JP2001181655A - Method for hydrodesulfurizing and isomerizing light hydrocarbon oil - Google Patents

Method for hydrodesulfurizing and isomerizing light hydrocarbon oil

Info

Publication number
JP2001181655A
JP2001181655A JP36785399A JP36785399A JP2001181655A JP 2001181655 A JP2001181655 A JP 2001181655A JP 36785399 A JP36785399 A JP 36785399A JP 36785399 A JP36785399 A JP 36785399A JP 2001181655 A JP2001181655 A JP 2001181655A
Authority
JP
Japan
Prior art keywords
catalyst
light hydrocarbon
isomerization
hydrocarbon oil
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36785399A
Other languages
Japanese (ja)
Inventor
Takao Kimura
孝夫 木村
Kazuhiko Hagiwara
和彦 萩原
Atsuyasu Oshio
敦保 大塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical Cosmo Oil Co Ltd
Priority to JP36785399A priority Critical patent/JP2001181655A/en
Publication of JP2001181655A publication Critical patent/JP2001181655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for hydrodesulfurizing and isomerizing a light hydrocarbon oil, by which the sulfur-containing light hydrocarbon oil can simultaneously be hydrodesulfurized and isomerized to obtain the isomerized gasoline having a low sulfur content and by which a catalyst enabling to simultaneously carry out an isomerization process and a desulfurization process having been essential as a pretreating process for the isomerization process can be provided to simplify necessary installations and lower the running cost. SOLUTION: This method for hydrodesulfurizing and isomerizing a light hydrocarbon oil is characterized by using a catalyst which is prepared by adding sulfate radical in an amount of 1 to 3 wt.% as a sulfur content and platinum in an amount of 0.5 to 10 wt.% to a carrier comprising zirconium oxide or hydroxide and then calcining and stabilizing the mixture at 550 to 800 deg.C and has a specific surface area of 50 to 150 m2/g, and bringing hydrogen and the light hydrocarbon oil having a sulfur content of <=700 weight ppm into contact with the prepared catalyst under conditions comprising a temperature of 160 to 240 deg.C, a pressure of 1.0 to 4.5 MPa, an LHSV of 1.0 to 10 h-1m, an H2/Oil ratio of 1 to 3 mol/mol to hydrodesulfurize and simultaneously isomerize the light hydrocarbon oil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機硫黄化合物を
含有する軽質炭化水素油の水素化脱硫と異性化とを同時
に達成することが可能であって、従来技術にくらべて簡
単な設備で実施でき、経済的な、軽質炭化水素油を水素
化脱硫異性化する方法に関する。
The present invention is capable of simultaneously achieving hydrodesulfurization and isomerization of a light hydrocarbon oil containing an organic sulfur compound, and can be carried out with simpler equipment than the prior art. The present invention relates to a process for the hydrodesulfurization of light hydrocarbon oils which is economical.

【0002】[0002]

【従来の技術】軽質炭化水素油の異性化は、石油精製工
業および石油化学工業の分野で従来から広く行なわれて
いる技術である。とくに近年、自動車および航空機のエ
ンジンの高性能化に伴い、燃料として使用されるガソリ
ンには高いオクタン価が要求され、それに応えるため
に、異性化が重要になってきている。これまでも、ガソ
リンの軽質基材のひとつとして、軽質炭化水素油である
ライトナフサを異性化してオクタン価を向上させた、い
わゆる異性化ガソリンが用いられている。
2. Description of the Related Art Light hydrocarbon oil isomerization is a technique which has been widely used in the fields of petroleum refining and petrochemical industries. In particular, in recent years, with higher performance of engines of automobiles and aircraft, gasoline used as fuel has been required to have a high octane number, and isomerization has become important to meet the demand. Until now, as one of the light base materials of gasoline, a so-called isomerized gasoline obtained by isomerizing light naphtha, which is a light hydrocarbon oil, to improve the octane number has been used.

【0003】軽質炭化水素油を異性化する方法について
は、従来から数多くの研究がなされており、異性化反応
に用いる触媒も種々のものが知られているが、その中で
最も有用な異性化触媒として、固体酸触媒を挙げること
ができる。固体酸触媒の製造方法およびそれを用いた異
性化方法は、たとえば、特公平5−29503号公報、
特公平6−29199号公報に開示されている。
[0003] Many studies have been made on the method of isomerizing light hydrocarbon oils, and various catalysts used for the isomerization reaction are known. Examples of the catalyst include a solid acid catalyst. A method for producing a solid acid catalyst and an isomerization method using the same are described in, for example, Japanese Patent Publication No. 5-29503,
It is disclosed in Japanese Patent Publication No. 6-29199.

【0004】しかし、原油を蒸留した留分のままである
ライトナフサのような軽質炭化水素油には、有機硫黄化
合物が通常500〜700ppm程度含まれていて、これ
が固体酸触媒の触媒毒となるため、ライトナフサを直接
異性化することは、触媒寿命の点から、工業的実施に適
するプロセスとはいえなかった。現在実施されているプ
ロセスでは、まず、ライトナフサをCo−Mo/Al2
3などの水素化脱硫触媒で処理して有機硫黄化合物を
硫化水素に変換し、この硫化水素を生成油から分離する
ことによって硫黄含有量を数ppm以下に低減させた脱硫
ライトナフサを取得し、その後、これを異性化原料油と
して用いているという、二段階の操作を行なう。つま
り、現行の軽質炭化水素油の異性化プロセスにおいて
は、水素化脱硫工程が異性化工程の前段に必要不可欠で
ある。
[0004] However, light hydrocarbon oils such as light naphtha, which are still fractions obtained by distilling crude oil, usually contain about 500 to 700 ppm of organic sulfur compounds, which become catalyst poisons for solid acid catalysts. Therefore, direct isomerization of light naphtha was not a process suitable for industrial implementation in terms of catalyst life. In the currently practiced process, first, light naphtha is converted to Co-Mo / Al 2
O 3 was treated with hydrodesulfurization catalyst such as to convert the organic sulfur compounds to hydrogen sulfide, to get the desulfurized light naphtha having a reduced sulfur content less than several ppm by separating the hydrogen sulfide from the product oil Thereafter, a two-stage operation of using this as an isomerized feedstock is performed. That is, in the existing light hydrocarbon oil isomerization process, the hydrodesulfurization step is indispensable before the isomerization step.

【0005】もし、軽質炭化水素油の異性化に使用する
触媒を、水素化脱硫と異性化とを同時に達成することが
できるものに置き換えることができれば、異性化プロセ
スに必要不可欠であった水素化脱硫工程を省略すること
ができ、従来技術にくらべてより簡単な設備で、経済的
に異性化を行なうことが可能になる。具体的には、既存
の軽質炭化水素油の異性化反応塔に耐硫黄性を有する異
性化触媒を充填し、異性化の原料油として有機硫黄化合
物を含有する軽質炭化水素油を用いて、水素化脱硫およ
び異性化反応を同時に行なえるようにすることが望まし
い。
[0005] If the catalyst used for isomerization of light hydrocarbon oils can be replaced with a catalyst capable of simultaneously achieving hydrodesulfurization and isomerization, hydrogenation which is indispensable for the isomerization process is required. The desulfurization step can be omitted, and the isomerization can be carried out economically with simpler equipment than in the prior art. Specifically, an existing light hydrocarbon oil isomerization reaction tower is filled with a sulfur-resistant isomerization catalyst, and a light hydrocarbon oil containing an organic sulfur compound is used as a raw material for the isomerization. It is desirable that hydrodesulfurization and isomerization reactions can be performed simultaneously.

【0006】発明者らは、このような要望に応えること
を意図して研究した結果、ある種の固体酸触媒が、炭化
水素の異性化活性のみならず有機硫黄化合物に対する脱
硫活性をも有し、耐硫黄性に優れた異性化触媒として役
立つことを見出した。
[0006] The inventors of the present invention have conducted studies with the intention of responding to such a demand. As a result, certain solid acid catalysts have not only an isomerization activity for hydrocarbons but also a desulfurization activity for organic sulfur compounds. It was found to be useful as an isomerization catalyst having excellent sulfur resistance.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、発明
者らの得た上記の新しい知見を生かし、簡便な設備によ
り経済的に、有機硫黄化合物を含有する軽質炭化水素油
の脱硫と異性化とを同時に達成することができる水素化
脱硫異性化方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to make use of the above-mentioned new knowledge obtained by the inventors and to economically desulfurize a light hydrocarbon oil containing an organic sulfur compound by using simple equipment and to obtain an isomer. And to provide a hydrodesulfurization isomerization method capable of simultaneously achieving the hydration.

【0008】[0008]

【課題を解決するための手段】本発明の軽質炭化水素油
を水素化脱硫異性化する方法は、ジルコニウムの酸化物
または水酸化物からなる担体に、硫酸根を硫黄分にして
1〜3質量%含有させるとともに、白金を0.5〜10
質量%担持させ、550〜800℃の温度で焼成安定化
させてなり、比表面積が50〜150m2/gである触媒
に、硫黄分含有量700質量ppm以下の軽質炭化水素油
と水素とを、温度:160〜240℃、圧力:1.0〜
4.5MPa、LHSV:1.0〜10h-1、H2/Oil
比:1〜3mol/molの反応条件下に接触させることを特
徴とする。
The method for hydrodesulfurizing and isomerizing a light hydrocarbon oil according to the present invention is characterized in that a carrier comprising zirconium oxide or hydroxide is converted to a sulfuric acid group having a sulfur content of 1 to 3 mass%. %, And 0.5-10% platinum.
And a light hydrocarbon oil having a sulfur content of 700 mass ppm or less and hydrogen on a catalyst having a specific surface area of 50 to 150 m 2 / g. , Temperature: 160-240 ° C, pressure: 1.0-
4.5 MPa, LHSV: 1.0 to 10 h -1 , H 2 / Oil
It is characterized by contacting under reaction conditions of a ratio of 1 to 3 mol / mol.

【0009】[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0010】本発明の水素化脱硫異性化方法に使用する
触媒は、上記のようにジルコニウムの酸化物または水酸
化物を担体とし、これに白金を0.5〜10質量%、好
ましくは0.6〜7質量%、さらに好ましくは0.7〜
5質量%担持させたものである。白金担持量が0.5質
量%未満では活性点が少なすぎて、異性化と脱硫とを同
時に行なうことができず、一方、10質量%より多い
と、白金が超強酸性を有する酸点を覆うため、かえって
活性が低下することがある。
The catalyst used in the hydrodesulfurization isomerization method of the present invention uses a zirconium oxide or hydroxide as a carrier as described above, and contains platinum in an amount of 0.5 to 10% by mass, preferably 0.1 to 10% by mass. 6 to 7% by mass, more preferably 0.7 to 7% by mass
5 mass% was carried. When the amount of platinum supported is less than 0.5% by mass, the active sites are too small to simultaneously perform isomerization and desulfurization. On the other hand, when the amount is more than 10% by mass, platinum has an acid site having super-strong acidity. In some cases, the activity is reduced due to the covering.

【0011】担体に与える硫酸根(SO4)の量は、硫
黄(S)分として1〜3質量%、好ましくは1.5〜2
質量%である。硫酸根量が硫黄分として1質量%に達し
ないと、触媒の酸性度が低いため固体超強酸性が弱く、
異性化触媒としての活性が不十分である。3%を超える
多量になると、ジルコニア表面を硫酸根が過剰に覆い、
表面に積層して活性点をつぶしてしまうため、活性が低
下する。
The amount of sulfate (SO 4 ) given to the carrier is 1 to 3% by mass as sulfur (S), preferably 1.5 to 2%.
% By mass. If the amount of sulfate groups does not reach 1% by mass as the sulfur content, the solid superacidity is weak because the acidity of the catalyst is low,
Insufficient activity as an isomerization catalyst. When the amount exceeds 3%, the zirconia surface is excessively covered with sulfate,
Since the active points are crushed by being laminated on the surface, the activity is reduced.

【0012】触媒中の硫黄分の測定は、試料を酸素気流
中で燃焼させ、試料中に含まれているSを酸化させてS
2にし、水分とダストを除去した後、赤外吸収検出
器、たとえばソリッド・ステート型の検出器により検出
・測定する。この分析方法によれば、試料中の硫黄分量
を0.001〜99.99%の濃度範囲で求めることが
できる。
[0012] The sulfur content in the catalyst is measured by burning a sample in an oxygen stream and oxidizing S contained in the sample.
After removing the water and dust to O 2 , detection and measurement are performed by an infrared absorption detector, for example, a solid state type detector. According to this analysis method, the amount of sulfur in the sample can be determined in the concentration range of 0.001 to 99.99%.

【0013】X線回折分析によれば、 担体が酸化ジル
コニウム(ZrO2)である場合、その結晶構造には正
方晶と単斜晶とが存在する。触媒担体として有用なもの
は正方晶であり、単斜晶構造の割合が高いと、触媒活性
が低くなってしまう。酸化ジルコニウム中の単斜晶構造
と正方晶構造の存在比は、触媒のX線回折ピークを測定
し、CuKα線による2θ=28.2(単斜晶構造の主
ピーク)のピークと2θ=30.2(正方晶構造の主ピ
ーク)のピークとの、X線回折ピーク積分強度比をもっ
て定める。このようにして酸化ジルコニウム中の単斜晶
構造と正方晶構造の存在比を算出したときに、その値
が、単斜晶/正方晶=20/80〜0/100の範囲に
あることが好ましい。より好ましい範囲は、10/90
〜0/100である。
According to X-ray diffraction analysis, when the carrier is zirconium oxide (ZrO 2 ), its crystal structure includes tetragonal and monoclinic. Those useful as catalyst carriers are tetragonal, and a high proportion of monoclinic structure results in low catalytic activity. The abundance ratio of the monoclinic structure and the tetragonal structure in the zirconium oxide was determined by measuring the X-ray diffraction peak of the catalyst, and determining the 2θ = 28.2 (main peak of the monoclinic structure) peak and 2θ = 30 by CuKα radiation. 2 (main peak of the tetragonal structure) and the X-ray diffraction peak integrated intensity ratio. When the abundance ratio between the monoclinic structure and the tetragonal structure in zirconium oxide is calculated in this manner, the value is preferably in the range of monoclinic / tetragonal = 20/80 to 0/100. . A more preferred range is 10/90
00/100.

【0014】本発明の水素化脱硫異性化方法に用いる触
媒は、所定の温度で焼成安定させた後、BET法により
測定した比表面積が、50〜150m2/gの範囲である
ことが必要である。比表面積が50m2/g未満では、担
持された白金の分散性が悪く、水素化異性化のための活
性点も少数である。その上、ジルコニウム酸化物の結晶
構造も、単斜晶と正方晶の比率が20/80よりも大き
くなりがちであって、好ましくない。一方、比表面積が
150m2/gを超えるものは、ジルコニウム酸化物の結
晶化が進行せず、その中の酸化ジルコニウム正方晶構造
の割合が低いために、水素化脱硫異性化の活性が低い。
The catalyst used in the hydrodesulfurization isomerization method of the present invention is required to have a specific surface area measured by the BET method of 50 to 150 m 2 / g after being calcined and stabilized at a predetermined temperature. is there. If the specific surface area is less than 50 m 2 / g, the dispersibility of the supported platinum is poor, and the number of active sites for hydroisomerization is small. In addition, the crystal structure of zirconium oxide is not preferable because the ratio of monoclinic to tetragonal tends to be larger than 20/80. On the other hand, when the specific surface area exceeds 150 m 2 / g, crystallization of the zirconium oxide does not progress and the ratio of the zirconium oxide tetragonal structure in the zirconium oxide is low, so that the activity of hydrodesulfurization isomerization is low.

【0015】本発明の水素化脱硫異性化方法に使用する
触媒の製造方法には、とくに限定はなく、硫酸根を与
え、白金を担持させる方法も、順序も任意であるが、好
適なのは、次にあげるような製造方法である。
The method for producing the catalyst used in the hydrodesulfurization isomerization method of the present invention is not particularly limited, and the method of giving a sulfate group and supporting platinum can be in any order. It is a manufacturing method as described in (1).

【0016】第一の製造方法は、水酸化ジルコニウム
を、これに硫酸根を与える処理剤で処理したのち、白金
化合物を含浸させ、550℃〜800℃の温度で焼成す
ることからなる。
The first production method comprises treating zirconium hydroxide with a treating agent that gives a sulfate group thereto, impregnating with a platinum compound, and firing at a temperature of 550 ° C. to 800 ° C.

【0017】第二の製造方法は、水酸化ジルコニウム
を、これに硫酸根を与える処理剤で処理し、いったん5
50℃〜800℃の温度で焼成したのち、白金化合物を
含浸させ、ついで300℃〜700℃、好ましくは50
0℃〜600℃の温度において再度焼成することからな
る。
In the second production method, zirconium hydroxide is treated with a treating agent that gives a sulfate group to the zirconium hydroxide.
After firing at a temperature of 50 ° C. to 800 ° C., impregnation with a platinum compound is performed, followed by 300 ° C. to 700 ° C., preferably 50 ° C.
Baking again at a temperature of 0 ° C to 600 ° C.

【0018】第三の製造方法は、水酸化ジルコニウムに
硫酸根を与える物質を混練し、550℃〜800℃の温
度における焼成を行ったのち、白金化合物を含浸させ、
ついで300℃〜700℃、好ましくは500℃〜60
0℃の温度において再度焼成することからなる。
In a third production method, a substance that gives a sulfate group to zirconium hydroxide is kneaded, calcined at a temperature of 550 ° C. to 800 ° C., and then impregnated with a platinum compound.
Next, 300 ° C to 700 ° C, preferably 500 ° C to 60 ° C.
Baking again at a temperature of 0 ° C.

【0019】第四の製造方法は、水酸化ジルコニウム
に、硫酸根を与える物質と、白金化合物とを混練し、5
50℃〜800℃の温度で焼成することからなる。
In a fourth production method, a substance that gives a sulfate group, zirconium hydroxide, and a platinum compound are kneaded and mixed.
Firing at a temperature of 50C to 800C.

【0020】ジルコニウムの酸化物または水酸化物であ
る担体に硫酸根を与える処理剤としては、0.1〜5N
の硫酸、0.1〜10モル濃度の硫酸アンモニウム水溶
液等が代表的である。これらの処理剤は、担体に対して
1〜10倍の量を使用する。その他、硫化水素や亜硫酸
ガスのような処理剤を用いて、焼成安定化処理の後に硫
酸根を与えることによっても、同様な効果をあげること
ができる。
As a treating agent for giving a sulfate group to a carrier which is an oxide or hydroxide of zirconium, 0.1 to 5 N
Of sulfuric acid, and an aqueous solution of ammonium sulfate having a concentration of 0.1 to 10 mol are representative. These treatment agents are used in an amount of 1 to 10 times the amount of the carrier. In addition, a similar effect can be obtained by using a treating agent such as hydrogen sulfide or sulfurous acid gas to give a sulfate group after the firing stabilization treatment.

【0021】硫酸根の与え方は、硫酸処理剤として前述
のような液体や気体の状態にあるものだけでなく、固体
の状態にあるものを担体と混練することによってもよ
く、混練物を焼成安定化することで、同様の効果をあげ
ることができる。混練の手段としては、一般に触媒調製
に用いられている混練機であればどのようなものでも使
用できる。混練に当たっては、適宜の液体、たとえば
水、エタノール、イソプロパノール、アセトン、メチル
エチルケトン、ジエチルケトン、メチルイソブチルケト
ンなどを添加する。担体、硫酸根処理剤、溶媒等の添加
順序はとくに制限がなく、混練温度および時間も、触媒
の性能が影響を受けない範囲内であれば、別段制約され
ない。
The sulfate group may be provided by kneading not only the above-mentioned liquid or gaseous state as a sulfuric acid treating agent but also a solid state with a carrier. By stabilizing, a similar effect can be obtained. As a kneading means, any kneading machine generally used for catalyst preparation can be used. In kneading, an appropriate liquid, for example, water, ethanol, isopropanol, acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, or the like is added. There are no particular restrictions on the order of addition of the carrier, the sulfate treatment agent, the solvent, and the like, and the kneading temperature and time are not particularly limited as long as the performance of the catalyst is not affected.

【0022】触媒に白金を担持させる方法は、塩化白金
酸、テトラアンミン白金錯体等の白金化合物の水溶液に
担体を浸漬し、引き上げて乾燥する含浸法が代表的であ
る。水溶液の含浸でなく、塩化白金酸、テトラアンミン
白金錯体等を、前記した硫酸根処理剤との混練時に混合
することによっても、白金を担持させることは可能であ
る。
A typical method of supporting platinum on a catalyst is an impregnation method in which a carrier is immersed in an aqueous solution of a platinum compound such as chloroplatinic acid or a tetraammineplatinum complex, pulled up and dried. It is also possible to carry platinum by mixing chloroplatinic acid, tetraammineplatinum complex or the like at the time of kneading with the above-mentioned sulfate group treating agent instead of impregnation with an aqueous solution.

【0023】焼成安定化処理は、酸化性の雰囲気下に、
550〜800℃の範囲、好ましくは600〜750℃
の範囲の温度に、0.5〜10時間加熱することによっ
て行なう。焼成温度が550℃未満では、ジルコニウム
化合物中に含まれる水酸化ジルコニウムの割合が多く、
正方晶のジルコニウム酸化物の占める割合が少ないため
固体酸の性質が発現せず、触媒に水素化脱硫異性化の活
性が生じない。一方、高温で加熱すると水酸化物は減る
が、800℃を超えると、単斜晶の酸化ジルコニウムの
占める割合が多くなり、触媒活性にとって好ましくな
い。また硫酸根も脱離して行くため、触媒中の硫黄分の
量が1質量%未満になり、固体酸強度が低下してしま
う。さらに、白金のシンタリングも起こり、水素化脱硫
異性化の活性点が減少する。なお、触媒の焼成安定化処
理を還元雰囲気で行なうと、白金または白金化合物の上
で硫酸根の結合状態が変化したり、還元分解に起因する
と思われる硫酸根の減少によって、触媒活性が低下す
る。
The firing stabilization treatment is performed under an oxidizing atmosphere.
550-800 ° C, preferably 600-750 ° C
By heating to a temperature in the range of 0.5 to 10 hours. When the firing temperature is lower than 550 ° C., the ratio of zirconium hydroxide contained in the zirconium compound is large,
Since the proportion of the tetragonal zirconium oxide is small, the properties of the solid acid are not exhibited, and the catalyst does not have hydrodesulfurization isomerization activity. On the other hand, when heated at a high temperature, the amount of hydroxide decreases, but when the temperature exceeds 800 ° C., the proportion of monoclinic zirconium oxide increases, which is not preferable for the catalytic activity. In addition, since the sulfate is also eliminated, the amount of sulfur in the catalyst becomes less than 1% by mass, and the solid acid strength decreases. Furthermore, sintering of platinum also occurs, and the active sites of hydrodesulfurization isomerization decrease. If the catalyst is stabilized in a calcination stabilizing treatment in a reducing atmosphere, the activity of the sulfate groups on the platinum or platinum compound changes, and the catalytic activity decreases due to the reduction of the sulfate groups, which is considered to be caused by reductive decomposition. .

【0024】焼成安定化処理は、白金を担持する前に行
っても、後に行ってもよい。白金を担持する前に焼成安
定化した場合でも、焼成安定化は、結晶状態が正方晶構
造の酸化ジルコニウムが得られる温度で行なう。好まし
い焼成温度の範囲は550〜800℃であり、さらに好
ましい範囲は600〜750℃である。好ましい焼成時
間は、0.5〜10時間である。焼成安定化後に、白金
を含有させ、さらに300〜700℃、好ましくは50
0℃〜600℃で焼成し、触媒の活性化を行なってもよ
い。
The firing stabilization treatment may be performed before or after carrying platinum. Even when firing is stabilized before supporting platinum, the firing is stabilized at a temperature at which zirconium oxide having a tetragonal crystal structure can be obtained. A preferable range of the firing temperature is 550 to 800 ° C, and a more preferable range is 600 to 750 ° C. The preferred firing time is 0.5 to 10 hours. After the sintering is stabilized, platinum is contained, and the temperature is further increased to 300 to 700 ° C, preferably 50 to 700 ° C.
The catalyst may be activated by firing at 0 ° C. to 600 ° C.

【0025】本発明の水素化脱硫異性化方法に使用する
触媒は、上記の安定化処理によって使用可能になるが、
触媒活性の安定化のためには、水素化脱硫異性化反応へ
の使用に先立って、前処理を施すことが好ましい。前処
理は、触媒を100〜500℃の温度に1〜5時間維持
して乾燥し、ついで100〜400℃の温度で還元処理
することからなる。
The catalyst used in the hydrodesulfurization isomerization method of the present invention can be used by the above stabilization treatment.
In order to stabilize the catalytic activity, it is preferable to perform a pretreatment prior to use in the hydrodesulfurization isomerization reaction. The pretreatment consists of drying the catalyst at a temperature of 100-500 ° C. for 1-5 hours, followed by a reduction treatment at a temperature of 100-400 ° C.

【0026】得られた触媒は、必要に応じてアルミナ、
シリカアルミナ、シリカ、ボリア、チタニア、活性炭等
を混合して使用することもできる。触媒の形状はとくに
限定されず、通常この種の触媒に用いられている種々の
形状、たとえば打錠成型、押出成型により得られる円柱
状、四葉型等を採用することができる。
The obtained catalyst is optionally made of alumina,
Silica-alumina, silica, boria, titania, activated carbon and the like can be mixed and used. The shape of the catalyst is not particularly limited, and various shapes usually used for this type of catalyst, for example, a columnar shape obtained by tableting and extrusion, a four-leaf type, and the like can be adopted.

【0027】上記の触媒を用い、本発明の方法に従って
脱硫と同時に異性化させる原料油としては、原油の常圧
蒸留装置から留出したライトナフサ、同じく原油の常圧
蒸留装置から留出したホールナフサから分離したライト
ナフサ、またはライトナフサにマーロックス処理を施し
たマーロックスナフサなどの、有機硫黄を含有する軽質
炭化水素油が好適である。とくに好適な原料油は、AS
TM蒸留温度が25〜130℃、好ましくは25〜11
0℃のライトナフサである。有機硫黄の含有量について
いえば、700質量ppm以下、好ましくは10〜500
質量ppm、さらに好ましくは10〜200質量ppm程度の
ライトナフサが好適に使用できる。硫黄分が数ppmまた
はそれ以下の軽質炭化水素油を原料として使用できるこ
とは、いうまでもない。
The raw material oil to be isomerized simultaneously with desulfurization using the above-mentioned catalyst according to the method of the present invention is light naphtha distilled from a crude oil distillation unit, and similarly a hole distilled from a crude oil distillation unit. Light hydrocarbon oils containing organic sulfur, such as light naphtha separated from naphtha, or marlox naphtha obtained by performing marlox treatment on light naphtha, are preferred. Particularly preferred feedstock is AS
TM distillation temperature is 25-130 ° C, preferably 25-11
Light naphtha at 0 ° C. Regarding the content of organic sulfur, 700 mass ppm or less, preferably 10 to 500 ppm
Light naphtha with a mass ppm of, more preferably, about 10 to 200 mass ppm can be suitably used. It goes without saying that a light hydrocarbon oil having a sulfur content of several ppm or less can be used as a raw material.

【0028】ライトナフサに含まれている有機硫黄化合
物の代表例を挙げれば、チオール化合物(R−SH)と
して2−プロパンチオール(CH3)2CH−SH、エタン
チオールC25−SH、スルフィド化合物(R−S−
R)としてメチルエチルスルフィドCH3−S−C
25、ジスルフィド化合物(R−SS−R)としてエチ
ルイソプロピルジスルフィドC25−SS−CH(C
3)2などである。本発明の方法では、これらの硫黄化
合物を、原料油の異性化と同時に水素化分解して脱硫を
行なうことができる。
Typical examples of organic sulfur compounds contained in light naphtha include 2-propanethiol (CH 3 ) 2 CH-SH and ethanethiol C 2 H 5 -SH as thiol compounds (R-SH). The sulfide compound (RS-
R) as methyl ethyl sulfide CH 3 -SC
2 H 5 , ethyl isopropyl disulfide C 2 H 5 -SS-CH (C
H 3 ) 2 and the like. In the method of the present invention, desulfurization can be carried out by hydrocracking these sulfur compounds simultaneously with the isomerization of the feedstock.

【0029】触媒活性をより長期にわたり維持するため
には、用いるライトナフサ中の芳香族、不飽和炭化水素
および高級炭化水素の量は少ない方がよい。ベンゼン量
は5vol.%以下、できれば3vol.%以下、 ナフテン量
は12vol.%以下、できれば9vol.%以下、C7化合物
は15vol.%以下、できれば10vol.%以下が好まし
い。
In order to maintain the catalytic activity for a longer period of time, the amount of aromatic, unsaturated hydrocarbon and higher hydrocarbon in light naphtha used should be smaller. The benzene content is preferably 5 vol.% Or less, preferably 3 vol.% Or less, the naphthene content is preferably 12 vol.% Or less, preferably 9 vol.% Or less, and the C 7 compound is preferably 15 vol.% Or less, preferably 10 vol.% Or less.

【0030】脱硫異性化の反応条件は、 反応温度:140〜400℃、好ましくは160〜30
0℃、さらに好ましくは180℃〜220℃ 反応圧力:1.0〜4.5MPa、好ましくは1.4〜
3.5MPa LHSV:1.0〜10h-1、好ましくは1.0〜5h
-12/Oil比:1〜3mol/mol、 好ましくは1.5〜2.
5mol/mol である。反応温度が140℃より低いと触媒の寿命が短
くなり、一方、400℃を超えると、活性点である硫酸
根が水素により還元され硫化水素として脱離するため、
活性が低下する。そのほかの条件、すなわち反応圧力、
LHSV、H2/Oil比は、従来行なわれている軽質炭化
水素油の異性化反応の条件とほぼ同様である。
The reaction conditions for the desulfurization isomerization are as follows: reaction temperature: 140 to 400 ° C., preferably 160 to 30 ° C.
0 ° C, more preferably 180 ° C to 220 ° C Reaction pressure: 1.0 to 4.5 MPa, preferably 1.4 to
3.5 MPa LHSV: 1.0 to 10 h -1 , preferably 1.0 to 5 h
-1 H 2 / Oil ratio: 1~3mol / mol, preferably 1.5 to 2.
It is 5 mol / mol. When the reaction temperature is lower than 140 ° C., the life of the catalyst is shortened.
Activity decreases. Other conditions, namely reaction pressure,
The LHSV and the H 2 / Oil ratio are almost the same as the conditions of a conventional light hydrocarbon oil isomerization reaction.

【0031】本発明の実施に当たって、上記の触媒は、
水素化脱硫異性化触媒として、従来の異性化触媒と置き
換えて使用することができる。すなわち、軽質炭化水素
油中の有機硫黄化合物を水素化脱硫して硫化水素に変換
し、硫黄分を数ppm以下にすると同時に直接異性化する
ことができ、オクタン価を向上させた生成油を得ること
ができる。
In carrying out the present invention, the above-mentioned catalyst is
As a hydrodesulfurization isomerization catalyst, it can be used in place of a conventional isomerization catalyst. That is, an organic sulfur compound in a light hydrocarbon oil is hydrodesulfurized and converted into hydrogen sulfide, and the sulfur content can be reduced to several ppm or less and at the same time can be directly isomerized to obtain a product oil having an improved octane number. Can be.

【0032】以下、実施例により本発明をさらに詳細に
説明するが、本発明はこれらの実施例に限定されるもの
ではなく、本発明の趣旨を逸脱しない限り、種々の変更
態様が含まれる。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to these Examples, and includes various modifications without departing from the spirit of the present invention.

【0033】[0033]

【触媒製造例1〜5および比較製造例1】 触媒A〜F
の製造 下記の触媒A〜Fを製造した。触媒A〜C(製造例)お
よび触媒F(比較例)の製造に当たっては含浸法を採用
し、まず製造例1の(1)および(2)のようにして硫
酸根含有水酸化ジルコニウムを用意し、これに塩化白金
酸の水溶液を含浸させ、乾燥し焼成する手順を踏んだ。
触媒DおよびE(製造例)の製造に当たっては混練法を
採用し、実施例1の(1)のようにして水酸化ジルコニ
ウムを調製して使用した。
[Catalyst Production Examples 1 to 5 and Comparative Production Example 1] Catalysts A to F
The following catalysts A to F were produced. In the production of Catalysts A to C (Production Example) and Catalyst F (Comparative Example), an impregnation method was adopted. First, zirconium hydroxide containing a sulfate group was prepared as in (1) and (2) of Production Example 1. This was impregnated with an aqueous solution of chloroplatinic acid, dried and fired.
In the production of catalysts D and E (Production Examples), a kneading method was adopted, and zirconium hydroxide was prepared and used as in (1) of Example 1.

【0034】製造例1:触媒A (1)Zr(OH)4の調製 市販のオキシ塩化ジルコニウムZrOCl2・8H2Oの
1000gを4Lの蒸留水に溶かし、攪拌しながら、そ
こへ25%アンモニア水NH3aq.を滴下して、水酸化
ジルコニウムZr(OH)4を沈殿させた。水溶液のpH
が9.0になるように調製し、沈殿した水酸化ジルコニ
ウムを濾過して分離した。濾過後、蒸留水でよく洗浄
し、110℃で一昼夜乾燥させ、水酸化ジルコニウム4
90gを得た。 (2)SO4/Zr(OH)4の調製 上記のようにしてオキシ塩化ジルコニウムから調製した
水酸化ジルコニウムの400gを1N−硫酸4000g
に入れ、30分間攪拌した。攪拌後、濾過して固体分を
110℃で一昼夜乾燥し、硫酸根を含有する水酸化ジル
コニウムSO4/Zr(OH)4452gを得た。 (3)Pt/SO4/ZrO2の調製 塩化白金酸H2PtCl6・xH2Oの0.47gを溶か
した水溶液に、(2)で得られた硫酸根を含有する水酸
化ジルコニウム19gを入れ、Pt塩を含浸させた。1
10℃で一昼夜乾燥した後、マッフル炉に入れて600
℃で3時間焼成し、Pt担持硫酸根含有ジルコニアPt
/SO4/ZrO213.5gを得た。
[0034] Production Example 1: Dissolve 1000g of catalyst A (1) Zr (OH) 4 Preparation commercial zirconium oxychloride ZrOCl 2 · 8H 2 O in distilled water 4L, while stirring, 25% aqueous ammonia thereto NH 3 aq. Was added dropwise to precipitate zirconium hydroxide Zr (OH) 4 . PH of aqueous solution
Was adjusted to 9.0, and the precipitated zirconium hydroxide was separated by filtration. After filtration, wash well with distilled water, dry at 110 ° C. for 24 hours, and add zirconium hydroxide 4
90 g were obtained. (2) Preparation of SO 4 / Zr (OH) 4 400 g of zirconium hydroxide prepared from zirconium oxychloride as described above was mixed with 4000 g of 1N sulfuric acid.
And stirred for 30 minutes. After stirring, the mixture was filtered and the solid was dried at 110 ° C. for 24 hours to obtain 452 g of sulfated zirconium hydroxide SO 4 / Zr (OH) 4 . (3) Preparation of Pt / SO 4 / ZrO 2 In an aqueous solution in which 0.47 g of chloroplatinic acid H 2 PtCl 6 .xH 2 O was dissolved, 19 g of the sulfate-containing zirconium hydroxide obtained in (2) was added. And impregnated with Pt salt. 1
After drying at 10 ° C all day and night, place in a muffle furnace for 600
Calcination for 3 hours at ℃, Pt-supported sulfate-containing zirconia Pt
/ SO 4 / ZrO 2 13.5 g was obtained.

【0035】製造例2:触媒B 塩化白金酸H2PtCl6・xH2Oの2.65gを溶か
した水溶液に、製造例1の(1)および(2)に記載し
た調製法により調製した硫酸根含有水酸化ジルコニウム
20gを入れ、Pt塩を含浸させた。以下、製造例1と
同様に乾燥および焼成を行なって、Pt担持硫酸根含有
ジルコニアPt/SO4/ZrO214gを得た。
Production Example 2: Catalyst B Sulfuric acid prepared by the preparation method described in Production Example 1 (1) and (2) in an aqueous solution in which 2.65 g of chloroplatinic acid H 2 PtCl 6 .xH 2 O is dissolved. 20 g of root-containing zirconium hydroxide was added and impregnated with a Pt salt. Thereafter, drying and baking were performed in the same manner as in Production Example 1 to obtain 14 g of Pt-supported sulfate-containing zirconia Pt / SO 4 / ZrO 2 .

【0036】製造例3:触媒C 製造例1の(1)および(2)に記載した調製法により
調製した硫酸根含有水酸化ジルコニウム20gを、マッ
フル炉に入れて600℃に3時間加熱することにより焼
成安定化させ、硫酸根含有ジルコニア15gを得た。塩
化白金酸H2PtCl6・xH2Oの0.36gを溶かし
た水溶液に、この硫酸根含有ジルコニア15gを入れ、
Ptを含浸させた。110℃で一昼夜乾燥した後、マッ
フル炉で550℃において2時間焼成し、Pt担持硫酸
根含有ジルコニアPt/SO4/ZrO213gを得た。
Production Example 3: Catalyst C 20 g of sulfate-containing zirconium hydroxide prepared by the preparation method described in Production Example 1 (1) and (2) is placed in a muffle furnace and heated to 600 ° C. for 3 hours. To stabilize, to obtain 15 g of sulfate group-containing zirconia. 15 g of this sulfate-containing zirconia was placed in an aqueous solution in which 0.36 g of chloroplatinic acid H 2 PtCl 6 .xH 2 O was dissolved,
Impregnated with Pt. After drying at 110 ° C. for 24 hours, it was baked in a muffle furnace at 550 ° C. for 2 hours to obtain 13 g of Pt / SO 4 / ZrO 2 containing Pt-supported sulfate group.

【0037】製造例4:触媒D 製造例1の(1)に記載した調製法により調製した水酸
化ジルコニウム22gに市販の硫酸アンモニウム3.1
gを加え、攪拌羽根のついた混練機で、水を加えながら
1時間混練した。得られた硫酸根含有水酸化ジルコニウ
ムを110℃で一昼夜乾燥した後、マッフル炉に入れ6
00℃に3時間加熱して焼成安定化させ、硫酸根含有ジ
ルコニア16gを得た。塩化白金酸H2PtCl6・xH
2Oの3.30gを溶かした水溶液に、この硫酸根含有
ジルコニア16gを入れてPtを含浸させた。110℃
で一昼夜乾燥した後、マッフル炉で550℃において2
時間焼成し、Pt担持硫酸根含有ジルコニアPt/SO
4/ZrO214gを得た。
Production Example 4: Catalyst D Commercially available ammonium sulfate was added to 22 g of zirconium hydroxide prepared by the preparation method described in Production Example 1 (1).
g, and kneaded for 1 hour with a kneader equipped with stirring blades while adding water. The obtained sulfate-containing zirconium hydroxide was dried at 110 ° C. for 24 hours, and then placed in a muffle furnace for 6 hours.
Heating was performed at 00 ° C. for 3 hours to stabilize the calcination, thereby obtaining 16 g of sulfate group-containing zirconia. Chloroplatinic acid H 2 PtCl 6 xH
An aqueous solution prepared by dissolving 2 O of 3.30 g, was impregnated with Pt to put this sulfate ion-containing zirconia 16g. 110 ° C
And then dried in a muffle furnace at 550 ° C for 2 days.
Calcination for Pt-supported sulfate group-containing zirconia Pt / SO
4 / to obtain a ZrO 2 14 g.

【0038】製造例5:触媒E 製造例1の(1)に記載した調製法により調製した水酸
化ジルコニウム35gに市販の硫酸アンモニウム5.0
gを加え、さらに塩化白金酸H2PtCl6・xH2Oの
0.93gを加え、攪拌羽根のついた混練機で、水を加
えながら1時間混練した。得られた硫酸根含有水酸化ジ
ルコニウムを110℃で一昼夜乾燥した後、マッフル炉
に入れ600℃で3時間焼成し、Pt担持硫酸根含有ジ
ルコニアPt/SO4/ZrO225gを得た。
Production Example 5: Catalyst E Commercially available ammonium sulfate 5.0 was added to 35 g of zirconium hydroxide prepared by the preparation method described in Production Example 1 (1).
Then, 0.93 g of chloroplatinic acid H 2 PtCl 6 .xH 2 O was added, and the mixture was kneaded with a kneader equipped with stirring blades for 1 hour while adding water. The obtained sulfate-containing zirconium hydroxide was dried at 110 ° C. for 24 hours, then placed in a muffle furnace and calcined at 600 ° C. for 3 hours to obtain 25 g of Pt-supported sulfate-containing zirconia Pt / SO 4 / ZrO 2 .

【0039】比較製造例1:触媒F 塩化白金酸六水和物H2PtCl6・xH2Oの1.5g
を溶かした水溶液に、製造例1の(1)および(2)に
記載した調製法により調製した硫酸根含有水酸化ジルコ
ニウム168gを入れ、Pt塩を含浸させた。以下は製
造例1と同様に乾燥および焼成を行なって、Pt担持硫
酸根含有ジルコニアPt/SO4/ZrO2119gを得
た。
Comparative Production Example 1: Catalyst F 1.5 g of chloroplatinic acid hexahydrate H 2 PtCl 6 .xH 2 O
Was dissolved in 168 g of sulfate-containing zirconium hydroxide prepared by the preparation method described in Production Example 1 (1) and (2), and impregnated with a Pt salt. Thereafter, drying and firing were performed in the same manner as in Production Example 1 to obtain 119 g of Pt-supported sulfate-containing zirconia Pt / SO 4 / ZrO 2 .

【0040】触媒A〜Fの物性試験結果を、表1にまと
めて示した。 表 1 触媒の物性(その1) 触媒A 触媒B 触媒C 触媒D 触媒の構成 Pt/SO4/ZrO2 Pt/SO4/ZrO2 Pt/SO4/ZrO2 Pt/SO4/ZrO2 焼成条件 600℃×3h 600℃×3h 600℃×3h 600℃×3h 比表面積(m2/g) 121 118 128 132 硫黄分(質量%) 1.72 1.64 2.01 1.73 金属元素分析値(質量%) Pt 0.92 4.50 0.85 7.45 ZrO2結晶構造比 単斜晶/正方晶 3.5/96.5 3.7/96.3 4.1/95.9 4.3/95.7 表 1 触媒の物性(その2) 触媒E 触媒F 触媒の構成 Pt/SO4/ZrO2 Pt/SO4/ZrO2 焼成条件 600℃×3h 600℃×3h 比表面積(m2/g) 119 145 硫黄分(質量%) 1.52 1.64 金属元素分析値(質量%) Pt 0.81 0.35 ZrO2結晶構造比 単斜晶/正方晶 4.5/95.5 4.6/95.4
The results of the physical property tests of Catalysts A to F are summarized in Table 1. Table 1 Physical Properties of Catalyst (Part 1) Catalyst A Catalyst B Catalyst C Catalyst D Structure of Catalyst Pt / SO 4 / ZrO 2 Pt / SO 4 / ZrO 2 Pt / SO 4 / ZrO 2 Pt / SO 4 / ZrO 2 Firing conditions 600 ° C × 3h 600 ° C × 3h 600 ° C × 3h 600 ° C × 3h Specific surface area (m 2 / g) 121 118 128 132 Sulfur content (% by mass) 1.72 1.64 2.01 1.73 Metal element analysis value (% by mass) Pt 0.92 4.50 0.85 7.45 ZrO 2 crystal structure ratio Monoclinic / tetragonal 3.5 / 96.5 3.7 / 96.3 4.1 / 95.9 4.3 / 95.7 Table 1 Physical Properties of Catalyst (Part 2) Catalyst E Catalyst F Catalyst Configuration Pt / SO 4 / ZrO 2 Pt / SO 4 / ZrO 2 firing conditions 600 ℃ × 3h 600 ℃ × 3h Specific surface area (m 2 / g) 119 145 Sulfur content (% by mass) 1.52 1.64 Metal element analysis value (% by mass) Pt 0.81 0.35 ZrO 2 crystal structure ratio Monoclinic Crystal / tetragonal 4.5 / 95.5 4.6 / 95.4

【0041】比表面積の測定には、日本ベル(株)製の
高精度全自動ガス吸着装置「BELSORP28」を使
用した。硫黄分の量は、LECO社の「SC−132」
硫黄分分析計を用いて測定した。
For the measurement of the specific surface area, a high-precision fully automatic gas adsorption apparatus “BELSORP28” manufactured by Nippon Bell Co., Ltd. was used. The amount of sulfur is "SC-132" manufactured by LECO.
It was measured using a sulfur analyzer.

【0042】[0042]

【実施例】 軽質炭化水素油の脱硫異性化反応 触媒充填容量が3mlの固定床流通式反応器を用いて軽質
炭化水素油の脱硫異性化を行ない、触媒A〜Fを評価し
た。反応条件は、次のとおりである: 反応圧力:1.47MPa 反応温度:200℃ LHSV:5h-12/Oil比:2mol/mol 原料:有機硫黄化合物((n−C37)22)添加n−ペ
ンタン(硫黄分300質量ppm) n−ペンタンの異性化率を表2に示す。
EXAMPLES Desulfurization isomerization reaction of light hydrocarbon oil Light oil was subjected to desulfurization isomerization using a fixed bed flow reactor having a catalyst filling capacity of 3 ml, and catalysts A to F were evaluated. The reaction conditions are as follows: Reaction pressure: 1.47 MPa Reaction temperature: 200 ° C. LHSV: 5 h −1 H 2 / Oil ratio: 2 mol / mol Raw material: organic sulfur compound ((n-C 3 H 7 ) 2 S 2 ) Added n-pentane (300 ppm by mass of sulfur) Table 2 shows the isomerization ratio of n-pentane.

【0043】ここで、「異性化率」は下記の式で定義さ
れる。 異性化率(%)=(生成油中のi−C5の重量%)/(生成油
中の全C5化合物の重量%の合計)×100
Here, the “isomerization ratio” is defined by the following equation. Isomerization rate (%) = (% by weight of iC 5 in product oil) / (total of weight% of all C 5 compounds in product oil) × 100

【0044】 表 2 有機硫黄化合物添加n−ペンタンの異性化 反応温度: 200℃ 反応圧力: 1.47MPa LHSV: 5/h H2/Oil: 2mol/mol 原料: n−C5+(n−C37)22 (S=300ppm) 触 媒 反応時間(h) C5異性化率(%) 触媒A:Pt/SO4/ZrO2 Pt:0.92質量% 2.8 57 4.7 62 6.5 60 触媒B:Pt/SO4/ZrO2 Pt:4.50質量% 2.1 69 4.9 70 6.9 69 触媒C:Pt/SO4/ZrO2 Pt:0.85質量% 2.9 55 5.2 59 7.0 59 触媒D:Pt/SO4/ZrO2 Pt:7.45質量% 3.1 64 4.9 65 6.9 63 触媒E:Pt/SO4/ZrO2 Pt:0.81質量% 2.9 55 4.8 59 6.9 58 触媒F:Pt/SO4/ZrO2 Pt:0.35質量% 2.1 22 4.2 9 5.3 3Table 2 Isomerization of n-pentane added with organic sulfur compound Reaction temperature: 200 ° C. Reaction pressure: 1.47 MPa LHSV: 5 / h H 2 / Oil: 2 mol / mol Raw material: nC 5 + (nC 3 H 7 ) 2 S 2 (S = 300 ppm ) Catalyst Reaction time (h) C5 isomerization rate (%) Catalyst A: Pt / SO 4 / ZrO 2 Pt: 0.92 mass% 2.8 57 4.7 626 5.560 Catalyst B: Pt / SO 4 / ZrO 2 Pt: 4.50% by mass 2.1 69 4.9 70 6.9 69 Catalyst C: Pt / SO 4 / ZrO 2 Pt: 0.85% by mass 2.9 55 5 .2 59 7.0 59 Catalyst D: Pt / SO 4 / ZrO 2 Pt: 7.45% by mass 3.1 64 4.9 65 6.9 63 Catalyst E: Pt / SO 4 / ZrO 2 Pt: 0.81% by mass 2 9.9 55 4.8 59 6.9 58 Catalyst F: Pt / SO 4 / ZrO 2 Pt: 0.35% by mass 2.1 22 4.2 9 5.3 3

【0045】触媒製造例1〜5に記述した触媒A〜Eを
使用した場合には、出口の硫化水素濃度は約150容積
ppmであり、原料中に含まれる300質量ppmの有機硫黄
化合物のほとんどが水素化され、硫化水素に変換され
た。すなわち、触媒A〜Eにおいては、硫酸根により電
子不足状態となり耐硫黄性が増した白金の量が増加した
ことにより、n−ペンタンの異性化だけでなく、有機硫
黄化合物の脱硫も同時に行なわれた。
When catalysts A to E described in Catalyst Production Examples 1 to 5 were used, the concentration of hydrogen sulfide at the outlet was about 150 vol.
ppm, and most of the 300 mass ppm organic sulfur compounds contained in the raw material were hydrogenated and converted to hydrogen sulfide. That is, in the catalysts A to E, not only isomerization of n-pentane, but also desulfurization of the organic sulfur compound is performed at the same time due to an increase in the amount of platinum whose sulfur resistance has been increased due to the lack of electrons due to the sulfate group. Was.

【0046】一方、比較製造例の触媒Fを使用した場合
は、異性化率が時間の経過とともに低下し、出口の硫化
水素濃度も約30容積ppmと、原料中の有機硫黄化合物
の大半が硫化水素に変換されなかった。すなわち、触媒
Fにおいては、耐硫黄性を有する白金の量が少ないため
に、有機硫黄化合物による被毒を受け、活性が低下し
た。
On the other hand, when the catalyst F of Comparative Production Example was used, the isomerization rate decreased with the passage of time, and the concentration of hydrogen sulfide at the outlet was about 30 ppm by volume. Not converted to hydrogen. That is, in the catalyst F, since the amount of platinum having sulfur resistance was small, the catalyst F was poisoned by the organic sulfur compound and the activity was reduced.

【0047】[0047]

【発明の効果】本発明の水素化脱硫異性化方法に使用す
る触媒は、軽質炭化水素油の異性化反応触媒として高い
活性を有するだけでなく、耐硫黄性を有し、異性化反応
条件において有機硫黄化合物も水素化脱硫することがで
きる。このため、有機硫黄化合物を含有する軽質炭化水
素油の異性化に当たって、従来技術においては不可欠な
前処理であった脱硫処理を行なう必要がなくなった。具
体的にいえば、従来の異性化用の固定床触媒反応装置に
この触媒を充填して、有機硫黄化合物を含有する軽質炭
化水素油を水素とともに流通させるだけで、異性化プロ
セスを完成することができる。従って本発明によれば、
従来のものより簡易な設備を用い、低減されたランニン
グコストをもって、軽質炭化水素油の水素化脱硫異性化
を実施することができる。
The catalyst used in the hydrodesulfurization isomerization method of the present invention not only has high activity as a light hydrocarbon oil isomerization reaction catalyst, but also has sulfur resistance and can be used under isomerization reaction conditions. Organic sulfur compounds can also be hydrodesulfurized. For this reason, in the isomerization of the light hydrocarbon oil containing the organic sulfur compound, it is not necessary to perform the desulfurization treatment which is an indispensable pretreatment in the prior art. Specifically, the isomerization process can be completed simply by filling the catalyst into a conventional fixed-bed catalytic reactor for isomerization and allowing the light hydrocarbon oil containing the organic sulfur compound to flow with hydrogen. Can be. Therefore, according to the present invention,
Hydrodesulfurization isomerization of light hydrocarbon oils can be performed using equipment simpler than conventional equipment and at a reduced running cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 萩原 和彦 埼玉県幸手市権現堂1134−2 コスモ石油 株式会社研究開発センター内 (72)発明者 大塩 敦保 埼玉県幸手市権現堂1134−2 コスモ石油 株式会社研究開発センター内 Fターム(参考) 4G069 AA03 AA08 BA05A BA05B BB04A BB04B BB10A BB10B BC51A BC51B BC75A BC75B CC02 DA05 EC02X EC03X FA02 FB30 FC07 FC08 4H029 CA00 DA00  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuhiko Hagiwara 1134-2 Gondogendo, Satte City, Saitama Prefecture Cosmo Oil Co., Ltd. F-term in R & D Center Co., Ltd. (reference) 4G069 AA03 AA08 BA05A BA05B BB04A BB04B BB10A BB10B BC51A BC51B BC75A BC75B CC02 DA05 EC02X EC03X FA02 FB30 FC07 FC08 4H029 CA00 DA00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ジルコニウムの酸化物または水酸化物か
らなる担体に、硫酸根を硫黄分にして1〜3質量%含有
させるとともに、白金を0.5〜10質量%担持させ、
550〜800℃の温度で焼成安定化させてなり、比表
面積が50〜150m2/gである触媒に、硫黄分含有量
700質量ppm以下の軽質炭化水素油と水素とを、温
度:140〜400℃、圧力:1.0〜4.5MPa、
LHSV:1.0〜10h-1、H2/Oil比:1〜3mol/
molの反応条件下に接触させることを特徴とする軽質炭
化水素油の水素化脱硫異性化方法。
1. A carrier made of a zirconium oxide or hydroxide contains a sulfate group in a sulfur content of 1 to 3% by mass and supports platinum in a range of 0.5 to 10% by mass,
A catalyst which is calcined and stabilized at a temperature of 550 to 800 ° C. and has a specific surface area of 50 to 150 m 2 / g is coated with a light hydrocarbon oil having a sulfur content of 700 mass ppm or less and hydrogen at a temperature of 140 to 140 ppm. 400 ° C., pressure: 1.0 to 4.5 MPa,
LHSV: 1.0~10h -1, H 2 / Oil ratio: 1~3mol /
A process for hydrodesulfurization isomerization of light hydrocarbon oils, which is carried out under a reaction condition of mol.
JP36785399A 1999-12-24 1999-12-24 Method for hydrodesulfurizing and isomerizing light hydrocarbon oil Pending JP2001181655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36785399A JP2001181655A (en) 1999-12-24 1999-12-24 Method for hydrodesulfurizing and isomerizing light hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36785399A JP2001181655A (en) 1999-12-24 1999-12-24 Method for hydrodesulfurizing and isomerizing light hydrocarbon oil

Publications (1)

Publication Number Publication Date
JP2001181655A true JP2001181655A (en) 2001-07-03

Family

ID=18490369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36785399A Pending JP2001181655A (en) 1999-12-24 1999-12-24 Method for hydrodesulfurizing and isomerizing light hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP2001181655A (en)

Similar Documents

Publication Publication Date Title
US4218308A (en) Hydrogenation catalyst
US4132632A (en) Selective hydrodesulfurization of cracked naphtha
JP6307072B2 (en) Improved residual hydrotreating catalyst containing titania
RU2569682C2 (en) Composition and method for preparation of carrier and catalyst of deep hydrofining of hydrocarbon stock
US4497909A (en) Hydrogenation process
BRPI0713036A2 (en) sulfur tolerant noble metal containing aromatic hydrogenation catalyst and a method of producing and using such catalyst
US2851399A (en) Stabilized platinum-alumina catalysts containing selenium
JP4805211B2 (en) Heavy hydrocarbon oil hydrotreating catalyst, method for producing the same, and hydrotreating method
JP2001179105A (en) Catalyst for hydrodesulfurization and isomerization of light hydrocarbon oil and method of producing the same
JP3658703B2 (en) Hydrocarbon oil hydrotreating catalyst and hydrotreating method
JP2000233132A (en) Catalyst for hydrodesulfurization/isomerization of light hydrocarbon oil and production thereof
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
CA2477959C (en) Catalyst for hydrodesulfurization and isomerization, process for producing the same, and method for hydrodesulfurization and isomerization of sulfur-containing hydrocarbon oil
JP2001181655A (en) Method for hydrodesulfurizing and isomerizing light hydrocarbon oil
US5032253A (en) Preparation of titanium-zirconium-vanadium mixed oxides and its application on fuel oil hydrodesulfurization and hydrodenitrogenation
JP2000234093A (en) Hydrodesulfurization and isomerization of light hydrocarbon oil
RU2610869C2 (en) Hydroprocessing catalyst and methods of making and using such catalyst
JP3512317B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for hydrotreating light oil
JP3770679B2 (en) Hydrocarbon hydrotreating catalyst and gas oil hydrotreating method
JP2002301372A (en) Solid acid catalyst, method for producing the same and method for hydrodesulfurizing and isomerizing light hydrocarbon oil using the same
WO2000035581A1 (en) Catalyst for hydrodesulfurization isomerization of light hydrocarbon oil, method for preparation thereof, and method for hydrodesulfurization isomerization of light hydrocarbon oil using the catalyst
JP2001353444A (en) Hydrogenation desulfurization catalyst for hydrocarbon oil and method for manufacturing the same
RU2142337C1 (en) Catalyst for hydrofining of oil fractions and method of preparation thereof
CN110237848B (en) Supported multi-metal component catalyst, preparation method and application thereof, and naphthenic hydrocarbon hydrogenolysis ring-opening method
JP2002085975A (en) Hydrogenation catalyst for hydrocarbon oil and method of hydrogenating hydrocarbon oil