JP2001207808A - Steam cooled quick start system - Google Patents

Steam cooled quick start system

Info

Publication number
JP2001207808A
JP2001207808A JP2000013057A JP2000013057A JP2001207808A JP 2001207808 A JP2001207808 A JP 2001207808A JP 2000013057 A JP2000013057 A JP 2000013057A JP 2000013057 A JP2000013057 A JP 2000013057A JP 2001207808 A JP2001207808 A JP 2001207808A
Authority
JP
Japan
Prior art keywords
steam
gas turbine
heat recovery
recovery boiler
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000013057A
Other languages
Japanese (ja)
Other versions
JP4209060B2 (en
Inventor
Masayuki Murakami
雅幸 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000013057A priority Critical patent/JP4209060B2/en
Publication of JP2001207808A publication Critical patent/JP2001207808A/en
Application granted granted Critical
Publication of JP4209060B2 publication Critical patent/JP4209060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steam cooled quick start system raising exhaust gas temperature and speeding up steam generation in a waste heat recovery boiler of a combined cycle plant for enabling a quick start of the plant. SOLUTION: By an operation of a stabilizing burner provided in an inlet part of the waste heat recovery boiler, a load of a gas turbine can be increased without ventilating self-generated steam as gas turbine cooling steam because high temperature exhaust of the gas turbine does not the only heating source for the waste heat recovery boiler. By fully opening a gas inlet valve of a compressor, an exhaust gas amount is sufficiently secured for adequately operating the stabilizing burner. As a result, generation of the self-generated steam is speeded up for enabling the quick start of the plant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンバインドサイ
クルプラントの排熱回収ボイラにおいて、排ガス温度を
高めて蒸気発生を速め、プラントの急速起動を行いうる
ようにした蒸気冷却急速起動システムに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam cooling rapid start system in a waste heat recovery boiler of a combined cycle plant, in which the temperature of exhaust gas is increased to speed up the generation of steam and to quickly start the plant. .

【0002】[0002]

【従来の技術】従来のものについて図4により説明す
る。図4はコンバインドサイクルプラントの概略系統図
である。
2. Description of the Related Art A conventional device will be described with reference to FIG. FIG. 4 is a schematic system diagram of a combined cycle plant.

【0003】軸流圧縮機(コンプレッサー)21に流入
した空気は圧縮されて燃焼器22に入り、別途供給され
る燃料を燃焼させて高温ガスを生成し、同高温ガスはガ
スタービン23で膨張して回転エネルギを発生する。
Air flowing into an axial compressor (compressor) 21 is compressed and enters a combustor 22, in which fuel supplied separately is burned to generate high-temperature gas, which is expanded in a gas turbine 23. To generate rotational energy.

【0004】ガスタービン23は軸流圧縮機21ととも
に発電機24と機械的に軸結合された構造となっている
ので、同ガスタービン23の回転により発電機24が駆
動されて電力を得る。
Since the gas turbine 23 has a structure mechanically axially coupled to the generator 24 together with the axial compressor 21, the generator 24 is driven by rotation of the gas turbine 23 to obtain electric power.

【0005】この様にして発電機24を駆動し、電気エ
ネルギイの確保という一仕事を行ったガスタービン23
の排気は、次いで排熱回収ボイラ(HRSG)25に導
かれて蒸気を発生させた後、煙突26から大気へ放出さ
れる。
[0005] In this way, the gas turbine 23 which drives the generator 24 and performs one job of securing electric energy is provided.
Is then guided to an exhaust heat recovery boiler (HRSG) 25 to generate steam, and then discharged from a chimney 26 to the atmosphere.

【0006】他方、排熱回収ボイラ25で発生した蒸気
は、その圧力、及び温度レベルに応じて高圧タービン、
中圧タービン、低圧タービンの中、相応の蒸気タービン
27、28、29に供給され、同蒸気タービン27、2
8、29と機械的に結合された発電機30を駆動して更
に電力を得る。
On the other hand, steam generated in the exhaust heat recovery boiler 25 is supplied to a high-pressure turbine according to its pressure and temperature level.
Among the medium and low pressure turbines, the steam is supplied to the corresponding steam turbines 27, 28 and 29,
Driving a generator 30, which is mechanically coupled to 8, 29, provides more power.

【0007】なお、前記した一連のサイクルの中、その
上流側に当たる、いわゆるトッピングサイクルに含まれ
るガスタービン部分において、高温のガスに晒される1
〜2段の静翼、動翼及びその他のガスタービン高温被冷
却部の冷却は、従来、長年に亘って軸流圧縮機21の吐
出空気の一部を冷却した圧縮空気によって行われるのが
普通であったが、昨今においてはプラント全体の更なる
熱効率の向上を目指して、蒸気冷却サイクルが採用され
るようになってきている。
[0007] In the above-described series of cycles, a gas turbine portion corresponding to an upstream side, which is included in a so-called topping cycle, is exposed to high-temperature gas.
Conventionally, cooling of the two-stage stationary blades, moving blades, and other parts to be cooled at a high temperature of the gas turbine is usually performed by compressed air obtained by cooling a part of the discharge air of the axial flow compressor 21 for many years. However, in recent years, a steam cooling cycle has been adopted in order to further improve the thermal efficiency of the entire plant.

【0008】[0008]

【発明が解決しようとする課題】しかしながら前記した
蒸気冷却サイクルにおいては、ガスタービンの排ガス温
度が高ければ高いほど自缶蒸気(HRSG発生蒸気)の
発生は早まり、ああ早期に冷却蒸気を確保できるが、高
温ガスに晒されるガスタービンの翼及びその他の高温被
冷却部の冷却に蒸気が供給される蒸気冷却系統では、こ
の高温被冷却部にある程度の量の蒸気を通気しない限り
ガスタービンを高負荷に上げることができないという制
約があり、このためプラントの起動は徐々に行わねばな
らず、起動時間は長くならざるを得ない。
However, in the above-described steam cooling cycle, the higher the temperature of the exhaust gas from the gas turbine, the faster the generation of self-canister steam (HRSG generated steam), so that the cooling steam can be secured earlier. In a steam cooling system in which steam is supplied to cool the blades of a gas turbine exposed to high-temperature gas and other high-temperature cooled parts, a high load is applied to the gas turbine unless a certain amount of steam is passed through the high-temperature cooled part. Therefore, the plant must be started gradually, and the start-up time must be long.

【0009】このため、起動時間の短縮を図るべく図4
のものにも略示するように、別途補助ボイラ(Aux.
B)を設け、同補助ボイラで蒸気を発生させ、これをプ
ラント起動時のガスタービン高温被冷却部の冷却蒸気と
して用いるものがあるが、この補助ボイラを1基併設す
ることはプラントの建設コスト、ランニングコスト等を
大幅に増大することになる。
For this reason, FIG.
As shown in FIG. 1, an auxiliary boiler (Aux.
B), steam is generated by the auxiliary boiler, and the steam is used as cooling steam for the high-temperature cooled portion of the gas turbine at the time of plant startup. However, installing one auxiliary boiler in parallel with the plant construction cost , Running costs, etc., are greatly increased.

【0010】本発明はこの様な背景の下でなされたもの
で、蒸気冷却サイクルを備えたコンバインドサイクルプ
ラントにおいて省設備化を図った上で、サイクルの起動
時間の短縮化を達成するようにしたものを提供すること
を課題とするものである。
SUMMARY OF THE INVENTION The present invention has been made under such a background, and has been made to reduce the number of facilities in a combined cycle plant having a steam cooling cycle and to shorten the cycle startup time. It is an object to provide things.

【0011】[0011]

【課題を解決するための手段】本発明は、前記した課題
を解決すべくなされたもので、コンバインドサイクルプ
ラントの蒸気冷却サイクルにおいて、ガスタービン排気
を供給される排熱回収ボイラの入口部に助燃バーナを設
け、起動の際の低負荷時にガスタービンコンプレッサー
の入口弁を全開にして起動させるように構成した蒸気冷
却急速起動システムを提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and in a steam cooling cycle of a combined cycle plant, an auxiliary fuel is supplied to an inlet portion of an exhaust heat recovery boiler supplied with gas turbine exhaust gas. An object of the present invention is to provide a steam-cooled rapid start system that is provided with a burner and configured to start by fully opening an inlet valve of a gas turbine compressor at a low load at the time of start.

【0012】すなわち、本発明によれば、排熱回収ボイ
ラの入口部に助燃バーナを採用することにより、同排熱
回収ボイラの加熱源をガスタービンの高温排気のみに依
存しなくてもよいので、ガスタービン冷却蒸気として自
缶蒸気を通気せずにガスタービンの負荷を高め、しか
も、コンプレッサーのガス入口弁の全開により、排ガス
量を十分に確保して助燃バーナを適切に機能させ、その
結果自缶蒸気の発生を速め、プラントの急速起動を可能
とするものである。
That is, according to the present invention, by employing the auxiliary burner at the inlet of the exhaust heat recovery boiler, the heating source of the exhaust heat recovery boiler does not need to depend only on the high temperature exhaust gas of the gas turbine. As a result, the load on the gas turbine was increased without venting the self-canister steam as the gas turbine cooling steam.Moreover, by fully opening the gas inlet valve of the compressor, the amount of exhaust gas was secured and the auxiliary combustion burner functioned properly. It accelerates the generation of self-canistered steam and enables rapid start-up of the plant.

【0013】[0013]

【発明の実施の形態】本発明の実施の一形態について図
1に基づいて説明する。図1は、本実施の形態に係るコ
ンバインドサイクルプラントの概略系統を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a schematic system of a combined cycle plant according to the present embodiment.

【0014】1は排熱回収ボイラ(HRSG)で、詳細
図示は省略しているものの、ここにはエコノマイザ、エ
バポレータ、スーパーヒータ、リヒータ等の各ユニット
がそれぞれ順序立って内蔵されている。
Reference numeral 1 denotes an exhaust heat recovery boiler (HRSG), which, although not shown in detail, includes units such as an economizer, an evaporator, a superheater, and a reheater in order.

【0015】2は排ガスダクトで、その上流にあるガス
タービンで膨張して一仕事終わったものの、未だ十分に
熱エネルギを保有している排ガスを前記排熱回収ボイラ
1に供給する径路である。
Reference numeral 2 denotes an exhaust gas duct, which is a path for supplying exhaust gas to the exhaust heat recovery boiler 1, which has been expanded by a gas turbine located upstream thereof and has completed one work, but still has sufficient thermal energy.

【0016】3は助燃バーナで、前記排ガスダクト2の
末端部に相当する排熱回収ボイラ1の排ガス入口に配置
され、かつ、同助燃バーナ3の燃料はガスタービン燃焼
器の燃料系統から分岐した燃料管4により供給されてい
る。
Reference numeral 3 denotes an auxiliary burner, which is disposed at the exhaust gas inlet of the exhaust heat recovery boiler 1 corresponding to the end of the exhaust gas duct 2, and the fuel of the auxiliary burner 3 branches off from the fuel system of the gas turbine combustor. It is supplied by a fuel pipe 4.

【0017】5、6、7はそれぞれ蒸気タービンで、排
熱回収ボイラ1から高圧蒸気、中圧蒸気、または低圧蒸
気を供給される高圧蒸気タービン、中圧蒸気タービン、
低圧蒸気タービンであり、機械的に軸結合された発電機
8を駆動して発電を行ない、かつ、最後の排気は復水器
10で復水され、復水管路11を経て排熱回収ボイラ1
へ給水として戻される。
Reference numerals 5, 6, and 7 denote steam turbines, respectively, which are high-pressure steam turbines, medium-pressure steam turbines, and high-pressure steam, medium-pressure steam, or low-pressure steam supplied from the exhaust heat recovery boiler 1.
It is a low-pressure steam turbine, which generates electric power by driving a generator 8 which is mechanically coupled to the shaft, and the final exhaust gas is condensed by a condenser 10, passed through a condenser line 11, and discharged into a waste heat recovery boiler 1.
Returned as water supply.

【0018】なお、9は蒸気管で、蒸気タービン(高圧
タービンに相当する)5の高圧排気を分岐し、冷却蒸気
としてガスタービンの翼や尾筒等の高温被冷却部へ供給
する通路であり、この蒸気管9から供給された冷却蒸気
は、所定の冷却過程を経て自身は加熱された後、必要に
よっては排熱回収ボイラ1を経由して再熱調整された
後、前記蒸気タービン(中圧タービンに相当する)6で
熱回収される。
Reference numeral 9 denotes a steam pipe, which is a passage for branching high-pressure exhaust gas from a steam turbine (corresponding to a high-pressure turbine) 5 and supplying it to a high-temperature portion to be cooled such as a blade or a transition piece of a gas turbine as cooling steam. After the cooling steam supplied from the steam pipe 9 is heated through a predetermined cooling process and, if necessary, is reheat-adjusted via the exhaust heat recovery boiler 1, the cooling steam is supplied to the steam turbine (medium). (Corresponding to a pressure turbine) 6.

【0019】また、概略的な表示であるが前記蒸気冷却
されるガスタービンはコンプレッサー及び発電機と回転
軸で機械的に結合されており、かつ、同コンプレッサー
に備えられた図示省略のガス入口弁(IGV)の開度を
制御することにより燃焼器を経てガスタービンに供給さ
れるガス量を調節することができる。
Although schematically shown, the steam-cooled gas turbine is mechanically connected to a compressor and a generator by a rotating shaft, and a gas inlet valve (not shown) provided in the compressor. By controlling the opening of (IGV), the amount of gas supplied to the gas turbine via the combustor can be adjusted.

【0020】この様に構成された本実施の形態において
は、排熱回収ボイラ1に対して排ガスダクト2が連通し
た排熱回収ボイラ1の排ガス入口部で、ここに設けられ
た助燃バーナ3が燃焼を進行させることにより、助燃バ
ーナ3による燃焼ガスとガスタービン排ガスとが混合さ
れ、より高い温度となって自缶蒸気の発生を促進するこ
とができる。
In the present embodiment configured as described above, at the exhaust gas inlet of the exhaust heat recovery boiler 1 in which the exhaust gas duct 2 communicates with the exhaust heat recovery boiler 1, an auxiliary burner 3 provided here is provided. By advancing the combustion, the combustion gas from the auxiliary burner 3 and the exhaust gas from the gas turbine are mixed, so that the temperature becomes higher and the generation of self-canister steam can be promoted.

【0021】しかも助燃バーナ3は、燃料系統から燃料
管4を通して供給される燃料が、ガスタービン排ガスと
して供給される燃焼成分と共に燃焼するので、ここに供
給される排ガス量が多いほど燃焼は確実に、かつ、安定
して進行することになる。
Further, in the auxiliary combustion burner 3, the fuel supplied from the fuel system through the fuel pipe 4 burns together with the combustion component supplied as the gas turbine exhaust gas. , And progress stably.

【0022】従ってこの排熱回収ボイラ1による自缶蒸
気の発生が適切に進行すれば、この蒸気は、前記した様
にそれぞれの圧力、温度レベルに応じて蒸気タービン
5、6、7に送られ 発電機8を駆動するとともに発生
蒸気の一部は蒸気管9を通ってガスタービン翼、尾筒な
どの高温部に送られて冷却に供せられることになる。
Accordingly, if the generation of the self-canister steam by the waste heat recovery boiler 1 proceeds appropriately, this steam is sent to the steam turbines 5, 6, 7 according to the respective pressure and temperature levels as described above. When the generator 8 is driven, a part of the generated steam is sent through the steam pipe 9 to a high-temperature portion such as a gas turbine blade or a transition piece, where it is subjected to cooling.

【0023】ここに比較のために従来の形態における補
助ボイラを採用したものを図3に示し、本実施の形態の
ものを図2に示すと、従来の補助ボイラ使用の場合に
は、コンバインドサイクル効率を高めるために、ガス入
口弁(IGV)スケジュールは低負荷時に全閉で負荷上
昇させるので、排ガス温度は徐々に上昇する形態を辿
り、所定の排ガス温度を確保して自缶蒸気の発生に至る
までに一定の時間が必要となる。
For comparison, FIG. 3 shows a conventional auxiliary boiler adopting an auxiliary boiler, and FIG. 2 shows an embodiment of the present invention. In the case of using a conventional auxiliary boiler, a combined cycle boiler is used. In order to increase efficiency, the gas inlet valve (IGV) schedule raises the load by fully closing at low load, so that the exhaust gas temperature follows a gradual rise mode and secures the predetermined exhaust gas temperature to generate self-canister steam. It takes a certain amount of time to reach.

【0024】他方、本実施の形態のものでは、図2に示
した様に、低負荷時にガス入口弁(IGV)を全開にし
て運転するので、ガスタービンを経て供給される排ガス
分量は十分であり、助燃バーナの燃焼は適切、かつ好適
に進行して排ガス温度はスタート早々に高い温度域とな
り、排熱回収ボイラ1の機能を十分に発揮して自缶蒸気
発生が早まり、ガスタービン急速起動が可能となる。
On the other hand, in this embodiment, as shown in FIG. 2, the operation is performed with the gas inlet valve (IGV) fully opened at the time of low load, so that the amount of exhaust gas supplied through the gas turbine is sufficient. Yes, the combustion of the auxiliary burner proceeds appropriately and suitably, and the exhaust gas temperature becomes a high temperature range immediately after the start, the function of the exhaust heat recovery boiler 1 is sufficiently exhibited, the self-canister steam generation is accelerated, and the gas turbine is rapidly started. Becomes possible.

【0025】すなわち本実施の形態によれば、ガス入口
弁(IGV)を全開することにより得られる十分な量の
排ガスを助燃バーナに対して供給することにより、自缶
蒸気による蒸気冷却サイクルの立ち上げを急速に行うこ
とが可能となり、その結果補助ボイラ等の設備増強を不
要とし、製作及び運転を通じて経済的効果を大幅に向上
することができるものである。
That is, according to the present embodiment, a sufficient amount of exhaust gas obtained by fully opening the gas inlet valve (IGV) is supplied to the auxiliary combustion burner, so that the self-canister steam starts a steam cooling cycle. As a result, it is possible to perform the raising quickly, and as a result, it is not necessary to increase the equipment such as the auxiliary boiler, and the economic effect can be greatly improved through the production and operation.

【0026】以上、本発明を図示の実施の形態について
説明したが、本発明はかかる実施の形態に限定されず、
本発明の範囲内でその具体的構造に種々の変更を加えて
よいことはいうまでもない。
Although the present invention has been described with reference to the illustrated embodiment, the present invention is not limited to such an embodiment.
It goes without saying that various changes may be made to the specific structure within the scope of the present invention.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、コ
ンバインドサイクルプラントの蒸気冷却サイクルにおい
て、ガスタービン排気を供給される排熱回収ボイラの入
口部に助燃バーナを設け、起動の際の低負荷時にガスタ
ービンコンプレッサーの入口弁を全開にして起動させる
ようにして蒸気冷却急速起動システムを構成したので、
排熱回収ボイラの入口部に設けた助燃バーナの作動によ
り、排熱回収ボイラの加熱源としてガスタービンの高温
排気のみに依存しなくてもよくなり、ガスタービン冷却
蒸気として自缶蒸気を通気せずにガスタービンの負荷を
高め、かつ、コンプレッサーのガス入口弁の全開によ
り、排ガス量を十分に確保して助燃バーナを適切に機能
させ、以て補助ボイラの採用を必要とせずに省設備化に
よるコスト低減の達成と急速起動を可能とした蒸気冷却
急速起動システムを得ることができたものである。
As described above, according to the present invention, in the steam cooling cycle of the combined cycle plant, the auxiliary heat burner is provided at the inlet of the exhaust heat recovery boiler to which the gas turbine exhaust gas is supplied, so as to reduce the start-up time. Since the steam cooling quick start system was configured so that the gas turbine compressor inlet valve was fully opened and started at the time of load,
The operation of the auxiliary burner provided at the inlet of the exhaust heat recovery boiler eliminates the need to rely solely on the high-temperature exhaust gas from the gas turbine as a heat source for the exhaust heat recovery boiler. The load on the gas turbine is increased, and the gas inlet valve of the compressor is fully opened to secure a sufficient amount of exhaust gas to make the auxiliary burner function properly, thereby saving equipment without using an auxiliary boiler. Thus, a steam-cooled rapid start system capable of achieving cost reduction and quick start can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係るコンバインンドサ
イクルプラントの概略的な系統図である。
FIG. 1 is a schematic system diagram of a combined cycle plant according to an embodiment of the present invention.

【図2】本実施形態におけるサイクル起動の際の低負荷
時における排ガス温度及びガス入口弁(IGV)の開閉
の関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between exhaust gas temperature and opening / closing of a gas inlet valve (IGV) at a low load at the time of starting a cycle in the embodiment.

【図3】従来のものにおけるサイクル起動の際の低負荷
時における排ガス温度及びガス入口弁(IGV)の開閉
の関係を示す説明図である。
FIG. 3 is an explanatory diagram showing the relationship between the exhaust gas temperature and the opening and closing of a gas inlet valve (IGV) at a low load at the time of starting a cycle in a conventional one.

【図4】従来のコンバインンドサイクルプラントの概略
的な系統図である。
FIG. 4 is a schematic system diagram of a conventional combined cycle plant.

【符号の説明】[Explanation of symbols]

1 排熱回収ボイラ 2 排ガスダクト 3 助燃バーナ 4 燃料管 5 蒸気タービン 6 蒸気タービン 7 蒸気タービン 8 発電機 9 蒸気管 10 復水器 11 復水管路 21 軸流圧縮機 22 燃焼器 23 ガスタービン 24 発電機 25 排熱回収ボイラ 26 煙突 27 蒸気タービン 28 蒸気タービン 29 蒸気タービン 30 発電機 REFERENCE SIGNS LIST 1 waste heat recovery boiler 2 exhaust gas duct 3 auxiliary burner 4 fuel pipe 5 steam turbine 6 steam turbine 7 steam turbine 8 generator 9 steam pipe 10 condenser 11 condenser line 21 axial compressor 22 combustor 23 gas turbine 24 power generation Machine 25 waste heat recovery boiler 26 chimney 27 steam turbine 28 steam turbine 29 steam turbine 30 generator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コンバインドサイクルプラントの蒸気冷
却サイクルにおいて、ガスタービン排気を供給される排
熱回収ボイラの入口部に助燃バーナを設け、起動の際の
低負荷時にガスタービンコンプレッサーの入口弁を全開
にして起動させるように構成したことを特徴とする蒸気
冷却急速起動システム。
In a steam cooling cycle of a combined cycle plant, an auxiliary burner is provided at an inlet of an exhaust heat recovery boiler supplied with gas turbine exhaust, and an inlet valve of a gas turbine compressor is fully opened at a low load at start-up. A steam-cooled quick-start system, characterized in that the steam-cooled quick-start system is configured to be started.
JP2000013057A 2000-01-21 2000-01-21 Steam cooling rapid start system Expired - Fee Related JP4209060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000013057A JP4209060B2 (en) 2000-01-21 2000-01-21 Steam cooling rapid start system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000013057A JP4209060B2 (en) 2000-01-21 2000-01-21 Steam cooling rapid start system

Publications (2)

Publication Number Publication Date
JP2001207808A true JP2001207808A (en) 2001-08-03
JP4209060B2 JP4209060B2 (en) 2009-01-14

Family

ID=18540704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000013057A Expired - Fee Related JP4209060B2 (en) 2000-01-21 2000-01-21 Steam cooling rapid start system

Country Status (1)

Country Link
JP (1) JP4209060B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025965A (en) * 2006-07-25 2008-02-07 Public Works Research Institute Pressure incinerator equipment and its operation method
JP2013142393A (en) * 2012-01-10 2013-07-22 General Electric Co <Ge> Combined cycle power plant
WO2019198756A1 (en) * 2018-04-13 2019-10-17 三菱日立パワーシステムズ株式会社 Combined power plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025965A (en) * 2006-07-25 2008-02-07 Public Works Research Institute Pressure incinerator equipment and its operation method
JP2013142393A (en) * 2012-01-10 2013-07-22 General Electric Co <Ge> Combined cycle power plant
WO2019198756A1 (en) * 2018-04-13 2019-10-17 三菱日立パワーシステムズ株式会社 Combined power plant
JP2019183777A (en) * 2018-04-13 2019-10-24 三菱日立パワーシステムズ株式会社 Combined power generation plant
JP7143107B2 (en) 2018-04-13 2022-09-28 三菱重工業株式会社 Combined power plant

Also Published As

Publication number Publication date
JP4209060B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
US6782703B2 (en) Apparatus for starting a combined cycle power plant
EP0939202B1 (en) Steam cooled gas turbine system
KR100268611B1 (en) Combined cycle power plant and supplying method of coolant therof
NO322002B1 (en) Method and apparatus for starting emission-free gas turbine power stations
JP2001214759A (en) Gas turbine combined cycle
JP2010065636A (en) Two-shaft gas turbine
JPH11247669A (en) Gas turbine combined cycle
JPWO2019220786A1 (en) Steam turbine plant and its cooling method
US8327615B2 (en) Combined cycle powered generating plant having reduced start-up time
US6286297B1 (en) Steam cooled type combined cycle power generation plant and operation method thereof
JP2000130108A (en) Starting method for combined cycle power plant
CA2242073C (en) Combined cycle power generation plant
JP4208397B2 (en) Start-up control device for combined cycle power plant
JP2001207808A (en) Steam cooled quick start system
JP5734117B2 (en) Combined cycle power plant and operation method thereof
JP2002129977A (en) Gas turbine equipment
JP2602951B2 (en) How to start a combined cycle plant
JP3614949B2 (en) Combined power plant
JPH09280010A (en) Gas turbine, combined cycle plant provided with the gas turbine, and driving method thereof
JP4138157B2 (en) Steam-cooled gas turbine startup system
JP3446185B2 (en) Operating method of steam-cooled gas turbine
JPH11311132A (en) Steam-cooling gas turbine system
JPH1073008A (en) Combined cycle plant and start-stop method thereof
JP2002004814A (en) Regeneration-type steam injection gas turbine generating apparatus
JP2001289009A (en) Single-shaft combined turbine equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees