JP2001231539A - Device for photosynthesis culture and method for the culture - Google Patents

Device for photosynthesis culture and method for the culture

Info

Publication number
JP2001231539A
JP2001231539A JP2000049055A JP2000049055A JP2001231539A JP 2001231539 A JP2001231539 A JP 2001231539A JP 2000049055 A JP2000049055 A JP 2000049055A JP 2000049055 A JP2000049055 A JP 2000049055A JP 2001231539 A JP2001231539 A JP 2001231539A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
culture
liquid
photosynthesis
light
device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000049055A
Other languages
Japanese (ja)
Other versions
JP3524835B2 (en )
Inventor
Bunichi Suehiro
文一 末広
Original Assignee
Research Institute Of Innovative Technology For The Earth
Sumitomo Heavy Ind Ltd
住友重機械工業株式会社
財団法人地球環境産業技術研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/44Means for regulation, monitoring, measurement or control, e.g. flow regulation of volume or liquid level
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure

Abstract

PROBLEM TO BE SOLVED: To provide a photosynthesis culture device which can correspond to the changes of weather and also to the annual and daily changes of sun altitude and enables the efficient culture of photosynthesis organisms, and to provide a method for the photosynthesis culture.
SOLUTION: This photosynthesis culture device is characterized by containing the following requirements (1) and (2). (1) A culture tank 1 in which a culture liquid 2 containing photosynthesis organisms and one or more light-dispersing members 3 for dispersing and irradiating incident solar light as a light source in the culture liquid 2 are received; and (2) a liquid surface level control device 12 which is disposed at a place near to the culture tank 1, can process data comprising a cell concentration in the culture liquid 2, one or more kinds of information selected from meteorological observation weather forecast information and solar light intensity, and the liquid surface level of the culture liquid as input information, and can calculate a relation suitable for culturing the photosynthesis organisms between the light incidence sites of the light-dispersing members 3 and the liquid surface level of the culture liquid, and can control the liquid surface level.
COPYRIGHT: (C)2001,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明はCO 2を生物的に固定化して大気中のCO 2を低減するとともに、有用物質に変換して利用するための光合成培養装置及び培養方法に関し、特に、培養液中の光合成生物に太陽光を効率よく照射供給する光合成培養装置及び培養方法に関する。 While reducing the present invention CO 2 in the atmosphere and biologically fixing the CO 2 BACKGROUND OF THE INVENTION relates to photosynthetic culture system and culture methods for use in conversion to useful materials, in particular, cultured the photosynthetic organisms to sunlight relates efficiently irradiated supplies photosynthetic culture apparatus and a culture method in the liquid.

【従来の技術】地球温暖化防止に光合成生物を用いて光合成により生物的にCO 2を固定化する光合成培養装置がある。 There are photosynthetic culture device for immobilizing biologically CO 2 by photosynthesis using BACKGROUND ART photosynthetic organisms to prevent global warming. この方法はエネルギー源に太陽光を用い、またその生産物を有効利用できるため、環境に調和した技術として知られている。 The method using a solar energy source, also because it effectively utilize the products thereof, are known as a technique in harmony with the environment. この太陽光を利用する光合成生物の培養方法には、オープンポンド方式を用いた微細藻類の培養などが従来技術として用いられている。 The sunlight method of culturing photosynthetic organisms that utilize, such as microalgae with open pound scheme culture is used as the prior art. しかし、 But,
この方法は広大な敷地面積を必要とする問題がある。 This method has a problem that requires a large site area. 液面から離れた点での光強度をI、細胞濃度をXとすると、Lambert−Beerの法則に従い、 In(I/Io)=−aX (但し、aは細胞の吸光係数) となり、細胞濃度の上昇に連れて光の減衰が発生する。 When the light intensity at a point away from the liquid surface I, the cell concentration and X, in accordance with the law of Lambert-Beer, In (I / Io) = - aX (provided that, a light absorption coefficient of the cells), and cell concentration attenuation of the light is generated to take of the rise.
一般的に培養液中では細胞濃度が高くなると照射面近傍だけで光供給が行われ、他の培養条件を満足しているときは光供給律速となる。 In general, culture medium light supply is performed only with the irradiated surface near the cell concentration increases, the light supply rate-limiting when satisfies the other culture conditions. オープンボンド方式などはこれにあたり、光の透過距離の関係から液深を大きくできず、多大な光照射面積が必要となる。 Upon this, such as open-bonding method, not possible to increase the liquid depth from the relationship between the transmission distance of the light requires a lot of light irradiation area. また、太陽光のような強い光を適度に希釈して光合成生物に適した強度の光として利用することにより、光の利用効率を大きくできることが知られており、従来より培養液内に希釈光を照射するための様々な方法が考案されている。 Further, by using as the light moderately diluted strength suitable to photosynthetic organisms by a strong light, such as sunlight, is known to be able to increase the utilization efficiency of light, diluted light to the culture solution in the prior art various methods for irradiating is devised. 例えば、 For example,
特開昭51−106783号公報では光透過性材料で作られた採光体を培養液中に挿入した光合成微生物培養装置が示されている。 In JP 51-106783 discloses photosynthetic microorganism culture device of inserting the lighting body made of optically transparent material in the culture medium is shown. また、特開昭52−105277号公報では受光口を有すると共に透光性を有する導光体を利用する光合成法が示されている。 Further, in JP-A-52-105277 are shown photosynthetic methods utilizing light guide having a light transmitting property which has a light-receiving port. また、特開平8−2 In addition, JP-A-8-2
62231号公報、特開平8−262232号公報、特開平10−191956号公報では光合成生物の培養に使用好適な発光担体や、平板状光散乱体を採用した光合成培養装置が示されている。 62231, JP-A No. 8-262232 and JP and suitable emission carrier used in the culture of photosynthetic organisms in JP-A 10-191956, JP-photosynthetic culture device employing a planar optical scatterer is shown. なお、従来、光を希釈照射する構造体名として、採光体、導光体、板状光散乱体、 Incidentally, conventionally, a structure name diluting irradiating light, lighting bodies, light guide, a plate-like light scattering member,
発光担体、軽量発光担体などと様々に呼ばれている。 Emitting a carrier, it called the like with various light emission carrier. 本明細書では、「光分散体」と統一的に以下記し、「光分散体」とは、太陽光を培養液中に分散させる目的の構造体(但し、構造体の構造や機能が同一であることを意味するものではない)として、光を分散する担体を意味する。 In this specification, unified manner noted hereinafter as "optical dispersion", the term "optical dispersion", structures the purpose of dispersing the sunlight in culture (although, of structures structures and functions are the same as there does not mean that), refers to a carrier for dispersing the light. なお、本明細書において、太陽放射エネルギーのうち平行光線を「直達日射」、反射光線を「散乱日射」と呼ぶ。 In this specification, "direct solar radiation" parallel rays of solar radiation, the reflected ray is referred to as "scatter solar radiation". また、全天日射は直達日射の入射面成分と散乱日射の合計を呼ぶ。 The total solar radiation is referred to as total scatter solar radiation incident surface component of the direct solar radiation. また、光合成培養装置で利用される可視光を対象としたとき、太陽放射、直達日射、散乱日射、全天日射に対応して、それぞれ太陽光、直達光、散乱光、全天光と呼ぶ。 Also, when intended for visible light is used in photosynthetic culture device, solar radiation, direct solar radiation, scattered solar radiation, corresponding to the global solar radiation, referred respectively sunlight, the direct light, scattered light, the whole sky light. また、太陽光の太陽エネルギー量(光強度)は波長域400〜700nmを光合成有効放射とする光量子計による値とする。 Also, solar energy of sunlight (light intensity) is set to a value by photon meter and photosynthetically active radiation wavelength range 400 to 700 nm. また、諸データの取得は本発明がなされた地点である北緯35度付近とした。 Further, the acquisition of various data was around 35 degrees north latitude is the point where the present invention has been made.

【発明が解決しようとする課題】光合成生物の光合成により空気中のCO 2を固定するには、希釈後の光分散体照射面の光強度が、光合成生物の生育には強すぎる光強度であるところの「光飽和点」以下である必要があり、 To fix CO 2 in air by photosynthesis of the photosynthetic organisms [0005] The light intensity of the light dispersion irradiation surface after dilution, is light intensity is too strong for the growth of photosynthetic organisms must be at the "light saturation point" of the place,
かつ光合成生物の呼吸によるCO 2排出速度と光合成によるCO 2吸収速度が一致する光強度であるところの「光補償点」以上である必要がある。 And CO 2 absorption rate by CO 2 emission rate and photosynthesis respiratory photosynthetic organisms is required to be more "light compensation point" is where the light intensity matching. 一般的には光飽和点では200〜2000μE・m -2・s -1程度、光補償点では7〜70μE・m -2・s -1程度と言われているように、範囲は広い。 Generally 200~2000μE · m -2 · s -1 degree the light saturation point, as the optical compensation point is said to 7~70μE · m -2 · s about -1, range is wide. また光合成生物の種類や、培養条件によっても異なるため、培養に用いる光合成生物毎の培養特性から最適と判断される光強度になるよう、光分散体照射面の光強度が設定される。 Further and type of photosynthetic organism, because it varies depending on the culture conditions, so that the light intensity that is determined to optimally from cultural characteristics of photosynthetic organisms per used for culturing, the light intensity of the light dispersion irradiation surface are set. 一方、光合成培養装置(装置の移動が可能なものを除く)の設置場所において利用できる太陽エネルギー量(光強度)は、一般的に長期的な気象統計データとして把握することが可能であり、光分散体の設計・製作は、この気象統計データと、 On the other hand, (excluding capable mobile devices) photosynthetic culture device solar energy available in the installation location of the (light intensity) is generally possible to grasp as a long-term weather statistics, light design and manufacture of the dispersion, and the weather statistical data,
前述の要求される光分散体照射面光強度の関係に基づいて行えばよいと考えられる。 Believed may be performed based on the relationship of the required optical dispersion irradiated surface light intensity of the above. ところが、自然環境のもとでは、晴天と曇天では光強度が異なる。 However, in the original natural environment, the light intensity is different in sunny and cloudy weather. また、太陽高度の日変化により、朝夕と日中の光強度も異なる。 Further, the change solar altitude day, also the light intensity of the morning and evening and daytime different. このため光強度が小さいときには太陽光が希釈されすぎて光補償点以下となり、光合成培養が停止する恐れがあった。 Therefore it when the light intensity is small, too dilute sunlight becomes less light compensation point, photosynthetic culture there is a risk of stopping.
これを防ぐため、曇天や朝夕の光強度に合わせて光分散体を設計することはできるが、このような設定では逆に強い光のときに十分な希釈が行えないため光利用効率が低下すると言う不都合があった。 To prevent this, the it can be designed light dispersion to suit the cloudy and morning and evening of the light intensity, the light use efficiency because not be sufficient dilution at such strong light reversed in setting decreases there is an inconvenience to say. また別の自然環境のファクターとして、太陽高度の年変化がある。 Also as a factor of another of the natural environment, there is a year changes in the solar altitude. これは公転と地軸の傾きと緯度の関係から、光合成培養装置設置地点における太陽高度の年変化が決まる。 This is the relationship between the slope and latitude of the revolution and the earth's axis, are determined sun altitude year changes in photosynthetic culture device installation point. 北半球においては水平面の全天光は夏至前後と比べて冬至前後では小さくなる。 Small at the front and rear winter solstice and the total Tenko horizontal plane compared to the longitudinal summer solstice in the northern hemisphere. 従来の光合成培養装置における光分散体は水平面の全天光を利用しており、冬至前後では太陽エネルギーを十分に光分散体内へ導入できないため培養効率が低下するという問題があった。 Light dispersion in a conventional photosynthetic culture device utilizes the whole sky light horizontal plane, the culture efficiency due to the before and after the winter solstice not be introduced into the well optical dispersion within the solar energy is lowered. 一方、太陽電池装置などの産業分野においては、太陽電池モジュールの設置などの場合に太陽高度の年変化や日変化を考慮した固定方式または追尾方式が考案されており、また、光合成培養装置の分野においても集光装置を用いる方法などはあったが、コストや保守性の課題があった。 On the other hand, in the industrial fields such as a solar cell device, and fixing system or tracking system considering annual cycle and diurnal solar altitude it has been devised in the case of such installation of the solar cell module and the field of photosynthetic culture apparatus also there was the method of using a condensing device in, there is a cost and maintainability issues. そこで本発明は、 Accordingly, the present invention is,
気候変化、太陽高度の年変化や日変化にも対応でき、光合成生物の効率的な培養を可能とする光合成培養装置及び培養方法を提供することを目的とする。 Climate change, also corresponding to the year changes and daily changes in solar altitude, and an object thereof is to provide a photosynthetic culture apparatus and a culture method that allows efficient culture of photosynthetic organisms.

【課題を解決するための手段】前記した問題点を解決するための本発明の光合成培養装置は、次の(1)及び(2)の要件を含むことを特徴とする。 Photosynthetic culture device of the present invention SUMMARY OF THE INVENTION To solve the problems described above is characterized in that it comprises a requirement of the following (1) and (2). : (1)光合成生物を含む培養液と、太陽光を光源として入射し、培養液中に光を拡散して照射することができる1個以上の光分散体を収容する培養槽;並びに、 (2)該培養槽の近傍に設置され、培養液中の細胞濃度、気象観測・予報情報及び太陽光強度から選ばれた1 : (1) a medium containing photosynthetic organisms, sunlight is incident as a light source, the culture vessel for accommodating one or more optical dispersion can be irradiated with diffused light in the culture; and ( 2) it is disposed in the vicinity of the culture vessel, selected from the cell density, meteorological observation-forecast information and solar intensity in the culture fluid 1
種以上の情報、及び培養液の液面レベルを入力情報としてデータ処理することにより、光分散体の光入射部位と培養液の液面レベルとの、光合成生物を培養するに適した関係を算出することができ且つ液面レベルを制御することができる液面レベル調整手段。 Calculated above information species, and by the data processing liquid level of the culture solution as the input information, the light incident portion of the light dispersion and liquid level of the culture solution, the relationship which is suitable for culturing photosynthetic organisms liquid level adjusting means capable of controlling the and the liquid level can be. さらに、具体的な本発明の光合成培養装置は、次の(1)−(7)の要件を含むことを特徴とする。 Furthermore, photosynthetic culture apparatus specific invention, the following (1) - characterized in that it comprises a requirement (7). : (1)光合成生物を含む培養液と、太陽光を光源として入射し、培養液中に光を拡散して照射することができる1個以上の光分散体を収容する培養槽; (2)該培養槽と送液手段で接続され、培養液を貯留或いは供給するための培養液槽; (3)該培養槽に設置され、該培養液内の液面レベルを計測するための計測手段; (4)該培養槽に設置され、培養液中の細胞濃度を計測するための計測手段; (5)該培養槽の近傍に設置され、該培養槽の設置地域の気象観測・予報情報を受信するための受信手段; (6)該培養槽の近傍に設置され、太陽光強度を計測するための計測手段; (7)該培養槽の近傍に設置され、培養液中の細胞濃度、気象観測・予報情報及び太陽光強度から選ばれた1 : (1) a medium containing photosynthetic organism, culture tank sunlight incident as a light source, for accommodating one or more optical dispersion can be irradiated with diffuse light in culture; (2) connected with the culture tank and the fluid supply means, the culture solution tank for storing or supplying a culture solution; (3) is installed in the culture vessel, measuring means for measuring the liquid level of the culture solution within; (4) it is installed in the culture vessel, measuring means for measuring the cell concentration in the culture; is installed in the vicinity of (5) the culture tank, receiving meteorological-forecast information of the installation region of the culture vessel receiving means for; (6) arranged in the proximity of the culture vessel, measuring means for measuring the sunlight intensity; (7) arranged in the proximity of the culture vessel, the cell concentration in the culture solution, meteorological - selected from the forecast information and sunlight intensity 1
種以上の情報、及び培養液の液面レベルを入力情報としてデータ処理することにより、光分散体の光入射部位と培養液の液面レベルとの、光合成生物を培養するに適した関係を算出することができ且つ液面レベルを制御することができる液面レベル調整手段。 Calculated above information species, and by the data processing liquid level of the culture solution as the input information, the light incident portion of the light dispersion and liquid level of the culture solution, the relationship which is suitable for culturing photosynthetic organisms liquid level adjusting means capable of controlling the and the liquid level can be. 本発明の光合成培養装置は、このような構成を採用することにより、気候変化、太陽高度の年変化や日変化にも対応でき、具体的には、光強度の弱い、曇天日や、朝夕の日照条件や、また冬至前後の太陽南中高度の低い時期においても、太陽エネルギーを有効に培養液中に導入することができ、光合成生物の培養効率が高い。 Photosynthetic culture device of the present invention, by adopting such a configuration, climate change, also corresponding to the year changes and daily changes in solar altitude, specifically, weak light intensity, cloudy day or morning and evening sunlight conditions and, also in the solar culmination low altitude timing before and after the winter solstice, can be introduced to enable the culture medium of solar energy, high culture efficiency of photosynthetic organisms. また、本発明の光合成生物の培養方法は、第1の手段と第2の手段がある。 Further, the method of culturing photosynthetic organisms of the present invention, there is a first means and the second means. 第1の手段を含む基本的な本発明の光合成生物の培養方法は、太陽光を光源として入射し、培養液中に光を拡散して照射することができる1個以上の光分散体を収容する培養槽で光合成生物を培養する方法において、培養液中の細胞濃度、気象観測・予報情報及び太陽光強度から選ばれた1種以上の情報、及び培養液の液面レベルを入力情報としてデータ処理することにより、光分散体の光入射部位と培養液の液面レベルとの、光合成生物を培養するに適した関係を算出し、培養液の液面レベルを調整することを特徴とする。 The method of culturing basic photosynthetic organisms of the present invention comprising a first means receiving sunlight incident as the light source, one or more optical dispersion can be irradiated with diffuse light into the medium a method for culturing photosynthetic organisms in a culture tank for the data cell concentration in culture, meteorological observation-forecast information and one or more information selected from sunlight intensity, and the liquid level of the culture solution as input information by treating, with the light incident portion of the light dispersion and liquid level of the culture solution, to calculate a relationship suitable for culturing photosynthetic organisms, and adjusting the liquid level of the culture solution. さらに、具体的な第1の手段を含む本発明の光合成生物の培養方法は、太陽光を光源として入射し、培養液中に光を拡散して照射することができる1個以上の光分散体を収容する培養槽で光合成生物を培養する方法において、気象観測・予報情報データと該培養槽近傍に設けた光センサーで計測した光強度に基づいてデータ処理し、得られた結果から設定基準光強度以上の晴天が予測される場合には、日中時に培養槽内の培養液の液面レベルを光分散体の受光面レベルと同等レベルに制御し、また、設定基準光強度未満の曇天時が予測される場合には、日中時、日の出から日中まで、日中〜日没、 Further, specific methods for culturing photosynthetic organisms of the present invention comprising a first means, sunlight incident as the light source, one or more optical dispersion can be irradiated with diffuse light into the medium a method for culturing photosynthetic organisms in a culture tank for containing a, and the data processing based on the light intensity measured by the optical sensor provided in the vicinity and the culture tank meteorological observation-forecast information data, setting the results obtained reference light If the intensity or sunny is predicted, the liquid level of the culture solution in the culture tank were controlled in the light-receiving surface level comparable level of light dispersion during daytime, also, a cloudy day less than the set reference light intensity but if it is predicted, the time during the day, until in from sunrise the day, during the day - sunset,
及び日の出から日没までから選ばれた何れかの時間において、培養液の液面レベルを光分散体の受光面レベルより高くなるように調整することを特徴とする。 And at any time selected from to sunset from sunrise, and adjusting the liquid level of the culture solution to be higher than the light receiving level of the light dispersion. 前記第1 The first
の手段を一言で簡略に言えば、「培養液の液面レベルを上下させる」ことである。 Speaking means briefly put, is to "raise or lower the liquid level of the culture solution". 本発明の第2の手段は、第1 Second means of the present invention, first
の手段と組み合わされて使用される。 Combined with the means used. 本発明の第2の手段は、光分散体が垂直乃至斜方向に傾斜できるように、 Second means of the present invention, as the light dispersion can be tilted in a vertical or oblique direction,
光分散体の下部の少なくとも一部が、培養槽底面に固定された可動留め具で、支えられていることを特徴とする。 At least a portion of the bottom of the optical dispersion, with a movable fastener secured to the culture tank bottom, characterized in that it is supported. 前記第2の手段を一言で簡略に言えば、「光分散体を傾斜させる」ことである。 Quite briefly in a word the second means is to "tilting the optical dispersion".

【発明の実施の形態】 第1の手段を含んだ光合成培養装 DETAILED DESCRIPTION OF THE INVENTION photosynthetic culture instrumentation including a first means
図1は本発明の光合成培養装置の好ましい実施の形態を示し、第1の手段が含まれる光合成培養装置である。 Location Figure 1 shows a preferred embodiment of the photosynthetic culture apparatus of the present invention, a photosynthetic culture device contains first means. 図1において、本発明の光合成培養装置は培養槽1と光合成生物を含む培養液2と光分散体3から主として構成される。 In Figure 1, the photosynthetic culture apparatus of the present invention is mainly composed of the culture solution 2 and the light dispersion 3 containing culture tank 1 and photosynthetic organisms. 本発明で使用される光分散体3は、光源からの光を入射できる受光面と、培養液中に拡散して照射することができる照射面を有する光分散体であって、該受光面及び/又は照射面は撥水性であることが好ましい。 Light dispersion 3 used in the present invention is an optical dispersion having a light receiving surface which can incident light from the light source, the irradiation surface can be irradiated with diffused into the culture liquid, the light-receiving surface and / or irradiated surface is preferably water-repellent. 撥水加工仕上げは、透明なフッ素樹脂などの撥水性材料のコーティングや、表面の微細繊毛化による撥水性向上処理を行うことができる。 Water-repellent finish, coating or water-repellent material such as a transparent fluorocarbon resin, it is possible to perform the water repellency enhancing treatment by fine ciliated surface. 4は、培養槽1とは別体の培養液槽であり、培養槽1と送液手段で接続され、外部から或いは培養槽1から供給される培養液5(光合成生物を含んでもよい)を貯留、或いは、培養槽1へ培養液5を供給することができる。 4, the culture tank 1 a culture vessel separate, are connected with the culture tank 1 and the feeding means, the culture medium 5 supplied from the outside or from the culture tank 1 a (which may include photosynthetic organisms) reservoir, or it can be supplied to the culture solution 5 to the culture tank 1. 培養槽1と培養液槽4は送液手段である配管、開閉弁、送液ポンプ6、7で接続される。 Culture tank 1 and the culture solution tank 4 is piping is fluid feeding means, the opening and closing valve, are connected by the liquid feed pump 6.
図1では、本発明の構成要素を単純化しているが、培養槽1はスケールアップされた培養池であってもよいし、 In Figure 1, the components of the present invention is simplified, the culture tank 1 may be a pond that has been scaled up,
また、培養液槽4は培地調整槽や培養液回収槽などに機能分担した構造としてもよい(後記する実施例で詳述する)。 Further, (described in detail in the examples below) may be a structure function sharing in such culture solution tank 4 medium adjusting tank and the culture solution recovery tank. 培養槽1には培養液2中の光合成生物の濃度を計測するための細胞濃度計8と、培養槽1内の培養液2の液面レベルを計測するための液面レベル計9が設置されている。 A cell concentration meter 8 for measuring the concentration of photosynthetic organisms in culture 2, the liquid level gauge 9 for measuring the liquid level of the culture solution 2 in the culture tank 1 is installed in the culture tank 1 ing. また、培養槽1の近傍に光センサ10(例えば、光量子計、日射計、照度計など)が設置されている。 Further, the optical sensor 10 in the vicinity of the culture tank 1 (e.g., photon meter, pyranometer, luminometer, etc.) are installed. また、培養装置の設置地域を観測対象とする気象観測・予報情報を得るための受信機器11が設置されている。 Further, the receiving device 11 for obtaining a weather observation and forecast information for the installation area of ​​the culture device with the observation target is placed. 12は液面レベル制御調整装置であり、前記各計測機器及び受信機器11での計測、或いは受信された情報、即ち、細胞濃度、液面レベル、光強度、気象情報データに基づき、データ処理されて培養槽1内の培養液2 12 is a liquid level control adjustment device, the measurement at each measurement equipment and the receiving equipment 11, or received information, i.e., cell concentration, liquid level, light intensity, on the basis of the weather information data, the data processing cultures 2 of the culture tank 1 Te
の液面レベルを設定するためのものである。 It is for setting the liquid level. 液面レベルの設定には、培養槽1からの光合成生物(例えば、藻体)を含む培養液2を培養液槽4へ送液する培養液回収ライン13及び送液ポンプ7からなる送液手段と、培養液槽4からの培養液5を培養槽1へ送液する培養液供給ライン14及びポンプ6からなる送液手段が利用される。 The liquid level of the setting, photosynthetic organisms from the culture tank 1 (e.g., algal cells) culture collection line 13 and becomes liquid feeding means from the liquid supply pump 7 for feeding the culture solution 2 to the culture tank 4 containing If, comprising liquid feeding means from the culture medium supply line 14 and the pump 6 for feeding are utilized the culture solution 5 from the culture solution tank 4 to the culture tank 1. 図1の光合成培養装置を用いた培養方法は次のように行われる。 Culture method using a photosynthetic culture device of FIG. 1 is performed as follows. ここでは制御方法の操作についてのみ述べ、制御方法の根拠は次の「第1の手段の根拠と作用」 Here described only the operation of the control method, the basis for the control method "basis with the action of the first means" next
の欄に記す。 It referred to in the column. 先ず、光合成培養装置の設置場所における過去の気象情報による太陽光の光強度を、光強度の基準値データとして液面レベル制御調整装置12に入力する。 First, to enter the light intensity of the sunlight by the historical weather information in the installation location of the photosynthetic culture device, a liquid level control adjustment unit 12 as the reference value data of the light intensity. さらに設置地域の気象予報情報を受信機器11により受信して、液面レベル制御調整装置12に入力し、一方で、光センサ10での実測の光強度データを液面レベル制御調整装置12に入力し、前記基準値データを補正して数時間先の太陽光の光強度の予測値とし、光強度の予測の精度を向上させる。 Furthermore receives weather forecast information of the installation region by the receiving device 11, and input to a liquid level control adjustment unit 12, on the one hand, the input light intensity data of the actual measurement of the optical sensor 10 to the liquid level control adjustment unit 12 and, as the predicted value of the sunlight intensity of several hours away by correcting the reference value data, to improve the accuracy of light intensity prediction. さらに、液面レベル制御調整装置12において、この光強度の予測値を予め設定されている光強度の基準値データと比較し、基準値以上であれば培養液の液面レベルを光分散体3の受光面レベルL Further, the liquid level control adjustment unit 12, the comparison with the reference value data of the light intensity of the predicted value of the light intensity is previously set, the reference value or more value, if culture liquid level light dispersion 3 the light-receiving surface level L of
0と同等となるように制御する。 0 and controlled so as to be equivalent. 基準値以下であれば場溶液の液面レベルを光分散体3の受光面レベルL 0より高いレベルL 1に上昇させる操作を行う。 Equal to or less than the reference value performs an operation to raise the liquid level of the field solution at a higher level L 1 of the light receiving surface level L 0 of the optical dispersion 3. 基準値に幅を持たせたり、基準値を2つ以上設定して、操作による液面操作の応答速度を緩やかにしてフラッキを小さくしたり、制御精度をあげても良い。 Or to have a width reference value, and set the reference value more than, or smaller Furakki to moderate the response speed of the liquid surface operation by the operation, it may be mentioned the control accuracy. このとき、太陽高度の日変化に伴う光強度の変化も制御判断材料として加えてもよい。 At this time, it may be added as well control decisions change of light intensity due to a change solar altitude day. なお、太陽高度の日変化は時刻と関連づけられるため、実際には時刻に基づき制御を行ってもよい。 Since the sun altitude date changes associated with time, may be carried out in practice is based on the time control. 例えば、その地域の気象データによる季節毎(例えば、月毎、週毎)の平均光強度を光強度の基準値データとし、 For example, each season due to weather data of the area (for example, every month, every week) the average light intensity of the reference value data of the light intensity,
気象観測・予報情報に基づいて、これ以上の晴天が予想され、かつ日中(例えば、8〜16時)時、培養液2の液面を光分散体3の受光面レベルと同じかやや低くなるように制御する。 Based on the meteorological-forecast information is expected no more weather and during the day (e.g., at 8-16) time, the liquid level of the culture solution 2 equal to or slightly lower and the light receiving level of the light dispersion 3 It is controlled to be. また、基準値データより低い曇天時が予想される場合の日中(例えば、8〜16時)時や、又は基準値データに係わらず、日出〜朝刻(例えば8時まで)、夕刻(例えば16時から)〜日没の時間において、培養液の液面レベルを光分散体の受光面のレベルより高くなるよう制御する。 Further, during the day when the time less than the reference value data cloudy is expected (e.g., 8-16 times) or when, or regardless of the reference value data, Hiji-morning (until e.g. 8) time, evening ( for example, in 16:00 from) - sunset time, and controls to be higher than the level of the light receiving surface of the light dispersion liquid level of the culture solution. 以上の培養液の液面レベルの制御方法において、液面レベルの調整幅を培養液の細胞濃度に応じて行ってもよい。 A method for controlling a liquid level above the culture medium may be performed in accordance with the adjustment range of the liquid level in the cell concentration of the culture solution. 即ち、細胞濃度が低いときには上昇幅を大きくする。 That is, the cell concentration increases the rise when low. 細胞濃度が高いときは、液面上昇を小さくする。 When the cell concentration is high, to reduce the liquid level rises. 光合成生物の種類や培養環境の違いにもよるが、液面操作幅として−2〜6cmの範囲とするとよい。 Depending on the difference in photosynthetic organisms type and culture environment, or equal to the range of -2~6cm as liquid level operating range. 第2の手段を含んだ光合成培養装置図2と図3は第2の手段を説明するための本発明の光合成培養装置の槻略図である。 The second photosynthetic culture apparatus Figure 2 including a means and FIG. 3 is a Takatsuki schematic photosynthetic culture device of the present invention for explaining the second means. ここで、両図に示す培養槽21、31は第1の手段の項で記した図1の培養槽1 Here, the culture tank 1 of Figure 1 culture tank 21, 31 shown in both figures that describes in the section of the first means
と、置き換えることとし、図2、図3では第2の手段の説明を主眼とするために、その他の設置器機等の表示を便宜上省略している。 If, and to replace, 2, in order to focus on description of the second unit 3, the display of such other installation equipment are omitted for convenience. 先ず、図2を用いて第2の手段の説明をする。 First, a description of the second means with reference to FIG. 図2は、第2の手段を有する本発明の一つの態様の光合成培養装置の厚さ方向から見た断面図である。 Figure 2 is a cross-sectional view as viewed from the thickness direction of the photosynthetic culture device of one embodiment of the present invention having a second means. 図2の光合成培養装置には培養槽21と光合成生物を含む培養液22と光分散体23が概略的に示されている。 Culture solution 22 and the light dispersion 23 containing the culture tank 21 and the photosynthetic organisms have been shown schematically in photosynthetic culture device of FIG. 光分散体23の外形を高さH、幅W(図示していない)、厚さtとする。 The external shape of the optical dispersion 23 height H, width W (not shown), and the thickness t. 光分散体23は垂直乃至斜方向に傾斜できるように、光分散体23の下部の少なくとも一部が、培養槽21底面に固定された可動留め具24で、 As the light dispersion member 23 can be tilted in a vertical or oblique direction, at least a part of the bottom of the light dispersion member 23 is movable fastener 24 fixed to the culture tank 21 bottom,
支えられている。 It is supported. 例えば、直方体からなる光分散体23 For example, the light dispersion member 23 consisting of a rectangular parallelepiped
では、その下端の幅方向の稜線において、培養槽21底面に接地して傾斜できるように可動留め具24で固定され、光分散体23のもう一方の下端の稜線は自由に持ち上がる構造である。 In, in the width direction of the ridge line of the lower end, is fixed by the movable clamp 24 to allow tilting grounded in the culture tank 21 bottom ridge of the other lower end of the light dispersion member 23 has a structure lifted free. また、可動留め具24の近傍にストッパ25が設置され、該ストッパ25は光分散体23の傾斜角度を制限し、傾斜した光分散体26をそれ以上傾斜できないようにする構造となっている。 Further, disposed stopper 25 in the vicinity of the movable fastener 24, the stopper 25 has a structure in which to limit the inclination angle of the optical dispersion 23, an optical dispersion 26 which is inclined to prevent tilting further. このときの光分散体23、26の比重は0.3〜1未満程度が好ましい。 The specific gravity of the light dispersion 23 and 26 at this time is preferably about less than 0.3 to 1. 次に、図3は、第2の手段を説明する別の本発明の態様の光合成培養装置の厚さ方向から見た断面図である。 Next, FIG. 3 is a cross-sectional view as viewed from the thickness direction of the photosynthetic culture apparatus further aspect of the present invention illustrating the second means. 図3には、図2と同様に光合成培養装置は培養槽3 Figure 3, photosynthetic culture apparatus as in FIG. 2 culture bath 3
1と光合成生物を含む培養液32と光分散体33が概略的に示されている。 Culture 32 and the light dispersion 33 containing 1 and photosynthetic organisms is shown schematically. 光分散体33はその下端の幅方向の稜線において、培養槽31底面に接地して傾斜できるように可動留め具34で固定され、光分散体33のもう一方の下端の稜線は自由に持ち上がる構造である。 Light dispersion 33 in the ridge line in the width direction of the lower end, is fixed by the movable clamp 34 to allow tilting grounded in the culture tank 31 bottom ridge of the other lower end of the light dispersion 33 lifts the free structure it is. 図3の構造では2個以上が整列された各光分散体33の上部に、連結手段である連結ワイヤ35が装着されて、各光分散体33を連結しており、既存技術による機械的な水平方向に駆動できる駆動装置36を用いて、連結ワイヤ35を水平に移動させることで、光分散体33を傾斜させることが可能である。 The top of each light scattering body 33 or two are aligned in the structure of FIG. 3, it is mounted a connecting wire 35 a connecting means, which connect the respective light dispersion 33, mechanical by existing technologies using the drive device 36 can be driven in the horizontal direction, by moving the connecting wires 35 horizontally, it is possible to tilt the optical dispersion 33. このときの光分散体33の比重は0.9〜1.2程度が好ましい。 The specific gravity of the light scattering body 33 at this time is preferably about 0.9 to 1.2. 前記第2の手段を含む光合成培養装置では、第1の手段による液面レベル制御に加え、あるいは単独で、次の液面レベル制御を行うことができる。 The photosynthetic culture apparatus comprising a second means, in addition to the liquid level control by the first means, or alone, can be carried out following the liquid surface level control. すなわち、光分散体33の受光面における受光効率が調整できるように、光分散体33を傾斜させ、例えば、北緯35度付近では、傾斜方向を南方向となるよう設定し、9月から冬至をはさんで4月までの期間において、かつ基準光強度以上の晴天時において、光分散体33を垂直位置から30度までの間の角度となるよう、傾斜させ、より好適には11月から1月の期間において30度とすることが望ましい。 That is, as the light receiving efficiency can be adjusted on the light receiving surface of the light dispersion 33, tilting the optical dispersion 33, for example, in the vicinity of 35 degrees north latitude, is set so that the inclination direction south direction, the winter solstice September in the period of up to across in April, and at the time of reference light intensity above weather so that the angle between the light dispersion 33 from the vertical position to 30 °, tilted, and more preferably from November 1 it is desirable that the 30 degrees in the period of a month. また、この傾斜制御を培養液の液面レベルの下げ操作により行い、下げ幅は、例えば30cm高さの光分散体33であれば0.5 Further, the tilt control is performed by the lowering operation of the liquid level of the culture solution, reduction range, if the light dispersion 33 of for example 30cm height 0.5
cmから4cmとすればよい。 It may be set to 4cm from cm. このとき、光分散体の受光面が液没しないように液面を下げることが好ましい。 In this case, it is preferable that the light receiving surface of the light dispersion lowers the liquid level so as not to submerged.
もちろん基準光強度以下と光強度が弱いときに、第1の手段に準拠して培養液の液面レベルを上昇させる操作を行なうことで、第1の手段と第2の手段の両方を実施することができる。 Of course when below the light intensity reference light intensity is low, by performing an operation to raise the liquid level of compliance with the culture solution to the first means, for implementing both the first means and second means be able to. 第2の手段を含む図3の光合成培養装置では、5月から夏至をはさんで8月迄の期間においては連結ワイヤ35により光分散体33を垂直となるように固定し、この時の液面レベルの操作は第1の手段に準じ、9月から冬至をはさんで4月の期間においては連結ワイヤ35により、光分散体33を垂直位置から30度までの間の角度となるように傾斜させ、より好適には1 The photosynthetic culture apparatus of Figure 3, including a second means, in a period until August across the summer solstice in May light dispersion 33 was fixed to be perpendicular by a connecting wire 35, the liquid at this surface level operations according to the first aspect, the connection wire 35 in the period April across the winter solstice September, so that the angle between the light dispersion 33 from the vertical position to 30 degrees It is inclined, and more preferably 1
1月から1月にかけては、30度とする。 To January from January, and 30 degrees. この時の培養液面の制御は傾斜受光面の下側のレベルに対して培養液の液面レベル操作を行う他は第1の手段に準じる。 Control of the culture liquid surface when this is in addition to performing the liquid level manipulation of the culture liquid to the lower level of the inclined light receiving surface conforms to the first means. 第1の手段の根拠と作用ここでは北緯35度付近における実測データを用いて説明するが、緯度や気象の異なる条件において数値の変動、程度の差はあっても、本発明で用いる概念は同様に適用が可能である。 Although in this case the action grounds for the first means will be described with reference to measured data in the vicinity of 35 degrees north latitude, the variation values indicated in the latitude and weather different conditions, a greater or lesser degree, the concepts used in the present invention is similar It can be applied to. 3,6,9,12月の任意にサンプリングした典型的な晴天日と曇天日の全天光の光強度の日変化を図4に、左列を晴天日、右列を曇天日のデータとして示す。 3, 6, 9, the diurnal variation of the light intensity of the whole sky light December optionally typical sunny day of sampling of the cloudy day in FIG. 4, the left column fine day, the right column as data cloudy day show. 図4の晴天日のグラフより、晴天日の全天光光強度と光分散体照射面の平均光強度を求め下記の表1に示す。 From the graph of fine day in FIG. 4, an average light intensity of the whole sky light intensity and light dispersion irradiation surface of the fine day shown in Table 1 below. 表1においては、日出から日没までの時間である「日長」における平均光強度と、日の出から8時迄、10時から14時迄、8時から16時迄、及び16 In Table 1, the average light intensity in the time from sunrise to sunset "daylength" until eight o'clock from sunrise until 14 o'clock 10 until 16 o'clock 8, and 16
時から日没までのそれぞれの平均光強度を示す。 It shows the respective average light intensity from time to sunset. この時の光分散体については、光分散体タイプ1と光分散体タイプ2について求めた。 The light dispersion at this time was determined for light dispersion type 1 and the optical dispersion type 2. 得られた結果をそれぞれ下記の表1にまとめて示す。 The results obtained are summarized in Table 1 below. ここで、タイプ1は外形長さH3 Here, type 1 outer length H3
0cm×幅W10cm×厚さt3cmであり、タイプ2 0 cm × width W10cm × a thickness of T3cm, Type 2
は外形長さH60cm×幅W10cm×厚さt3cmである。 Is a contour length H60cm × width W10cm × thickness T3cm.

【表1】 [Table 1] 表1の作成と同様にして、図4の曇天日のグラフから、 Creating Table 1 and in the same manner, from the graph of cloudy day in FIG. 4,
曇天日の日長における全天光光強度と光分散体照射面の平均光強度を求め、その結果を下記の表2に示す。 Obtaining an average light intensity of the whole sky light intensity and light dispersion illuminated surface in the photoperiod cloudy day, the results are shown in Table 2 below. この時の光分散体については、光分散体タイプ1と光分散体タイプ2について求めた。 The light dispersion at this time was determined for light dispersion type 1 and the optical dispersion type 2.

【表2】 [Table 2] 表1から、光分散体タイプ1を用いたとき、晴天日であれば光分散体照射面平均光強度は日長平均でもほぼ30 From Table 1, when using light dispersion type 1, if fine day light dispersion irradiation surface average light intensity substantially in day length average 30
〜40μE・m -2・s -1程度であることが分かる。 It is found that ~40μE · m approximately -2 · s -1. しかし、日出から8時までの朝方や、16時から日没までの夕方では光分散体照射面平均光強度は1〜20μE・m However, the morning and from sunrise to 8:00, the average light intensity of light dispersion irradiation surface in the evening to sunset o'clock 16 1~20μE · m
-2・s -1と弱く、光補償点以下の可能性がかなり高いことが分かる。 Weakly -2 · s -1, it can be seen following possibilities light compensation point is quite high. なお、光分散体タイプ2はタイプ1より希釈率が大きいため光利用効率は高くなる可能性がある一方で、日長平均でも20μE・m Incidentally, while the light dispersion type 2 have a potentially high light utilization efficiency due to the large dilution ratio than Type 1, 20μE · at day length average m -2・s -1程度と光合成生物の種類などによっては光補償点に近い値となる可能性もあることが分かる。 -2 · s can be seen that there is a possibility that a value closer to the optical compensation point such as by -1 degree and type of photosynthetic organisms. 一方、表2の曇天日についてみると、日長平均の全天光平均光強度は100〜300μ On the other hand, looking for cloudy day in Table 2, all Tenko average light intensity day length average 100~300μ
E・m -2・s -1程度と低くく、このときの光分散体照射面平均光強度も光分散体のタイプの違いはあるが2〜1 E · m -2 · s -1 degree and Hikukuku, light dispersion irradiation surface average light intensity at this time also the type of differences in optical dispersion is 2 to 1
0μE・m -2・s -1程度と小さく、光補償点以下の可能性が高いことが分かる。 Small as 0μE · m -2 · s about -1, it is seen that higher following possibilities light compensation point. 本発明は、光分散体照射面平均光強度が光補償点以下となる恐れのある、まさにこの現象を解決すべき課題として捕らえ、鋭意検討した結果、 The present invention is a result of light dispersion irradiation surface average light intensity at risk of a less light compensation point, taken as problems just to solve this phenomenon, was examined intensively,
培養液の液面レベルを上昇させることで光分散体受光面による太陽光の受光を遮断するという逆転の発想により構築した点に特徴がある。 It is characterized in that constructed by idea of ​​reversal of blocking the light of the sunlight by the light dispersion receiving surface by raising the liquid level of the culture solution. この発想に基づき、本発明の光合成培養装置及び培養方法においては、光分散体受光面に対して培養液の液面の上下操作が可能な構造と、制御方法を実現している。 Based on this idea, in the photosynthetic culture apparatus and a culture method of the present invention, a structure capable vertical operation of the liquid surface of the culture solution to light dispersion light receiving surface, and it realizes the control method. 即ち、本発明によれば、晴天日の太陽光が強いときには光分散体による希釈効果を最大限に利用しつつ、曇天日や朝夕の光強度が弱いときには、培養液の液面レベルを光分散体の受光面レベルよりも高くすることにより、培養液の液面を受光面として切り替え、光合成培養装置としての光利用効率を総合的に高めることが可能となる。 That is, according to the present invention, when sunlight fine day is strong while the most of the dilution effect caused by light dispersion, when cloudy day and morning and evening of the light intensity is weak, the light dispersion liquid level of the culture solution by higher than the body of the light-receiving surface level, to switch the liquid surface of the culture solution as a light-receiving surface, it is possible to enhance the overall light utilization efficiency of the photosynthetic culture apparatus. 例えば、弱いときの太陽光光強度を100〜300μE・m -2・s -1程度とすると、 For example, when the solar light intensity to 100~300μE · m -2 · s about -1 when weak,
この時に培養液の液面へ照射される光は、比較的弱く光利用効率が必然的に高い。 Light irradiated to the liquid surface of the culture solution at this time, relatively weak light use efficiency is inevitably high. この時の液中での光強度の減衰について以下に説明する。 The attenuation of the light intensity in the liquid in at this time is described below. 図5に培養液の液面からの距離と相対光強度の関係に及ぼす細胞濃度( Spirulina Cell concentration on the relationship between the distance and the relative light intensity from the liquid surface of the culture solution in FIG. 5 (Spirulina
platensis )(微細藻類)の影響について示す。 platensis) (showing the effects of microalgae). 細胞濃度が1g−cell・L -1以上の高濃度であれば、1cm If a high concentration of the cell concentration 1g-cell · L -1 or more, 1 cm
程度の液深でも相対光強度は0.5以下となり光強度は50〜150μE・m -2・s -1と急激に小さくなる。 The degree of liquid depth but the relative light intensity becomes the light intensity and 0.5 or less rapidly decreases with 50~150μE · m -2 · s -1. また、細胞濃度が0.1g−cell・L -1程度と比較的低濃度であっても液深6cm程度までには相対光強度は0.1以下となり光強度は10〜30μE・m -2・s -1 Further, light intensity relative light intensity becomes 0.1 or less in cell concentration to liquid depth 6cm about even at relatively low concentrations of about 0.1g-cell · L -1 is 10~30μE · m -2 · s -1
以下となる。 The following become. 従って、培養液の液面レベルの上下幅は細胞濃度と光強度のデータを不可欠の情報として光分散体と同等レベル〜液浸6cmの範囲で制御すればがよいことが分かる。 Therefore, the vertical width of the liquid level of the culture solution is seen that good is controlled in the range of the light dispersion level equivalent-immersion 6cm as essential information data cell concentration and light intensity. 「同等レベル」とは、培養液の液面が静止していれば受光面と同一のレベルを意味するが、実際には液面は波立ちなどの影響により上下に変動しており、 The "same level" means a liquid surface same level as the light-receiving surface if the stationary culture solution, actually has fluctuates up and down due to the effects of liquid surface ruffling,
−2cm〜0cm程度の範囲を意味する。 It means a range of about -2cm~0cm. なお、培養液の液面レベル制御に必要な太陽光の光強度は、気象観測・予報情報を基準データとし、光センサーによる実測データでこれを補正して精度を向上させ、数時間先の値として予測して用いるのが良い。 The light intensity of the sunlight required for liquid level control of the culture, a meteorological observation-forecast information as reference data, and correct the actual measurement data by the light sensor to improve the accuracy, a few hours to value It is better to use the prediction to as. これは、培養液の液面レベル操作に伴う送液量とポンプ能力の関係から培養液の液面レベルの変動は、特に大規模では緩慢であり、光センサーによる実測データをそのまま用いると、太陽光の光強度の変動に追従できないばかりか、小規模でも無用な動力を要するため、これを防止するためである。 This variation of the liquid level of the culture solution from the relationship of the liquid fluid amount sent due to surface level operations and pumping capacity of the cultures, particularly slow in large, the use of measured data by light sensors as the sun because not only can not follow the fluctuations of the light intensity of the light, it takes a small even useless power, in order to prevent this. 例えば、3 万m 2の液面積の培養池の液面を3cm幅制御する場合に500L・m -1のポンプで1時間を要するが、 For example, it takes one hour at pump 500L · m -1 in the case of 3cm width control the liquid level of the pond of the liquid area of 30,000 m 2,
数時間先の予測光強度を用いれば十分に制御が可能である。 Using the predicted light intensity of a few hours ahead is possible sufficiently controlled. なお、一般に気象観測・予報情報は広域にわたるため、光合成培養装置設置場所における光センサーによる実測データにより補正することで測定精度を向上させる効果がある。 In general meteorological observation-forecast information for over a wide area, the effect of improving the measurement accuracy by correcting the actual measurement data by the light sensor in the photosynthetic culture device location. 本発明による、付加的な作用として、受光面が培養液により洗浄される効果がある。 According to the invention, as an additional effect, the effect of the light receiving surface is cleaned by the medium. その効果は光分散体表面における透明フツ素樹脂等撥水性材料のコーティングや、微細繊毛化撥水性向上処理により、顕著に発揮される。 The effect coatings and transparent fluorine resin water-repellent material in the light dispersion surface, the fine ciliary Kabachi aqueous enhancement, is remarkably exhibited. なお、従来型の光分散体においては、受光面に培養液が飛散等で付着し、成分析出によって受光阻害が発生する場合があったが、本発明ではこのような受光阻害が防止できる。 In the conventional optical dispersion, culture on the light receiving surface is adhered with scattering and the like, but received inhibited by components precipitation was occur, the present invention can prevent such light receiving inhibition. 第2の手段の根拠と作用本発明の第2の手段を含んだ光合成培養装置は、光分散体が直達光(光分散体の受光面成分)と散乱光の合計による全天光を受光できるという特徴に着目して、光分散体そのものの受光面の角度を0度から30度の範囲で設定することができれば、総合的な受光量を最適化できることを見いだし、複数の光分散体を傾斜させることにより、本発明を実現している。 Photosynthetic culture device including a second means grounds the effects the invention of the second means, the light dispersion can receive the whole sky light by total scattered light and the direct light (light-receiving surface component of the light dispersion) focusing on characteristics of, if the angle of the light receiving surface of the light dispersion itself it is possible to set in the range of from 0 degree to 30 degrees, found that to optimize the overall amount of light received, tilting the plurality of light dispersion by realizes a present invention. 年間を通じて、北緯35度付近における全天光の日平均光強度を計測した。 Throughout the year, the measurement of the average light intensity day of the whole sky light in the vicinity of 35 degrees north latitude. 該計測地点における太陽南中高度は夏至、冬至でそれぞれ約8 Summer solstice solar culmination altitude at the measurement point, about respectively the winter solstice 8
0度、30度(水平線より)である。 0 degrees, 30 degrees (the horizontal line). 図6は、全天光の日平均光強度を更に月平均とし、水平面、30度傾斜面、60度傾斜面についてプロットした一例である(6 Figure 6 is a further average monthly average optical intensity day whole sky light, horizontal, 30-degree inclined surface, which is an example of plotting the 60 ° inclined surface (6
0度傾斜面は11、12、1月のみ)。 0 degree inclined surfaces 11 and 12, January only). 本発明における光分散体を用いた光合成培養装置では全天光を利用するが、比較対照のものは水平面の全天光を利用した。 Although photosynthetic culture apparatus using the optical dispersion of the present invention utilizes the whole sky light, made use of whole sky light horizontal plane that of the comparative control. この水平面の全天光光強度と、30度傾斜面の全天光光強度を比較するために、水平面の全天候の日平均光強度に対する30度の全天候の日平均光強度の比率を下記の表3 A whole sky light intensity of the horizontal plane, in order to compare the whole sky light intensity of 30 degree inclined surface, the following table the ratio of all-weather day average light intensity of 30 degrees with respect to the average light intensity weather day horizontal plane 3
に示す。 To show.

【表3】 [Table 3] 表3によれば、夏至の前後では水平面の方が高いが、冬至前後は30度傾斜面の方が高いことがわかる。 According to Table 3, although higher horizontal plane before and after the summer solstice, the front and rear winter solstice seen that higher in 30-degree inclined surface. すなわち、北緯35度付近において、光分散体の傾斜方向を南方向となるよう設定し、5月から8月の期間は光分散体を垂直として水平面で受光し、9月から4月の期間は光分散体を垂直から30度までのあいだの角度に傾斜すれば光分散体への受光量が多くなることが分かる。 That is, in the vicinity of 35 degrees north latitude, the inclination direction of the optical dispersion was set to be the south direction, period from May to August is received in the horizontal plane of the light dispersion as a vertical, a period of 4 months from September received light amount of the light dispersion that increases seen by tilting at an angle of between the light dispersion from the vertical to 30 degrees. 効率的には、水平面と30度傾斜面との比が1.3以上と大きい11月から1月にかけて30度とするのが最も良い。 Efficient, the ratio of the horizontal and 30 degree inclined plane is best to 30 degrees from November to January large as 1.3 or more.
しかしながら、30度以上に傾けても、図6の60度傾斜面の光強度のプロットに示すように、傾斜角度に応じた光強度の増加がなく、傾斜による培養液流動阻害が発生しやすくなると考えられるので好ましくない。 However, even if tilted more than 30 degrees, as shown in the plot of the light intensity of 60 degree inclined plane of FIG. 6, there is no increase in light intensity corresponding to the inclination angle, the culture medium flow inhibition by tilting is likely to occur since it is considered undesirable. なお、 It should be noted that,
南方向に一軸的に光分散体を傾斜することにより朝夕の太陽高度の低いときの受光量を大きくする効果がある。 The effect of increasing the amount of light received when morning and evening sun altitude low by uniaxially inclined light dispersion south direction.
すなわち、第1の手段において朝夕の光強度が弱い時間帯では培養液の液面レベルを上げて受光するとしたが、 That is, although the in the morning and evening light intensity is low time zone in the first means for receiving raising the liquid level of the culture solution,
第2の手段を適用する場合には11月から1月において、朝夕の光強度が弱い時間帯であっても培養液の液面レベルを下げたまま受光する方法を代わりに用いることができる。 In the case of applying the second means may be used in one month from November, even morning and evening of the light intensity is weak hours how to receive while lowering the liquid level of the culture solution instead. ところで、光分散体を傾斜させた時、晴天時において液面より光分散体の受光面が出ていることが望ましい。 However, when tilting the light dispersion, it is desirable that the light receiving surface of the light dispersion is out from the liquid surface at the time of fine weather. このためには光分散体の比重は1以下が要求される。 The specific gravity of the light dispersion due is required to 1 or less. このとき、浮力が強いと、光分散体の一端が固定されているため、開放端が常に持ち上がり傾斜する恐れがあり、従って光分散体の比重はこのような現象が小さくなる培養液と同じ程度の比重である、0.9〜1未満が好ましい。 At this time, if the strong buoyancy, since one end of the light dispersion member is fixed, there is a possibility that the open end is constantly raised inclined, therefore the specific gravity of the light dispersion as much as culture this phenomenon is reduced a specific gravity, preferably less than 0.9. 但し、1に近づくと、光分散体が培養液の液面下に沈む頻度が高まるため、これを防ぐためストッパーによる傾斜角度の制限効果を利用することが必要となる。 However, the close to 1, since the frequency of the light dispersion sinks below the liquid surface of the culture solution is increased, it is necessary to utilize the limited effect of the inclination angle by the stopper to prevent it.

【実施例】〔実施例1〕図7は本実施例1の光合成培養装置を示し、図1の光合成培養装置をより具体的にした一つの実施の形態である。 EXAMPLES Example 1 Figure 7 shows a photosynthetic culture apparatus of the embodiment 1, which is one embodiment that more specifically the photosynthetic culture apparatus of Figure 1. 図7の光合成培養装置においては、培養槽41や制御機構は基本的に本発明の基本構造として前記に解説した図1に準ずる。 In photosynthetic culture device of FIG. 7, the culture vessel 41 and control mechanism pursuant to FIG. 1 describes above as the basic structure of the basic invention. また、光分散体43の傾斜機構は同じく本発明の前記に解説した図3に準ずる。 The inclination mechanism of the optical dispersion 43 pursuant to FIG. 3 which also has commentary to the of the present invention. 即ち、培養槽41、培養液42、光分散体4 That is, culture tank 41, the culture liquid 42, the light dispersion 4
3、細胞濃度計48、液面レベル計49、光センサ5 3, the cell concentration meter 48, liquid level gauge 49, the optical sensor 5
0、受信機器51、液面レベル制御調整装置52は、図1と同等なものであり、連結ワイヤ45と駆動装置46 0, the receiving device 51, the liquid level control adjustment device 52 is intended equivalent to FIG. 1, the connecting wire 45 and the driving unit 46
は、図3と同等なものである。 Are those equivalent to FIG. 3. 図7の光合成培養装置においては、培養槽41の底部にスパージャ44が設けられており、培養中にスパージャ44からCO 2含有ガスを通気して、通気撹拌培養が行われる。 In photosynthetic culture device of FIG. 7 is sparger 44 is provided at the bottom of the culture tank 41, to vent the CO 2 containing gas from the sparger 44 in the culture, aeration agitation culture is carried out. さらに、培養槽41において培養された光合成生物を含む培養液42 Further, the culture solution 42 containing a photosynthetic organism cultured in a culture tank 41
は、培養液回収ライン55を通じ、培養液回収槽59を経て、次いで細胞分離槽63にて光合成生物(例えば、 , Through the culture medium recovery line 55, through the culture medium recovery tank 59 and then photosynthetic organism at a cell separation tank 63 (e.g.,
藻体)を分離回収し、光合成生物が除去された培養液をリサイクル培養液として培養液大リサイクルライン65 Algal) were separated and recovered, broth large recycle line 65 the culture photosynthetic organisms have been removed as a recycle culture
を通して培養液調整槽61に戻される。 It is returned to the culture solution adjustment tank 61 through. 一方、培養液供給ライン54においては、培養液調整槽61にて培地成分と水とリサイクル培養液が混合されて培養液が調整され、次いで培養液供給槽58へ調整された培養液がストックされる。 On the other hand, in the culture medium supply line 54, the culture solution is mixed medium components and water and recycling the culture liquid is adjusted in the culture medium adjusting tank 61, and then the culture solution prepared to the culture solution supply tank 58 is stocked that. 培養液供給槽58からの培養液は培養槽4 Culture tank 4 is the culture solution from the culture solution supply tank 58
1へ供給される。 It is supplied to the 1. なお、培養液供給槽58においては、 Incidentally, in the culture solution supply tank 58,
必要に応じて、培養液小リサイクルライン53により培養槽41からの培養液42の一部を戻して混合してもよい。 It may optionally be mixed back part of the culture liquid 42 from the culture vessel 41 in a culture medium a small recycle line 53. 培養液回収ライン55には、培養槽41の排出側、 The culture solution recovery line 55, the discharge side of the culture tank 41,
培養液回収槽59の排出側、細胞分離槽63の排出側に各送液ポンプ56、62、64が設けられて図7の光合成培養装置が運転される。 Discharge side of the culture solution recovery tank 59 and the liquid feed pump 56,62,64 is provided on the discharge side of the cell separation tank 63 photosynthetic culture device of FIG. 7 is operated. 培養液供給ライン54には、 The culture solution supply line 54,
培養液調整槽61の供給側、培養液供給槽58の供給側に各送液ポンプ60、57が設けられて図7の光合成培養装置が運転される。 Supply side of the culture medium adjusting tank 61, the liquid feed pump 60,57 is provided photosynthetic culture device of FIG. 7 is operated to supply the culture solution supply tank 58. 本実施例1では光分散体43は、 Light dispersion 43 in the first embodiment,
培養槽41内に、高さ60cm×幅10cm×厚さ3c In the culture vessel 41, height 60cm × width 10 cm × thickness 3c
m、比重1.05のものを32ケ装着した。 m, was a thing of specific gravity 1.05 32 hair was worn. 培養液42 Culture 42
は改変MC培地(水1LにKNO 3 、KH 2 PO 4 、M KNO 3, KH 2 PO 4 Modifications MC medium (water 1L, M
gSO 4・7H 2 Oを各1g、およびFe溶液、A5溶液各1mLの割合で溶解、初期pH6)とし、太陽光の下、CO 2濃度5%の通気ガスを0.4vvmで通気撹拌し、光合成生物としてChlorella sp. MgSO 4 · 7H 2 O-each 1g, and Fe solution, dissolved in a proportion of A5 solution each 1 mL, as an initial pH 6), under the sunlight, the CO 2 concentration of 5% aeration gas stirring aeration 0.4Vvm, Chlorella sp as photosynthetic organisms. H
84の培養を行った。 84 the culture of went. また、比較例として、同培養条件で液面操作を行わない培養を行った。 As a comparative example, culturing was conducted not to perform liquid level operated under the same culture conditions. なお、前記Fe溶液は、FeSO 4・7H Incidentally, the Fe solution, FeSO 4 · 7H 2 Oを2.0g、H 2 Oを10 The 2 O 2.0 g, and H 2 O 10
00ml、H 2 SO 4を2滴混合して調製したものである。 100 ml, is obtained with H 2 SO 4 was prepared by mixing 2 drops. 前記A5溶液は、H 3 BO 3を2.86g、MnS The A5 solution, 2.86 g of H 3 BO 3, MnS
4・7H 2 Oを2.50g、ZnSO 4・7H 2 Oを0.222g、CuSO 4・5H 2 Oを79mg、Na O 4 · 7H 2 O and 2.50g, ZnSO 4 · 7H 2 O and 0.222g, CuSO 4 · 5H 2 O to 79 mg, Na
2 MoO 4・2H 2 Oを21mg、H 2 Oを1000m 2 MoO 4 · 2H 2 O to 21 mg, 1000 m of H 2 O
l混合して調製したものである。 In which was prepared by l mixed. 前記Chlorell Said Chlorell
sp. a sp. H84は、特許第2894540号公報に開示されている。 H84 is disclosed in Japanese Patent No. 2894540. この結果、本発明による培養速度が、5 As a result, culture velocity according to the invention, 5
月から8月の期間で光の利用効率が約20%向上し、液面操作による効果が確認された。 Utilization efficiency of light in the period of 8 months from the month increased by about 20%, the effect of liquid surface operation is confirmed. また、11月から1月の期間で比較すると、約33%向上し、光分散体の傾斜による効果が確認された。 In comparison with the period of one month from the November, improved by about 33%, the effect of the inclination of the optical dispersion was confirmed. 〔実施例2〕本実施例2は、培養池に本発明を適用した場合の実施例である。 Example 2 This Example 2 is an embodiment in which the present invention is applied to a pond. 図8は、本実施例2の培養池に使用される光分散体ユニット73の基本構成を示し、光分散体71の傾斜機能を有さない場合である。 Figure 8 shows the basic structure of an optical dispersion unit 73 used in the pond of the second embodiment, a case where no inclination function of the optical dispersion 71. 本ユニット73は光分散体71を固定板72に平行に多数配置した構造からなる。 This unit 73 consists of parallel multiple arrangement structure to the fixing plate 72 the light dispersion 71. 1つの光分散体71の外形サイズを長さH40cm×幅W200cm×厚さ3cmとし、比重を1.05とした。 The external size of one light dispersion 71 and a length of H40cm × width W200cm × thickness 3 cm, and the specific gravity was 1.05. この光分散体71を18枚、7 cm間隔で縦L200cm、横W200cmのポリウレタン製固定板72に固定した。 18 sheets of this light dispersion 71, vertical L200cm, was fixed to polyurethane fixing plate 72 in the lateral W200cm at 7 cm intervals. 光分散体ユニット73の全体比重は0.98であった。 Overall specific gravity of the light dispersion unit 73 was 0.98. 図9は、図8の光分散体ユニット73を培養池74に適用した場合の概略図である。 Figure 9 is a schematic diagram of a case of applying the light dispersion unit 73 in FIG. 8 in pond 74. 培養池74には培養液75が満たされ、光分散体ユニット73とガス供給ユニット76が設置されている。 Culture 75 is filled in the pond 74, the light dispersion unit 73 and the gas supply unit 76 is installed. 各ユニットは浮力により液面に浮かぶ特性があるが、光分散体ユニット73は、培養池74の底に固定されているため、ある液面以上になると光分散体ユニット73の上面は液中となる。 Although each unit is characteristic of floating on the liquid surface by buoyancy, the light dispersion unit 73, because it is fixed to the bottom of the pond 74, the upper surface of the light dispersion unit 73 becomes more than a certain liquid level and the liquid Become. 培養池74へ水を供給する構成は、河川77などから自然水をポンプ、配管などの送液設備78 Configured to supply water to the pond 74, pump the natural water from rivers 77, feeding of piping solution equipment 78
により取水し、培養液調整設備79により、必要に応じた水処理や培養液としての成分調整を行い、培養池74 Intake, and a culture medium adjustment facility 79 performs component adjustment as water treatment and cultures as required by, pond 74
に供給する構造となっている。 It has structure and supplied to. また、培養池74からの培養液75を回収する構成は、ポンプ、配管などの送液設備80により培養池74の培養液75を取出し、回収液処理設備81により、必要に応じて光合成生物の回収処理や、廃水処理を行った後、放流する構造となっている。 Further, the structure for collecting the culture liquid 75 from the pond 74, a pump, taken out of the culture solution 75 of the pond 74 by the liquid feed equipment 80 such as a pipe, the recovery liquid treatment facility 81, photosynthetic organisms as required collecting process and, after the waste water treatment, it has a structure in which discharged. 本実施例2の培養池74を使用して、河川77からの自然水を取水し、培養液調整設備79でリンと窒素、 Use pond 74 of the second embodiment, and intake natural water from river 77, phosphorus and nitrogen in culture adjustment facility 79,
及び鉄イオンの栄養塩を規定濃度に調整した後、培養池74でガス供給ユニット76により空気通気下で、培養液中の細胞濃度、気象観測・予報情報及び太陽光強度から選ばれた1種以上の情報、及び培養液75の液面レベルを入力情報としてデータ処理することにより、光分散体の光入射部位と培養液の液面レベルとの、 Cocco And it was adjusted to normal concentration nutrient iron ions, under air vent in the gas supply unit 76 in pond 74, one selected from a cell density, meteorological observation-forecast information and solar intensity in the culture fluid by data processing or information, and the liquid level of the culture solution 75 as input information, the light incident portion of the light dispersion and the culture liquid of the liquid surface level, Cocco
myxa sp. myxa sp. NY2Fを培養するに適した関係を算出し、培養液の液面レベルを調整しながらCoccom Calculating a relation suitable for culturing NY2F, Coccom while adjusting the liquid level of the culture solution
yxa sp. yxa sp. NY2Fの光合成培養を行った。 It was carried out photosynthesis culture of NY2F. 一方、比較例としては光分散体の受光面レベルを培養液の液面レベルと同等にしたまま光合成培養を行った。 On the other hand, it was left photosynthetic culture light receiving level of the light dispersion member was equal to the liquid level of the culture solution as a comparative example. この結果、 As a result,
Coccomyxa sp. Coccomyxa sp. NY2Fの細胞濃度比較で、比較例に対し、供給太陽光エネルギー量あたり、本実施例2の方が約17%高い値となり、受光効率が高いことが確認された。 At a cell concentration comparison NY2F, compared with the comparative example, per supply solar energy, towards the second embodiment becomes about 17% higher, it was confirmed receiving efficiency is high. このように本実施例2により、自然環境のような大規模光合成培養施設でも、CO 2固定化の向上に寄与できることが示された。 Thus the second embodiment, even in a large-scale photosynthetic culture facilities such as natural environment, was shown to be capable of contributing to the improvement of the CO 2 immobilization. 〔実施例3〕本実施例3は、解放式循環水路型クロレラ培養池(レースウェイ)に本発明を適用した実施例である。 Example 3 This Example 3 is the present invention is applied to a releasable water circulation passage type chlorella pond (Raceway) Example. 図10は、本実施例3に適用される光分散体ユニット93の基本構成を示し、光分散体91の傾斜機能を有する場合である。 Figure 10 shows the basic structure of an optical dispersion unit 93 which is applied to the third embodiment, a case of having a functional gradient of optical dispersion 91. 本ユニット93は光分散体91を固定板92に平行に多数配置した構造からなる。 This unit 93 consists of parallel multiple arrangement structure to the fixed plate 92 the light dispersion 91. 本実施例3 Embodiment 3
においては、1つの光分散体91の外形サイズを長さH In long one external size of the optical dispersion 91 is H
30cm×幅W200cm×厚さ3cmとし、比重を0.95とした。 And 30 cm × width W200cm × thickness 3 cm, and the specific gravity was 0.95. この光分散体91を15枚、9cm間隔で縦L200cm、横W200cmのアクリル製固定板92に第2の手段の図2の方式により傾斜が可能となるように製作した。 15 sheets of this light dispersion 91, vertical L200cm, was fabricated so as to allow inclination by method 2 of the second means to the acrylic fixing plate 92 in the lateral W200cm in 9cm intervals. 図11は図10の光分散体ユニット93を解放式循環水路型クロレラ培養池(以下レースウェイと記す)に適用した場合の外観図である。 Figure 11 is an external view of a case of applying the light dispersion unit 93 releasable water circulation passage type chlorella pond in FIG 10 (hereinafter referred to as raceway). 光分散体91の平面が水流に平行となるように光分散体ユニット93を配置し、かつ傾斜面が南向きとなるように設置した。 Plane of the light dispersion 91 is disposed a light dispersion unit 93 so as to be parallel to the water flow, and the inclined surface is placed so as to face south. レースウェイは幅10m、長さ100mを2基並列に設置し、一方は液面レベル制御をしない比較例とした。 Raceway installed width 10 m, length 100m parallel to two groups, one was a comparative example without the liquid level control. 培養液は回転パドル94により循環送液される。 Broth is circulated feeding by rotating paddle 94. 回転パドル94の後方に通気ガス用ノズル95が設置され、培養液中にCO 2が供給できるようになっている。 Venting the gas nozzle 95 to the rear of the rotating paddles 94 are installed, CO 2 is adapted to be supplied in the culture medium.
本実施例3では、培養液が光分散体ユニット93の間を通過するとき、培養液中に分散した光合成生物が希釈された太陽光を受光し、効率よく増殖することが可能である。 In the third embodiment, when the culture medium passes between the light dispersion unit 93, it is possible that the dispersed photosynthetic organism in the culture medium to receive sunlight diluted, to efficiently grow. 培養液の液面レベルは、前記実施例1に準じた第1 Liquid level of the culture, the analogous Example 1 1
の手段により培養液槽96と液面レベル制御調整装置9 Culture tank 96 by means of a liquid level control adjustment unit 9
7により行う。 Carried out by 7. 培養液は改変MC培地(2m 3にKNO KNO to the culture medium is modified MC medium (2m 3
3 KH 2 PO 4 MgSO 4 7H 2 Oを各1kg、及びF 3 KH 2 PO 4 MgSO 4 7H 2 O each 1 kg, and F
e溶液、A5溶液各1Lの割合で溶解、初期pH6)とし、CO 2濃度1%の通気ガスを0.3vvmで通気してChlorella vulgarisの培養を行った。 e solution, dissolved in a proportion of A5 solution each 1L, an initial pH 6), were cultured in Chlorella vulgaris by bubbling CO 2 concentration of 1% ventilation gas 0.3 vvm. この結果、比較例に対して培養液の液面レベル制御を行った場合には所定細胞濃度に到達するまので培養時間が約20〜30%短縮され、傾斜した光分散体を用いた培養液の液面レベル制御の有効性が確認された。 Consequently, culturing time in the until reaching a predetermined cell concentration is reduced by about 20-30% in the case of performing the liquid surface level control of the culture liquid to Comparative Example, the culture solution using a tilted optical dispersion effectiveness of the liquid level control is confirmed.

【発明の効果】本発明の第1の手段を含んだ光合成培養装置及び培養方法によれば、気候変化、太陽高度の年変化や日変化にも対応でき、具体的には、光強度の弱い、 According to the first means photosynthetic culture system and culture methods including the present invention, the climate change, also corresponds to the solar elevation year changes and diurnal variation, specifically, weak light intensity ,
曇天日や、朝夕の日照条件や、また冬至前後の太陽南中高度の低い時期においても、太陽エネルギーを有効に培養液中に導入することができ、光合成生物の培養効率が高い。 Cloudy day and, and morning and evening sunlight conditions, also in the solar culmination low altitude timing before and after the winter solstice, can be introduced to enable the culture medium of solar energy, high culture efficiency of photosynthetic organisms. 本発明の第2の手段を含んだ光合成培養装置及び培養方法によれば、前記効果に加え、光分散体を太陽に合わせて傾斜させることにより、光分散体の受光面における総合的な受光量を最適化できる。 According to the second means photosynthetic culture system and culture methods including the present invention, in addition to the effect, by inclining the combined light dispersion sun, the overall amount of light received at the light receiving surface of the light dispersion It can be optimized. 本発明の光合成培養装置及び培養方法によれば、付加的な作用として、受光面が培養液により洗浄される効果がある。 According to the photosynthetic culture apparatus and a culture method of the present invention, as an additional effect, the effect of the light receiving surface is cleaned by the medium. その効果は光分散体表面における透明フツ素樹脂等撥水性材料のコーティングや、微細繊毛化撥水性向上処理により、顕著に発揮される。 The effect coatings and transparent fluorine resin water-repellent material in the light dispersion surface, the fine ciliary Kabachi aqueous enhancement, is remarkably exhibited.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の光合成培養装置の好ましい実施の形態を示し、第1の手段が含まれる光合成培養装置である。 [1] shows a preferred embodiment of the photosynthetic culture apparatus of the present invention, a photosynthetic culture device contains first means.

【図2】第2の手段を説明するための本発明の光合成培養装置の槻略図である。 Figure 2 is a Takatsuki schematic photosynthetic culture device of the present invention for explaining the second means.

【図3】第2の手段を説明するための本発明の光合成培養装置の槻略図である。 Figure 3 is a Takatsuki schematic photosynthetic culture device of the present invention for explaining the second means.

【図4】3,6,9,12月の任意にサンプリングした典型的な晴天日と曇天日の全天光の光強度の日変化を示すグラフである。 4 is a 3, 6, 9, 12 months optionally typical sunny day of sampling of the graph showing the change date of the light intensity of the whole sky light cloudy day.

【図5】培養液の液面からの距離と相対光強度の関係に及ぼす細胞濃度( Spirulina platensis )(微細藻類)の影響について示す。 Figure 5 shows the effect of cell concentration on the relationship between the distance and the relative light intensity from the liquid surface of the culture solution (Spirulina platensis) (microalgae).

【図6】全天光の日平均光強度を更に月平均とし、水平面、30度傾斜面、60度傾斜面についてプロットした一例である。 [6] further the average monthly average optical intensity day whole sky light, horizontal, 30-degree inclined surface, which is an example of plotting the 60 ° inclined plane.

【図7】実施例1の光合成培養装置を示し、図1の光合成培養装置をより具体的にした一つの実施の形態(ワイヤ傾斜型)である。 7 shows a photosynthetic culture device of Example 1 is one embodiment described more specifically photosynthesis culture apparatus of FIG. 1 (wire inclined).

【図8】実施例2の培養池に使用される光分散体ユニットの基本構成を示し、光分散体が傾斜機能を有さない場合である。 8 shows a basic structure of an optical dispersion units used pond in Example 2, a case where the light dispersion does not have a tilt function.

【図9】図8の光分散体ユニットを培養池に適用した場合の概略図である。 A light dispersion unit of FIG. 9 8 is a schematic view of the application of the pond.

【図10】実施例3に適用される光分散体ユニットの基本構成を示し、光分散体の傾斜機能を有する場合である。 [Figure 10] shows the basic structure of an optical dispersion unit applied to the embodiment 3, the case having an inclined function of light dispersion.

【図11】図10の光分散体ユニットを解放式循環水路型クロレラ培養池(レースウェイ)に適用した場合の外観図である。 11 is an external view of a case of applying the light dispersion unit releasable water circulation passage type chlorella pond in FIG 10 (Raceway).

【符号の説明】 DESCRIPTION OF SYMBOLS

1、21、31、41 培養槽 2、5、22、32、42、75 培養液 3、23、26、33、43、71、91 光分散体 4、96 培養液槽 6、7、56、57、60、62、64 送液ポンプ 8、48 細胞濃度計 9、49 液面レベル計 10、50 光センサ 11、51 受信機器 12、52、97 液面レベル制御調整装置 13、55 培養液回収ライン 14、54 培養液供給ライン 24、34 可動留め具 25 ストッパ 35、45 連結ワイヤ 36、46 駆動装置 44 スパージャ 53 培養液小リサイクルライン 58 培養液供給槽 59 培養液回収槽 61 培養液調整槽 63 細胞分離槽 65 培養液大リサイクルライン 72、92 固定板 73、93 光分散体ユニット 74 培養池 76 ガス供給ユニット 77 河川 78 送液設備 1,21,31,41 culture vessel 2,5,22,32,42,75 culture 3,23,26,33,43,71,91 light dispersion 4,96 culture tank 6,7,56, 57,60,62,64 liquid feed pump 8,48 cells densitometer 9,49 liquid level gauge 10, 50 optical sensors 11 and 51 receive equipment 12,52,97 liquid level control adjustment device 13,55 culture collection line 14, 54 culture medium supply line 24, 34 movable clamp 25 stopper 35, 45 connecting the wire 36 and 46 drive 44 spargers 53 culture small recycle line 58 culture solution supply tank 59 culture solution recovery tank 61 culture solution adjustment tank 63 cell separation tank 65 culture large recycle line 72 and 92 fixed plates 73 and 93 the light dispersion unit 74 pond 76 gas supply unit 77 river 78 feeding equipment 79 培養液調整設備 80 送液設備 81 回収液処理設備 94 回転パドル 95 通気ガス用ノズル 79 culture adjustment equipment 80 feeding equipment 81 recovered solution treatment facility nozzle 94 rotating paddle 95 vent gas

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) (C12N 1/00 (C12N 1/00 C12R 1:89) C12R 1:89) (C12N 1/12 (C12N 1/12 C12R 1:89) C12R 1:89) Fターム(参考) 4B029 AA02 BB05 CC01 DA01 DA04 DB11 DC05 DF04 DF05 DF06 DF10 4B065 AA83X AA84X BC11 BC14 BC48 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI theme Court Bu (reference) (C12N 1/00 (C12N 1/00 C12R 1:89) C12R 1:89) (C12N 1/12 (C12N 1/12 C12R 1:89) C12R 1:89) F-term (reference) 4B029 AA02 BB05 CC01 DA01 DA04 DB11 DC05 DF04 DF05 DF06 DF10 4B065 AA83X AA84X BC11 BC14 BC48

Claims (12)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 下記の(1)及び(2)の要件を含むことを特徴とする光合成培養装置: (1)光合成生物を含む培養液と、太陽光を光源として入射し、培養液中に光を拡散して照射することができる1個以上の光分散体を収容する培養槽;並びに、 (2)該培養槽の近傍に設置され、培養液中の細胞濃度、気象観測・予報情報及び太陽光強度から選ばれた1 [Claim 1] below (1) and photosynthetic culture apparatus characterized in that it comprises a requirement (2): (1) a medium containing photosynthetic organisms, sunlight is incident as a light source, in a culture solution fermenter to accommodate one or more optical dispersion can be irradiated with diffuse light; and (2) is installed in the vicinity of the fermenter, cell concentration in the culture solution, meteorological observation-forecast information and It was chosen from sunlight intensity 1
    種以上の情報、及び培養液の液面レベルを入力情報としてデータ処理することにより、光分散体の光入射部位と培養液の液面レベルとの、光合成生物を培養するに適した関係を算出することができ且つ液面レベルを制御することができる液面レベル調整手段。 Calculated above information species, and by the data processing liquid level of the culture solution as the input information, the light incident portion of the light dispersion and liquid level of the culture solution, the relationship which is suitable for culturing photosynthetic organisms liquid level adjusting means capable of controlling the and the liquid level can be.
  2. 【請求項2】 下記の(1)−(7)の要件を含むことを特徴とする光合成培養装置: (1)光合成生物を含む培養液と、太陽光を光源として入射し、培養液中に光を拡散して照射することができる1個以上の光分散体を収容する培養槽; (2)該培養槽と送液手段で接続され、培養液を貯留或いは供給するための培養液槽; (3)該培養槽に設置され、該培養液内の液面レベルを計測するための計測手段; (4)該培養槽に設置され、培養液中の細胞濃度を計測するための計測手段; (5)該培養槽の近傍に設置され、該培養槽の設置地域の気象観測・予報情報を受信するための受信手段; (6)該培養槽の近傍に設置され、太陽光強度を計測するための計測手段; (7)該培養槽の近傍に設置され、培養液中の細胞濃度、気象観測・ Wherein the following (1) - (7) photosynthetic culture apparatus characterized in that it comprises a requirement of: (1) a medium containing photosynthetic organisms, sunlight is incident as a light source, in a culture solution fermenter to accommodate one or more optical dispersion can be irradiated with diffused light; (2) is connected with the culture tank and the fluid supply means, the culture solution tank for storing or supplying a culture solution; (3) it is installed in the culture vessel, measuring means for measuring the liquid level of the culture solution within; (4) is installed in the culture vessel, measuring means for measuring the cell concentration in the culture; (5) arranged in the proximity of the culture tank, receiving means for receiving a weather observation and forecast information of the installation region of said culture tank; is installed in the vicinity of (6) the culture vessel, measuring the sunlight intensity measuring means for; disposed near the (7) the fermenter, cell concentration in the culture solution, meteorological observation and 報情報及び太陽光強度から選ばれた1 It has been selected from the group consisting of broadcast information and sunlight intensity 1
    種以上の情報、及び培養液の液面レベルを入力情報としてデータ処理することにより、光分散体の光入射部位と培養液の液面レベルとの、光合成生物を培養するに適した関係を算出することができ且つ液面レベルを制御することができる液面レベル調整手段。 Calculated above information species, and by the data processing liquid level of the culture solution as the input information, the light incident portion of the light dispersion and liquid level of the culture solution, the relationship which is suitable for culturing photosynthetic organisms liquid level adjusting means capable of controlling the and the liquid level can be.
  3. 【請求項3】 前記光分散体が垂直乃至斜方向に傾斜できるように、光分散体の下部の少なくとも一部が、培養槽底面に固定された可動留め具で支えられていることを特徴とする、請求項1又は2記載の光合成培養装置。 3. As the light dispersion can be tilted in a vertical or oblique direction, and wherein at least a portion of the lower light dispersion, is supported by a fixed movable fastener to the culture vessel bottom to photosynthesis culture apparatus according to claim 1 or 2, wherein.
  4. 【請求項4】 前記可動留め具の近傍に光分散体の傾斜角度を制限する光分散体用のストッパが配置されていることを特徴とする請求項3記載の光合成培養装置。 4. The photosynthetic culture according to claim 3, wherein the stopper for the light dispersion member is arranged to restrict the inclination angle of the optical dispersion in the vicinity of the movable fastener.
  5. 【請求項5】 前記光分散体の2個以上が整列された、 5. The two or more of the light scattering body is aligned,
    各光分散体の上部は連結手段で連結固定され、該連結手段の水平方向の移動により光分散体が傾斜可能であることを特徴とする請求項1、2、3又は4記載の光合成培養装置。 The top of each optical dispersion fixedly connected by a connecting means, photosynthetic culture apparatus according to claim 1, 2, 3 or 4, wherein the optical dispersion is tiltable by horizontal movement of the connecting means .
  6. 【請求項6】 光源からの光を入射できる受光面と、培養液中に拡散して照射することができる照射面を有する光分散体であって、該受光面及び/又は照射面は撥水性であることを特徴とする光分散体。 6. A light receiving surface capable of entering the light from the light source, an optical dispersion with irradiated surface capable of emitting diffused into the culture liquid, the light-receiving surface and / or the irradiation surface water repellent light dispersion, characterized in that it.
  7. 【請求項7】 前記受光面及び/又は照射面は撥水性材料のコーティング又は微細繊毛化により撥水性が付与されていることを特徴とする請求項6記載の光分散体。 Wherein said light receiving surface and / or the irradiation surface optical dispersion according to claim 6, wherein the water repellency is imparted by coating or fine ciliated of water-repellent material.
  8. 【請求項8】 太陽光を光源として入射し、培養液中に光を拡散して照射することができる1個以上の光分散体を収容する培養槽で光合成生物を培養する方法において、培養液中の細胞濃度、気象観測・予報情報及び太陽光強度から選ばれた1種以上の情報、及び培養液の液面レベルを入力情報としてデータ処理することにより、光分散体の光入射部位と培養液の液面レベルとの、光合成生物を培養するに適した関係を算出し、培養液の液面レベルを調整することを特徴とする光合成生物の培養方法。 8. incident sunlight as a light source, a method for culturing photosynthetic organisms in a culture tank for accommodating one or more optical dispersion can be irradiated with diffused light in the culture solution, the culture solution cell concentration in the weather observation and forecast information and one or more information selected from sunlight intensity, and by the data processing liquid level of the culture solution as the input information, a light incident portion of the light dispersion culture the liquid of the liquid surface level, to calculate a relation suitable for culturing photosynthetic organisms, photosynthetic organisms method of culturing, characterized by adjusting the liquid level of the culture solution.
  9. 【請求項9】 太陽光を光源として入射し、培養液中に光を拡散して照射することができる1個以上の光分散体を収容する培養槽で光合成生物を培養する方法において、気象観測・予報情報データと該培養槽近傍に設けた光センサーで計測した光強度に基づいてデータ処理し、 9. incident sunlight as a light source, a method for culturing photosynthetic organisms in a culture tank for accommodating one or more optical dispersion can be irradiated with diffused light in the culture, meteorological - and data processing based on the light intensity measured by the light sensor provided in the forecast information data and said culture tank near
    得られた結果から設定基準光強度以上の晴天が予測される場合には、日中時に培養槽内の培養液の液面レベルを光分散体の受光面レベルと同等レベルに制御し、また、 Obtained when setting reference light intensity or sunny results are predicted, the liquid level of the culture solution in the culture tank were controlled in the light-receiving surface level comparable level of light dispersion during daytime, also,
    設定基準光強度未満の曇天時が予測される場合には、培養液の液面レベルを光分散体の受光面レベルより高くなるように調整することを特徴とする光合成生物の培養方法。 If the time less than the set reference light intensity cloudy weather is expected, the photosynthetic organism method culture and adjusting the liquid level of the culture solution to be higher than the light receiving level of the light dispersion.
  10. 【請求項10】 前記液面レベルの調整幅を細胞濃度に応じて行い、細胞濃度が高いときは液面上昇を小さくし、細胞濃度が低いときは大きくすることを特徴とする請求項8又は9記載の光合成生物の培養方法。 10. Adjust the width of the liquid level was carried out in accordance with the cell concentration, when the cell concentration is high to reduce the liquid level rises, claim 8 or when the cell concentration is low is characterized by increased the method of culturing photosynthetic organisms according 9.
  11. 【請求項11】 光分散体の傾斜方向を南方向となるよう設定し、冬至前後で且つ基準光強度以上の晴天時において、光入射効率が高くなるように光分散体を垂直位置から30度までの間の角度の範囲内で傾斜させ、光分散体の受光面が液没しないように液面を下げることを特徴とする請求項8又は9記載の光合成生物の培養方法。 11. The inclination direction of the optical dispersion was set to be the south direction, at and during the reference light intensity over sunny before and after the winter solstice, 30 ° light dispersion such that the light incident efficiency is increased from the vertical position It is inclined in the range of the angle between the up, method of cultivation according to claim 8 or 9, wherein photosynthetic organisms light receiving surface of the light dispersion, characterized in that the lower the liquid level to prevent submerged.
  12. 【請求項12】 光分散体の傾斜方向を南方向となるよう設定し、夏至前後において光分散体を垂直となるように固定することを特徴とする請求項8又は9記載の光合成生物の培養方法。 Set 12. As the inclination direction of the optical dispersion becomes south direction, culture of claim 8 or 9, wherein photosynthetic organisms, characterized in that fixed to be perpendicular to the optical dispersion before and after the summer solstice Method.
JP2000049055A 2000-02-25 2000-02-25 Method photosynthesis culture apparatus and culture Expired - Fee Related JP3524835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049055A JP3524835B2 (en) 2000-02-25 2000-02-25 Method photosynthesis culture apparatus and culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049055A JP3524835B2 (en) 2000-02-25 2000-02-25 Method photosynthesis culture apparatus and culture

Publications (2)

Publication Number Publication Date
JP2001231539A true true JP2001231539A (en) 2001-08-28
JP3524835B2 JP3524835B2 (en) 2004-05-10

Family

ID=18571042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049055A Expired - Fee Related JP3524835B2 (en) 2000-02-25 2000-02-25 Method photosynthesis culture apparatus and culture

Country Status (1)

Country Link
JP (1) JP3524835B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10322111A1 (en) * 2003-05-10 2004-12-02 Backhaus, Jan O., Prof. Dr. Marine photo-bioreactor for production of phototropic organisms in tropical or sub-tropical waters
JP2007524396A (en) * 2003-06-25 2007-08-30 サイトリ セラピューティクス インコーポレイテッド System and method for concentrating and separating regenerative cells from tissue
KR100897018B1 (en) 2007-10-15 2009-05-25 주식회사 바이오트론 Photo-bioreactor for culturing micro algae and apparatus for production of micro algae having the same
US8691216B2 (en) 2001-12-07 2014-04-08 Cytori Therapeutics, Inc. Methods of using regenerative cells to promote wound healing
US8883499B2 (en) 2001-12-07 2014-11-11 Cytori Therapeutics, Inc. Systems and methods for isolating and using clinically safe adipose derived regenerative cells
US9133431B2 (en) 2009-05-01 2015-09-15 Bimini Technologies Llc Systems, methods and compositions for optimizing tissue and cell enriched grafts
US9198937B2 (en) 2001-12-07 2015-12-01 Cytori Therapeutics, Inc. Adipose-derived regenerative cells for treating liver injury
US9463203B2 (en) 2001-12-07 2016-10-11 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of cartilage defects
US9480718B2 (en) 2001-12-07 2016-11-01 Cytori Therapeutics, Inc. Methods of using adipose-derived regenerative cells in the treatment of peripheral vascular disease and related disorders
US9486484B2 (en) 2008-08-19 2016-11-08 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of the lymphatic system and malignant disease
US9597395B2 (en) 2001-12-07 2017-03-21 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492483B2 (en) 2001-12-07 2016-11-15 Cytori Therapeutics, Inc. Methods of using regenerative cells to treat a burn
US9849149B2 (en) 2001-12-07 2017-12-26 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of erectile dysfunction
US9597395B2 (en) 2001-12-07 2017-03-21 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions
US9511096B2 (en) 2001-12-07 2016-12-06 Cytori Therapeutics, Inc. Methods of using regenerative cells to treat an ischemic wound
US8691216B2 (en) 2001-12-07 2014-04-08 Cytori Therapeutics, Inc. Methods of using regenerative cells to promote wound healing
US8883499B2 (en) 2001-12-07 2014-11-11 Cytori Therapeutics, Inc. Systems and methods for isolating and using clinically safe adipose derived regenerative cells
US9511094B2 (en) 2001-12-07 2016-12-06 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of stroke and related diseases and disorders
US9198937B2 (en) 2001-12-07 2015-12-01 Cytori Therapeutics, Inc. Adipose-derived regenerative cells for treating liver injury
US9463203B2 (en) 2001-12-07 2016-10-11 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of cartilage defects
US9480718B2 (en) 2001-12-07 2016-11-01 Cytori Therapeutics, Inc. Methods of using adipose-derived regenerative cells in the treatment of peripheral vascular disease and related disorders
US9504716B2 (en) 2001-12-07 2016-11-29 Cytori Therapeutics, Inc. Methods of using adipose derived regenerative cells to promote restoration of intevertebral disc
US9872877B2 (en) 2001-12-07 2018-01-23 Cytori Therapeutics, Inc. Methods of using regenerative cells to promote epithelialization or neodermis formation
DE10322111A1 (en) * 2003-05-10 2004-12-02 Backhaus, Jan O., Prof. Dr. Marine photo-bioreactor for production of phototropic organisms in tropical or sub-tropical waters
JP2012075439A (en) * 2003-06-25 2012-04-19 Cytori Therapeutics Inc System and method for separating and concentrating regenerative cell from tissue
JP2007524396A (en) * 2003-06-25 2007-08-30 サイトリ セラピューティクス インコーポレイテッド System and method for concentrating and separating regenerative cells from tissue
KR100897018B1 (en) 2007-10-15 2009-05-25 주식회사 바이오트론 Photo-bioreactor for culturing micro algae and apparatus for production of micro algae having the same
US9486484B2 (en) 2008-08-19 2016-11-08 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of the lymphatic system and malignant disease
US9133431B2 (en) 2009-05-01 2015-09-15 Bimini Technologies Llc Systems, methods and compositions for optimizing tissue and cell enriched grafts

Also Published As

Publication number Publication date Type
JP3524835B2 (en) 2004-05-10 grant

Similar Documents

Publication Publication Date Title
Castenholz Thermophilic blue-green algae and the thermal environment.
Welch Use of modified diurnal curves for the measurement of metabolism in standing water.
Tamiya et al. Kinetics of growth of Chlorella, with special reference to its dependence on quantity of available light and on temperature
Oswald et al. Biological transformation of solar energy
Carvalho et al. Microalgal reactors: a review of enclosed system designs and performances
Tredici et al. From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms
Miron et al. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae
Richmond Microalgal biotechnology at the turn of the millennium: a personal view
Craggs et al. Wastewater nutrient removal by marine microalgae grown on a corrugated raceway
Nakada et al. Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production
Ingvorsen et al. Dynamics of bacterial sulfate reduction in a eutrophic lake
Hase et al. Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai city
Benemann et al. Microalgae biotechnology
Ugwu et al. Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers
Tredici Mass production of microalgae: photobioreactors
US5981271A (en) Process of outdoor thin-layer cultivation of microalgae and blue-green algae and bioreactor for performing the process
US20060035370A1 (en) Multi-layered photobioreactor and method of culturing photosynthetic microorganisms using the same
Sukenik et al. Algal autoflocculation—verification and proposed mechanism
US6348347B1 (en) Fine algae culture device
Goldman Outdoor algal mass cultures—I. Applications
Richmond Efficient utilization of high irradiance for production of photoautotropic cell mass: a survey
US6395521B1 (en) Microbial process for producing hydrogen
Suh et al. Photobioreactor engineering: design and performance
Gutzeit et al. Bioflocculent algal–bacterial biomass improves low-cost wastewater treatment
Lindblad et al. Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: from laboratory experiments to outdoor culture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040213

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees