from the results of the volume resistance values that the filament was obtained substantially without stretching, as can be seen from the comparative examples described later.

【0025】(実施例2)エチレンとテトラフロロエチ
レンとの共重合ポリマ(ダイキン工業株式会社製ネオフ
ロンETFE,EP−610)粉体に実施例1と同じC
B粉体を11.7重量%を添加しハイミキサ−で一次混
合し、次にこの混合粉体を2軸押出機(バレル温度21
5〜300°C)で溶融混練しつつ、延伸動作すること
なくガット状で押し出し、これをカットしてペレットと
して得た。そして実施例1と同じ条件で紡糸し65本か
らなる束状マルチフイラメントを得た。このフイラメン
トの1本の繊度は18.8dであった。そして前記得た
マルチフイラメントを500mに渡って100ヶ所で絶
縁抵抗値を測定し、これをもって体積抵抗値を求めた。
その結果103.50〜10 .94Ω・cmの範囲に
あり、バラツキのない所望する半導電性繊維を得ること
ができた。尚、該マルチフイラメントは前例同様に、約
5%に延伸されているが、該体積抵抗値の結果からも判
るよう、実質的無延伸で得られていることが判る。
Example 2 The same copolymer as in Example 1 was used for powder of a copolymer of ethylene and tetrafluoroethylene (neoflon ETFE, EP-610 manufactured by Daikin Industries, Ltd.).
B powder was added in an amount of 11.7% by weight and primary mixed with a high mixer.
While being melt-kneaded at 5 to 300 ° C.), it was extruded in a gut shape without performing a stretching operation, and was cut into pellets. Then, spinning was performed under the same conditions as in Example 1 to obtain a bundle multifilament consisting of 65 filaments. The fineness of one filament of this filament was 18.8 d. Then, the insulation resistance value of the obtained multifilament was measured at 100 locations over 500 m, and the volume resistance value was obtained from the measurement.
As a result, 10 3.50 to 10 3 . A desired semiconductive fiber having a range of 94 Ω · cm and no variation was obtained. Although the multifilament is stretched to about 5% similarly to the previous example, it can be seen from the result of the volume resistance value that the multifilament is obtained substantially without stretching.

【0026】(実施例3)まず孔径0.3mmのノズル
が1.2mmピツチで一列に500個並び、そして該各
孔の両側から高速熱風の吹き出されるスリットを有する
メルトブロ−ンダイ(ダイ温度310°C)を先端に有
する1軸押出機(バレル温度180〜300°C)及び
該ダイの下10cmに配置された可動する捕集台(網目
状に穴が空いている)を準備した。そしてスリットから
280°Cの熱風を700Nm/hrで吹き出すと共
に、該押出機に実施例2で得たペレツトを用いて該押出
機への供給を開始し、吐出速度0.4g/min、幅約
600mmで不織状で吹き出し該捕集台上に捕集した。
この捕集の際には該捕集台の下部に設けられた真空ポン
プで適宜吸引しつつ不織状ウエッブにして巻き取った。
そして巻き取ったものをニップロ−ラに通してプレス
し、厚さ0.3mmに調整して目的の半導電性布織布を
得た。
Embodiment 3 First, 500 nozzles having a hole diameter of 0.3 mm are arranged in a line at a pitch of 1.2 mm, and a melt blown die (die temperature 310) having slits through which high-speed hot air is blown from both sides of each hole. C) at the tip (barrel temperature: 180-300 ° C) and a movable collecting table (having mesh holes) arranged 10 cm below the die. Then, hot air at 280 ° C. is blown out from the slit at 700 Nm 3 / hr, and supply to the extruder is started by using the pellet obtained in Example 2 to the extruder, and the discharge speed is 0.4 g / min and the width is 0.4 g / min. It was blown out in a non-woven shape at about 600 mm and collected on the collecting table.
At the time of this collection, a non-woven web was wound while appropriately sucking with a vacuum pump provided at the lower part of the collection table and wound up.
Then, the wound product was passed through a nipplorer and pressed to adjust the thickness to 0.3 mm to obtain a desired semiconductive woven fabric.

【0027】前記得られた半導電性不織布を構成するフ
イラメント(モノ)の繊度は100nm、密度は1.7
3g/cm、そして該不織布の目付けは200g/c
であった。そして該不織布の10mを切り出して位
置を変えて100ヶ所の絶縁抵抗値を測定し、体積抵抗
値を計算し求めた。その結果103.12〜103.
31Ω・cmの範囲にあり、バラツキのない所望する半
導電性不織布を得ることができた。
The filament (mono) constituting the obtained semiconductive nonwoven fabric has a fineness of 100 nm and a density of 1.7.
3 g / cm 3 and the basis weight of the nonwoven fabric is 200 g / c
It was m 2. Then, 10 m of the nonwoven fabric was cut out, the position was changed, and the insulation resistance at 100 locations was measured, and the volume resistance was calculated and obtained. As a result, 10 3.12 to 10 3.
A desired semiconductive nonwoven fabric having a range of 31 Ω · cm and no variation was obtained.

【0028】(実施例4)ポリエチレンテレフタレ−ト
(固有粘度0.72)粉体に実施例1と同じCB粉体を
18.5重量%を添加しハイミキサ−で一次混合し、次
にこの混合粉体を2軸押出機(バレル温度225〜30
0°C)で溶融混練しつつ、延伸動作することなくガッ
ト状で押し出し、これをカットしペッレトとして得た。
そして該ペレットを使って実施例3の不織布装置を使っ
て、同じ条件でメルトブロ−ンを行い、半導電性布織布
を製造した。
Example 4 18.5% by weight of the same CB powder as in Example 1 was added to polyethylene terephthalate (intrinsic viscosity 0.72) powder, and the mixture was primarily mixed with a high mixer. The mixed powder is supplied to a twin screw extruder (barrel temperature of 225 to 30).
At 0 ° C), the mixture was extruded in a gut shape without performing a stretching operation while being melted and kneaded, and cut into pellets to obtain pellets.
The pellets were melt blown using the nonwoven fabric apparatus of Example 3 under the same conditions to produce a semiconductive woven fabric.

【0029】前記得られた半導電性不織布の厚さは0.
4mm、これを構成するフイラメント(モノ)の繊度は
8μm、密度は1.34g/cm、該不織布の目付け
は100g/cmであった。そして該不織布の10m
を切り出してランダムに位置を変えて100ヶ所の絶縁
抵抗値を測定し、体積抵抗値を求めた。その結果10
3.2〜103.5Ω・cmの範囲にあり、所望するバ
ラツキのない半導電性不織布を得ることができた。
The thickness of the obtained semiconductive non-woven fabric is 0.1 mm.
4mm, the fineness of the filaments (things)
8 μm, density 1.34 g / cm3, The basis weight of the nonwoven fabric
Is 100 g / cm2Met. And 10m of the non-woven fabric
Cut out and randomly change positions to insulate 100 locations
The resistance value was measured to determine the volume resistance value. Result 10
3.2-103.5Ωcm
It was possible to obtain a semiconductive non-woven fabric having no irregularities.

【0030】(比較例1)実施例1において、ドロ−速
度100m/min、延伸倍率を2倍にする以外は同一
条件にて紡糸して64本マルチフイラメントを得た。こ
のフイラメントの1本の繊度は18dであった。そして
前記得たマルチフイラメントを500mに渡って100
ヶ所で絶縁抵抗値を測定し、これをもって体積抵抗値を
求めた。その結果106.27〜10 3.15Ω・c
mの範囲でバラツキがあり、実施例1の実質的無延伸と
の間に大きな差のあることが判る。
(Comparative Example 1) A multifilament was obtained by spinning under the same conditions as in Example 1 except that the draw speed was 100 m / min and the stretching ratio was doubled. The fineness of one filament of this filament was 18d. Then, the obtained multi-filament is 100 m
Insulation resistance values were measured at various locations, and the volume resistance values were determined from these values. As a result 10 6.27 ~10 1 3.15 Ω · c
It can be seen that there is variation in the range of m, and that there is a large difference from the substantially no stretching in Example 1.

【0031】(実施例5)実施例1と比較例1のマルチ
フイラメントについて、次の条件で電圧依存性を調べ
た。各々の該フイラメントを20cmにカットし、これ
を10cmに離した2つの電極にしっかり密着して渡設
し、印加電圧500Vの下で、印加時間30〜120分
の間での各時間毎の絶縁抵抗を測定し、体積抵抗値に換
算してこれを図1のグラフに表した。実施例1では電気
抵抗に変化がないのに対して、比較例1では大きく変化
することが判る。
(Example 5) The voltage dependence of the multifilaments of Example 1 and Comparative Example 1 was examined under the following conditions. Each of the filaments was cut into 20 cm, and the two filaments were placed in close contact with two electrodes separated by 10 cm. Under an applied voltage of 500 V, the insulation was performed every hour for an application time of 30 to 120 minutes. The resistance was measured and converted into a volume resistance value, which was shown in the graph of FIG. It can be seen that the electrical resistance does not change in Example 1, whereas the electrical resistance changes greatly in Comparative Example 1.

【0032】[0032]

【発明の効果】本発明は前記の通り構成されているの
で、次のような効果を奏する。
As described above, the present invention has the following advantages.

【0033】より一層バラツキのない電気抵抗特性を有
する半導電性繊維が得られるようになった
It has become possible to obtain a semiconductive fiber having an electric resistance characteristic with even more uniformity.

【0034】又例えば反復電圧印加の下での電気抵抗特
性に大きな改善が見られ、安定し性能品質でより長く連
続使用がきるようになった。
Further, for example, a great improvement was seen in the electric resistance characteristics under repeated voltage application, and the continuous use was possible for a long time with stable performance quality.

【0035】より優れた帯電又は除電用部材であること
で、各種の用途分野でより一層多用されることが期待さ
れる。例えば得られた半導電性繊維を不織組織にして、
これをトナ−複写画像装置の帯電及び/又は除電器の接
触子としての使用は有効である。
It is expected that a more excellent member for charging or static elimination will be used more frequently in various fields of application. For example, the obtained semiconductive fiber is made into a non-woven structure,
It is effective to use this as a contact of a charge and / or static eliminator of a toner-copying image device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例5の電圧依存性テストをグラフにて示し
たものである。
FIG. 1 is a graph showing a voltage dependency test of Example 5.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G09F 9/00 309 G09F 9/00 356Z 5G301 356 H01B 1/24 Z 5G435 H01B 1/24 H05F 1/00 G H05F 1/00 G03G 21/00 340 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G09F 9/00 309 G09F 9/00 356Z 5G301 356 H01B 1/24 Z 5G435 H01B 1/24 H05F 1/00 G H05F 1/00 G03G 21/00 340

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】実質的に無延伸状態で紡糸された導電性カ
−ボンブラックを含む熱可塑性樹脂繊維であることを特
徴とする半導電性繊維。
1. A semi-conductive fiber, which is a thermoplastic resin fiber containing a conductive carbon black spun in a substantially undrawn state.
【請求項2】前記導電性カ−ボンブラックが粒径100
nm以下で、且つ水素含有量0.5%以下、体積抵抗値
10Ω・cm以下である請求項1に記載の半導電性繊
維。
2. The conductive carbon black has a particle size of 100.
2. The semiconductive fiber according to claim 1 , having a hydrogen content of 0.5% or less and a volume resistivity of 10 1 Ω · cm or less.
【請求項3】前記熱可塑性樹脂がフッ素系樹脂である請
求項1又は2に記載の半導電性繊維。
3. The semiconductive fiber according to claim 1, wherein said thermoplastic resin is a fluororesin.
【請求項4】体積抵抗値が10〜1013Ω・cmの
範囲にあって、且つその桁数のバラツキが±0.5以内
にある不織組織によりなる請求項1〜3のいずれか1項
に記載の半導電性繊維。
4. A non-woven structure having a volume resistance value in a range of 10 2 to 10 13 Ω · cm and a variation in the number of digits within ± 0.5. The semiconductive fiber according to claim 1.
【請求項5】前記不織組織がメルトブロ−ン法によりつ
くられる請求項4に記載の半導電性繊維。
5. The semiconductive fiber according to claim 4, wherein said nonwoven fabric is produced by a meltblowing method.
【請求項6】トナ−複写画像装置の除電用部材及び/又
は帯電用部材である請求項4又は5に記載の半導電性繊
維の使用。
6. The use of the semiconductive fiber according to claim 4, which is a member for static elimination and / or a member for charging in a toner-copying image apparatus.
JP2000079591A 2000-03-22 2000-03-22 Semiconductive fiber and its use Pending JP2001271218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079591A JP2001271218A (en) 2000-03-22 2000-03-22 Semiconductive fiber and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079591A JP2001271218A (en) 2000-03-22 2000-03-22 Semiconductive fiber and its use

Publications (1)

Publication Number Publication Date
JP2001271218A true JP2001271218A (en) 2001-10-02

Family

ID=18596823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079591A Pending JP2001271218A (en) 2000-03-22 2000-03-22 Semiconductive fiber and its use

Country Status (1)

Country Link
JP (1) JP2001271218A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249585A1 (en) * 2002-10-24 2004-05-13 Teijin Monofilament Germany Gmbh Conductive, dirt-repellent core-sheath fiber with high chemical resistance, process for its production and use
WO2016040021A1 (en) * 2014-09-11 2016-03-17 Clopay Plastic Products Company, Inc. Polymeric materials providing improved infrared emissivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249585A1 (en) * 2002-10-24 2004-05-13 Teijin Monofilament Germany Gmbh Conductive, dirt-repellent core-sheath fiber with high chemical resistance, process for its production and use
DE10249585B4 (en) * 2002-10-24 2007-10-04 Teijin Monofilament Germany Gmbh Conductive, stain resistant core-sheath fiber with high chemical resistance, process for its preparation and use
WO2016040021A1 (en) * 2014-09-11 2016-03-17 Clopay Plastic Products Company, Inc. Polymeric materials providing improved infrared emissivity
US9476146B2 (en) 2014-09-11 2016-10-25 Clopay Plastic Products Company, Inc. Polymeric materials providing improved infrared emissivity
CN106715125A (en) * 2014-09-11 2017-05-24 克洛佩塑料产品公司 Polymeric materials providing improved infrared emissivity

Similar Documents

Publication Publication Date Title
JP4452859B2 (en) Conductive multileaf fiber and electrophotographic brush using the same
JP3769649B2 (en) Semiconductive fibers and their use
JP2001271218A (en) Semiconductive fiber and its use
US20130114978A1 (en) Charging member, electrophotographic image forming apparatus and electrophotographic image forming process
JP5668228B2 (en) Conductive synthetic fiber, method for producing the same, and use thereof
JP4872688B2 (en) Conductive yarn
JPH10310974A (en) Production of electrically conductive fiber
JP2002146629A6 (en) Polyester or polyamide conductive yarn and brush
JP2008101314A (en) Conductive polyester fiber and brush product made of the same
JP4261837B2 (en) Conductive synthetic fiber and method for producing the same
JP5254532B2 (en) Conductive polyester fiber
JP3951010B2 (en) Conductive synthetic resin filament for antistatic, its production method and its use
US8737884B2 (en) Charging member and electrophotographic image forming apparatus
JP4436725B2 (en) Conductive multifilament yarn
JP2007247095A (en) Conductive polyester fiber
JP3279965B2 (en) Conductive composite fiber and contact charging brush comprising the same
JP4418891B2 (en) Polyester or polyamide conductive yarn and brush
JP2011162928A (en) Conductive polytetrafluoroethylene fiber and production method therefor
JP4825042B2 (en) Conductive polyester fiber
JP4447807B2 (en) Conductive multifilament yarn and manufacturing method thereof
JP3278137B2 (en) Conductive composite fiber and contact charging brush comprising the same
JP5110890B2 (en) Polyamide-based conductive yarn and brush for electrophotographic apparatus
JP2004011047A (en) Electrically conductive multifilament yarn and method for producing the same
JP4975471B2 (en) Conductive polyester fiber
JP2013104140A (en) Conductive fiber, charging member using the same and electrophotographic image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060111