JP2001257166A - Nitride semiconductor substrate and its manufacturing method - Google Patents

Nitride semiconductor substrate and its manufacturing method

Info

Publication number
JP2001257166A
JP2001257166A JP2000068110A JP2000068110A JP2001257166A JP 2001257166 A JP2001257166 A JP 2001257166A JP 2000068110 A JP2000068110 A JP 2000068110A JP 2000068110 A JP2000068110 A JP 2000068110A JP 2001257166 A JP2001257166 A JP 2001257166A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
gan
layer
substrate
mask
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000068110A
Other languages
Japanese (ja)
Other versions
JP3557441B2 (en )
Inventor
Naoki Kobayashi
Yasuyuki Kobayashi
Yukihiko Maeda
就彦 前田
康之 小林
小林  直樹
Original Assignee
Nippon Telegr & Teleph Corp <Ntt>
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nitride semiconductor substrate and its manufacturing method that has uniformly low dislocation density over the entire surface of the substrate. SOLUTION: A GaN layer 2 is provided on a sapphire substrate 1. On the GaN layer 2, a mask stripe 4 that is composed of a line of 2 μm and a space of 8 μm is formed in three equivalent <1120> directions of SiO23 so that an opening part becomes an equilateral triangle. At the equilateral triangular opening by the mask stripe 4, GaN is grown for forming a trigonal pyramid GaN growth layer 5. A resist mask 6 is formed on the trigonal pyramid GaN growth layer 5, the mask stripe 4 and the GaN layer 2 under the mask striped 4 are removed, and the resist mask 6 is removed for forming an inland-shaped GaN layer 7. When a GaN growth layer 8 is grown on the entire surface of the sapphire substrate 1, crosswise growth is promoted so that the trigonal pyramid is buried. When the GaN growth layer 8 is grown by approximately 20 μm, flatness is achieved. When dislocation that is vertically extended from a substrate interface reaches the slant of pyramid structure, it does not reach a bending surface, thus achieving the low dislocation density.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】基板表面の全面にわたって均一な低転位密度である窒化物半導体基板、および基板表面の全面にわたって均一に低転位密度の窒化物半導体結晶を成長する方法に関する。 [Belongs TECHNICAL FIELD OF THE INVENTION The nitride semiconductor substrate is uniformly low dislocation density over the entire substrate surface, and a method for growing a nitride semiconductor crystal of the uniformly low dislocation density over the entire substrate surface.

【0002】 [0002]

【従来の技術】(0001)面もしくは(0001)面から数度傾斜した面方位を持つサファイアもしくはSi BACKGROUND OF THE INVENTION (0001) plane or the (0001) sapphire or Si having a surface orientation inclined by several degrees from the plane
C基板上に、通常の成長方法(サファイア基板上でAl On a C substrate, Al in a conventional growing method (sapphire substrate
N低温バッファ層を用いる、H.Amano et al . N using a low-temperature buffer layer, H.Amano et al. Appl. Appl. Ph Ph
ys. ys. Lett. Lett. 48(1986)353 、SiC基板上AlNバッファ層を用いる、TWWeeks et al.Appl.Phys.Lett.67(19 48 (1986) 353, using a SiC substrate AlN buffer layer, TWWeeks et al.Appl.Phys.Lett.67 (19
95)401)で窒化ガリウムを成長した場合、成長した窒化ガリウム中の転位密度は、サファイア基板上で10 9 95) 401) when the growth of the gallium nitride, the dislocation density of the grown nitride in gallium, 10 9 ~ on sapphire substrate
10 10 cm -3 、SiC基板上で〜10 8 cm -3となる。 10 10 cm -3, the to 10 8 cm -3 on the SiC substrate.
この値はガリウムヒ素基板と比べ5桁以上も大きく、その結果、これら基板上に作製した窒化物半導体レーザの発振しきい電流密度は高く、素子寿命は短いという問題があった。 This value is 5 or more orders of magnitude is large compared to the gallium arsenide substrate, as a result, the oscillation threshold current density of the nitride semiconductor laser was fabricated on these substrates is high, the device lifetime is a problem that short.

【0003】最近、選択成長を使った技術(Epitaxial [0003] In recent years, technology that uses a selective growth (Epitaxial
Layer by OverGrowth ;ELOG)が開発され、転位密度を〜10 7 cm -3にまで低減できることが見い出された(A.Usui et al.Jpn.J.Appl.Phys.36(1997)L899.)。 Layer by OverGrowth; ELOG) has been developed, that the dislocation density can be reduced to to 10 7 cm -3 was found (A.Usui et al.Jpn.J.Appl.Phys.36 (1997) L899 ).. これは選択成長であらわれる横方向成長によって、転位の伝播方向が垂直方向から水平方向に曲げられることによる。 This by lateral growth appears in the selective growth, the propagation direction of dislocation is due to be bent from the vertical direction to the horizontal direction. また、選択成長であらわれるのと類似の横方向成長を優先的に引き起こし、その結果、転位密度を低減できるPendeo-epitaxy(TSZheleva et al.. MRS Internet Also cause lateral growth analogous to appear in selective growth preferentially result, it is possible to reduce the dislocation density Pendeo-epitaxy (TSZheleva et al .. MRS Internet
J. Nitride Semicond. Res. 4S1,G3.38(1998))が開発された。 J. Nitride Semicond. Res. 4S1, G3.38 (1998)) has been developed. また、その手法をレーザ構造作製に適用し、低転位密度領域に作製した紫色InGaNレーザは低しきい電流密度(〜2KA/cm 2 )で発振し、かつ連続動作寿命が3000時間を超えている(S.Nakamura et al.Jp Further, to apply the technique to a laser structure fabricated violet InGaN laser fabricated in low dislocation density region exceeds oscillate, and continuous operating life 3000 hours at low threshold current density (~2KA / cm 2) (S.Nakamura et al.Jp
nJAppl.Phys.37(1998)L1020)。 nJAppl.Phys.37 (1998) L1020).

【0004】図4は、従来技術におけるELOGにより作製した窒化物半導体基板である。 [0004] Figure 4 is a nitride semiconductor substrate manufactured by ELOG in the prior art. (a)は、ELOG用にサファイア基板1やSiC基板上にGaN2を成長し、その上に<11 0>方向にSiO 2 3で2μmのライン1 (A) is grown GaN2 the sapphire substrate 1 and SiC substrates for ELOG, 2 [mu] m of line 1 with SiO 2 3 on the <11 2 0> direction thereof
1と8μmのスペース12を形成した様子を示している。 It shows a state of forming the 1 and 8μm space 12. この上にGaNを再成長したGaN成長層8でSi Si in the GaN growth layer 8 was re-growth of GaN on this
2 3を埋め込み平坦化する。 The O 2 3 planarized buried.

【0005】(b)はELOG技術で成長したGaN成長層の断面透過電子顕微鏡写真をもとに描いた転位の伝播の様子を示している。 [0005] (b) shows a state of propagation of dislocations drawn on the basis of cross-sectional transmission electron micrograph of the GaN growth layer grown at ELOG technique. 垂直に延びる転位はいったん曲げられるが、SiO 2 3上の結晶領域で集合し、再び上に延びる。 Vertically extending dislocation is bent once, but assembled in the crystalline regions of the SiO 2 3, extending upward again. そのため表面に高密度転位、欠陥領域が形成される。 Therefore high density dislocations in the surface, the defect region is formed.

【0006】図5は、従来技術におけるPendeo Epitaxy [0006] FIG. 5, Pendeo Epitaxy in the prior art
により作製した窒化物半導体基板である。 A nitride semiconductor substrate manufactured by. (a)はPend (A) The Pend
eo Epitaxy用にサファイア基板1上にGaNを成長し、 The GaN grown on a sapphire substrate 1 for eo Epitaxy,
一部GaN成長層を残し、基板界面までGaNをエッチングで取り去ってGaN核13を形成する。 Leaving a part GaN growth layer, forming a GaN nucleus 13 removed the GaN by etching down to the substrate surface. その上にG G on it
aN成長層8で再成長することによって、GaN核13 By regrown aN growth layer 8, GaN nuclei 13
を埋め込み平坦化する横方向成長が生じ、埋め込まれ平坦化する。 The lateral growth of flattening the embedded occurs, embedded planarized.

【0007】(b)はPendeo Epitaxy技術によって成長したGaN成長層の断面透過電子顕微鏡写真をもとに描いた転位の伝播の様子を示している。 [0007] (b) shows a state of propagation of dislocations drawn on the basis of cross-sectional transmission electron micrograph of the GaN growth layer grown by Pendeo Epitaxy techniques. GaN核13から上に延びる転位はそのまま再成長層にも引き継がれる。 Dislocations extending upward from GaN nuclei 13 also carried over to the re-growth layer as it is.

【0008】しかし、図4,5(従来の技術)に説明するように、従来の選択成長技術ではライン11およびスペース12のマスクパターンが用いられているため、S However, as explained in FIG. 4 and 5 (prior art), the conventional selective growth technique have been used mask pattern of lines 11 and spaces 12, S
iO iO 2 3直上のGaN成長層8には依然高い密度で転位や欠陥が存在するし、Pendeo-epitaxyでは、横方向成長で形成された部分の転位密度は低いが、垂直に延びる転位成分を除くことができず、依然、局所的に高密度転位領域が存在する。 It is the GaN growth layer 8 directly above 2 3 there are dislocations and defects still high density, the Pendeo-Epitaxy, although lateral dislocation density of the formed part growth is low, eliminating the vertically extending translocation component can not, still locally dense dislocation regions exist.

【0009】 [0009]

【発明が解決しようとする課題】このように、従来の選択成長技術であるELOGやPendeo-epitaxyは、転位密度を低減化するのに大きな効果はあるものの、基板全面にわたって均一に低転位密度を得ることはできなかった。 [Problems that the Invention is to Solve Thus, a conventional selective growth technique ELOG and Pendeo-Epitaxy, although large effect is in reducing the dislocation density, uniformly low dislocation density over the entire surface of the substrate it was not possible to obtain. その上に、デバイス構造を作製する場合には、低転位密度領域を選ぶ必要があった。 Thereon, in the case of manufacturing a device structure, it is necessary to choose a low dislocation density region.

【0010】本発明はこのような点に鑑みてなされたものであり、基板表面の全面にわたって均一な低転位密度である窒化物半導体基板、および基板表面の全面にわたって均一に低転位密度の窒化物半導体結晶を成長する方法を提供することを目的とする。 [0010] The present invention has been made in view of these points, a nitride of uniformly low dislocation density over the entire surface of which is uniformly low dislocation density nitride semiconductor substrate, and the substrate surface over the entire substrate surface and to provide a method for growing a semiconductor crystal.

【0011】 [0011]

【課題を解決するための手段】本発明は、(0001) Means for Solving the Problems The present invention, (0001)
面もしくは(0001)面から数度傾斜した面方位を持つサファイアもしくはSiC基板上に、通常の成長方法で窒化物である窒化ガリウムを成長し、その成長した窒化ガリウム(0001)表面の3つの等価な<11 A sapphire or SiC substrate having a surface orientation inclined by several degrees from the plane or the (0001) plane, the gallium nitride is a nitride grown in the usual growth method, three equivalents of the grown gallium nitride (0001) surface a <11 2 0
>方向に、SiO 2などのマスク材で、開口部が正三角形を形成するように等間隔にマスクストライプを形成し、窒化ガリウムを成長する。 > Direction, the mask material such as SiO 2, opening the mask stripes formed at regular intervals so as to form an equilateral triangle, growing gallium nitride. 正三角形の開口部に三角錐が形成した時点で成長を中断し、マスクストライプならびにマスクストライプ下地の窒化ガリウムを除去した後に、窒化ガリウムをはじめとする窒化物半導体を成長する。 Growth was suspended at the time of the opening of the equilateral triangle triangular pyramid is formed, after removing the gallium nitride mask stripes and mask stripes base to grow a nitride semiconductor including gallium nitride.

【0012】 [0012]

【発明の実施の形態】上記課題を解決するために本発明の窒化物半導体基板は、(0001)面又は(000 Nitride semiconductor substrate of the present invention to PREFERRED EMBODIMENTS for solving the above-(0001) plane or (000
1)から数度傾斜した面方位を持つ基板上に島状の第一の窒化物層を有し、前記第一の窒化物層上に、前記第一の窒化物層の(0001)面の3つの等価な<11 1) has a first nitride layer island on a substrate with several degrees inclined plane orientation from the first nitride layer, said first nitride layer (0001) plane of the three equivalent <11 2 0
>方向の辺と3つの等価な(1 01)面を有する第二の窒化物層を有し、さらに前記第一、第二の窒化物層を覆う第三の窒化物層を有することに特徴を有している。 > Having a second nitride layer having a direction of sides and three equivalent (1 1 01) surface, further wherein the first, have a third nitride layer covering the second nitride layer It has a feature.

【0013】また、本発明の窒化物半導体基板は、前記基板はサファイアであることに特徴を有している。 Further, the nitride semiconductor substrate of the present invention, the substrate is characterized in that a sapphire.

【0014】さらに、本発明の窒化物半導体基板は、前記基板はSiCであることに特徴を有している。 Furthermore, the nitride semiconductor substrate of the present invention, the substrate is characterized in that it is SiC.

【0015】また、本発明の窒化物半導体基板は、前記第二の窒化物層は三角錘形状を有することに特徴を有している。 Further, the nitride semiconductor substrate of the present invention, the second nitride layer is characterized in that it has a triangular pyramid shape.

【0016】さらに、本発明の窒化物半導体基板は、前記第二の窒化物層は六角錘形状を有することに特徴を有している。 Furthermore, the nitride semiconductor substrate of the present invention, the second nitride layer is characterized in that it has a hexagonal pyramid shape.

【0017】本発明の窒化物半導体基板の製造方法は、 The method of manufacturing a nitride semiconductor substrate of the present invention,
(0001)面又は(0001)から数度傾斜した面方位を持つ基板上に窒化物層を成長し、その成長した窒化物層の(0001)面の3つの等価な<11 0>方向の辺に正三角形あるいは正六角形を形成するように等間隔にマスクストライプを形成し、その上に窒化物層を成長することに特徴を有している。 (0001) plane or the (0001) growth of the nitride layer on a substrate having a surface orientation inclined by several degrees from the grown nitride layer (0001) three equivalent of surface <11 2 0> direction the mask stripes formed at regular intervals so as to form an equilateral triangle or a regular hexagon the sides, has a feature to grow a nitride layer thereon.

【0018】また、本発明の窒化物半導体基板の製造方法は、マスクストライプ上に窒化物層を成長する工程において、マスク材で覆われていない開口部に窒化物層が島状に形成した時点で成長を中断し、マスクストライプならびにマスクストライプ下地の窒化物層を除去した後に窒化物層をさらに成長することに特徴を有している。 Further, the nitride semiconductor substrate manufacturing method of the present invention, when in the step of growing a nitride layer on the mask stripes, the nitride layer in the opening not covered by the mask material is formed in an island shape in the growth was suspended, is characterized in that the further growth of the nitride layer after removal of the nitride layer of the mask stripes and mask stripes background.

【0019】 [0019]

【実施例】以下、本発明の一実施例を図面に基づいて説明する。 BRIEF DESCRIPTION based on an embodiment of the present invention with reference to the accompanying drawings. 図1は、本発明の第1実施例における窒化物半導体の構造およびその製造方法を説明する図である。 Figure 1 is a drawing showing a structure and a manufacturing method thereof of the nitride semiconductor in the first embodiment of the present invention.
(a)はサファイア基板1やSiC基板上に第一の窒化物層であるGaN層2を設け、その上にSiO 2 3で等価な3つの<11 0>方向に、開口部が正三角形になるように、2μm/8μmのラインとスペースからなるマスクストライプ4を形成した平面図である。 (A) is a GaN layer 2 which is a first nitride layer on a sapphire substrate 1 and SiC substrate provided, on the SiO 2 3 at three equivalent of the <11 2 0> direction thereof, opening equilateral triangle so that is a plan view of a mask stripe 4 consisting of 2 [mu] m / 8 [mu] m lines and spaces.

【0020】(0001)面もしくは(0001)面から数度傾斜した面方位を持つサファイア基板1もしくはSiC基板を用い、水素キャリアガス中で1000℃に加熱された基板上にアンモニアとトリメチルガリウムを供給するMOVPE法(有機金属気相成長法)により、 [0020] (0001) plane or the (0001) using a sapphire substrate 1 or SiC substrate having a surface orientation inclined by several degrees from the plane, the supply of ammonia and trimethyl gallium on the substrate heated to 1000 ° C. in a hydrogen carrier gas by MOVPE to (metal organic chemical vapor deposition),
AlNバッファ層を成長後、膜厚1〜2μmのGaN2 After the growth of the AlN buffer layer, with a thickness of 1~2μm GaN2
を成長する。 To grow. その成長したGaN2の(0001)面の3つの等価な<11 0>方向に、SiO 2 3マスク材で、たとえばマスク幅2μm、開口部が一辺8μmの正三角形になるように等間隔にマスクストライプ4を形成する。 Mask into three equivalent <11 2 0> direction (0001) plane of the grown GaN 2, in SiO 2 3 mask material, e.g. mask width 2 [mu] m, at regular intervals so that the opening is equilateral triangle of side 8μm to form a stripe 4.

【0021】(b)は、サファイア基板1上のGaN層2上に形成したマスクストライプ4による正三角形開口部にGaNを成長し、第二の窒化物層である三角錐Ga [0021] (b) is a GaN grown equilateral triangle openings by mask stripes 4 formed on the GaN layer 2 on a sapphire substrate 1, a second nitride layer triangular pyramid Ga
N成長層5を形成した断面図である。 It is a cross-sectional view of forming the N growth layer 5. GaNをMOVP MOVP the GaN
E法により、そのマスクストライプ4上に成長すると、 By Method E, to grow on the mask stripe 4,
まず開口部にのみ成長し、3つの等価な(1 01)面で囲まれた三角錐GaN成長層5が形成される。 First only grown in the opening, the triangular pyramidal GaN growth layer 5 surrounded by three equivalent (1 1 01) plane is formed.

【0022】(c)は、サファイア基板1上に島状Ga [0022] (c), the island-shaped Ga on the sapphire substrate 1
N7を設け、島状GaN7上に三角錐GaN成長層5を設け、三角錐GaN成長層5上にレジストマスク6を形成した断面図である。 The N7 provided over the island-shaped GaN7 provided triangular pyramid GaN growth layer 5, a cross-sectional view of forming a resist mask 6 on the triangular pyramid GaN growth layer 5. フッ酸でSiO 2 3マスクを除去し、リソグラフィーにより三角錐GaN成長層5を保護するようにレジストマスク6を形成し、塩素によるドライエッチングでマスクストライプ4下のGaNを除去し、サファイア基板1面を出す。 Removing the SiO 2 3 mask with hydrofluoric acid, the resist mask 6 so as to protect the triangular pyramid GaN grown layer 5 is formed by lithography, chlorine was removed GaN below masked stripes 4 by dry etching using a sapphire substrate 1 side the issue.

【0023】(d)は、その上に第三の窒化物層であるGaN成長層8を設けた断面図である。 [0023] (d) is a sectional view on the provided GaN growth layer 8 is a third nitride layer. レジストマスク6を除去し、GaN成長層8をMOVPE法で成長すると、三角錐を埋め込むように、横方向成長が促進され、 The resist mask 6 is removed, when growing the GaN growth layer 8 in MOVPE method, so as to fill the triangular pyramid, the lateral growth is promoted,
約20μm成長すると、平坦になる。 And about 20μm to grow, it becomes flat.

【0024】図2は、第1実施例により作製したGaN [0024] Figure 2, GaN manufactured by the first embodiment
膜の<11 0>方向から観察した断面透過電子顕微鏡像をもとに描いた転位伝播の様子を示す図である。 Is a diagram showing a state of dislocation propagation drawn on the basis of cross-sectional transmission electron microscope image obtained by observation from <11 2 0> direction of the film. 図によって、基板全面にわたって低転位密度が得られる機構を説明する。 Figure by, for explaining the mechanism of low dislocation density can be obtained over the entire surface of the substrate. 転位は高密度にサファイア基板1もしくはSiC基板界面からほぼ垂直に上に延び、三角錐GaN Dislocations extend upward substantially perpendicularly from high density sapphire substrate 1 or SiC substrate interface, triangular pyramid GaN
成長層5を形成する斜め(1 01)面に到達すると向きを水平方向に変える。 Change the direction in the horizontal direction reaches the diagonal (1 1 01) surface forming a growth layer 5. 三角錐GaN成長層5の頂上付近に到達した転位は上に延びるが、その密度は小さい。 Triangular pyramid GaN growth layer 5 dislocation that reaches the vicinity of the top of it extends over, its density is small.
すなわち、三角錐GaN成長層5中の転位は内部では垂直に延びるが、斜面で曲げられ表面に伝播する転位は少ない。 That is, dislocations in a triangular pyramid GaN growth layer 5 is extending vertically inside the dislocation propagating to the surface bent at the slope is small. その結果GaN成長層8表面には、全面にわたって転位密度として10 7 cm -2以下の低転位領域を形成できる。 As a result the GaN growth layer 8 surface can form a 10 7 cm -2 or lower dislocation region as the dislocation density over the entire surface.

【0025】図3は、本発明の第2実施例で使用されるマスクストライプの図である。 FIG. 3 is a diagram of a mask stripe used in the second embodiment of the present invention. マスクパターンとして図に示したような正六角形のハニカムパターンを用い、六角錐構造を成長させることによっても、低転位化について同様の効果が確認された。 Using regular hexagonal honeycomb pattern as shown in figure as a mask pattern, by growing a hexagonal pyramid structure, the same effect for low dislocation was confirmed. 開口部が正六角形のハニカム構造のSiO 2 3のマスクストライプ9は、2μm/ SiO 2 3 mask stripes 9 of openings regular hexagon honeycomb structure, 2 [mu] m /
8μmのラインとスペースからなるマスクパターンである。 It is a mask pattern consisting of 8μm of line and space. この場合、六角錐が成長し、三角錐と同様の原理で、転位が、六角錐斜面で曲げられ表面に伝播する転位は少なく、密度として10 7 cm -2以下が得られる。 In this case, hexagonal pyramid grows, with triangular pyramid and the same principle, dislocations, dislocation propagating in the curved surface of the hexagonal pyramid slope less, is 10 7 cm -2 or less is obtained as density.

【0026】 [0026]

【発明の効果】以上説明したように、本発明は、マスクパターン開口部に三角錐あるいは六角錐構造のGaN層がまず形成され、続いて横方向成長によるGaN層によりこれら錐構造のGaN層が埋め込まれる成長様式を取る。 As described in the foregoing, the present invention is formed GaN layer of a triangular pyramid or a hexagonal pyramid structure to the mask pattern openings First, followed GaN layer of pyramidal structures of GaN layer due to the lateral growth is take a growth mode to be embedded. 基板界面から垂直に延びる転位は、錐構造の斜面に到達すると曲がる性質を持つため、ほとんどの転位は、 Dislocations extending perpendicularly from the substrate interface, since it has the property of bending reaches the inclined surface of the cone structure, most of the dislocations,
表面に到達せず、その結果、基板全面にわたって密度1 Does not reach the surface, as a result, the density 1 the entire surface of the substrate
7 cm -2以下の低転位密度が実現される。 0 7 cm -2 or less of low dislocation density is realized.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】(a)〜(d)は、本発明の第1実施例における窒化物半導体の構造およびその製造方法を説明する図である。 [1] (a) ~ (d) are views for explaining a nitride semiconductor structure according to the first embodiment and the manufacturing method thereof of the present invention.

【図2】第1実施例により作製したGaN膜の<11 [2] <11 2 of GaN films produced by the first embodiment
0>方向から観察した断面透過電子顕微鏡像をもとに描いた転位伝播の様子を示す図である。 0> is a diagram showing a state of dislocation propagation drawn on the basis of cross-sectional transmission electron microscope image obtained by observation from the direction.

【図3】本発明の第2実施例で使用されるマスクストライプの図である。 3 is a diagram of a mask stripe used in the second embodiment of the present invention.

【図4】(a),(b)は、従来技術におけるELOGにより作製した窒化物半導体基板である。 [4] (a), (b) is a nitride semiconductor substrate manufactured by ELOG in the prior art.

【図5】(a),(b)は、従来技術におけるPendeo E [5] (a), (b) it is, Pendeo in the prior art E
pitaxyにより作製した窒化物半導体基板である。 A nitride semiconductor substrate manufactured by Pitaxy.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 サファイア基板 2 GaN層 3 SiO 2 4 マスクストライプ(マスクパターン) 5 三角錐GaN成長層 6 レジストマスク 7 島状GaN層 8 GaN成長層 9 マスクストライプ(マスクパターン) 11 ライン 12 スペース 13 GaN核 1 sapphire substrate 2 GaN layer 3 SiO 2 4 mask stripes (mask pattern) 5 triangular pyramid GaN grown layer 6 resist mask 7 insular GaN layer 8 GaN growth layer 9 mask stripes (mask pattern) 11 line 12 space 13 GaN nuclei

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 康之 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 4G077 AA03 BE15 DB08 ED04 HA02 5F041 CA23 CA40 CA65 CA77 5F045 AA04 AB14 AB32 AC08 AC12 AD14 AF02 AF09 AF13 AF20 BB12 DA53 DB02 HA14 5F073 CA07 CB04 CB05 CB07 DA05 DA35 EA29 ────────────────────────────────────────────────── ─── front page of the continuation (72) inventor Yasuyuki Kobayashi Otemachi, Chiyoda-ku, tokyo chome third No. 1 Date this telegraph and telephone Corporation in the F-term (reference) 4G077 AA03 BE15 DB08 ED04 HA02 5F041 CA23 CA40 CA65 CA77 5F045 AA04 AB14 AB32 AC08 AC12 AD14 AF02 AF09 AF13 AF20 BB12 DA53 DB02 HA14 5F073 CA07 CB04 CB05 CB07 DA05 DA35 EA29

Claims (7)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 (0001)面又は(0001)から数度傾斜した面方位を持つ基板上に島状の第一の窒化物層を有し、 前記第一の窒化物層上に、前記第一の窒化物層の(00 1. A (0001) plane or the (0001) comprises a first nitride layer island on a substrate having a surface orientation inclined by several degrees from the first nitride layer, said first one of the nitride layer (00
    01)面の3つの等価な<11 0>(下線は上線の代用である)方向の辺と3つの等価な(1 01)(下線は上線の代用である)面を有する第二の窒化物層を有し、 さらに前記第一、第二の窒化物層を覆う第三の窒化物層を有することを特徴とする窒化物半導体基板。 01) faces the three equivalent of <11 2 0> (underlined is the substitute for the upper line) side in the direction of the three equivalent (1 1 01) (underlined is the substitute for the upper line) a second having a surface having a nitride layer, further wherein the first nitride semiconductor substrate, characterized in that it comprises a third nitride layer covering the second nitride layer.
  2. 【請求項2】 前記基板はサファイアであることを特徴とする請求項1に記載の窒化物半導体基板。 2. A nitride semiconductor substrate according to claim 1, wherein the substrate is sapphire.
  3. 【請求項3】 前記基板はSiCであることを特徴とする請求項1に記載の窒化物半導体基板。 3. A nitride semiconductor substrate according to claim 1, wherein the substrate is SiC.
  4. 【請求項4】 前記第二の窒化物層は三角錘形状を有することを特徴とする請求項1〜3のいずれかに記載の窒化物半導体基板。 4. A nitride semiconductor substrate according to claim 1 wherein said second nitride layer is characterized by having a triangular pyramid shape.
  5. 【請求項5】 前記第二の窒化物層は六角錘形状を有することを特徴とする請求項1〜3のいずれかに記載の窒化物半導体基板。 5. The nitride semiconductor substrate according to claim 1 wherein said second nitride layer is characterized by having a hexagonal pyramid shape.
  6. 【請求項6】 (0001)面又は(0001)から数度傾斜した面方位を持つ基板上に窒化物層を成長し、 その成長した窒化物層の(0001)面の3つの等価な<11 0>方向の辺に正三角形あるいは正六角形を形成するように等間隔にマスクストライプを形成し、 その上に窒化物層を成長することを特徴とする窒化物半導体基板の製造方法。 6. (0001) plane or the (0001) growth of the nitride layer on a substrate having a surface orientation inclined by several degrees from the three equivalent <11 (0001) plane of the grown nitride layer 2 0> mask stripes formed at regular intervals so as to form an equilateral triangle or a regular hexagon in the direction of the sides, the nitride semiconductor substrate manufacturing method characterized by growing a nitride layer thereon.
  7. 【請求項7】 前記マスクストライプ上に窒化物層を成長する工程において、 マスク材で覆われていない開口部に窒化物層が島状に形成した時点で成長を中断し、 マスクストライプならびにマスクストライプ下地の窒化物層を除去した後に窒化物層をさらに成長することを特徴とする請求項6に記載の窒化物半導体基板の製造方法。 7. A process for growing a nitride layer on the mask stripes, the growth was suspended at the time when the nitride layer is formed in an island shape in the opening which is not covered with the mask material, the mask stripes and mask stripes nitride semiconductor substrate manufacturing method according to claim 6, characterized in that the further growth of the nitride layer after removal of the nitride layer of the substrate.
JP2000068110A 2000-03-13 2000-03-13 Nitride semiconductor substrate and a manufacturing method thereof Expired - Fee Related JP3557441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000068110A JP3557441B2 (en) 2000-03-13 2000-03-13 Nitride semiconductor substrate and a manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000068110A JP3557441B2 (en) 2000-03-13 2000-03-13 Nitride semiconductor substrate and a manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001257166A true true JP2001257166A (en) 2001-09-21
JP3557441B2 JP3557441B2 (en) 2004-08-25

Family

ID=18587212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000068110A Expired - Fee Related JP3557441B2 (en) 2000-03-13 2000-03-13 Nitride semiconductor substrate and a manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3557441B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078069A1 (en) * 2001-03-27 2002-10-03 Sony Corporation Nitride semiconductor element and production method thereof
WO2003089696A1 (en) * 2002-04-15 2003-10-30 The Regents Of The University Of California Dislocation reduction in non-polar gallium nitride thin films
JP2004508268A (en) * 2000-09-06 2004-03-18 シービーエル テクノロジーズ インコーポレーテッド Less defects, a method of crack-free epitaxial layer is formed on the mismatched substrate
US7186302B2 (en) 2002-12-16 2007-03-06 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US7208393B2 (en) 2002-04-15 2007-04-24 The Regents Of The University Of California Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
US7220658B2 (en) 2002-12-16 2007-05-22 The Regents Of The University Of California Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy
JP2008078169A (en) * 2006-09-19 2008-04-03 Matsushita Electric Ind Co Ltd Semiconductor light emitting element, semiconductor light emitting device and fabrication process
US7361576B2 (en) 2005-05-31 2008-04-22 The Regents Of The University Of California Defect reduction of non-polar and semi-polar III-Nitrides with sidewall lateral epitaxial overgrowth (SLEO)
JP2008523635A (en) * 2004-12-14 2008-07-03 オプトガン オイ Semiconductor substrate, a semiconductor device, and a method for manufacturing a semiconductor substrate
US7399687B2 (en) 2003-03-07 2008-07-15 Sumitomo Chemical Company, Limited Substrate of gallium nitride single crystal and process for producing the same
US7427555B2 (en) 2002-12-16 2008-09-23 The Regents Of The University Of California Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy
US7504274B2 (en) 2004-05-10 2009-03-17 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US7550775B2 (en) * 2006-01-16 2009-06-23 Sony Corporation GaN semiconductor light-emitting element and method for manufacturing the same
US7566580B2 (en) 2006-11-15 2009-07-28 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AIN and their alloys by metal organic chemical vapor deposition
JP4461228B1 (en) * 2009-03-31 2010-05-12 Dowaホールディングス株式会社 A method of manufacturing a semiconductor device
JP4461227B1 (en) * 2009-03-31 2010-05-12 Dowaホールディングス株式会社 A method of manufacturing a semiconductor substrate
JP2011046548A (en) * 2009-08-26 2011-03-10 Panasonic Corp Template, method for producing the template, crystal grown using the template, and method and apparatus for producing the crystal
US7956360B2 (en) 2004-06-03 2011-06-07 The Regents Of The University Of California Growth of planar reduced dislocation density M-plane gallium nitride by hydride vapor phase epitaxy
US20110210425A1 (en) * 2010-03-01 2011-09-01 Jie Su Formation of group iii-v material layers on patterned substrates
US8193020B2 (en) 2006-11-15 2012-06-05 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition
US8809867B2 (en) 2002-04-15 2014-08-19 The Regents Of The University Of California Dislocation reduction in non-polar III-nitride thin films
US8890170B2 (en) 2010-11-15 2014-11-18 Hoya Corporation Silicon carbide substrate, semiconductor device and method for manufacturing silicon carbide substrate
JP2016500915A (en) * 2012-09-27 2016-01-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Method of manufacturing optoelectronic devices, and optoelectronic devices

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508268A (en) * 2000-09-06 2004-03-18 シービーエル テクノロジーズ インコーポレーテッド Less defects, a method of crack-free epitaxial layer is formed on the mismatched substrate
WO2002078069A1 (en) * 2001-03-27 2002-10-03 Sony Corporation Nitride semiconductor element and production method thereof
US6921673B2 (en) 2001-03-27 2005-07-26 Sony Corporation Nitride semiconductor device and method of manufacturing the same
US9039834B2 (en) 2002-04-15 2015-05-26 The Regents Of The University Of California Non-polar gallium nitride thin films grown by metalorganic chemical vapor deposition
WO2003089696A1 (en) * 2002-04-15 2003-10-30 The Regents Of The University Of California Dislocation reduction in non-polar gallium nitride thin films
US7091514B2 (en) 2002-04-15 2006-08-15 The Regents Of The University Of California Non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices
US7982208B2 (en) 2002-04-15 2011-07-19 The Regents Of The University Of California Non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices
US7208393B2 (en) 2002-04-15 2007-04-24 The Regents Of The University Of California Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
US8809867B2 (en) 2002-04-15 2014-08-19 The Regents Of The University Of California Dislocation reduction in non-polar III-nitride thin films
US6900070B2 (en) 2002-04-15 2005-05-31 The Regents Of The University Of California Dislocation reduction in non-polar gallium nitride thin films
US8188458B2 (en) 2002-04-15 2012-05-29 The Regents Of The University Of California Non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices
US8450192B2 (en) 2002-12-16 2013-05-28 The Regents Of The University Of California Growth of planar, non-polar, group-III nitride films
US7220658B2 (en) 2002-12-16 2007-05-22 The Regents Of The University Of California Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy
US7427555B2 (en) 2002-12-16 2008-09-23 The Regents Of The University Of California Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy
US7186302B2 (en) 2002-12-16 2007-03-06 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US7847293B2 (en) 2002-12-16 2010-12-07 The Regents Of The University Of California Growth of reduced dislocation density non-polar gallium nitride
US7399687B2 (en) 2003-03-07 2008-07-15 Sumitomo Chemical Company, Limited Substrate of gallium nitride single crystal and process for producing the same
US7504274B2 (en) 2004-05-10 2009-03-17 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US8882935B2 (en) 2004-05-10 2014-11-11 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures, and devices by metalorganic chemical vapor deposition
US8502246B2 (en) 2004-05-10 2013-08-06 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US7956360B2 (en) 2004-06-03 2011-06-07 The Regents Of The University Of California Growth of planar reduced dislocation density M-plane gallium nitride by hydride vapor phase epitaxy
JP2008523635A (en) * 2004-12-14 2008-07-03 オプトガン オイ Semiconductor substrate, a semiconductor device, and a method for manufacturing a semiconductor substrate
KR101159156B1 (en) * 2004-12-14 2012-06-26 옵토건 오와이 Semiconductor substrate, semiconductor device and method of manufacturing a semiconductor substrate
US7955983B2 (en) 2005-05-31 2011-06-07 The Regents Of The University Of California Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO)
US7361576B2 (en) 2005-05-31 2008-04-22 The Regents Of The University Of California Defect reduction of non-polar and semi-polar III-Nitrides with sidewall lateral epitaxial overgrowth (SLEO)
US7550775B2 (en) * 2006-01-16 2009-06-23 Sony Corporation GaN semiconductor light-emitting element and method for manufacturing the same
JP2008078169A (en) * 2006-09-19 2008-04-03 Matsushita Electric Ind Co Ltd Semiconductor light emitting element, semiconductor light emitting device and fabrication process
US7566580B2 (en) 2006-11-15 2009-07-28 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AIN and their alloys by metal organic chemical vapor deposition
US8193020B2 (en) 2006-11-15 2012-06-05 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition
US8455885B2 (en) 2006-11-15 2013-06-04 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face gallium nitride, indium nitride, and aluminum nitride and their alloys by metal organic chemical vapor deposition
JP4461228B1 (en) * 2009-03-31 2010-05-12 Dowaホールディングス株式会社 A method of manufacturing a semiconductor device
JP4461227B1 (en) * 2009-03-31 2010-05-12 Dowaホールディングス株式会社 A method of manufacturing a semiconductor substrate
JP2010239049A (en) * 2009-03-31 2010-10-21 Dowa Holdings Co Ltd Method of manufacturing semiconductor device
JP2010239048A (en) * 2009-03-31 2010-10-21 Dowa Holdings Co Ltd Method of manufacturing semiconductor substrate
JP2011046548A (en) * 2009-08-26 2011-03-10 Panasonic Corp Template, method for producing the template, crystal grown using the template, and method and apparatus for producing the crystal
US8765501B2 (en) * 2010-03-01 2014-07-01 Applied Materials, Inc. Formation of group III-V material layers on patterned substrates
US20110210425A1 (en) * 2010-03-01 2011-09-01 Jie Su Formation of group iii-v material layers on patterned substrates
US9196795B2 (en) 2010-03-01 2015-11-24 Applied Materials, Inc. Formation of group III-V material layers on patterned substrates
US8890170B2 (en) 2010-11-15 2014-11-18 Hoya Corporation Silicon carbide substrate, semiconductor device and method for manufacturing silicon carbide substrate
JP2016500915A (en) * 2012-09-27 2016-01-14 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Method of manufacturing optoelectronic devices, and optoelectronic devices

Also Published As

Publication number Publication date Type
JP3557441B2 (en) 2004-08-25 grant

Similar Documents

Publication Publication Date Title
US6380051B1 (en) Layered structure including a nitride compound semiconductor film and method for making the same
US6503610B2 (en) Group III-V compound semiconductor and method of producing the same
US6606335B1 (en) Semiconductor laser, semiconductor device, and their manufacture methods
US6316785B1 (en) Nitride-compound semiconductor device
US6958254B2 (en) Method to produce germanium layers
US6545300B2 (en) Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates, and gallium nitride semiconductor structures fabricated thereby
US6376339B2 (en) Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on silicon carbide substrates by lateral growth from sidewalls of masked posts, and gallium nitride semiconductor structures fabricated thereby
US6802902B2 (en) Process for producing an epitaxial layer of gallium nitride
US7195993B2 (en) Methods of fabricating gallium nitride semiconductor layers by lateral growth into trenches
US20060266281A1 (en) Manufacturing gallium nitride substrates by lateral overgrowth through masks and devices fabricated thereof
US6602764B2 (en) Methods of fabricating gallium nitride microelectronic layers on silicon layers
US20040029365A1 (en) Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
US6602763B2 (en) Methods of fabricating gallium nitride semiconductor layers by lateral overgrowth
US6121121A (en) Method for manufacturing gallium nitride compound semiconductor
US7682944B2 (en) Pendeo epitaxial structures and devices
US20100124814A1 (en) Methods for improving the quality of structures comprising semiconductor materials
US7033436B2 (en) Crystal growth method for nitride semiconductor and formation method for semiconductor device
US6621148B2 (en) Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts, and gallium nitride semiconductor structures fabricated thereby
US20060033119A1 (en) III-V group nitride system semiconductor self-standing substrate, method of making the same and III-V group nitride system semiconductor wafer
US6861729B2 (en) Nitride semiconductor substrate and method for manufacturing the same, and nitride semiconductor device using nitride semiconductor substrate
US6348096B1 (en) Method for manufacturing group III-V compound semiconductors
US6582986B2 (en) Single step pendeo-and lateral epitaxial overgrowth of group III-nitride epitaxial layers with group III-nitride buffer layer and resulting structures
US6623560B2 (en) Crystal growth method
JP2004111766A (en) Gallium nitride-based semiconductor device and its manufacturing method
JP2003277196A (en) Method for producing nitride semiconductor crystal, nitride semiconductor wafer and nitride semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees