JP2001206956A - Thermoplastic resin molded product - Google Patents

Thermoplastic resin molded product

Info

Publication number
JP2001206956A
JP2001206956A JP2000017240A JP2000017240A JP2001206956A JP 2001206956 A JP2001206956 A JP 2001206956A JP 2000017240 A JP2000017240 A JP 2000017240A JP 2000017240 A JP2000017240 A JP 2000017240A JP 2001206956 A JP2001206956 A JP 2001206956A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
molded article
thermoplastic
resin molded
continuous phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000017240A
Other languages
Japanese (ja)
Inventor
Kenji Miyazaki
健次 宮崎
Yoshinori Nakano
良憲 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2000017240A priority Critical patent/JP2001206956A/en
Publication of JP2001206956A publication Critical patent/JP2001206956A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermoplastic resin molded product where conflicting properties such as a soft touch, matting or a lustrous feeling with depth coexist. SOLUTION: This thermoplastic resin molded product 1 is made of two or more kinds of thermoplastic resins A and B incompatible with each other and capable of forming a continuous phase and dispersed phases when being blended, and also has a structure where respective kinds of resins A and B existing in the continuous and central phases are reversed at least once between the surface layer 2 and the central layer 3 of the molded product in such a way as to make conflicting properties coexist at a high level.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、家電製品、自動車
分野あるいは住宅分野などにおいて利用される熱可塑性
樹脂成形品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoplastic resin molded article used in home electric appliances, automobiles, houses, and the like.

【0002】[0002]

【従来の技術】従来、熱可塑性樹脂成形品は、射出成
形、押出成形、真空成形などで複雑形状のものが比較的
簡単に高効率で得られるため、家電製品、自動車分野、
住宅分野などの部材として幅広く利用されている。これ
らの部材は、その用途によって要求される物性が異なる
ため、各用途に応じて種々の熱可塑性樹脂が単一または
複数組み合わされて用いられている。
2. Description of the Related Art Conventionally, thermoplastic resin molded articles having a complicated shape by injection molding, extrusion molding, vacuum molding and the like can be obtained relatively easily and with high efficiency.
It is widely used as a member in the housing field. Since these members have different required physical properties depending on their use, various thermoplastic resins are used singly or in combination according to each use.

【0003】最近では、上記した分野でも要求される品
質が多岐にわたり、従来、相反すると考えられていた物
性を高次元で両立する必要が出てきた。例えば、自動車
内装材では高剛性とソフトタッチ感、家電製品では製品
表面の艶消し、さらに自動車・住宅部材では奥行き光沢
感である。
[0003] In recent years, the quality required in the above-mentioned fields has been diversified, and it has become necessary to achieve high-dimensional compatibility of physical properties that have been conventionally considered to be contradictory. For example, automobile interior materials have high rigidity and soft touch feeling, home electric appliances have matte product surfaces, and automobile and housing members have depth glossiness.

【0004】これら物性の両立は、単一の熱可塑性樹脂
では困難であるため、2種以上の材料を組み合わせて用
いられているが、相反する物性を高次元で両立している
とは言い難い。また、成形法の面からでも多層形成や被
覆・積層などが検討されているが、高度な要求レベルに
完全に対応できていないのが現状である。
[0004] Since it is difficult to achieve both of these physical properties with a single thermoplastic resin, two or more materials are used in combination. However, it cannot be said that the opposite physical properties are compatible at a high level. . Also, multilayer formation, coating and lamination, etc. are being studied from the viewpoint of molding methods, but at present, they cannot completely meet the high required levels.

【0005】例えば、2種類の樹脂を用いて耐熱性とソ
フト感を実現した例として、特許公報第2653512
号公報が挙げられる。しかし、この公報に記載の発明で
は、2種類の樹脂をブレンドしたものであるため、剛性
とソフト感において両方の樹脂の平均的な値を与えてい
るだけであり、目的とする機能を完全に満足していると
は言い難い。
[0005] For example, as an example of realizing heat resistance and soft feeling by using two kinds of resins, see Japanese Patent Publication No. 2653512.
Publication. However, in the invention described in this publication, since two kinds of resins are blended, only the average value of both resins is given in rigidity and soft feeling, and the intended function is completely achieved. It's hard to say I'm satisfied.

【0006】[0006]

【発明が解決しようとする課題】本発明は、そのような
実情に鑑みてなされたものであり、その目的とするとこ
ろは、ソフトタッチ感や艶消しまたは奥行き光沢感など
の相反する物性を両立した熱可塑性樹脂成形品の提供に
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of such a situation, and an object of the present invention is to achieve a balance between contradictory physical properties such as soft touch feeling, matte or depth glossiness. To provide a molded thermoplastic resin article.

【0007】[0007]

【課題を解決するための手段】本発明の熱可塑性樹脂成
形品は、ブレンドした際に連続相と分散相を形成し得る
2種類以上の非相溶な熱可塑性樹脂の組み合わせからな
る成形品であって、図2に例示するように、成形品表面
層2と成形品中心層3との間において連続相と分散相の
樹脂種(A,B)が少なくとも1回反転していることに
よって特徴づけられる。
The thermoplastic resin molded article of the present invention is a molded article comprising a combination of two or more incompatible thermoplastic resins capable of forming a continuous phase and a dispersed phase when blended. As illustrated in FIG. 2, the resin type (A, B) of the continuous phase and the dispersed phase is inverted at least once between the molded article surface layer 2 and the molded article center layer 3. Attached.

【0008】本発明の熱可塑性樹脂成形品において、ブ
レンドした際に連続相と分散相を形成し得る非相溶な2
種類以上の熱可塑性樹脂として、例えば剛性の高い熱可
塑性樹脂Aと柔軟性の高い熱可塑性樹脂Bの2種類を用
い、図2のように、成形品中心層3では連続相が熱可塑
性樹脂A、成形表面層2では連続相が熱可塑性樹脂Bと
なるような構造とすると、成形品全体では剛性が有りな
がら、表面の硬度が低くてタッチ感がソフトである成形
品とすることができる。また、その他、不透明樹脂と透
明樹脂という組み合わせでは、色調の奥行き光沢感や艶
消しを発現できるなどのメリットがある。
[0008] In the thermoplastic resin molded article of the present invention, an immiscible 2 which can form a continuous phase and a dispersed phase when blended.
As the thermoplastic resin of more than one kind, for example, two kinds of thermoplastic resin A having high rigidity and thermoplastic resin B having high flexibility are used, and as shown in FIG. If the molding surface layer 2 has a structure in which the continuous phase is formed of the thermoplastic resin B, a molded article having a low rigidity on the surface and a soft touch feeling can be obtained while the entire molded article has rigidity. In addition, the combination of the opaque resin and the transparent resin has other advantages such as depth glossiness and matting of the color tone.

【0009】なお、本発明の熱可塑性樹脂成形品の厚み
・形状は特に限定されないが、極端に肉厚の厚いものは
成形品中心層まで冷却が困難であるため、成形性の観点
から好ましくはない。
The thickness and shape of the thermoplastic resin molded article of the present invention are not particularly limited. However, extremely thick ones are difficult to cool down to the central layer of the molded article. Absent.

【0010】ここで、以上の説明では2種類の非相溶な
熱可塑性樹脂を用いた場合の具体例を示したが、これに
限られることなく、本発明の熱可塑性樹脂成形品は、ブ
レンドした際に連続相と分散相を形成し得る非相溶な熱
可塑性樹脂を3種類以上組み合わせた成形品であっても
よい。
In the above description, a specific example in which two types of incompatible thermoplastic resins are used has been described. However, the present invention is not limited to this, and the thermoplastic resin molded article of the present invention It may be a molded article in which three or more types of incompatible thermoplastic resins capable of forming a continuous phase and a dispersed phase when combined are used.

【0011】本発明の熱可塑性樹脂成形品の詳細を以下
に説明する。
The details of the thermoplastic resin molded article of the present invention will be described below.

【0012】本発明の熱可塑性樹脂成形品に用いる熱可
塑性樹脂は、ブレンドした際に連続相と分散相を形成し
得る2種類以上の樹脂の組み合わせであれば、特に限定
されるものでなく、例えば、オレフィン樹脂、スチレン
樹脂、ABS樹脂、エチレン−酢酸ビニル共重合体、ア
セタール樹脂、ポリアミド樹脂、ポリイミド樹脂、アミ
ドイミド樹脂、アクリル樹脂、ポリエステル樹脂、ポリ
カーボネート樹脂、ポリフェニレンオキシド、ノリル
(ポリスチレン変性ポリフェニレンオキシド)、熱可塑
性ウレタン、熱可塑性エラストマー(オレフィン系、ス
チレン系、ウレタン系)等から選ばれる2種類以上の熱
可塑性樹脂であればよい。
The thermoplastic resin used in the thermoplastic resin molded article of the present invention is not particularly limited as long as it is a combination of two or more resins capable of forming a continuous phase and a dispersed phase when blended. For example, olefin resin, styrene resin, ABS resin, ethylene-vinyl acetate copolymer, acetal resin, polyamide resin, polyimide resin, amide imide resin, acrylic resin, polyester resin, polycarbonate resin, polyphenylene oxide, noryl (polystyrene-modified polyphenylene oxide) Any thermoplastic resin selected from two or more thermoplastic urethanes, thermoplastic elastomers (olefin-based, styrene-based, urethane-based) and the like may be used.

【0013】本発明の熱可塑性樹脂成形品には、2種類
以上の非相溶な樹脂を微分散させること及び樹脂間の界
面接着のために適宜に相容化剤を用いてもよい。相溶化
剤の種類は、上記した熱可塑性樹脂群から選択される樹
脂の組み合わせによるが、例として、マレイン酸変性ポ
リオレフィン、アクリル酸変性ポリオレフィン、エポキ
シ基含有樹脂などが挙げられる。相容化剤の添加量は、
2種類以上の熱可塑性樹脂の混合比率にもよるが、2種
類以上の熱可塑性樹脂100重量部に対して1〜10重
量部程度であることが好ましい。1重量部未満であると
樹脂が微分散せず、10重量部を超えると熱可塑性樹脂
成形品の剛性が低くなる。
[0013] In the thermoplastic resin molded article of the present invention, a compatibilizer may be appropriately used for finely dispersing two or more incompatible resins and for interfacial adhesion between the resins. The type of the compatibilizer depends on the combination of the resins selected from the thermoplastic resin group described above. Examples thereof include maleic acid-modified polyolefin, acrylic acid-modified polyolefin, and epoxy group-containing resin. The amount of the compatibilizer is
Although it depends on the mixing ratio of two or more kinds of thermoplastic resins, it is preferably about 1 to 10 parts by weight based on 100 parts by weight of two or more kinds of thermoplastic resins. When the amount is less than 1 part by weight, the resin is not finely dispersed, and when the amount exceeds 10 parts by weight, the rigidity of the thermoplastic resin molded article is reduced.

【0014】熱可塑性樹脂の溶融粘度は、本発明の目的
を達成するために重要なポイントであり、例えば2種類
の熱可塑性樹脂を選択する場合、温度−粘度カーブが成
形温度領域のある1点で交差する必要がある。すなわ
ち、2種類の熱可塑性樹脂をA,Bとすると、成形温度
領域内のある温度以上では樹脂Aの方が高粘度であるの
に対し、ある温度以下では樹脂Bの方が高粘度であるこ
とが必要である。
The melt viscosity of the thermoplastic resin is an important point for achieving the object of the present invention. For example, when two types of thermoplastic resins are selected, the temperature-viscosity curve has one point in the molding temperature range. Need to intersect at That is, assuming that two types of thermoplastic resins are A and B, the resin A has a higher viscosity at a certain temperature or higher in the molding temperature range, whereas the resin B has a higher viscosity at a certain temperature or lower. It is necessary.

【0015】このように成形温度領域のある1点で2種
類の樹脂の温度−粘度カーブが交差することで、成形品
表面層と成形品中心層との間で連続相と分散相が少なく
とも1回は反転することになる。これは、下記のメカニ
ズムによる。
As described above, the temperature-viscosity curves of the two types of resins intersect at one point in the molding temperature range, so that at least one continuous phase and one dispersed phase are formed between the molded article surface layer and the molded article central layer. The times will be reversed. This is due to the following mechanism.

【0016】まず、2種類の樹脂をブレンドした際、ど
ちらが連続相(海)になり、どちらが分散相(島)にな
るかを決める因子には、大きく分けると体積比と溶融粘
度比がある。体積比が80:20〜20:80の範囲に
ある場合は、2種類の樹脂のうち低粘度のものが連続相
になり、それ以外の場合は、体積分率の高い側が連続相
になる確率が高い。
First, when two types of resins are blended, factors that determine which is a continuous phase (sea) and which is a dispersed phase (island) are roughly divided into a volume ratio and a melt viscosity ratio. When the volume ratio is in the range of 80:20 to 20:80, the probability that the low-viscosity resin of the two kinds of resins becomes a continuous phase, otherwise, the side with the higher volume fraction becomes the continuous phase Is high.

【0017】この原理を利用すると、2種類の樹脂A,
Bの温度−粘度カーブが交差する温度以上で溶融混練
し、それを交差する温度以下に温調された領域(金型)
を通過させると、その温調された領域近傍つまり成形品
表面層では2種類の樹脂のブレンド物が急激に冷却さ
れ、A,Bの溶融粘度が逆転するので連続相と分散相が
反転する。逆に、温調された領域(金型)から離れた部
分つまり成形品中心層ではブレンド物が徐冷されるの
で、連続相と分散相とが逆転するまでにブレンド物が固
化してしまう。その結果として、熱可塑性樹脂成形品の
表面層と中心層との間において連続相と分散相とが反転
することになる。なお、樹脂の温度分布によって2種類
の樹脂の粘度比が局所的に異なったり、流路形状によっ
て2種類の樹脂に働く剪断応力が分布を持ったりするの
で、成形品表面層と成形品中心層との間で連続相と分散
相とが2回以上反転することがあり得る。
Using this principle, two types of resins A,
A region where the temperature and viscosity of the melt-kneaded mixture at the temperature where the temperature-viscosity curve of B intersects and the temperature of which is adjusted to the temperature at which it intersects or below (die).
, The blend of the two resins is rapidly cooled in the vicinity of the temperature-controlled region, that is, in the molded article surface layer, and the melt viscosities of A and B are reversed, so that the continuous phase and the dispersed phase are reversed. Conversely, the blend is gradually cooled in a portion away from the temperature-controlled region (mold), that is, in the center layer of the molded product, so that the blend solidifies before the continuous phase and the dispersed phase are reversed. As a result, the continuous phase and the dispersed phase are inverted between the surface layer and the central layer of the thermoplastic resin molded article. Note that the viscosity ratio of the two types of resin is locally different depending on the temperature distribution of the resin, and the shear stress acting on the two types of resin has a distribution depending on the shape of the flow path. Between the continuous phase and the dispersed phase may be inverted two or more times.

【0018】2種類(もしくは3種類以上)の熱可塑性
樹脂のブレンドの方法は、特に制限されないが、高混練
で分散相を微分散させるために混練押出機やロール混
練、またはプラストミルなどを用いるとよい。溶融混練
する際の温度は2種類(もしくは3種類以上)の熱可塑
性樹脂の温度−粘度カーブが交差する点の温度以上であ
る必要がある。それ以下であると成形品中に連続相と分
散相との反転は起こらない。
The method of blending two (or three or more) thermoplastic resins is not particularly limited, but a kneading extruder, roll kneading, or plast mill or the like is used to finely disperse the dispersed phase with high kneading. Good. The temperature at the time of melt-kneading needs to be equal to or higher than the temperature at the point where the temperature-viscosity curves of the two (or three or more) thermoplastic resins intersect. If it is less than that, no reversal of the continuous phase and the dispersed phase occurs in the molded article.

【0019】また、ブレンドした後、熱可塑性樹脂成形
品に成形する方法としては、溶融状態のブレンド物を2
種類(もしくは3種類以上)の熱可塑性樹脂の温度−粘
度カーブが交差する温度以下に温調されたゾーン(金
型)を通過させる方法を用いるとよい。さらに好ましく
は、成形性の観点から、用いる樹脂の溶融温度以下に温
調されたゾーン(金型)を通過させる方法がよい。具体
的な成形法としては、射出成形、押出成形、インフレー
ション成形、中空成形する方法が挙げられる。
Further, as a method of molding into a thermoplastic resin molded product after blending, the molten blend is used for 2 hours.
It is preferable to use a method of passing through a zone (mold) whose temperature is controlled to be equal to or lower than the temperature at which the temperature-viscosity curves of the types (or three or more types) of thermoplastic resins intersect. More preferably, from the viewpoint of moldability, a method in which the resin is passed through a zone (mold) whose temperature is controlled to be equal to or lower than the melting temperature of the resin to be used. Specific molding methods include injection molding, extrusion molding, inflation molding, and hollow molding.

【0020】なお、熱可塑性樹脂成形品の連続相と分散
相が成形品表面層と成形品中心層で異なっている様子
は、透過型電子顕微鏡(TEM)や電界放射型走査電子
顕微鏡(FE−SEM)での観察により確認することが
可能である。具体的には、四酸化オスミニウムのような
酸化剤で熱可塑性樹脂成形品の破断面を染色することで
連続相または分散相のうちの一方が黒っぽく観察される
ため、海島構造が逆転していることを観察できる。
The appearance of the difference between the continuous phase and the dispersed phase of the thermoplastic resin molded article between the surface layer of the molded article and the central layer of the molded article is explained by a transmission electron microscope (TEM) or a field emission scanning electron microscope (FE- It can be confirmed by observation with SEM). Specifically, by dyeing the fracture surface of the thermoplastic resin molded article with an oxidizing agent such as osmium tetroxide, one of the continuous phase or the dispersed phase is observed to be dark, so the sea-island structure is reversed. You can observe that.

【0021】本発明の熱可塑性樹脂成形品において、成
形品表面層と成形品中心層で、連続相と分散相を形成し
得る2種類以上の非相溶な熱可塑性樹脂の体積分率が異
なるようにすることが好ましい。
In the thermoplastic resin molded article of the present invention, the volume fraction of two or more incompatible thermoplastic resins capable of forming a continuous phase and a dispersed phase differs between the molded article surface layer and the molded article central layer. It is preferable to do so.

【0022】成形品表面層と成形品中心層において、2
種類以上の熱可塑性樹脂の体積分率を変化させるために
は、用いる熱可塑性樹脂の成形温度での溶融粘度に極端
な差をつければよい。極端な差をつけることで冷却ゾー
ン(金型)近傍の剪断応力がかかる部分において溶融粘
度の低い樹脂がより多く集まってくる。これは、剪断応
力がかかる部分では摩擦力を低減するために低粘度の樹
脂の方が好都合だからである。
In the molded article surface layer and the molded article central layer, 2
In order to change the volume fraction of more than one type of thermoplastic resin, an extreme difference may be made in the melt viscosity at the molding temperature of the thermoplastic resin used. By making an extreme difference, more resin having a low melt viscosity collects in a portion where a shear stress is applied near the cooling zone (mold). This is because a low-viscosity resin is more advantageous in a portion to which a shear stress is applied in order to reduce a frictional force.

【0023】2種類以上の熱可塑性樹脂の成形温度での
溶融粘度差は、1000〜5000ポイズであることが
好ましい。溶融粘度差が1000ポイズよりも小さいと
体積分率に差が生じず、5000ポイズよりも大きいと
2種類以上の熱可塑性樹脂の混練度合が悪くなり、本発
明の効果を十分に発現できなくなる。
The difference in melt viscosity between the two or more thermoplastic resins at the molding temperature is preferably from 1,000 to 5,000 poise. If the difference in melt viscosity is smaller than 1000 poise, there is no difference in the volume fraction, and if it is larger than 5000 poise, the degree of kneading of two or more thermoplastic resins becomes poor, and the effect of the present invention cannot be sufficiently exhibited.

【0024】本発明の熱可塑性樹脂成形品において、2
種類の非相溶な熱可塑性樹脂を用いる場合、その混合割
合(wt%)は80:20〜20:80の範囲にあるこ
とが好ましい。2種類の熱可塑性樹脂の混合割合をこの
ような範囲にすることで、熱可塑性樹脂成形品の表面層
と中心層との間で連続相と分散相との転換をより安定的
に起こすことが可能になる。すなわち、成形可能な温度
領域が広がったり、高い剪断速度が必要でなくなるの
で、特殊な構造の冷却ゾーン(金型)を用いる必要がな
くなる結果、容易に成形が可能である。また、得られる
熱可塑性樹脂成形品の物性についても、相反する性質を
高次元で両立させることができる。
In the thermoplastic resin molded article of the present invention, 2
When various types of incompatible thermoplastic resins are used, the mixing ratio (wt%) is preferably in the range of 80:20 to 20:80. By setting the mixing ratio of the two types of thermoplastic resins in such a range, the conversion between the continuous phase and the dispersed phase between the surface layer and the central layer of the thermoplastic resin molded product can be more stably caused. Will be possible. That is, since the temperature range in which molding can be performed is widened and a high shear rate is not required, there is no need to use a cooling zone (die) having a special structure, so that molding can be easily performed. In addition, with regard to the physical properties of the obtained thermoplastic resin molded product, it is possible to make the opposite properties compatible at a high level.

【0025】本発明の熱可塑性樹脂成形品において、2
種類以上の非相溶な熱可塑性樹脂は、溶解性パラメータ
の差が0.3以上離れていることが好ましい。その理由
を、2種類の熱可塑性樹脂を用いる場合を例にとって以
下に述べる。
In the thermoplastic resin molded article of the present invention, 2
It is preferable that the difference between the solubility parameters of at least one kind of incompatible thermoplastic resin is 0.3 or more apart. The reason will be described below with reference to an example in which two types of thermoplastic resins are used.

【0026】まず、本発明の熱可塑性樹脂では、連続相
と分散相がはっきりと存在し、それぞれが独自の役割
(剛性、柔軟性、透明感など)を果たすことが好まし
く、そのためには、2種類の熱可塑性樹脂をブレンドし
た際、はっきりと相分離する必要がある。2種類の熱可
塑性樹脂をブレンドした際、完全に混ざり合うか、相分
離するかは2種類の樹脂の溶解性パラメータの差に依存
する。
First, in the thermoplastic resin of the present invention, a continuous phase and a dispersed phase are clearly present, and each preferably has a unique role (rigidity, flexibility, transparency, etc.). When blending different kinds of thermoplastic resins, a clear phase separation is required. When two types of thermoplastic resins are blended, whether they are completely mixed or phase-separated depends on the difference between the solubility parameters of the two types of resins.

【0027】ここで、溶解性パラメータ(σ)とは、σ
=ρΣFi/Mにより求めた値のことを言う。ただし、
ρは熱可塑性樹脂の密度、Mは熱可塑性樹脂を構成する
モノマー分子量、Fiはモノマーの構成グループのモル
吸引定数であり、個々に決められた値である。そして、
溶解性パラメータは、差が大きいと相溶性が低くて混ざ
り難く、差が小さいと相溶性が高くなって混ざりやすく
なり、2種類以上の樹脂の溶解性パラメータの差が0.
3未満であると連続相と分散相との区別がつき難くな
る。このようなことから、本発明の効果を十分に発現さ
せるためには、2種類の非相溶な熱可塑性樹脂の溶解性
パラメータの差は0.3以上離れていることが必要であ
る。
Here, the solubility parameter (σ) is defined as σ
= ΡΣFi / M. However,
ρ is the density of the thermoplastic resin, M is the molecular weight of the monomer constituting the thermoplastic resin, and Fi is the molar attraction constant of the monomer group, which is an individually determined value. And
If the solubility parameter is large, the compatibility is low and the mixture is difficult to mix. If the difference is small, the compatibility is high and the mixture is easy to mix.
If it is less than 3, it becomes difficult to distinguish between the continuous phase and the dispersed phase. Thus, in order to sufficiently exhibit the effects of the present invention, the difference between the solubility parameters of the two incompatible thermoplastic resins needs to be separated by 0.3 or more.

【0028】本発明の熱可塑性樹脂成形品において、曲
げ弾性率の差が1.5Pa以上ある2種類以上の非相溶
な熱可塑性樹脂を用いることが好ましい。2種類以上の
樹脂の曲げ弾性率の差を1.5Pa以上とすると、特に
剛性と柔軟性を両立させた成形品を得ることが可能にな
る。ここで、曲げ弾性率の高い樹脂は、一般的に曲がり
難く耐熱性があるため、高温下でも剛性を維持するのに
対し、曲げ弾性率の低い樹脂は容易に曲がり、また柔軟
性がある。そこで、曲げ弾性率が1.5GPa以上離れ
た高剛性の樹脂と柔軟な樹脂を組み合わせることで高剛
性とソフトタッチ感を両立させることができる。
In the thermoplastic resin molded article of the present invention, it is preferable to use two or more incompatible thermoplastic resins having a difference in flexural modulus of 1.5 Pa or more. When the difference between the bending elastic moduli of two or more resins is 1.5 Pa or more, it is possible to obtain a molded article having both rigidity and flexibility. Here, a resin having a high flexural modulus is generally hard to bend and has heat resistance, and thus maintains rigidity even at a high temperature, whereas a resin having a low flexural modulus easily bends and has flexibility. Therefore, by combining a high-rigidity resin with a bending elastic modulus of 1.5 GPa or more and a soft resin, it is possible to achieve both high rigidity and a soft touch feeling.

【0029】本発明の熱可塑性樹脂成形品において、2
種類以上の非相溶な熱可塑性樹脂を、ノリル、ABS、
ポリアミドの群の中から選ばれる1種類の樹脂と、ポリ
オレフィン、熱可塑性エラストマー、ポリカーボネー
ト、アクリル樹脂の群の中から選ばれる1種類の樹脂と
の組み合わせとすると、特に耐熱性(剛性)及び柔軟性
を高いレベルで両立することが可能になる。
In the thermoplastic resin molded article of the present invention, 2
More than one type of incompatible thermoplastic resin, Noryl, ABS,
When a combination of one kind of resin selected from the group of polyamide and one kind of resin selected from the group of polyolefin, thermoplastic elastomer, polycarbonate, and acrylic resin, particularly, heat resistance (rigidity) and flexibility are obtained. At a high level.

【0030】すなわち、ノリル、ABS、ポリアミドか
らなる群の樹脂は、一般的に耐熱性が高い樹脂であり、
ポリオレフィン、熱可塑性エラストマー、ポリカーボネ
ート、アクリル樹脂の群の樹脂は柔軟性ないしは透明性
が高い樹脂であるので、これらの2群から選ばれる樹脂
を組み合わせると、高剛性とソフトタッチ感の両立や高
剛性と色彩の光沢感を両立することが可能になる。<作
用>本発明の熱可塑性樹脂成形品によれば、ブレンドし
た際に連続相と分散相を形成し得る2種類以上の非相溶
な熱可塑性樹脂の組み合わせからなる成形品において、
表面層と中心層との間で少なくとも1回は、連続相(海
島構造の海部分)と分散相(海島構造の島部分)が反転
した構造を有しているので、2種類以上の樹脂の組み合
わせで、相反する物性を両立することが可能になる。
That is, resins of the group consisting of Noryl, ABS, and polyamide are generally resins having high heat resistance,
Polyolefins, thermoplastic elastomers, polycarbonates, and acrylic resins are resins with high flexibility or transparency, so combining resins selected from these two groups can achieve both high rigidity and soft touch feeling and high rigidity. And the glossiness of colors can be achieved at the same time. <Function> According to the thermoplastic resin molded article of the present invention, in a molded article comprising a combination of two or more incompatible thermoplastic resins capable of forming a continuous phase and a dispersed phase when blended,
At least once between the surface layer and the central layer, the continuous phase (sea portion of the sea-island structure) and the dispersed phase (island portion of the sea-island structure) have a reversed structure. Combinations make it possible to balance conflicting physical properties.

【0031】本発明の熱可塑性樹脂成形品において、2
種類以上の熱可塑性樹脂の成形時の溶融粘度に差を持た
せておけば、成形品表面層と成形品中間層で2成分(も
しくは3成分以上)の体積分率を変化させることが可能
になる。
In the thermoplastic resin molded article of the present invention, 2
By giving a difference in melt viscosity during molding of more than one type of thermoplastic resin, it is possible to change the volume fraction of two components (or three or more components) between the molded product surface layer and the molded product intermediate layer. Become.

【0032】本発明の熱可塑性樹脂成形品において、例
えば、熱可塑性樹脂を2種類とし、その2種類の熱可塑
性樹脂の混合比率を80:20〜20:80にすると、
成形品中の連続相と分散相のそれぞれの役割を十分に引
き出すことが可能になる。
In the thermoplastic resin molded article of the present invention, for example, when two types of thermoplastic resins are used and the mixing ratio of the two types of thermoplastic resins is 80:20 to 20:80,
It becomes possible to sufficiently draw out the respective roles of the continuous phase and the dispersed phase in the molded article.

【0033】また、2種類以上の熱可塑性樹脂の溶解性
パラメータの差が0.3以上であると、相分離が確実に
起こるため、連続相と分離相とが明確に区別され、本発
明の目的を十分に達成することが可能になる。さらに、
2種類以上の熱可塑性樹脂の曲げ弾性率の差を1.5G
Pa以上とすると、高剛性な樹脂と柔軟な樹脂との組み
合わせになり、剛性と柔軟性とを高いレベルで両立する
ことが可能になる。
When the difference between the solubility parameters of the two or more thermoplastic resins is 0.3 or more, phase separation occurs reliably, so that the continuous phase and the separated phase are clearly distinguished. It is possible to achieve the purpose sufficiently. further,
1.5G difference in flexural modulus between two or more thermoplastic resins
When it is Pa or more, a combination of a highly rigid resin and a flexible resin is obtained, and it is possible to achieve both high rigidity and flexibility at a high level.

【0034】本発明の熱可塑性樹脂成形品において、2
種類以上の非相溶な熱可塑性樹脂を、例えば、ノリル、
ABS、ポリアミドの群の中から選ばれる1種類の樹脂
と、ポリオレフィン、熱可塑性エラストマー、ポリカー
ボネート、アクリル樹脂の群の中から選ばれる1種類の
樹脂の組み合わせとすると、本発明の所期の目的を十分
に達成することが可能になる。
In the thermoplastic resin molded article of the present invention, 2
More than one type of incompatible thermoplastic resin, for example, Noryl,
When the combination of one kind of resin selected from the group of ABS and polyamide and one kind of resin selected from the group of polyolefin, thermoplastic elastomer, polycarbonate and acrylic resin, the intended object of the present invention is as follows. It is possible to achieve this sufficiently.

【0035】[0035]

【実施例】本発明の実施例を、以下、比較例とともに説
明する。 <実施例1>ノリル樹脂(GEプラスチック社製、商品
名:GTX600、密度1.10g/cm3 )と、オレ
フィン系熱可塑性エラストマー(住友化学社製、商品
名:TPE3572、密度0.88g/cm3 、MFR
=15g/10分)とを、下記の表1に示す割合でブレ
ンドし、2軸混練押出機(池貝機工社製、商品名PCM
−30)にてバレル温度260℃で溶融混練し、260
℃に温調された直径3mmのストランドダイから押し出
した後、水冷してぺレタイザーで長さ3mmにペレット
化した。
EXAMPLES Examples of the present invention will be described below together with comparative examples. <Example 1> Noryl resin (manufactured by GE Plastics, trade name: GTX600, density: 1.10 g / cm 3 ) and olefin-based thermoplastic elastomer (manufactured by Sumitomo Chemical Co., trade name: TPE3572, density: 0.88 g / cm 3 ) 3 , MFR
= 15 g / 10 min) in the ratio shown in Table 1 below, and a twin-screw kneading extruder (trade name: PCM, manufactured by Ikegai Kiko Co., Ltd.)
-30) at a barrel temperature of 260 ° C.
After being extruded from a strand die having a diameter of 3 mm adjusted to a temperature of 0 ° C., it was cooled with water and pelletized to a length of 3 mm with a pelletizer.

【0036】ペレットを乾燥した後、インライン式射出
成形機(FANUC社製、AUTOSHOT MODE
L75)に供給して、バレル温度260℃で溶融混練し
た後、20℃に温調された金型を用いて射出成形し、図
1に示す形状・寸法の直方体形状の熱可塑性樹脂成形品
1を得た。
After drying the pellets, an in-line injection molding machine (AUTOSHOT MODE, manufactured by FANUC) is used.
L75), melt-kneaded at a barrel temperature of 260 ° C., and injection-molded using a mold temperature-controlled to 20 ° C. to obtain a rectangular parallelepiped thermoplastic resin molded product 1 having the shape and dimensions shown in FIG. I got

【0037】得られた熱可塑性樹脂成形品の破断面(図
1参照)を、電界放射型走査電子顕微鏡(FE−SE
M)で観察したところ、成形品表面付近では、オレフィ
ン系熱可塑性エラストマーが連続相であるのに対し、表
面から1.5mmの成形品中心層では、ノリル樹脂が連
続相になっており、成形品表面から0.5mm付近を境
に連続相と分散相とが反転していることが確認された。
A fracture surface (see FIG. 1) of the obtained thermoplastic resin molded product was subjected to a field emission scanning electron microscope (FE-SE).
Observed in M), near the surface of the molded article, the olefin-based thermoplastic elastomer was a continuous phase, whereas in the center layer of the molded article 1.5 mm from the surface, the noryl resin was in a continuous phase. It was confirmed that the continuous phase and the dispersed phase were inverted around 0.5 mm from the product surface.

【0038】以上の実施例1で得られた熱可塑性樹脂成
形品の表面付近における連続相と分散相の体積分率、及
び成形品中心付近における連続相と分散相との体積分率
を、FE−SEM写真を画像処理装置にかけることで算
出した。その結果を下記の表2に示す。
The volume fraction of the continuous phase and the dispersed phase near the surface of the thermoplastic resin molded article obtained in Example 1 and the volume fraction of the continuous phase and the dispersed phase near the center of the molded article were determined by FE. -Calculated by applying an SEM photograph to an image processing apparatus. The results are shown in Table 2 below.

【0039】さらに、熱可塑性樹脂成形品から試料を切
り出し、JIS K 7171に従って曲げ試験を実施
して曲げ弾性率を測定し、またJIS K 7181に
従って圧縮試験を実施して圧縮弾性率を測定した。その
各結果を下記の表2に示す。
Further, a sample was cut out of the thermoplastic resin molded article, and a bending test was performed in accordance with JIS K 7171 to measure a bending elastic modulus, and a compression test was performed in accordance with JIS K 7181 to measure a compression elastic modulus. The results are shown in Table 2 below.

【0040】また、得られた熱可塑性樹脂成形品の評価
として、全光線透過率測定をASTM D−1003に
準じて実施した。その結果を下記の表2に示す。 <実施例2>オレフィン系熱可塑性エラストマーに代え
て、スチレン系熱可塑性エラストマー(クラレ社製、商
品名:セプトン2063、密度0.89g/cm3 、M
FR=22g/10分)を用いたこと以外は、実施例1
と同じとして直方体形状の熱可塑性樹脂成形品を得た。
As an evaluation of the obtained thermoplastic resin molded product, total light transmittance was measured according to ASTM D-1003. The results are shown in Table 2 below. <Example 2> Instead of the olefin-based thermoplastic elastomer, a styrene-based thermoplastic elastomer (manufactured by Kuraray Co., Ltd., trade name: Septon 2063, density 0.89 g / cm 3 , M
Example 1 except that FR = 22 g / 10 min) was used.
In the same manner as above, a rectangular parallelepiped thermoplastic resin molded product was obtained.

【0041】得られた熱可塑性樹脂成形品について、実
施例1と同様にして、連続相と分散相との体積分率、曲
げ弾性率・圧縮弾性率、並びに全光線透過率を測定し
た。その各結果を下記の表2に示す。 <実施例3>ノリル樹脂とオレフィン系熱可塑性エラス
トマーのブレンドを表1に示す割合としたこと以外は、
実施例1と同じとして直方体形状の熱可塑性樹脂成形品
を得た。
With respect to the obtained thermoplastic resin molded product, the volume fraction of the continuous phase and the dispersed phase, the flexural modulus / compressive modulus, and the total light transmittance were measured in the same manner as in Example 1. The results are shown in Table 2 below. Example 3 Except that the blend of the noryl resin and the olefin-based thermoplastic elastomer was set to the ratio shown in Table 1,
A rectangular parallelepiped thermoplastic resin molded product was obtained in the same manner as in Example 1.

【0042】得られた熱可塑性樹脂成形品について、実
施例1と同様にして、連続相と分散相との体積分率、曲
げ弾性率・圧縮弾性率、並びに全光線透過率を測定し
た。その各結果を下記の表2に示す。 <実施例4>熱可塑性樹脂の組み合わせとして、ナイロ
ン66(宇部興産製 商品名2026B、密度1.14
g/cm3 )と、ポリプロピレン(三菱化学社製、商品
名:MA03、密度0.90g/cm3 、MFR=25
g/10分)を用いたこと以外は、実施例1と同じとし
て直方体形状の熱可塑性樹脂成形品を得た。 得られた
熱可塑性樹脂成形品について、実施例1と同様にして、
連続相と分散相との体積分率、曲げ弾性率・圧縮弾性
率、並びに全光線透過率を測定した。その各結果を下記
の表2に示す。 <実施例5>熱可塑性樹脂の組み合わせとして、ABS
樹脂(旭化成社製 商品名:スタイラックABS20
0、密度1.05g/cm3 、MFR=12.5g/1
0分)と、アクリル樹脂(三菱化学社製、商品名アクリ
ペットIR D−50 密度1.16g/cm3 、MF
R=7.6g/10分)を用いたこと以外は、実施例1
と同じとして直方体形状の熱可塑性樹脂成形品を得た。
With respect to the obtained thermoplastic resin molded product, the volume fraction of the continuous phase and the dispersed phase, the flexural modulus / compressive modulus, and the total light transmittance were measured in the same manner as in Example 1. The results are shown in Table 2 below. <Example 4> As a combination of thermoplastic resins, nylon 66 (trade name: 2026B, manufactured by Ube Industries, density: 1.14)
g / cm 3 ) and polypropylene (manufactured by Mitsubishi Chemical Corporation, trade name: MA03, density 0.90 g / cm 3 , MFR = 25)
g / 10 min), except that a rectangular parallelepiped thermoplastic resin molded product was obtained in the same manner as in Example 1. About the obtained thermoplastic resin molded article, it carried out similarly to Example 1,
The volume fraction, flexural modulus / compressive modulus, and total light transmittance of the continuous phase and the dispersed phase were measured. The results are shown in Table 2 below. <Example 5> ABS was used as a combination of thermoplastic resins.
Resin (made by Asahi Kasei Corporation: Styrac ABS20)
0, density 1.05 g / cm 3 , MFR = 12.5 g / 1
0 minutes) and an acrylic resin (trade name: Acrypet IR D-50, manufactured by Mitsubishi Chemical Corporation, density: 1.16 g / cm 3 , MF
Example 1 except that R = 7.6 g / 10 min) was used.
In the same manner as above, a rectangular parallelepiped thermoplastic resin molded product was obtained.

【0043】得られた熱可塑性樹脂成形品について、実
施例1と同様にして、連続相と分散相との体積分率、曲
げ弾性率・圧縮弾性率、並びに全光線透過率を測定し
た。その各結果を下記の表2に示す。 <比較例1>ノリル樹脂100%を用いて直方体形状の
熱可塑性樹脂成形品を得たこと以外は実施例1と同じと
した。
With respect to the obtained thermoplastic resin molded product, the volume fraction of the continuous phase and the dispersed phase, the flexural modulus / compressive modulus, and the total light transmittance were measured in the same manner as in Example 1. The results are shown in Table 2 below. <Comparative Example 1> The same procedure as in Example 1 was performed except that a rectangular parallelepiped thermoplastic resin molded product was obtained using 100% of the noril resin.

【0044】得られた熱可塑性樹脂成形品について、実
施例1と同様にして、連続相と分散相との体積分率、曲
げ弾性率・圧縮弾性率、並びに全光線透過率を測定し
た。その各結果を下記の表2に示す。 <比較例2>オレフィン系熱可塑性エラストマー100
%を用いて直方体形状の熱可塑性樹脂成形品を得たこと
以外は実施例1と同じとした。
With respect to the obtained thermoplastic resin molded product, the volume fraction of the continuous phase and the dispersed phase, the flexural modulus / compressive modulus, and the total light transmittance were measured in the same manner as in Example 1. The results are shown in Table 2 below. <Comparative Example 2> Olefin-based thermoplastic elastomer 100
% Was used, except that a rectangular parallelepiped thermoplastic resin molded product was obtained using%.

【0045】得られた熱可塑性樹脂成形品について、実
施例1と同様にして、連続相と分散相との体積分率、曲
げ弾性率・圧縮弾性率、並びに全光線透過率を測定し
た。その各結果を下記の表2に示す。
With respect to the obtained thermoplastic resin molded product, the volume fraction of the continuous phase and the dispersed phase, the flexural modulus / compressive modulus, and the total light transmittance were measured in the same manner as in Example 1. The results are shown in Table 2 below.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【発明の効果】以上説明したように、本発明の熱可塑性
樹脂成形品は、ブレンドした際に連続相と分散相を形成
し得る2種類以上の非相溶な熱可塑性樹脂の組み合わせ
からなり、成形品表面層と成形品中心層との間において
連続相と分散相の樹脂種が少なくとも1回反転する構造
となっているので、相反する性質を高いレベルで両立さ
せることが可能になる。これにより、従来の単一の樹脂
では達成し得なかった物性、例えば剛性と柔軟性や剛性
と色彩の光沢感等を有する熱可塑性樹脂成形品の実現が
可能になる。
As described above, the thermoplastic resin molded article of the present invention comprises a combination of two or more incompatible thermoplastic resins capable of forming a continuous phase and a dispersed phase when blended. Since the resin type of the continuous phase and the dispersed phase is inverted at least once between the surface layer of the molded article and the central layer of the molded article, it is possible to achieve the opposite properties at a high level. This makes it possible to realize a thermoplastic resin molded product having physical properties that could not be achieved with a conventional single resin, for example, rigidity and flexibility, rigidity and glossiness of color, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱可塑性樹脂成形品の実施例の全体斜
視図である。
FIG. 1 is an overall perspective view of an embodiment of a thermoplastic resin molded product of the present invention.

【図2】本発明の熱可塑性樹脂成形品の構造を模式的に
示す図である。
FIG. 2 is a view schematically showing the structure of a thermoplastic resin molded product of the present invention.

【符号の説明】[Explanation of symbols]

1 熱可塑性樹脂成形品 2 成形品表面層 3 成形品中心層 1 Thermoplastic resin molded product 2 Molded product surface layer 3 Molded product central layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 71/12 C08L 71/12 77/00 77/00 101/00 101/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 71/12 C08L 71/12 77/00 77/00 101/00 101/00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ブレンドした際に連続相と分散相を形成
し得る2種類以上の非相溶な熱可塑性樹脂の組み合わせ
からなる成形品であって、成形品表面層と成形品中心層
との間において連続相と分散相の樹脂種が少なくとも1
回反転していることを特徴とする熱可塑性樹脂成形品。
1. A molded article comprising a combination of two or more incompatible thermoplastic resins capable of forming a continuous phase and a dispersed phase when blended, comprising a molded article surface layer and a molded article central layer. Between the continuous phase and the dispersed phase,
A thermoplastic resin molded product characterized by being inverted.
【請求項2】 成形品表面層と成形品中心層で、連続相
と分散相を形成し得る2種類以上の非相溶な熱可塑性樹
脂の体積分率が異なることを特徴とする請求項1記載の
熱可塑性樹脂成形品。
2. The molded article surface layer and the molded article center layer have different volume fractions of two or more types of incompatible thermoplastic resins capable of forming a continuous phase and a dispersed phase. The thermoplastic resin molded article according to the above.
【請求項3】 ブレンドした際に連続相と分散相を形成
し得る非相溶な熱可塑性樹脂の混合割合が80:20〜
20:80の範囲にあることを特徴とする請求項1記載
の熱可塑性樹脂成形品。
3. The mixing ratio of an incompatible thermoplastic resin capable of forming a continuous phase and a dispersed phase when blended is from 80:20.
The thermoplastic resin molded product according to claim 1, wherein the ratio is in the range of 20:80.
【請求項4】 溶解性パラメータの差が0.3以上離れ
ている2種類以上の非相溶な熱可塑性樹脂を用いること
を特徴とする請求項1記載の熱可塑性樹脂成形品。
4. The thermoplastic resin molded article according to claim 1, wherein two or more incompatible thermoplastic resins having a difference in solubility parameter of 0.3 or more are used.
【請求項5】 曲げ弾性率の差が1.5GPa以上ある
2種類以上の非相溶な熱可塑性樹脂を用いることを特徴
とする請求項1記載の熱可塑性樹脂成形品。
5. The thermoplastic resin molded article according to claim 1, wherein two or more types of incompatible thermoplastic resins having a difference in flexural modulus of 1.5 GPa or more are used.
【請求項6】 ブレンドした際に連続相と分散相を形成
し得る2種類以上の非相溶な熱可塑性樹脂が、ノリル
(登録商標)、ABS、ポリアミドの群の中から選ばれ
る1種類の樹脂と、ポリオレフィン、熱可塑性エラスト
マー、ポリカーボネート、アクリル樹脂の群の中から選
ばれる1種類の樹脂との組み合わせであることを特徴と
する請求項1記載の熱可塑性樹脂成形品。
6. The one or more incompatible thermoplastic resins capable of forming a continuous phase and a dispersed phase when blended are selected from the group consisting of Noryl (registered trademark), ABS, and polyamide. The thermoplastic resin molded product according to claim 1, wherein the resin is a combination of a resin and one resin selected from the group consisting of a polyolefin, a thermoplastic elastomer, a polycarbonate, and an acrylic resin.
JP2000017240A 2000-01-26 2000-01-26 Thermoplastic resin molded product Pending JP2001206956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000017240A JP2001206956A (en) 2000-01-26 2000-01-26 Thermoplastic resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000017240A JP2001206956A (en) 2000-01-26 2000-01-26 Thermoplastic resin molded product

Publications (1)

Publication Number Publication Date
JP2001206956A true JP2001206956A (en) 2001-07-31

Family

ID=18544264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000017240A Pending JP2001206956A (en) 2000-01-26 2000-01-26 Thermoplastic resin molded product

Country Status (1)

Country Link
JP (1) JP2001206956A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338540B2 (en) 2007-10-22 2012-12-25 Dow Global Technologies Llc Polymeric compositions and processes for molding articles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338540B2 (en) 2007-10-22 2012-12-25 Dow Global Technologies Llc Polymeric compositions and processes for molding articles
US8674028B2 (en) 2007-10-22 2014-03-18 Dow Global Technologies Llc Polymeric compositions and processes for molding articles

Similar Documents

Publication Publication Date Title
KR20190054102A (en) Thermoplastic polymer powder for selective laser sintering (SLS)
TWI303644B (en) Thermoplastic resin composition for refrigerator having improved environmental stress crack resistance
JP5188676B2 (en) Luster-containing resin composition
CN111801386B (en) Thermoplastic resin composition and molded article using the same
JPH05255588A (en) Fiber-reinforced thermoplastic molding composition
JPS6160746A (en) Thermoplastic resin composition
KR102296775B1 (en) Thermoplastic resin composition and molded article using the same
JP2003119352A (en) Color pigment master batch composition and method for molding
JPH09104795A (en) Syndiotactic polystyrene improved in impact resistance
EP2130869B1 (en) Polymer composition and moldings thereof
JP2001206956A (en) Thermoplastic resin molded product
JP2003119402A (en) Thermoplastic resin composition
JP4867328B2 (en) Thermoplastic resin composition
JP4328420B2 (en) Thermoplastic resin composition
JPH08208919A (en) Thermoplastic polymer molding having marbled appearance, its production and pattern-forming material used therefor
JPH0217583B2 (en)
JPH0790118A (en) Resin composition
WO2002068536A1 (en) Thermoplastic resin composition material and formed article comprising said material
JP5726977B2 (en) Automotive interior parts with reduced squeaking noise
KR101583223B1 (en) Thermoplastic resin composition and molded product using the same
KR102172087B1 (en) Polycarbonate-polyamide alloy resin composition, and method for preparing the resin composition
JP2001219516A (en) Highly visualizing composite resin molded article excellent in low temperature impact resistance and method of manufacturing the same
JP3573219B2 (en) Method for producing matte thermoplastic resin molded product
JPH04214759A (en) Rubber modified polymer blend of polycarbonate and petg
JP3135398B2 (en) Resin composition