JP2001192712A - Metallic hyperfine particle and producing method therefor - Google Patents

Metallic hyperfine particle and producing method therefor

Info

Publication number
JP2001192712A
JP2001192712A JP37722099A JP37722099A JP2001192712A JP 2001192712 A JP2001192712 A JP 2001192712A JP 37722099 A JP37722099 A JP 37722099A JP 37722099 A JP37722099 A JP 37722099A JP 2001192712 A JP2001192712 A JP 2001192712A
Authority
JP
Japan
Prior art keywords
metal
ultrafine
ligand
particles
integer greater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP37722099A
Other languages
Japanese (ja)
Other versions
JP3579765B2 (en
Inventor
Masami Nakamoto
昌美 中許
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Kagaku Kogyo KK
Osaka City
Original Assignee
Daiken Kagaku Kogyo KK
Osaka City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Kagaku Kogyo KK, Osaka City filed Critical Daiken Kagaku Kogyo KK
Priority to JP37722099A priority Critical patent/JP3579765B2/en
Publication of JP2001192712A publication Critical patent/JP2001192712A/en
Application granted granted Critical
Publication of JP3579765B2 publication Critical patent/JP3579765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material capable of securely and easily realizing the deposition of a metallic film. SOLUTION: In this method for producing metallic hyperfine particles, a quaternary ammonium salt type metallic complex compound expressed by the general formula of [R1 R2 R3 R4 N]x [My(A)z] [wherein R1 to R4 are the same or different hydrocarbon groups and may have a substitutional group; M is transition metal; A is an organic sulfur ligand; (x) is an integer higher than zero; (y) is an integer higher than zero; and (z) is an integer higher than zero) is used as the starting raw material, and, by the reducing elimination reaction of the organic sulfur ligand in the compound, the central metal is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属超微粒子及び
その製造方法に関する。
The present invention relates to ultrafine metal particles and a method for producing the same.

【0002】[0002]

【従来技術】金属ペーストは、電子回路、電極等の導電
膜の形成に用いられている。これらの導電膜は、金属ペ
ーストをセラミックス、ガラス等の非導電性基板上に塗
布し、塗膜を焼成・硬化することにより形成されてい
る。近年、電子材料の多様化、需要増大等に伴って、金
属ペーストの用途も急速に拡大しつつあるが、その一つ
として金属粉末と樹脂成分とを混練して製造される金属
導電膜形成用厚膜ペーストが知られている。
2. Description of the Related Art Metal paste is used for forming conductive films such as electronic circuits and electrodes. These conductive films are formed by applying a metal paste on a non-conductive substrate such as ceramics or glass and baking and curing the coating film. In recent years, with the diversification of electronic materials and increasing demand, the use of metal paste is also rapidly expanding. One of them is for forming a metal conductive film formed by kneading a metal powder and a resin component. Thick film pastes are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来に
おける金属導電膜形成用厚膜ペーストでは、次のような
問題がある。
However, the conventional thick film paste for forming a metal conductive film has the following problems.

【0004】第一に、金属粉末の粒子サイズが数ミクロ
ンと大きいため、焼成温度が必然的に高くなり、最低で
も500〜600℃という高温で焼成しなければ所定の
導電膜を形成することが困難である。また、このように
焼成温度が高いことから、耐熱性の低いプラスチック等
の基材に適用することも困難である。
[0004] First, since the particle size of the metal powder is as large as several microns, the firing temperature is inevitably high, and a predetermined conductive film can be formed unless firing at a high temperature of at least 500 to 600 ° C. Have difficulty. In addition, since the firing temperature is high, it is difficult to apply the method to a base material such as plastic having low heat resistance.

【0005】第二に、上記のように金属粉末の粒子サイ
ズが大きいことから、形成される導電膜にもピンホール
が発生しやすい。このため、ピンホールのない緻密な導
電膜を得るためには、厚膜ペーストを塗布し、焼成する
という一連の工程を何回も繰り返す必要がある。
[0005] Second, since the particle size of the metal powder is large as described above, pinholes are easily generated in the formed conductive film. Therefore, in order to obtain a dense conductive film without pinholes, it is necessary to repeat a series of steps of applying a thick film paste and firing it.

【0006】第三に、上記厚膜ペーストは、少なくとも
金属粉末の調製、樹脂成分の調製及び両者の混練という
工程が必要であり、その製造工程も効率的なものとは言
えない。
Third, the above-mentioned thick film paste requires at least steps of preparation of metal powder, preparation of resin components and kneading of both, and the production process cannot be said to be efficient.

【0007】従って、本発明は、特に、金属膜の形成を
より確実かつ容易に実現できる材料を提供することを主
な目的とする。
Accordingly, it is a main object of the present invention to provide a material capable of forming a metal film more reliably and easily.

【0008】[0008]

【課題を解決するための手段】本発明者は、かかる従来
技術の問題点を解決するために鋭意研究を重ねた結果、
特定の金属錯体化合物を用いる場合には上記目的を達成
できることを見出し、本発明を完成するに至った。
The inventor of the present invention has conducted intensive studies in order to solve the problems of the prior art.
It has been found that the above object can be achieved when a specific metal complex compound is used, and the present invention has been completed.

【0009】すなわち、本発明は、下記の金属超微粒子
及びその製造方法に係るものである。
That is, the present invention relates to the following ultrafine metal particles and a method for producing the same.

【0010】1.一般式[RN][M
(A)](但し、R〜Rは、同一又は別異の炭
化水素基であって置換基を有していても良いもの、Mは
遷移金属、Aは有機硫黄系配位子、xは0よりも大きい
整数、yは0よりも大きい整数、zは0よりも大きい整
数を示す。)で表わされる4級アンモニウム塩型金属錯
体化合物を出発原料とし、当該化合物の有機硫黄系配位
子の還元的脱離反応から中心金属を還元することを特徴
とする金属超微粒子の製造方法。
[0010] 1. Formula [R 1 R 2 R 3 R 4 N] x [M
y (A) z ] (provided that R 1 to R 4 are the same or different hydrocarbon groups and may have a substituent, M is a transition metal, and A is an organic sulfur-based coordination. And x is an integer greater than 0, y is an integer greater than 0, and z is an integer greater than 0.) A quaternary ammonium salt type metal complex compound represented by the following formula: A method for producing ultrafine metal particles, comprising reducing a central metal from a reductive elimination reaction of a system ligand.

【0011】2.一般式[RN][M
(A)](但し、R〜Rは、同一又は別異の炭
化水素基であって置換基を有していても良いもの、Mは
遷移金属、Aは有機硫黄系配位子、xは0よりも大きい
整数、yは0よりも大きい整数、zは0よりも大きい整
数を示す。)で表わされる4級アンモニウム塩型金属錯
体化合物を熱処理することを特徴とする金属超微粒子の
製造方法。
2. Formula [R 1 R 2 R 3 R 4 N] x [M
y (A) z ] (provided that R 1 to R 4 are the same or different hydrocarbon groups and may have a substituent, M is a transition metal, and A is an organic sulfur-based coordination. And x is an integer greater than 0, y is an integer greater than 0, and z is an integer greater than 0.) A quaternary ammonium salt type metal complex compound represented by the following formula: A method for producing fine particles.

【0012】3.金属超微粒子とともにジスルフィドを
生成させる上記第1項又は第2項に記載の製造方法。
3. 3. The production method according to the above item 1 or 2, wherein a disulfide is formed together with the ultrafine metal particles.

【0013】4.有機硫黄系配位子がチオレート配位子
(SR’)又はチオアセチレン配位子(SC≡CR’)
(いずれについても、R’は炭化水素基であって置換基
を有していても良いものを示す。)である上記第1項〜
第3項のいずれかに記載の製造方法。
4. The organic sulfur-based ligand is a thiolate ligand (SR ') or a thioacetylene ligand (SC≡CR')
(In each case, R ′ is a hydrocarbon group which may have a substituent.)
4. The method according to claim 3.

【0014】5.Mが、Au,Pt、Cu、Ni又はP
dである上記第1項〜第4項のいずれかに記載の製造方
法。
5. M is Au, Pt, Cu, Ni or P
5. The method according to any one of the above items 1 to 4, wherein d is d.

【0015】6.得られる金属超微粒子中の有機成分と
して4級アンモニウム塩型金属錯体化合物の対カチオン
である[RN]に由来の炭化水素基成分
を含む上記第1項〜第5項のいずれかに記載の製造方
法。
6. The above-mentioned items 1 to 5, which include, as an organic component in the obtained ultrafine metal particles, a hydrocarbon group component derived from [R 1 R 2 R 3 R 4 N] which is a counter cation of the quaternary ammonium salt type metal complex compound. Item.

【0016】7.得られる金属超微粒子中の金属成分の
含有量が80〜95重量%となるように熱処理する上記
第2項〜第6項のいずれかに記載の製造方法。
[7] 7. The production method according to any one of items 2 to 6, wherein the heat treatment is performed so that the content of the metal component in the obtained ultrafine metal particles is 80 to 95% by weight.

【0017】8.中心部とその周囲の保護層から構成さ
れる金属超微粒子であって、中心部が金属成分からな
り、保護層が有機成分からなることを特徴とする金属超
微粒子。
8. Ultrafine metal particles comprising a central portion and a protective layer around the central portion, wherein the central portion comprises a metal component and the protective layer comprises an organic component.

【0018】9.金属成分の含有量が80重量%以上で
ある上記第7項に記載の金属超微粒子。 10.上記第8項又は第9項に記載の金属超微粒子を含
む金属膜成形用材料。
9. 8. The ultrafine metal particles according to item 7, wherein the content of the metal component is 80% by weight or more. 10. 10. A material for forming a metal film, comprising the ultrafine metal particles according to item 8 or 9.

【0019】[0019]

【発明の実施の形態】本発明の製造方法は、一般式[R
N][M(A)](但し、R
は、同一又は別異の炭化水素基であって置換基を有
していても良いもの、Mは遷移金属、Aは有機硫黄系配
位子、xは0よりも大きい整数、yは0よりも大きい整
数、zは0よりも大きい整数を示す。)で表わされる4
級アンモニウム塩型金属錯体化合物を出発原料とし、当
該化合物の有機硫黄系配位子の還元的脱離反応から中心
金属を還元することを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The production method of the present invention has the general formula [R
1 R 2 R 3 R 4 N ] x [M y (A) z] ( where, R 1 ~
R 4 is the same or different hydrocarbon group which may have a substituent, M is a transition metal, A is an organic sulfur-based ligand, x is an integer greater than 0, y is An integer greater than 0 and z represents an integer greater than 0. 4)
Using a quaternary ammonium salt type metal complex compound as a starting material, a central metal is reduced by a reductive elimination reaction of an organic sulfur-based ligand of the compound.

【0020】本発明の製造方法の出発原料(以下「前駆
体」ともいう)である4級アンモニウム塩型金属錯体化
合物は、一般式[RN][M(A)
]で表わされる。この一般式を有するものであれば、
公知の製法で得られるもの又は市販品を用いることもで
きる。例えば、上記化合物が一般式[RN][Au
(SR’)](Rはアルキル基、R’はアルキル基を
示す。以下の1)及び2)においても同じ。)で示され
る4級アンモニウム塩型金属錯体化合物を製造する場合
は次のような工程1)〜2)(溶媒中での反応)によっ
て製造することができる。
The quaternary ammonium salt type metal complex compound which is a starting material (hereinafter also referred to as a “precursor”) of the production method of the present invention has a general formula [R 1 R 2 R 3 R 4 N] x [M y ( A)
z ]. If it has this general formula,
A product obtained by a known production method or a commercially available product can also be used. For example, when the above compound is represented by the general formula [R 4 N] [Au
(SR ′) 2 ] (R represents an alkyl group and R ′ represents an alkyl group. The same applies to 1) and 2) below. In the case of producing the quaternary ammonium salt type metal complex compound represented by the formula (1), it can be produced by the following steps 1) and 2) (reaction in a solvent).

【0021】1)HAuCl+RNCl→[R
N][AuCl]+HCl 2)[RN][AuCl]+4R’SNa→[R
N][Au(SR’)]+R’S−SR’+4NaC
l すなわち、塩化金酸等の金属塩の溶液に炭化水素基を有
する4級アンモニウム塩を反応させ、得られた生成物を
ナトリウムメチラートの存在下でチオール化合物を反応
させることによって所定の4級アンモニウム塩型金属錯
体化合物を得ることができる。従って、この場合は、4
級アンモニウム塩型金属錯体化合物におけるR〜R
は、上記の4級アンモニウム塩を適宜選択することによ
って決定することができる。また、中心金属に配位する
配位子は、上記チオール化合物の種類によって決定する
ことができる。溶媒は、用いる原料の種類等に応じて公
知の溶媒から適宜採択すれば良い。
1) HAuCl 4 + R 4 NCl → [R
4 N] [AuCl 4 ] + HCl 2) [R 4 N] [AuCl 4 ] + 4R′SNa → [R 4
N] [Au (SR ') 2 ] + R'S-SR' + 4NaC
l That is, a quaternary ammonium salt having a hydrocarbon group is reacted with a solution of a metal salt such as chloroauric acid, and the obtained product is reacted with a thiol compound in the presence of sodium methylate to give a predetermined quaternary compound. An ammonium salt type metal complex compound can be obtained. Therefore, in this case, 4
R 1 to R 4 in the quaternary ammonium salt type metal complex compound
Can be determined by appropriately selecting the above quaternary ammonium salt. The ligand coordinated to the central metal can be determined depending on the type of the thiol compound. The solvent may be appropriately selected from known solvents according to the type of raw materials used and the like.

【0022】本発明における4級アンモニウム塩型金属
錯体化合物のR〜Rは、同一又は別異の炭化水素基
であって置換基を有していても良いものを適用できる。
炭化水素基としては特に限定的ではないが、通常は炭素
数1〜20のアルキル基であって置換基を有していても
良いものことが好ましい。具体的には、[R
N]部として[C1225(CHN]、
[C1429(CHN]、[(C1837
(CHN]、[C13(CHN]等
の直鎖アルキル基をもつものが例示される。
In the present invention, R 1 to R 4 of the quaternary ammonium salt type metal complex compound may be the same or different hydrocarbon groups which may have a substituent.
The hydrocarbon group is not particularly limited, but is preferably an alkyl group having 1 to 20 carbon atoms which may have a substituent. Specifically, [R 1 R 2 R 3
[C 12 H 25 (CH 3 ) 3 N] as the [R 4 N] part,
[C 14 H 29 (CH 3 ) 3 N], [(C 18 H 37 )
Those having a linear alkyl group such as 2 (CH 3 ) 2 N] and [C 6 H 13 (CH 3 ) 3 N] are exemplified.

【0023】上記炭化水素基が置換基を有する場合、そ
の置換基の種類も制限されない。例えば、メチル基、エ
チル基、OH基、ニトロ基、ハロゲン基(Cl、Br
等)、メトキシ基、エトキシ基等が挙げられる。
When the hydrocarbon group has a substituent, the type of the substituent is not limited. For example, methyl group, ethyl group, OH group, nitro group, halogen group (Cl, Br
Etc.), methoxy group, ethoxy group and the like.

【0024】上記Mは遷移金属であり、上記4級アンモ
ニウム塩型金属錯体化合物の中心金属を構成する。遷移
金属としては、例えばAu、Pt、Cu、Ni、Pd、
Co、Fe、Ti、Cr、Mn、Zr等が挙げられる。
本発明では、特にAu、Pt、Cu、Ni又はPdが好
ましい。
M is a transition metal and constitutes the central metal of the quaternary ammonium salt type metal complex compound. As the transition metal, for example, Au, Pt, Cu, Ni, Pd,
Co, Fe, Ti, Cr, Mn, Zr, and the like.
In the present invention, Au, Pt, Cu, Ni or Pd is particularly preferable.

【0025】Aは有機硫黄系配位子を示す。硫黄原子を
含む配位子であれば、その化学構造は特に限定されず、
また単座配位子、二座配位子等のいずれであっても良
い。
A represents an organic sulfur-based ligand. If it is a ligand containing a sulfur atom, its chemical structure is not particularly limited,
In addition, any of a monodentate ligand, a bidentate ligand and the like may be used.

【0026】特に、本発明の有機硫黄系配位子として
は、チオレート配位子(SR’)又はチオアセチレン配
位子(SC≡CR’)(いずれについても、R’は炭化
水素基であって置換基を有していても良いものを示
す。)であることが好ましい。上記R’は、特に炭素数
1〜20のアルキル基であって置換基を有していても良
いものことが好ましい。置換基を有する場合、その置換
基の種類も制限されず、前記と同様のものを適用でき
る。有機硫黄系配位子は、のいずれであっても良く、中
心金属の種類等により適宜選択すれば良い。
In particular, the organosulfur ligand of the present invention includes a thiolate ligand (SR ') or a thioacetylene ligand (SC≡CR') (in each case, R 'is a hydrocarbon group). And may have a substituent.). R 'is preferably an alkyl group having 1 to 20 carbon atoms, which may have a substituent. When it has a substituent, the type of the substituent is not limited, and the same as described above can be applied. The organic sulfur-based ligand may be any one of them, and may be appropriately selected depending on the type of the central metal and the like.

【0027】チオレート配位子としては、R’部として
2n+1(n=1〜20)で示されるものが好ま
しく、例えばC1225、C13、C1337
等の直鎖アルキル基が適用できる。チオアセチレン配位
子のR’部としては、例えばC2n+1(n=1〜
8)で示されるものが例示される。
As the thiolate ligand, those represented by C n H 2n + 1 (n = 1 to 20) as the R ′ part are preferable. For example, C 12 H 25 , C 6 H 13 and C 13 H 37
And the like. As the R ′ part of the thioacetylene ligand, for example, C n H 2n + 1 (n = 1 to
8) are exemplified.

【0028】置換基を有するチオアセチレン配位子は、
C≡CR’部としてプロピン、2−プロピン−1−オー
ル、1−ブチン−3−オール、3−メチル−1−ブチン
−3−オール、3,3−ジメチル−1−ブチン、1−ペ
ンチン、1−ペンチン−3−オール、4−ペンチン−1
−オール、4−ペンチン−2−オール、4−メチル−1
−ペンチン、3−メチル−1−ペンチン−3−オール、
5−ヘキシン−1−オール、5−メチル−1−ヘキシン
−3−オール、3,5−ジメチル−1−ヘキシン−3−
オール、1−ヘプチン、1−ヘプチン−3−オール、5
−ヘプチン−3−オール、3,6−ジメチル−1−ヘプ
チン−3−オール、3,6−ジメチル−1−ヘプチン−
3−オール、1−オクチン、1−オクチン−3−オール
等が例示される。
The substituted thioacetylene ligand is
C≡CR ′ as propyne, 2-propyn-1-ol, 1-butyn-3-ol, 3-methyl-1-butyn-3-ol, 3,3-dimethyl-1-butyne, 1-pentyne, 1-pentyn-3-ol, 4-pentin-1
-Ol, 4-pentyn-2-ol, 4-methyl-1
-Pentin, 3-methyl-1-pentyn-3-ol,
5-hexyn-1-ol, 5-methyl-1-hexyn-3-ol, 3,5-dimethyl-1-hexyn-3-
All, 1-heptin, 1-heptin-3-ol, 5
-Heptin-3-ol, 3,6-dimethyl-1-heptin-3-ol, 3,6-dimethyl-1-heptin-
Examples include 3-ol, 1-octin, 1-octin-3-ol, and the like.

【0029】また、例えば水酸基を有する環状炭化水素
を含むチオアセチレン配位子も適用できる。このような
配位子SC≡CR’は、C≡CR’部として1−エチニ
ル−1−シクロプロパノール、1−エチニル−1−シク
ロブタノール、1−エチニル−1−シクロペンタノー
ル、1−エチニル−1−シクロヘキサノール、1−プロ
ピン−3−シクロプロパノール、1−プロピン−3−シ
クロブタノール、1−プロピン−3−シクロペンタノー
ル、1−ブチン−4−シクロブタノール、1−ペンチン
−5−シクロプロパノール等が例示される。
Further, for example, a thioacetylene ligand containing a cyclic hydrocarbon having a hydroxyl group can also be applied. Such a ligand SC @ CR 'has 1-ethynyl-1-cyclopropanol, 1-ethynyl-1-cyclobutanol, 1-ethynyl-1-cyclopentanol, 1-ethynyl- 1-cyclohexanol, 1-propyn-3-cyclopropanol, 1-propyn-3-cyclobutanol, 1-propyn-3-cyclopentanol, 1-butyne-4-cyclobutanol, 1-pentyne-5-cyclopropanol Etc. are exemplified.

【0030】上記xは0よりも大きい整数、yは0より
も大きい整数、zは0よりも大きい整数をそれぞれ示
し、中心金属の種類、有機硫黄系配位子の種類等により
適宜決定される。例えば、4級アンモニウム塩型金属錯
体化合物の有機硫黄系配位子がチオレート配位子(S
R’)又はチオアセチレン配位子(SC≡CR’)であ
る場合において、中心金属MがAuのときはx=2、y
=1及びz=2、MがAgのときはx=1、y=1及び
z=2、MがPtのときはx=2、y=1及びz=4、
MがCuのときはx=1、y=1及びz=2(又はx=
2、y=1及びz=3)、MがPdのときはx=2、y
=1及びz=4、MがNiのときはx=2、y=1及び
z=4等とすれば良い。
The above-mentioned x represents an integer greater than 0, y represents an integer greater than 0, and z represents an integer greater than 0, and is appropriately determined depending on the type of the central metal, the type of the organic sulfur ligand, and the like. . For example, when the organic sulfur-based ligand of the quaternary ammonium salt-type metal complex compound is a thiolate ligand (S
R ′) or a thioacetylene ligand (SC≡CR ′), when the central metal M is Au, x = 2, y
= 1 and z = 2, x = 1, y = 1 and z = 2 when M is Ag, x = 2, y = 1 and z = 4 when M is Pt,
When M is Cu, x = 1, y = 1 and z = 2 (or x =
2, y = 1 and z = 3), when M is Pd, x = 2, y
= 1 and z = 4, and when M is Ni, x = 2, y = 1 and z = 4.

【0031】本発明の製造方法では、上記のような4級
アンモニウム塩型金属錯体化合物を出発原料として用
い、この化合物の有機硫黄系配位子の還元的脱離反応か
ら中心金属を還元する。
In the production method of the present invention, the above-mentioned quaternary ammonium salt type metal complex compound is used as a starting material, and the central metal is reduced by the reductive elimination reaction of the organic sulfur-based ligand of this compound.

【0032】例えば、出発原料として[RN][Au
(SC1225](Rはアルキル基)を用いる場
合の反応は、下記のように進行する。 [RN][Au(SC1225]→Au(−
R)+RN+(SC1225 すなわち、チオレート配位子が還元的脱離を起こし、ジ
スルフィドを生成するとともに金を生成するが、同時に
起こる4級アンモニウム塩の分解(熱分解)により生じ
るアルキル基の一部又は全部が金のまわりに保護層を形
成し、平均粒径が10数ナノメータの金超微粒子(Au
(−R))となる。
For example, [R 4 N] [Au
The reaction in the case of using (SC 12 H 25 ) 2 ] (R is an alkyl group) proceeds as follows. [R 4 N] [Au (SC 12 H 25 ) 2 ] → Au (−
R) + R 3 N + (SC 12 H 25 ) 2 That is, the thiolate ligand undergoes reductive elimination to form disulfide and gold, and simultaneously the decomposition of quaternary ammonium salt (pyrolysis) Some or all of the resulting alkyl groups form a protective layer around gold, and the ultrafine gold particles (Au having an average particle diameter of about 10
(-R)).

【0033】本発明の製造方法においては、上記のよう
な還元的脱離反応が起こる限り、いずれの操作方法によ
って上記出発原料を処理しても良いが、通常は出発原料
の熱処理によって実施することができる。
In the production method of the present invention, as long as the above-mentioned reductive elimination reaction occurs, the starting material may be treated by any operation method. Can be.

【0034】熱処理における条件は、かかる反応が生ず
る限り特にその条件に制限はなく、出発原料の種類、最
終製品の用途・使用目的等に応じて適宜設定すれば良
い。特に、金属超微粒子の金属成分の含有量が80重量
%以上となるように熱処理するのが好ましい。上記含有
量の上限は特に限定されないが、通常は95重量%程度
(炭化水素基成分が5重量%以上)となるようにすれば
良い。換言すれば、金属成分の含有量が80〜95重量
%程度となるように熱処理すれば良い。
The conditions for the heat treatment are not particularly limited as long as such a reaction occurs, and may be appropriately set according to the type of starting materials, the use and purpose of the final product, and the like. In particular, heat treatment is preferably performed so that the content of the metal component in the ultrafine metal particles is 80% by weight or more. The upper limit of the content is not particularly limited, but may be usually about 95% by weight (the hydrocarbon group component is 5% by weight or more). In other words, the heat treatment may be performed so that the content of the metal component is about 80 to 95% by weight.

【0035】従って、加熱温度、加熱時間、加熱雰囲気
等も、出発原料の種類、所望の粒径・金属成分含有量、
最終製品の用途等との関係で設定すれば良い。例えば、
出発材料として[C1225N(CH][Au
(SC1225]を用いる場合は、窒素ガス等の
不活性ガス雰囲気中160℃で7時間程度加熱すれば、
粒径30〜40nmの粒子が多く分布する金超微粒子
(金含有量90重量%以上)を得ることができる。
Accordingly, the heating temperature, heating time, heating atmosphere and the like also depend on the type of starting material, desired particle size, metal component content,
What is necessary is just to set in relation with the use of the final product. For example,
[C 12 H 25 N (CH 3 ) 3 ] [Au
(SC 12 H 25 ) 2 ], when heated at 160 ° C. for about 7 hours in an atmosphere of an inert gas such as nitrogen gas,
Ultrafine gold particles (gold content of 90% by weight or more) in which a large number of particles having a particle size of 30 to 40 nm are distributed can be obtained.

【0036】還元的脱離反応が完了した後、生成した金
属超微粒子は、一般には副生したジスルフィドとともに
存在する。生成したジスルフィドは通常は液状であり、
その中に沈殿するようなかたちで金属超微粒子が生成す
る。この場合は、濾過、遠心分離等の通常の固液分離方
法に従って金属超微粒子を回収し、必要に応じて水、溶
剤等で洗浄すれば良い。さらに、必要に応じて金属超微
粒子を自然乾燥又は強制乾燥させても良い。
After the reductive elimination reaction is completed, the ultrafine metal particles generally exist together with disulfide by-produced. The resulting disulfide is usually liquid,
Ultrafine metal particles are generated in such a manner as to precipitate in them. In this case, the ultrafine metal particles may be collected according to an ordinary solid-liquid separation method such as filtration and centrifugation, and may be washed with water, a solvent or the like as necessary. Further, if necessary, the ultrafine metal particles may be air-dried or force-dried.

【0037】本発明の金属超微粒子は、中心部とその周
囲の保護層から構成される金属超微粒子であって、中心
部が金属成分からなり、保護層が有機成分からなること
を特徴とする。
The ultrafine metal particles of the present invention are ultrafine metal particles comprising a central portion and a protective layer around the central portion, wherein the central portion comprises a metal component and the protective layer comprises an organic component. .

【0038】金属超微粒子の保護層を構成する有機成分
は、本発明の製造方法により製造される場合には、通常
は出発原料の対カチオンてある4級アンモニウム塩に由
来の炭化水素基成分を含有する。但し、有機硫黄系配位
子の由来する成分が含まれていても差し支えない。本発
明では、特に、炭素数1〜20アルキル基成分が含まれ
ていることが好ましい。
When the organic component constituting the protective layer of the ultrafine metal particles is produced by the production method of the present invention, a hydrocarbon group component derived from a quaternary ammonium salt which is a counter cation of a starting material is usually used. contains. However, a component derived from an organic sulfur-based ligand may be included. In the present invention, it is particularly preferable that an alkyl group component having 1 to 20 carbon atoms is contained.

【0039】本発明の金属超微粒子の金属成分としては
特に限定されず、通常は遷移金属(好ましくはAu、P
t、Cu、Ni又はPd)のいずれかを適用できる。本
発明の製造方法により製造される場合には、出発原料と
して用いる4級アンモニウム塩型金属錯体化合物の中心
金属に由来する金属成分が存在する。
The metal component of the ultrafine metal particles of the present invention is not particularly limited, and is usually a transition metal (preferably Au, P
t, Cu, Ni or Pd) can be applied. When produced by the production method of the present invention, there is a metal component derived from the central metal of the quaternary ammonium salt type metal complex compound used as a starting material.

【0040】金属成分の含有量は、最終製品の用途、出
発原料の種類等により適宜変更できるが、通常は80重
量%以上(好ましくは80〜95重量%、より好ましく
は80〜90重量%)とすれば良い。
The content of the metal component can be appropriately changed depending on the use of the final product, the kind of the starting material, and the like, but is usually 80% by weight or more (preferably 80 to 95% by weight, more preferably 80 to 90% by weight). It is good.

【0041】本発明の金属超微粒子の平均粒径は特に限
定されず、通常は100nm以下(数10〜数nm)の
範囲内で最終製品の用途・使用目的等に応じて適宜設定
できる。特に、本発明では、平均粒径50nm以下の金
属超微粒子を製造することもできる。金属超微粒子の形
態も特に限定されず、球状、多角形状、フレーク状、柱
状等のいずれであっても良いが、通常は球状又はそれに
近い形状であることが好ましい。
The average particle size of the metal ultrafine particles of the present invention is not particularly limited, and can be appropriately set within the range of usually 100 nm or less (several tens to several nm) according to the use and purpose of the final product. In particular, in the present invention, ultrafine metal particles having an average particle diameter of 50 nm or less can be produced. The form of the metal ultrafine particles is not particularly limited, and may be any of a spherical shape, a polygonal shape, a flake shape, a columnar shape, and the like.

【0042】本発明の金属超微粒子は、例えば本発明の
上記製造方法によってより効率良くかつ確実に製造する
ことができる。すなわち、本発明の金属超微粒子は、上
記製造方法によって製造されるものであることが特に好
ましい。
The ultrafine metal particles of the present invention can be produced more efficiently and reliably by, for example, the production method of the present invention. That is, the ultrafine metal particles of the present invention are particularly preferably produced by the above production method.

【0043】本発明の金属超微粒子は、金属膜形成用、
装飾用、触媒用等のあらゆる分野での利用が可能であ
る。特に、金属膜成形用材料(具体的には、電子回路、
電極等の電子材料用、その他装飾用)として最適であ
る。その使用形態は特に限定的でないが、本発明の金属
超微粒子はそのままでも用いることができ、また必要に
応じて溶剤に分散させて用いることもできる。また、本
発明の効果を妨げない範囲内で、樹脂成分、溶剤等と混
練してペースト化することも可能である。上記材料中に
おける金属超微粒子の含有量は、用いる金属超微粒子の
種類、最終製品の用途等に応じて適宜決定すれば良い。
The ultrafine metal particles of the present invention are used for forming a metal film.
It can be used in various fields such as decoration and catalyst. In particular, metal film forming materials (specifically, electronic circuits,
It is most suitable for electronic materials such as electrodes and for other decoration). The form of use is not particularly limited, but the ultrafine metal particles of the present invention can be used as they are, or can be used by dispersing them in a solvent as needed. Further, as long as the effects of the present invention are not impaired, it is also possible to knead with a resin component, a solvent and the like to form a paste. The content of the ultrafine metal particles in the above material may be appropriately determined according to the type of the ultrafine metal particles used, the use of the final product, and the like.

【0044】このように、本発明の金属膜成形用材料は
本発明の金属超微粒子を含むものである。この材料は、
実質的にあらゆる基材に適用できる。例えば、プラスチ
ック、セラミックス、ガラス、紙類、金属等に適用可能
である。特に、本発明材料は、比較的低温で金属膜を形
成することができるので、耐熱性の低いプラスチック等
に好適である。基材に適用する際には、公知の電子回
路、電極等の形成方法に従って塗布、乾燥、焼成等を行
えば良く、これによって所望の金属膜を得ることができ
る。
As described above, the material for forming a metal film of the present invention contains the ultrafine metal particles of the present invention. This material is
Applicable to virtually any substrate. For example, it is applicable to plastics, ceramics, glass, papers, metals, and the like. In particular, since the material of the present invention can form a metal film at a relatively low temperature, it is suitable for plastics having low heat resistance. When applied to a substrate, application, drying, baking and the like may be performed according to a known method for forming an electronic circuit, an electrode, and the like, whereby a desired metal film can be obtained.

【0045】[0045]

【発明の効果】本発明の製造方法によれば、ナノオーダ
ーの粒径をもつ金属超微粒子を効率的かつ確実に製造す
ることができる。
According to the production method of the present invention, ultrafine metal particles having a nano-order particle size can be produced efficiently and reliably.

【0046】本発明の金属超微粒子は、中心部が金属成
分からなり、保護層が有機成分からなるという特異な構
造を有しているので、凝集が起こりにくく、ナノオーダ
ーの粒径を安定して維持することができる。
The ultrafine metal particles of the present invention have a unique structure in which the central portion is made of a metal component and the protective layer is made of an organic component. Can be maintained.

【0047】これにより、従来技術のような問題点のな
い金属膜を効率的かつ確実に形成することができる。特
に、金属超微粒子を金属膜形成用に用いる場合は、その
焼成温度が400℃以下という低温で金属膜を形成する
ことができ、コスト面のみならず、幅広い種類の基材に
適用できるという点でも有利である。
As a result, it is possible to efficiently and reliably form a metal film having no problem as in the prior art. In particular, when ultrafine metal particles are used for forming a metal film, the metal film can be formed at a low firing temperature of 400 ° C. or lower, which is applicable not only to the cost but also to a wide variety of base materials. But it is advantageous.

【0048】[0048]

【実施例】以下に実施例を示し、本発明の特徴をより一
層明確にする。本発明は、これら実施例の範囲に限定さ
れるものではない。
The following examples are provided to further clarify the features of the present invention. The present invention is not limited to the scope of these examples.

【0049】製造例1 前駆体として[C1429N(CH][Au
(SC1225]の合成を行った。
Production Example 1 [C 14 H 29 N (CH 3 ) 3 ] [Au
(SC 12 H 25 ) 2 ] was synthesized.

【0050】塩化金酸HAuCl・4HO(3.9
4g、9.56mmol)のメタノール溶液(30cm
)に、ミリスチルトリメチルアンモニウムブロミド
[C1429N(CH]Br(3.22g、
9.57mmol)のメタノール溶液(30cm)を
滴下により加え、3時間攪拌した。その後、メタノール
を減圧下で除き、濃縮し、蒸留水(30cm)を加え
た後、桐山ロートでろ過し、蒸留水(30cm)、続
いてメタノール(15cm)で洗浄し、減圧下で乾燥
させて[C1225N(CH」「AuCl
を得た。これにメタノール(40cm)を加えて懸濁
液とし、1−ドデカンチオールC12
25SH(7.74g、38.2mmol)とナトリウ
ムメチラートCH ONa(2.07g、38.2mm
ol)を含むメタノール溶液(30cm)を室温で滴
下しながら加えて反応させた。13時間の攪拌後、生じ
た黄白色の沈殿を桐山ロートでろ別し、蒸留水で2回
(30cm×2)、続いてメタノールで2回(30c
×2)、さらにジエチルエーテルで3回(30cm
×3)洗浄し、減圧下で乾燥させ、下記の物性をもつ
標記前駆体を得た。
The gold chloride acid HAuCl 4 · 4H 2 O (3.9
4 g, 9.56 mmol) in methanol (30 cm
3 ) has myristyltrimethylammonium bromide [C 14 H 29 N (CH 3 ) 3 ] Br (3.22 g,
A methanol solution (30 cm 3 ) of 9.57 mmol) was added dropwise and stirred for 3 hours. Thereafter, the methanol was removed under reduced pressure, concentrated, and distilled water (30 cm 3 ) was added. Then, the mixture was filtered with a Kiriyama funnel, washed with distilled water (30 cm 3 ), and subsequently with methanol (15 cm 3 ). After drying, [C 12 H 25 N (CH 3 ) 3 ] “AuCl 4
I got Methanol (40 cm 3 ) was added to this to form a suspension, and 1-dodecanethiol C 12 H
25SH (7.74 g, 38.2 mmol) and sodium
Mumetilate CH 3 ONa (2.07 g, 38.2 mm
ol) in methanol containing solution (30 cm 3) was reacted by adding dropwise at room temperature. After stirring for 13 hours, the resulting yellow-white precipitate was filtered off with a Kiriyama funnel, twice with distilled water (30 cm 3 × 2), and then twice with methanol (30 cm 3 ).
m 3 × 2) and further three times with diethyl ether (30 cm
3 × 3) After washing and drying under reduced pressure, the title precursor having the following physical properties was obtained.

【0051】[C1429N(CH][Au
(SC1225] 収量:7.19g 収率:87.9% 融点:97.5〜99.5℃ C4188NSAu:計算値C,57.51%;
H,10.36%;N,1.64%、実測値C,57.
49%;H,9.95%;N,1.91% H−NMR:δ=0.88(t,9H,C
)、1.24〜1.26(m,52H,CH
CH)、1.39〜1.32(m、6H,N
CHCH CH,SCHCH CH
)、1.66(p,4H,SCH CH)、
1.78(p,2H,NCH CH)、2.7
6(t,4H,SC CH)、3.40(s,9
H,NC )、3.54〜3.62(m,2H,NC
CH)(なお、NMRスペクトル測定は、重クロ
ロホルム(CDCl)を溶媒とし、内部基準としてテ
トラメチルシランを用いた。以下同じ。) 製造例2 前駆体[C1225N(CH][Au(SC
1225]の合成は、実施例1と同様にして[C
1225N(CH][AuCl]のメタノー
ル懸濁液を調製し、これに1−ドデカンチオールとナト
リウムメチラートを含むメタノール溶液を反応させて合
成した。 [C1225N(CH][Au(SC12
25] 収量:7.19g 収率:90.8% 融点:96.4〜98.2℃ C3984NSAu:計算値C,56.56%;
H,10.22%;N,1.69%、実測値C,55.
01%;H,9.92%;N,1.91% H−NMR:δ=0.88(t,9H,C
)、1.24〜1.27(m,48H,CH
CH)、1.32〜1.39(m、6H,N
CHCH CH,SCHCH CH
)、1.67(p,4H,SCH CH)、
1.79(p,2H,NCH CH)、2.7
6(t,4H,SC CH)、3.41(s,9
H,NC )、3.53〜3.60(m,2H,NC
CH) 製造例3 前駆体[(C1837N(CH][Au
(SC1225]の合成は、実施例1と同様にし
て[(C1837N(CH][AuC
]のメタノール懸濁液を調製し、これに1−ドデカ
ンオールとナトリウムメチラートを含むメタノール溶液
を反応させて合成した。
[C 14 H 29 N (CH 3 ) 3 ] [Au
(SC 12 H 25) 2] Yield: 7.19 g Yield: 87.9% mp: 97.5~99.5 ℃ C 41 H 88 NS 2 Au: Calculated C, 57.51%;
H, 10.36%; N, 1.64%, found C, 57.
49%; H, 9.95%; N, 1.91% 1 H-NMR: δ = 0.88 (t, 9H, C H 3 C
H 2), 1.24~1.26 (m, 52H, CH 3 C H
2 C H 2 CH 2), 1.39~1.32 (m, 6H, N
CH 2 CH 2 C H 2 CH 2, SCH 2 CH 2 C H 2 CH
2), 1.66 (p, 4H , SCH 2 C H 2 CH 2),
1.78 (p, 2H, NCH 2 C H 2 CH 2), 2.7
6 (t, 4H, SC H 2 CH 2), 3.40 (s, 9
H, NC H 3), 3.54~3.62 (m, 2H, NC
H 2 CH 2 ) (The NMR spectrum was measured using deuterated chloroform (CDCl 3 ) as a solvent and tetramethylsilane as an internal standard. The same applies hereinafter.) Production Example 2 Precursor [C 12 H 25 N (CH 3 ) 3 ] [Au (SC
[12 H 25 ) 2 ] was synthesized in the same manner as in Example 1.
12 H 25 N (CH 3) 3] methanol suspensions were prepared of [AuCl 4], were synthesized which is reacted with methanol solution containing 1-dodecanethiol and sodium methylate. [C 12 H 25 N (CH 3 ) 3 ] [Au (SC 12 H
25 ) 2 ] Yield: 7.19 g Yield: 90.8% Melting point: 96.4-98.2 ° C C 39 H 84 NS 2 Au: Calculated C, 56.56%;
H, 10.22%; N, 1.69%, found C, 55.
01%; H, 9.92%; N, 1.91% 1 H-NMR: δ = 0.88 (t, 9H, C H 3 C
H 2), 1.24~1.27 (m, 48H, CH 3 C H
2 C H 2 CH 2), 1.32~1.39 (m, 6H, N
CH 2 CH 2 C H 2 CH 2, SCH 2 CH 2 C H 2 CH
2), 1.67 (p, 4H , SCH 2 C H 2 CH 2),
1.79 (p, 2H, NCH 2 C H 2 CH 2), 2.7
6 (t, 4H, SC H 2 CH 2), 3.41 (s, 9
H, NC H 3), 3.53~3.60 (m, 2H, NC
H 2 CH 2 ) Production Example 3 Precursor [(C 18 H 37 ) 2 N (CH 3 ) 2 ] [Au
[(C 18 H 37 ) 2 N (CH 3 ) 2 ] [AuC was synthesized in the same manner as in Example 1 for the synthesis of (SC 12 H 25 ) 2 ].
[ 4 ] was prepared by reacting a methanol solution containing 1-dodecanol and sodium methylate.

【0052】[(C1837N(CH
[Au(SC1225] 収量:8.80g 収率:74.2% 融点:86.0〜91.0℃ C62130NSAu:計算値C,64.71%;
H,11.39%;N,1.22%、実測値C,63.
22%;H,11.23%;N,1.53% H−NMR:δ=0.88(t,12H,C CH
)、1.24〜1.35(m,88H,CH
CH)、1.35〜1.38(m、8H,NC
CH CH,SCHCH
)、1.64〜1.75(m,8H,NCH
CH,SCH CH)、2.76(t,4
H,SC CH)、3.32(s,6H,NC
)、3.45〜3.52(m,4H,NC CH
) 実施例1 製造例1で得られた前駆体[C1429N(CH
][Au(SC12H 25]の還元的脱離反応に
よる金超微粒子の製造を行った。
[(C 18 H 37 ) 2 N (CH 3 ) 3 ]
[Au (SC 12 H 25 ) 2 ] Yield: 8.80 g Yield: 74.2% Melting point: 86.0 to 91.0 ° C. C 62 H 130 NS 2 Au: Calculated C, 64.71%;
H, 11.39%; N, 1.22%, found C, 63.
22%; H, 11.23%; N, 1.53% 1 H-NMR: δ = 0.88 (t, 12H, C H 3 CH
2), 1.24~1.35 (m, 88H , CH 3 C H 2
C H 2 CH 2), 1.35~1.38 (m, 8H, NC
H 2 CH 2 C H 2 CH 2, SCH 2 CH 2 C H 2 C
H 2), 1.64~1.75 (m, 8H, NCH 2 C H
2 CH 2, SCH 2 C H 2 CH 2), 2.76 (t, 4
H, SC H 2 CH 2 ), 3.32 (s, 6H, NC
H 3), 3.45~3.52 (m, 4H, NC H 2 CH
2 ) Example 1 Precursor [C 14 H 29 N (CH 3 )] obtained in Production Example 1
3 ] Ultrafine gold particles were produced by a reductive elimination reaction of [Au (SC 12 H 25 ) 2 ].

【0053】[C1429N(CH][Au
(SC1225)2](7.74g、9.04mmo
l)をパイレックス製三ツ口フラスコにとり、油浴によ
り130℃まで加熱して完全に融解させた後、160℃
まで徐々に加熱した。その後、160℃で9時間反応を
持続させた後、放冷した。生成した褐色の粉末を液状の
ジスルフィド(SC1225を分離し、エタノー
ルで2回(30cm×2)で洗浄し、桐山ロートでろ
別し、減圧下で乾燥させ、褐色の金超微粒子を得た。得
られた金超微粒子の透過型電子顕微鏡(TEM)により
観察し、その観察結果に基づいて粒度分布を求めた。得
られた金超微粒子の粒度分布を図1に示す。
[C 14 H 29 N (CH 3 ) 3 ] [Au
(SC 12 H 25) 2] (7.74g, 9.04mmo
l) was placed in a Pyrex three-necked flask, heated to 130 ° C. in an oil bath, and completely melted.
Until heated. Thereafter, the reaction was maintained at 160 ° C. for 9 hours, and then allowed to cool. The resulting brown powder was separated from liquid disulfide (SC 12 H 25 ) 2 , washed twice with ethanol (30 cm 3 × 2), filtered off with a Kiriyama funnel, dried under reduced pressure, and dried under brown gold. Fine particles were obtained. The obtained ultrafine gold particles were observed with a transmission electron microscope (TEM), and the particle size distribution was determined based on the observation results. FIG. 1 shows the particle size distribution of the obtained ultrafine gold particles.

【0054】図1に示すように、4級アンモニウム塩型
金属錯体化合物を熱処理(熱分解)することによって、
粒径30〜40nmの中心分布をもつ金属超微粒子が得
られることがわかる。
As shown in FIG. 1, the quaternary ammonium salt type metal complex compound is subjected to a heat treatment (thermal decomposition),
It can be seen that ultrafine metal particles having a central distribution with a particle size of 30 to 40 nm can be obtained.

【0055】実施例2 加熱温度180℃及び180℃での保持時間9時間とし
たほかは、製造例1で得られた前駆体を用いて実施例1
と同様にして金超微粒子の製造を行った。得られた金超
微粒子の粒度分布を実施例1と同様にして求めた。その
結果を図1に示す。図1の結果からも明らかなように、
本発明では、加熱温度及び加熱時間により金属超微粒子
の粒径を制御できることもわかる。
Example 2 Example 1 was repeated using the precursor obtained in Production Example 1 except that the heating temperature was 180 ° C. and the holding time at 180 ° C. was 9 hours.
Ultrafine gold particles were produced in the same manner as described above. The particle size distribution of the obtained ultrafine gold particles was determined in the same manner as in Example 1. The result is shown in FIG. As is clear from the results of FIG.
In the present invention, it is also found that the particle size of the ultrafine metal particles can be controlled by the heating temperature and the heating time.

【0056】図2には、実施例2で得られた金超微粒子
を透過型電子顕微鏡により観察した結果(TEM像)を
示す。図2によれば、約50nm以下の粒径をもつほぼ
球状の金超微粒子が生成していることがわかる。
FIG. 2 shows the result (TEM image) of the ultrafine gold particles obtained in Example 2 observed with a transmission electron microscope. According to FIG. 2, it is found that ultra-fine spherical gold particles having a particle diameter of about 50 nm or less are generated.

【0057】実施例3 製造例2で得られた前駆体[C1225N(CH
][Au(SC12H 25]を用い、加熱温度1
60℃及び160℃での保持時間7時間としたほかは、
実施例1と同様にして金超微粒子の製造を行った。得ら
れた金超微粒子の粒度分布を実施例1と同様にして求め
た。その結果を図1に示す。
Example 3 The precursor obtained in Production Example 2 [C 12 H 25 N (CH 3 )]
3 ] [Au (SC 12H 25 ) 2 ] and a heating temperature of 1
Except that the holding time at 60 ° C. and 160 ° C. was 7 hours,
Ultrafine gold particles were produced in the same manner as in Example 1. The particle size distribution of the obtained ultrafine gold particles was determined in the same manner as in Example 1. The result is shown in FIG.

【0058】実施例4 製造例3で得られた前駆体[(C1837N(C
][Au(SC1225]を用い、加熱
温度170℃及び170℃での保持時間6時間としたほ
かは、実施例1と同様にして金超微粒子の製造を行っ
た。得られた金超微粒子の粒度分布を実施例1と同様に
して求めた。その結果を図1に示す。
Example 4 The precursor [(C 18 H 37 ) 2 N (C
H 3) 2] using [Au (SC 12 H 25) 2], addition to the retention time 6 hours at a heating temperature 170 ° C. and 170 ° C., the manufactures ultrafine gold particles in the same manner as in Example 1 Was. The particle size distribution of the obtained ultrafine gold particles was determined in the same manner as in Example 1. The result is shown in FIG.

【0059】また、図3には、実施例4で得られた金超
微粒子の粉末X線回折分析を行った結果を示す。
FIG. 3 shows the results of powder X-ray diffraction analysis of the ultrafine gold particles obtained in Example 4.

【0060】実施例5 加熱温度を190℃及び190℃での保持時間6時間と
したほかは、製造例3で得られた前駆体を用いて実施例
4と同様にして金超微粒子の製造を行った。得られた金
超微粒子の粒度分布を実施例1と同様にして求めた。そ
の結果を図1に示す。
Example 5 Except that the heating temperature was 190 ° C. and the holding time at 190 ° C. was 6 hours, the production of ultrafine gold particles was performed in the same manner as in Example 4 using the precursor obtained in Production Example 3. went. The particle size distribution of the obtained ultrafine gold particles was determined in the same manner as in Example 1. The result is shown in FIG.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各実施例で得られた金超微粒子の粒度分布を示
す図である。
FIG. 1 is a diagram showing the particle size distribution of ultrafine gold particles obtained in each Example.

【図2】実施例2で得られた金超微粒子のTEM像を示
す。
FIG. 2 shows a TEM image of ultrafine gold particles obtained in Example 2.

【図3】実施例4で得られた金超微粒子の粉末X線回折
分析結果を示す図である。
FIG. 3 is a view showing the results of powder X-ray diffraction analysis of ultrafine gold particles obtained in Example 4.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】一般式[RN][M
(A)](但し、R〜Rは、同一又は別異の炭
化水素基であって置換基を有していても良いもの、Mは
遷移金属、Aは有機硫黄系配位子、xは0よりも大きい
整数、yは0よりも大きい整数、zは0よりも大きい整
数を示す。)で表わされる4級アンモニウム塩型金属錯
体化合物を出発原料とし、当該化合物の有機硫黄系配位
子の還元的脱離反応から中心金属を還元することを特徴
とする金属超微粒子の製造方法。
[1] The general formula [R 1 R 2 R 3 R 4 N] x [M
y (A) z ] (provided that R 1 to R 4 are the same or different hydrocarbon groups and may have a substituent, M is a transition metal, and A is an organic sulfur-based coordination. And x is an integer greater than 0, y is an integer greater than 0, and z is an integer greater than 0.) A quaternary ammonium salt type metal complex compound represented by the following formula: A method for producing ultrafine metal particles, comprising reducing a central metal from a reductive elimination reaction of a system ligand.
【請求項2】一般式[RN][M
(A)](但し、R〜Rは、同一又は別異の炭
化水素基であって置換基を有していても良いもの、Mは
遷移金属、Aは有機硫黄系配位子、xは0よりも大きい
整数、yは0よりも大きい整数、zは0よりも大きい整
数を示す。)で表わされる4級アンモニウム塩型金属錯
体化合物を熱処理することを特徴とする金属超微粒子の
製造方法。
2. The formula [R 1 R 2 R 3 R 4 N] x [M
y (A) z ] (provided that R 1 to R 4 are the same or different hydrocarbon groups and may have a substituent, M is a transition metal, and A is an organic sulfur-based coordination. And x is an integer greater than 0, y is an integer greater than 0, and z is an integer greater than 0.) A quaternary ammonium salt type metal complex compound represented by the following formula: A method for producing fine particles.
【請求項3】金属超微粒子とともにジスルフィドを生成
させる請求項1又は2に記載の製造方法。
3. The production method according to claim 1, wherein disulfide is formed together with the ultrafine metal particles.
【請求項4】有機硫黄系配位子がチオレート配位子(S
R’)又はチオアセチレン配位子(SC≡CR’)(い
ずれについても、R’は炭化水素基であって置換基を有
していても良いものを示す。)である請求項1〜3のい
ずれかに記載の製造方法。
4. The organic sulfur-based ligand is a thiolate ligand (S
R ′) or a thioacetylene ligand (SC≡CR ′) (in each case, R ′ is a hydrocarbon group which may have a substituent). The production method according to any one of the above.
【請求項5】Mが、Au、Pt、Cu、Ni又はPdで
ある請求項1〜4のいずれかに記載の製造方法。
5. The method according to claim 1, wherein M is Au, Pt, Cu, Ni or Pd.
【請求項6】得られる金属超微粒子中の有機成分として
4級アンモニウム塩型金属錯体化合物の対カチオンであ
る[RN]に由来の炭化水素基成分を含
む請求項1〜5のいずれかに記載の製造方法。
6. An organic component in the obtained ultrafine metal particles comprising a hydrocarbon group component derived from [R 1 R 2 R 3 R 4 N] which is a counter cation of a quaternary ammonium salt type metal complex compound. 6. The production method according to any one of 1 to 5.
【請求項7】得られる金属超微粒子中の金属成分の含有
量が80〜95重量%となるように熱処理する請求項2
〜6のいずれかに記載の製造方法。
7. A heat treatment is performed so that the content of the metal component in the obtained ultrafine metal particles is 80 to 95% by weight.
7. The method according to any one of items 1 to 6, above.
【請求項8】中心部とその周囲の保護層から構成される
金属超微粒子であって、中心部が金属成分からなり、保
護層が有機成分からなることを特徴とする金属超微粒
子。
8. Ultrafine metal particles comprising a central portion and a protective layer around the central portion, wherein the central portion comprises a metal component and the protective layer comprises an organic component.
【請求項9】金属成分の含有量が80重量%以上である
請求項7記載の金属超微粒子。
9. The ultrafine metal particles according to claim 7, wherein the content of the metal component is 80% by weight or more.
【請求項10】請求項8又は9に記載の金属超微粒子を
含む金属膜成形用材料。
10. A material for forming a metal film, comprising the ultrafine metal particles according to claim 8.
JP37722099A 1999-12-29 1999-12-29 Ultrafine metal particles and method for producing the same Expired - Fee Related JP3579765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37722099A JP3579765B2 (en) 1999-12-29 1999-12-29 Ultrafine metal particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37722099A JP3579765B2 (en) 1999-12-29 1999-12-29 Ultrafine metal particles and method for producing the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2003314484A Division JP4436093B2 (en) 2003-09-05 2003-09-05 Ultrafine metal particles and method for producing the same
JP2004070563A Division JP4623981B2 (en) 2004-03-12 2004-03-12 Method for producing metal ultrafine particles

Publications (2)

Publication Number Publication Date
JP2001192712A true JP2001192712A (en) 2001-07-17
JP3579765B2 JP3579765B2 (en) 2004-10-20

Family

ID=18508461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37722099A Expired - Fee Related JP3579765B2 (en) 1999-12-29 1999-12-29 Ultrafine metal particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP3579765B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091302A1 (en) * 2002-04-24 2003-11-06 Japan Science And Technology Agency Crosslinked polymer, fine polymer particle, and process for producing these
WO2005089986A1 (en) * 2004-03-09 2005-09-29 Osaka Municipal Government Noble-metal nanoparticles and method for production thereof
WO2011129220A1 (en) 2010-04-14 2011-10-20 日東紡績株式会社 Test instrument for measuring analyte in sample, and method for measuring analyte using same
US8278240B2 (en) 2007-04-24 2012-10-02 Toyota Jidosha Kabushiki Kaisha Method of production of transition metal nanoparticles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091302A1 (en) * 2002-04-24 2003-11-06 Japan Science And Technology Agency Crosslinked polymer, fine polymer particle, and process for producing these
US7129293B2 (en) 2002-04-24 2006-10-31 Japan Science And Technology Agency Crosslinked polymers, fine polymer particle, and process for producing these
WO2005089986A1 (en) * 2004-03-09 2005-09-29 Osaka Municipal Government Noble-metal nanoparticles and method for production thereof
US8278240B2 (en) 2007-04-24 2012-10-02 Toyota Jidosha Kabushiki Kaisha Method of production of transition metal nanoparticles
WO2011129220A1 (en) 2010-04-14 2011-10-20 日東紡績株式会社 Test instrument for measuring analyte in sample, and method for measuring analyte using same

Also Published As

Publication number Publication date
JP3579765B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
Bootharaju et al. Tailoring the crystal structure of nanoclusters unveiled high photoluminescence via ion pairing
Bootharaju et al. Switching a nanocluster core from hollow to nonhollow
JP4700103B2 (en) Volatile nickel aminoalkoxide complex and deposition method of nickel thin film using it
TW201247687A (en) Metal complexes with N-aminoamidinate ligands
CN101155676A (en) Processes for the production of organometallic compounds
Krishnadas et al. Metal–ligand interface in the chemical reactions of ligand-protected noble metal clusters
Eswaramoorthy et al. Core Size Conversion of Au329 (SCH2CH2Ph) 84 to Au279 (SPh-t Bu) 84 Nanomolecules
Dirk et al. Synthesis of nitrile-terminated potential molecular electronic devices
TW200902748A (en) Cobalt-containing film-forming material and method for forming cobalt silicide film using the material
WO2016181918A1 (en) Chemical vapor deposition starting material comprising heterogeneous polynuclear complex, and chemical vapor deposition method using said chemical vapor deposition starting material
JP3579765B2 (en) Ultrafine metal particles and method for producing the same
JP2017043796A (en) Raw material for chemical vapor deposition comprising binuclear ruthenium complex, and chemical vapor deposition method using raw material for chemical vapor deposition
JPWO2005089986A1 (en) Noble metal nanoparticles and production method thereof
JP4436093B2 (en) Ultrafine metal particles and method for producing the same
JP4109458B2 (en) Fullerene derivatives and metal complexes
JP4623981B2 (en) Method for producing metal ultrafine particles
CN113717233B (en) Aminopyridyl chloride Co (II) compound for information storage material
Sellmann et al. Transition-metal complexes with sulfur ligands. 50. Sulfur bond cleavage in organosulfur ligands induced by PPh3/NO substitution reactions at [Ru (PPh3) 2 ('L4')] centers. Synthesis and reactions of various (vinylthio) arenethiolate and related [Ru (NO)(Y)('L4')](Y= PPh3, Cl) complexes. X-ray structure analysis of nitrosyl (triphenylphosphine)(1, 2-benzenedithiolato)(1-(vinylthio)-2-benzenethiolato) ruthenium (III)
Benoit et al. A general route to chiral clusters SCo3 (CO) 7LX. Synthesis, x-ray structure, and electrochemical behavior of the new cluster (. mu. 3-S) Co3 (CO) 7 [. mu.-1, 3-. eta. 2-NHC (CH3) S]
US7667038B2 (en) Tantalum and niobium compounds
WO2009081797A1 (en) Material for formation of nickel-containing film, and method for production thereof
Taher et al. Rigid-rod structured palladium complexes
KR100704464B1 (en) Copper aminoalkoxide complexes, preparation method thereof and process for the formation of copper thin film using the same
KR100576932B1 (en) Volatile nickel aminoalkoxide complexes, preparation method thereof and process for the formation of nickel thin film using the same
WO2019078195A1 (en) Cyclopentadienyl nickel complex compound

Legal Events

Date Code Title Description
A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees