JP2001107166A - Alloy for joining cemented carbide and its composite material - Google Patents

Alloy for joining cemented carbide and its composite material

Info

Publication number
JP2001107166A
JP2001107166A JP29006199A JP29006199A JP2001107166A JP 2001107166 A JP2001107166 A JP 2001107166A JP 29006199 A JP29006199 A JP 29006199A JP 29006199 A JP29006199 A JP 29006199A JP 2001107166 A JP2001107166 A JP 2001107166A
Authority
JP
Japan
Prior art keywords
alloy
cemented carbide
joining
mass
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29006199A
Other languages
Japanese (ja)
Inventor
Yasushi Watanabe
靖 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP29006199A priority Critical patent/JP2001107166A/en
Publication of JP2001107166A publication Critical patent/JP2001107166A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an alloy for joining free from the generation of an embrittled phase on the joint boundary when joined with a WC-(Co, Ni) series cemented carbide, also low in residual stress generated on the joint part and good in fracture roughness and to provide a composite material thereof. SOLUTION: This alloy contains, as alloy components, by mass, 0.6 to <2.0% C, 9.3 to <15.5% W, and the balance one or two kinds of Co and Ni with inevitable impurities. The alloy may contain <=30% Fe, <=3% Si and <=3% Mn. Moreover, the same may contain one or two kinds or more among Cr, Mo, V, Nb, Ti, Zr and Ta by <=10%. By using this alloy as an alloy for joining, a composite material of a cemented carbide with the alloy for joining and a cemented carbide-steel composite material having excellent mechanical properties can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐摩耗工具や切削
工具として有用な超硬合金と接合して用いる合金および
その複合材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy used as a cemented carbide useful as a wear-resistant tool or a cutting tool and a composite material thereof.

【0002】[0002]

【従来の技術】炭化物、窒化物等の硬質粒子を柔軟な結
合相で結合した超硬合金は、優れた硬さと耐摩耗性を有
するので、切削工具をはじめ、ロール、パンチなどの塑
性加工用工具および土木、鉱山用の掘削工具等として有
用である。しかし、超硬合金は加工が困難で高価なう
え、靱性が低く折損しやすいために用途に制約があっ
た。この制約を乗越える方法として、安価で加工性に優
れる鋼などの基材と超硬合金とをろう付け接合したり、
ねじ止め、焼ばめ、クランプなどの機械的固定法によっ
て複合材として用いることが行われている。
2. Description of the Related Art Cemented carbides, in which hard particles such as carbides and nitrides are combined with a flexible binder phase, have excellent hardness and wear resistance, and are used for plastic working of cutting tools, rolls, punches, etc. It is useful as a tool and a drilling tool for civil engineering and mining. However, hardmetals are difficult and expensive to process, and have low toughness and are easily broken. As a method to overcome this limitation, brazing and joining a base material such as steel, which is inexpensive and excellent in workability, to a cemented carbide,
It is used as a composite material by a mechanical fixing method such as screwing, shrink fitting, and clamping.

【0003】ねじ止め、焼ばめ、クランプなどの機械的
固定法による場合には、加工が困難な超硬合金に対して
固定のための加工を施す必要があり、形状や加工法の点
から用途に制約が生じることを免れない。また、上記ろ
う付け接合材では、ろう材、超硬合金および基材の間に
おける熱膨張係数の差異にもとづく内部応力のために、
ろう材あるいは超硬合金に割れが生じることがある。ま
た、ろう材として、超硬合金および基材のいずれよりも
融点が低い材料を用いるので耐熱温度が低く、複合材全
体として強度が低くなってしまうという問題がある。
[0003] In the case of using a mechanical fixing method such as screwing, shrink-fitting, clamping, etc., it is necessary to perform processing for fixing hard metal which is difficult to process. It is inevitable that there will be restrictions on applications. In addition, in the brazing material, because of the internal stress based on the difference in the coefficient of thermal expansion between the brazing material, the cemented carbide and the base material,
The brazing material or cemented carbide may crack. Further, since a material having a lower melting point than either the cemented carbide or the base material is used as the brazing material, there is a problem that the heat resistance is low and the strength of the entire composite material is reduced.

【0004】ろう材を用いることによる上述のような問
題を回避するには、超硬合金と基材とを拡散接合によっ
て直接に接合することが考えられる。しかしこの場合、
例えば、最も代表的な超硬合金であるWC−Co系超硬
合金と鋼とを拡散接合するときは、前記ろう付けと同様
に大きな熱膨張差による熱応力が発生し、また、拡散層
中に脆化相が生成するため健全な接合部を得ることがで
きないという問題がある。WC−Ni系超硬合金と鋼と
の接合の場合についても前記同様に、拡散接合によって
は健全な接合部は得難い。
[0004] In order to avoid the above-mentioned problems caused by using the brazing material, it is conceivable that the cemented carbide and the base material are directly bonded by diffusion bonding. But in this case,
For example, when a WC-Co cemented carbide, which is the most typical cemented carbide, and a steel are diffusion-bonded, a thermal stress due to a large difference in thermal expansion is generated as in the case of the brazing, and a diffusion layer is formed. However, there is a problem that a sound joining portion cannot be obtained because a brittle phase is generated. Similarly, in the case of joining a WC-Ni-based cemented carbide and steel, it is difficult to obtain a sound joint by diffusion joining.

【0005】上記の問題を解決するために、本発明者
は、先に、特願平10−3969号および特願平11−
100075号で超硬合金接合用合金およびその複合材
を提案した。該提案によれば、WC−Co系超硬合金、
WC−Ni系超硬合金と接合しても接合部に脆化相を生
成することがなく優れた接合強度を保証し、かつ、熱間
鍛造などの塑性加工に耐える展延性を有するので供給形
態の自由度が大きく、安価な接合用合金を提供すること
ができる。
In order to solve the above-mentioned problems, the present inventor has previously described Japanese Patent Application Nos. 10-3969 and 11-11.
No. 100075 proposed an alloy for cemented carbide and its composite material. According to the proposal, WC-Co cemented carbide,
Even when joined with a WC-Ni cemented carbide, it does not form an embrittlement phase at the joint, guarantees excellent joining strength, and has ductility that can withstand plastic working such as hot forging. Therefore, it is possible to provide an inexpensive joining alloy having a high degree of freedom.

【0006】該提案にかかる複合材の接合合金部分は、
公知の機械加工、熱処理、放電加工、溶接加工が可能で
あり、超硬合金部材の有用性を増す。さらに、該接合用
合金を中間層として用いて超硬合金と強靱な鋼とを接合
することにより、優れた接合強度を有する安価な超硬合
金−鋼複合材を提供することができる。
[0006] The joining alloy portion of the composite material according to the proposal is:
Known machining, heat treatment, electric discharge machining, and welding can be performed, and the utility of the cemented carbide member is increased. Further, by joining the cemented carbide and the tough steel using the joining alloy as an intermediate layer, it is possible to provide an inexpensive cemented carbide-steel composite having excellent joining strength.

【0007】[0007]

【発明が解決しようとする課題】しかし、前記提案の合
金は、WC−Co系超硬合金、WC−Ni系超硬合金な
どと接合した時に、接合部におけるη相などの脆化相の
生成を防止できるので破断強度は高いものの、熱膨張差
に基因する残留応力が発生するために破断靭性が低いと
いう問題があった。
However, when the proposed alloy is joined to a WC-Co cemented carbide, a WC-Ni cemented carbide, or the like, the formation of an embrittlement phase such as an η phase at the joint portion. Thus, although fracture strength can be prevented, the fracture strength is high, but there is a problem that the fracture toughness is low due to the generation of residual stress due to the difference in thermal expansion.

【0008】そこで本発明の目的は、WC−Co系超硬
合金、WC−Ni系超硬合金と接合した時に、接合界面
に脆化相を発生することなく、かつ、接合部に発生する
残留応力が従来合金よりも低く、破断靭性が良好な接合
用合金を提供することにある。また、接合用合金と超硬
合金との信頼性の高い複合体あるいは、優れた強度と機
能を有し、安価で信頼性の高い超硬合金−接合用合金−
鋼の超硬合金複合材を提供することにある。
[0008] Therefore, an object of the present invention is to provide a WC-Co cemented carbide and a WC-Ni cemented carbide without causing an embrittlement phase at the joint interface and remaining at the joint. An object of the present invention is to provide a joining alloy having a lower stress and a higher fracture toughness than conventional alloys. In addition, a highly reliable composite of a joining alloy and a cemented carbide, or an inexpensive and highly reliable cemented carbide having excellent strength and function—a joining alloy—
It is to provide a cemented carbide alloy of steel.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
め、本発明の超硬合金接合用合金は、 (1)合金成分として、C:0.6質量%以上2.0質
量%未満、W:9.3質量%以上15.5質量%未満を
含み、残部CoおよびNiのいずれか1種または2種な
らびに不可避的不純物からなることを特徴とする。 (2)合金成分として、C:0.6質量%以上2.0質
量%未満、W:9.3質量%以上15.5質量%未満、
Fe:30質量%以下を含み、残部CoおよびNiのい
ずれか1種または2種ならびに不可避的不純物からなる
ことを特徴とする。 (3)前記(1)または(2)のいずれか一項記載の超
硬合金接合用合金において、上記合金成分に加えて、さ
らに、Si:3質量%以下およびMn:3質量%以下の
いずれか1種または2種を含むことを特徴とする。 (4)前記(1)〜(3)のいずれか一項記載の超硬合
金接合用合金において、上記合金成分に加えて、さら
に、Cr、Mo、V、Nb、Ti、Zr、Taのうち何
れか1種または2種以上を10質量%以下含むことを特
徴とする。
Means for Solving the Problems To solve the above problems, the cemented carbide alloy of the present invention comprises: (1) As an alloying component, C: 0.6% by mass or more and less than 2.0% by mass; W: contains 9.3% by mass or more and less than 15.5% by mass, and is characterized by being composed of one or more of Co and Ni and the inevitable impurities. (2) As alloy components, C: 0.6% by mass or more and less than 2.0% by mass, W: 9.3% by mass or more and less than 15.5% by mass,
Fe: not more than 30% by mass, and the balance consists of one or two of Co and Ni and unavoidable impurities. (3) In the cemented carbide alloy according to any one of the above (1) or (2), in addition to the above alloy components, any of Si: 3% by mass or less and Mn: 3% by mass or less. Or one or two of them. (4) In the cemented carbide according to any one of (1) to (3), in addition to the above alloy components, further, among Cr, Mo, V, Nb, Ti, Zr, and Ta, It is characterized by containing 10% by mass or less of any one type or two or more types.

【0010】また、本発明の複合材は、 (5)超硬合金と接合用合金とが接合されて一体構造を
なす複合材において、前記接合用合金が前記(1)〜
(4)のいずれか一項記載の超硬合金接合用合金である
ことを特徴とする。 (6)超硬合金と接合用合金、および該接合用合金と鋼
とが接合されて一体構造をなす複合材において、前記接
合用合金が前記(1)〜(4)のいずれか一項記載の超
硬合金接合用合金であることを特徴とする。
Further, the composite material of the present invention is: (5) In a composite material in which a cemented carbide and a joining alloy are joined to form an integral structure, the joining alloy is one of the above (1) to (1).
(4) The alloy for cemented carbide according to any one of (4). (6) In a cemented carbide and a joining alloy, and in a composite material in which the joining alloy and steel are joined to form an integral structure, the joining alloy is any one of (1) to (4). Characterized in that it is an alloy for cemented carbide.

【0011】[0011]

【発明の実施の形態】本発明は、超硬合金と他金属とを
接合する時に信頼性の高い接合部を得るためには、接合
界面におけるη相の発生を防止することが不可欠である
という知見に加えて、接合後の機械的安定性、信頼性を
確保するためには、接合部に発生する残留応力を低減す
る必要があるという知見に基づいてなされたものであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, it is essential to prevent the occurrence of an η phase at a joint interface in order to obtain a highly reliable joint when cemented carbide and another metal are joined. In addition to the knowledge, it has been made based on the knowledge that it is necessary to reduce the residual stress generated at the joint in order to secure mechanical stability and reliability after joining.

【0012】本発明の超硬合金接合用合金は、接合温度
における拡散反応の間に、接合相手である超硬合金中の
結合相γの化学組成変化を抑制する合金組成とし、ま
た、常温におけるヤング率を低減し、靭延性を高めるよ
うに合金組成を選択している。これによって接合用合金
と超硬合金との熱膨張係数の差異に基因する残留応力を
低く抑えることができ、機械的性質の信頼性が向上す
る。さらに、該接合用合金は、比較的延性に富むので冷
間引抜き等の冷間塑性加工が可能である。
The alloy for cemented carbide according to the present invention has an alloy composition that suppresses a change in the chemical composition of the binder phase γ in the cemented carbide to be joined during the diffusion reaction at the joining temperature. The alloy composition is selected to reduce Young's modulus and increase toughness. Thereby, the residual stress caused by the difference in the coefficient of thermal expansion between the joining alloy and the cemented carbide can be kept low, and the reliability of the mechanical properties is improved. Furthermore, since the joining alloy is relatively rich in ductility, cold plastic working such as cold drawing can be performed.

【0013】本発明は、硬質粒子として主にWCを含
み、これをCo、Niまたはそれらの合金からなる結合
相によって結合した超硬合金において、合金を脆化する
η相または自由炭素を含まない健全な組織を得るために
はCをはじめとする各構成元素含有率の厳密な制御が必
要であり、さらに、合金の熱間加工性を向上するために
Feの含有が効果的であるという知見に基づく。
According to the present invention, a hard metal mainly containing WC as a hard particle, which is bound by a bonding phase composed of Co, Ni or an alloy thereof, does not contain an η phase or free carbon which embrittles the alloy. It is necessary to strictly control the content of each constituent element including C in order to obtain a sound structure, and furthermore, the finding that Fe is effective in improving the hot workability of the alloy. based on.

【0014】すなわち、健全な超硬合金は、硬質粒子と
延性に富んだCo、Niなどの結合相(γ)とからな
る。硬質粒子がWCの場合、結合炭素量は6.13質量
%であり、例えば、WC−16質量%Co系超硬合金に
おいて、結合炭素量6.06〜6.3質量%ではWC+
γの2相である。しかし、結合炭素量が6.06質量%
を下回るとη相を生成して合金は脆化する。また、結合
炭素量が6.3質量%を超えると自由炭素を生成してや
はり超硬合金は脆化する。
That is, a sound cemented carbide consists of hard particles and a highly ductile binder phase (γ) such as Co or Ni. When the hard particles are WC, the amount of bound carbon is 6.13% by mass. For example, in a WC-16% by mass Co-based cemented carbide, when the amount of bound carbon is 6.06 to 6.3% by mass, WC + is used.
γ is two phases. However, the amount of bound carbon is 6.06% by mass.
If it is less than η, an η phase is formed and the alloy is embrittled. On the other hand, if the amount of bonded carbon exceeds 6.3% by mass, free carbon is generated and the cemented carbide is also embrittled.

【0015】超硬合金と他の金属とを接合するとき、そ
の接合温度において、超硬合金と接合する金属(接合金
属という)のCポテンシャルが超硬合金の結合相(γ)
のそれより低ければ、超硬合金から接合金属へとCの拡
散を生じ、超硬合金の結合相中のC含有率が低下する。
これにより前記結合相中にはη相が形成され、超硬合金
の接合界面は脆化する。同様に、超硬合金の結合相中に
おけるCo含有率の低下もη相の生成を助長する。接合
金属のCポテンシャルが超硬合金のそれより高ければ、
超硬合金の接合界面には自由炭素を生成し前記接合界面
の脆化をもたらす。
When a cemented carbide and another metal are joined together, at the joining temperature, the C potential of the metal joined to the cemented carbide (referred to as joining metal) is changed to the bonding phase (γ) of the cemented carbide.
If it is lower than that of C, diffusion of C from the cemented carbide into the joining metal occurs, and the C content in the binder phase of the cemented carbide decreases.
As a result, an η phase is formed in the binder phase, and the bonding interface of the cemented carbide becomes brittle. Similarly, a decrease in the Co content in the binder phase of the cemented carbide also promotes the formation of the η phase. If the C potential of the joining metal is higher than that of cemented carbide,
Free carbon is generated at the joining interface of the cemented carbide, causing the joining interface to become brittle.

【0016】本発明の超硬合金接合用合金は、接合時に
おける前記接合界面のCおよびCoまたはNi含有率の
変化を極力低減するように化学組成が調整されている。
本発明が対象とする超硬合金は、硬質粒子として主にW
Cを含むものとするが、前記WCの一部はCr、Mo、
Nb、Ti、ZrおよびTaの炭化物または窒化物の1
種以上と置換していてもよい。また、超硬合金中の結合
相は、主にCoおよびNiのいずれか1種およびそれら
の合金からなり、前記超硬合金中の硬質粒子構成元素を
これと平衡する量だけ含有するものとする。
[0016] The cemented carbide alloy of the present invention has a chemical composition adjusted so as to minimize the change in the C and Co or Ni contents at the joint interface during joining.
The cemented carbide targeted by the present invention mainly contains W as hard particles.
C, but a part of the WC is Cr, Mo,
Nb, Ti, Zr and Ta carbides or nitrides 1
It may be substituted with more than one species. Also, the binder phase in the cemented carbide is mainly composed of one of Co and Ni and their alloys, and contains the hard particle constituent elements in the cemented carbide in an amount equilibrium therewith. .

【0017】次に、本発明の超硬合金接合用合金の化学
組成を限定した理由について説明する。本発明の接合用
合金と超硬合金とは拡散によって接合する。このとき接
合温度が1000℃未満では接合不能であるか、または
接合のために長い加熱時間と大きな圧力が必要となるの
で好ましくない。また、1300℃を超えると超硬合金
に液相が生成し、合金の変形が大きくなるので好ましく
ない。
Next, the reason why the chemical composition of the cemented carbide for use in the present invention is limited will be described. The joining alloy of the present invention and the cemented carbide are joined by diffusion. At this time, if the bonding temperature is lower than 1000 ° C., bonding cannot be performed, or a long heating time and a large pressure are required for bonding, which is not preferable. On the other hand, when the temperature exceeds 1300 ° C., a liquid phase is formed in the cemented carbide, and the deformation of the alloy is increased, which is not preferable.

【0018】そこで、実質的に拡散接合可能な温度10
00〜1300℃における超硬合金中の結合相と平衡し
て、該結合層中にCを析出したり、あるいは結合層金属
の欠乏によってη相を生じることがないように、本発明
の接合用合金は、合金成分として、C:0.6質量%以
上2.0質量%未満、W:9.3質量%以上15.5質
量%未満、残部CoおよびNiのいずれか1種または2
種ならびに不可避的不純物からなることとした。CとW
の含有率は、WCの当量としておよそ1:15.3〜1
6.5とすることが好ましい。またWCとしての含有率
は10〜15質量%とすることが好ましい。
Therefore, the temperature at which diffusion bonding can be substantially performed is 10
Equilibrium with the binder phase in the cemented carbide at 00 to 1300 ° C. so that C is not deposited in the binder layer or η phase is not generated due to lack of the binder layer metal. The alloy contains, as alloy components, C: 0.6% by mass or more and less than 2.0% by mass, W: 9.3% by mass or more and less than 15.5% by mass, and the balance of one or more of Co and Ni.
It consisted of species and inevitable impurities. C and W
Is about 1: 15.3 to 1 as an equivalent of WC.
Preferably, it is 6.5. The content as WC is preferably set to 10 to 15% by mass.

【0019】本発明の接合用合金には、合金の強度を高
め、また、熱間における加工性を向上するためにFeを
添加することができる。しかしFeは超硬合金の接合界
面におけるη相の形成傾向を強める元素であり、合金の
ヤング率を高め複合体の靱延性を下げるため、本発明の
合金においてはFe含有率の上限を30質量%とする。
Fe can be added to the joining alloy of the present invention in order to increase the strength of the alloy and improve the hot workability. However, Fe is an element that strengthens the tendency of the η phase to form at the bonding interface of the cemented carbide, and increases the Young's modulus of the alloy and lowers the toughness and ductility of the composite. Therefore, in the alloy of the present invention, the upper limit of the Fe content is 30 mass%. %.

【0020】本発明の超硬合金接合用合金は、鋳造品、
熱間加工品、冷間加工品として提供されるほか、合金粉
末としても提供される。特に、溶湯から直接合金粉末を
製造するときにしばしば発生する注湯ノズルの閉塞事故
を防止するために、SiおよびMnの添加は極めて効果
的である。本発明の本旨を損なうことなく上記の効果を
発揮するためにSi:3質量%以下およびMn:3質量
%以下のいずれか1種または2種を添加することができ
る。
The cemented carbide alloy of the present invention comprises a cast product,
It is offered as hot-worked and cold-worked products as well as alloy powder. In particular, the addition of Si and Mn is extremely effective in preventing a pouring nozzle from being clogged, which often occurs when an alloy powder is produced directly from a molten metal. Any one or two of Si: 3% by mass or less and Mn: 3% by mass or less can be added in order to exhibit the above effects without impairing the spirit of the present invention.

【0021】接合すべき超硬合金中のWCの一部がC
r、Mo、V、Nb、Ti、ZrおよびTaの炭化物ま
たは窒化物の1種以上と置換している場合には、本発明
の接合用合金は、Cr、Mo、V、Nb、Ti、Zrお
よびTaのうち何れか1種または2種以上を、あわせて
10質量%以下において含有することができる。これら
の元素は、10質量%を超えて多量に含有すると、合金
が脆化し健全な接合ができなくなるので、10質量%を
含有率の上限とした。
Part of WC in the cemented carbide to be joined is C
When one or more of carbides or nitrides of r, Mo, V, Nb, Ti, Zr, and Ta are substituted, the joining alloy of the present invention is made of Cr, Mo, V, Nb, Ti, Zr. Any one or more of Ta and Ta may be contained in a total amount of 10% by mass or less. When these elements are contained in a large amount exceeding 10% by mass, the alloy becomes brittle and a sound joining cannot be performed. Therefore, the upper limit of the content is set to 10% by mass.

【0022】本発明の超硬合金接合用合金は、通常の合
金の溶解法によって溶解し、鋳造した鋳片として供給さ
れるほか、前記鋳片に熱間鍛造、熱間押出し等の熱間加
工および冷間圧延、冷間引抜き等の冷間加工を施して所
要の形状として供給される。また、アトマイズや機械的
粉砕によって製造した粉末および該粉末の焼結体として
も供給される。その他、Fe、Co、Ni、W、C等の
混合粉を圧粉体としたものや該混合粉の焼結体としても
供給される。さらに、接合中間層の形成方法としては、
メッキ、スパッタ、蒸着法によることができる。
The alloy for cemented cemented carbide of the present invention is supplied as a cast slab melted and cast by a usual alloy melting method, and the cast slab is subjected to hot working such as hot forging or hot extrusion. And it is subjected to cold working such as cold rolling and cold drawing to be supplied in a required shape. It is also supplied as powder produced by atomization or mechanical pulverization and a sintered body of the powder. In addition, it is also supplied as a compact made of a mixed powder of Fe, Co, Ni, W, C and the like, or as a sintered body of the mixed powder. Further, as a method of forming the bonding intermediate layer,
Plating, sputtering, and vapor deposition can be used.

【0023】本発明の接合用合金に、必要に応じて熱間
加工、冷間加工、切削加工等の加工を施して所要の形状
としたのち、該接合用合金と超硬合金とを各接合面を接
して配置し、該接合面に垂直方向に圧力を加えつつ10
00〜1300℃の温度で加熱して、または加熱後に加
圧して拡散接合することにより超硬合金と前記接合用合
金の複合材を得ることができる。また、超硬合金、本発
明の接合用合金、鋼の順に積層して組立て、上記と同様
に加圧、加熱することにより超硬合金と鋼とを連結した
複合材を得ることができる。
The joining alloy of the present invention is subjected to processing such as hot working, cold working, cutting, or the like as required to obtain a required shape, and then the joining alloy and the cemented carbide are joined to each other. The surfaces are placed in contact with each other, and pressure is applied
The composite material of the cemented carbide and the joining alloy can be obtained by performing diffusion bonding by heating at a temperature of 00 to 1300 ° C. or by applying pressure after heating. Further, a cemented carbide, a joining alloy of the present invention, and steel are laminated and assembled in this order, and then pressurized and heated in the same manner as described above to obtain a composite material in which the cemented carbide and steel are connected.

【0024】上記の一軸加圧、加熱に替えて、超硬合金
と本発明の接合用合金の積層組立体、または超硬合金、
本発明の接合用合金および鋼の積層組立体をカプセルに
挿入・封止してHIP装置により高温静水圧処理するこ
とにより一層強固な複合材を得ることができる。さら
に、超硬合金と本発明の接合用合金とを上記の方法で接
合し、ついで該接合用合金と鋼とを溶接、圧接、拡散接
合など公知の接合方法によって接合することにより複合
材とすることもできる。
Instead of the above uniaxial pressing and heating, a laminated assembly of a cemented carbide and the joining alloy of the present invention, or a cemented carbide,
A stronger composite material can be obtained by inserting and sealing the laminated assembly of the joining alloy and steel of the present invention into a capsule and subjecting the assembly to high-temperature hydrostatic pressure treatment by a HIP device. Further, the cemented carbide and the joining alloy of the present invention are joined by the above-described method, and then the joining alloy and steel are joined by a known joining method such as welding, pressure welding, or diffusion joining to form a composite material. You can also.

【0025】本発明の接合用合金が粉末として供給され
た場合は、上記高温静水圧処理を行うことにより超硬合
金と接合用合金、または超硬合金、接合用合金および鋼
の複合体を得ることができる。さらに、超硬合金粉末の
プレス成形時またはプレス成形後に、該超硬合金粉末成
形体に積層して本発明の接合用合金粉末成形体を形成
し、焼結することによって超硬合金−接合用合金の複合
材を形成することもできる。
When the joining alloy of the present invention is supplied as a powder, a cemented carbide and a joining alloy, or a composite of a cemented carbide, a joining alloy and steel is obtained by performing the high-temperature hydrostatic pressure treatment described above. be able to. Further, during or after press forming of the cemented carbide powder, the cemented carbide powder compact is laminated on the cemented carbide powder compact to form a joint alloy powder compact of the present invention, and then sintered to form a cemented carbide-joint. Alloy composites can also be formed.

【0026】[0026]

【実施例】誘導炉を用いて表1に示す各合金を溶製し、
5kgの鋳塊とした。
EXAMPLE Each alloy shown in Table 1 was melted using an induction furnace.
It was a 5 kg ingot.

【0027】[0027]

【表1】 [Table 1]

【0028】該鋳塊の(直径D)/4部分から直径6m
m、長さ110mmの熱間引張り試験片を切り出して、
熱間引張り試験に供した。熱間引張り試験は、試験片を
グリップ間隔90mmで把持し、1150℃において引
張り速度50mm/secとして行った。破断時のグリ
ップ間の距離を測定して破断までの伸び率を算定し、表
2に熱間伸びとして示した。
6 m in diameter from the (diameter D) / 4 part of the ingot
m, cut out a 110 mm long hot tensile test piece,
It was subjected to a hot tensile test. The hot tensile test was performed by gripping a test piece at a grip interval of 90 mm and at 1150 ° C. at a tensile speed of 50 mm / sec. The elongation to break was calculated by measuring the distance between the grips at the time of break, and is shown in Table 2 as hot elongation.

【0029】[0029]

【表2】 [Table 2]

【0030】前記鋳塊(皮削り後の外径:78mm)を
1200℃に加熱し、10ヒートで直径45mmの丸棒
に鍛伸した。その結果、実施例では、何ら支障なく強加
工によって、又は熱間キズトリ工程を追加することによ
って、目標寸法まで鍛伸することができた。該丸棒に8
50℃×1hr加熱後15℃/hr炉冷の焼なましを施
して45φ焼なまし材を得た。さらにスプリング鍛造に
よって外径10mmの丸棒に鍛伸し、850℃×1hr
加熱後15℃/hr炉冷の焼なましを施して10φ焼な
まし材とした。
The ingot (outer diameter after shaving: 78 mm) was heated to 1200 ° C. and forged into a round bar having a diameter of 45 mm by 10 heats. As a result, in the example, the forging could be performed to the target size by the strong working without any trouble or by adding the hot scratching process. 8 on the round bar
After heating at 50 ° C. × 1 hr, annealing was performed at 15 ° C./hr in a furnace to obtain a 45φ annealing material. Furthermore, it is forged into a round bar with an outer diameter of 10 mm by spring forging, and 850 ° C x 1 hr.
After the heating, annealing was performed at 15 ° C./hr in a furnace to obtain a 10φ annealing material.

【0031】前記焼なまし材を1段当り5%以内の減面
率で冷間引抜きし、支障なく冷間引抜き加工をすること
ができる総減面率を求めて冷間加工性の指標とした。そ
の結果を冷間引抜き加工率として表2に示す。
The annealed material is cold drawn at a reduction ratio of 5% or less per one step, and the total reduction ratio at which cold drawing can be performed without any trouble is determined. did. The results are shown in Table 2 as a cold drawing rate.

【0032】前記45φ焼なまし材のD/4部分から直
径10mm、長さ60mmの試料を切り出し、平行部2
0mm、標点距離10mmの引張り試験片を製作し、常
温において引張り試験を行い、ヤング率と引張り強度特
性とを調べた。その結果を鍛造焼なまし材の常温引張り
試験結果として表3に示す。また、前記鋳塊の直径の1
/4部分から上記同様の引張り試験片を製作し、常温に
おける引張り試験を行った結果を鋳造材の引張り試験結
果として表3に示す。
A sample having a diameter of 10 mm and a length of 60 mm was cut out from the D / 4 part of the 45φ annealed material, and the parallel part 2 was cut out.
Tensile test specimens having a length of 0 mm and a gauge length of 10 mm were produced and subjected to a tensile test at room temperature to examine Young's modulus and tensile strength characteristics. The results are shown in Table 3 as room temperature tensile test results of the forged annealed material. The diameter of the ingot is 1
A tensile test piece similar to the above was produced from the / 4 portion, and the result of a tensile test at room temperature is shown in Table 3 as a tensile test result of the cast material.

【0033】[0033]

【表3】 [Table 3]

【0034】前記鋳塊から直径20mm、長さ15mm
の接合合金丸棒を切り出した。また、直径20mm、長
さ15mmのWC−13質量%Co超硬合金丸棒を準備
した。前記接合合金丸棒と前記WC−13質量%Co超
硬合金丸棒とを、両者の端面を互いに接して軟鋼製カプ
セルに挿入し、脱気・密封した後、HIP装置により温
度1100℃、圧力117.7MPa(1200kgf
/cm2)、保持時間3hrの熱間静水圧処理を施し
た。熱間静水圧処理によって、前記接合合金丸棒と前記
WC−13質量%Co超硬合金丸棒とは、接触端面で緊
密に接合し、健全な複合材を形成しているものと認めら
れた。
From the ingot, a diameter of 20 mm and a length of 15 mm
Was cut out. In addition, a WC-13 mass% Co cemented carbide round bar having a diameter of 20 mm and a length of 15 mm was prepared. After inserting the joined alloy round bar and the WC-13 mass% Co cemented carbide round bar into a mild steel capsule with their end faces in contact with each other, degassing and sealing, the temperature is set to 1100 ° C. and pressure by a HIP device. 117.7MPa (1200kgf
/ Cm 2 ) and a hot isostatic pressure treatment for a retention time of 3 hours. By the hot isostatic pressure treatment, it was recognized that the joined alloy round bar and the WC-13 mass% Co cemented carbide round bar were tightly joined at the contact end face to form a sound composite material. .

【0035】前記複合材から、長さの中央に接合面を有
する厚さ3.0mm、幅5.0mm、長さ30mmの抗
折試験片を作成し、支点間距離20mmとし、接合部に
厚さ方向の集中荷重を加えて3点曲げ試験を行った。そ
の結果を表4に示す。
From the composite material, a bending test piece having a thickness of 3.0 mm, a width of 5.0 mm, and a length of 30 mm having a joint surface at the center of the length was prepared, the distance between the fulcrums was set to 20 mm, and the thickness of the joint was measured. A three-point bending test was performed by applying a concentrated load in the vertical direction. Table 4 shows the results.

【0036】[0036]

【表4】 [Table 4]

【0037】表1に示す実施例1の鍛造材から直径12
mm、厚さ3mmの接合合金円盤を切出した。また、直
径12mm、長さ50mmのWC−13質量%Co超硬
合金丸棒と直径12mm、長さ50mmのJIS SK
D11相当の鋼丸棒とを準備した。超硬合金丸棒、接合
合金円盤、鋼丸棒の順に積層し、各端面を密着して組立
て、該組立て体を軟鋼製カプセルに挿入し、減圧・封止
してHIP装置により温度1100℃、圧力117.7
MPa(1200kgf/cm2)、保持時間3hrの
熱間静水圧処理を施した。旋削及び研削によって直径8
mm×長さ100mmの抗折試験片を得た。該抗折試験
片の接合部はいずれも緊密に接合し、健全な複合材を形
成しているものと認められた。前記抗折試験片につい
て、支点間距離80mmとし、接合部に集中荷重を加え
て3点曲げ試験を行った。その結果を表4に示す。
From the forged material of Example 1 shown in Table 1,
A 3 mm thick alloy alloy disc was cut out. Also, a WC-13 mass% Co cemented carbide round bar having a diameter of 12 mm and a length of 50 mm and a JIS SK having a diameter of 12 mm and a length of 50 mm are used.
A steel round bar equivalent to D11 was prepared. A cemented carbide round bar, a joining alloy disk, and a steel round bar are laminated in this order, and each end face is closely assembled and assembled. The assembled body is inserted into a mild steel capsule, decompressed and sealed, and heated to 1100 ° C. by a HIP device. Pressure 117.7
A hot isostatic pressure treatment was performed at a pressure of 1200 kgf / cm 2 for 3 hours. 8 diameter by turning and grinding
A bending test piece of mm × 100 mm in length was obtained. It was recognized that all the joints of the bending test pieces were tightly joined to form a sound composite material. The flexural test piece was subjected to a three-point bending test by applying a concentrated load to the joint portion while setting the distance between fulcrums to 80 mm. Table 4 shows the results.

【0038】以上の実験結果から明らかなように、本発
明の超硬合金接合用合金は、熱間加工性、冷間加工性に
優れ、ヤング率が低く、超硬合金と本接合合金との複合
材および本接合合金を用いて接合した超硬合金と鋼との
複合材は実用上十分な接合強度を示す。
As is clear from the above experimental results, the cemented carbide alloy of the present invention has excellent hot workability and cold workability, a low Young's modulus, The composite material and the composite material of the cemented carbide and the steel joined using the present bonding alloy show practically sufficient bonding strength.

【0039】[0039]

【発明の効果】以上に説明したように、本発明の超硬合
金接合用合金は、熱間加工性、冷間加工性に優れるので
接合用合金として所要の形状にすることが容易である。
また、本発明の超硬合金接合用合金は、WC−Co系超
硬合金、WC−Ni系超硬合金と接合しても接合部に脆
化相を生成することがなく、ヤング率が低いので接合部
に生じる残留応力も低いのでく、優れた接合強度を保証
することができ、また、熱間加工性、機械的性質に優れ
た接合用合金を提供することができる。さらに、該接合
用合金を超硬合金と接合することにより、優れた接合強
度と機械的強度を有する複合材を提供することができ
る。この複合材の接合合金部分は、公知の熱間塑性加
工、機械加工、熱処理、放電加工、溶接加工が可能であ
り、超硬合金部材の有用性を増す。本発明の接合用合金
を中間層として用いて超硬合金と強靱な鋼とを接合する
ことにより、優れた接合強度を有する安価で信頼性の高
い超硬合金−鋼複合材を提供することができる。
As described above, the cemented carbide alloy of the present invention is excellent in hot workability and cold workability, so that it can be easily formed into a required shape as a joint alloy.
Further, the cemented carbide for cemented carbide of the present invention does not generate an embrittlement phase at the joint even when joined with a WC-Co-based cemented carbide or a WC-Ni-based cemented carbide, and has a low Young's modulus. Therefore, since the residual stress generated in the joint is low, excellent joining strength can be guaranteed, and a joining alloy excellent in hot workability and mechanical properties can be provided. Further, by joining the joining alloy with the cemented carbide, a composite material having excellent joining strength and mechanical strength can be provided. The joining alloy portion of this composite material can be subjected to known hot plastic working, machining, heat treatment, electric discharge machining, and welding, thereby increasing the usefulness of the cemented carbide member. By joining a cemented carbide and tough steel using the joining alloy of the present invention as an intermediate layer, it is possible to provide an inexpensive and highly reliable cemented carbide-steel composite having excellent joining strength. it can.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 合金成分として、C:0.6質量%以上
2.0質量%未満、W:9.3質量%以上15.5質量
%未満を含み、残部CoおよびNiのいずれか1種また
は2種ならびに不可避的不純物からなることを特徴とす
る超硬合金接合用合金。
1. An alloying component containing C: 0.6% by mass or more and less than 2.0% by mass, W: 9.3% by mass or more and less than 15.5% by mass, and the balance of any one of Co and Ni Or an alloy for joining cemented carbide, comprising two or more unavoidable impurities.
【請求項2】 合金成分として、C:0.6質量%以上
2.0質量%未満、W:9.3質量%以上〜15.5質
量%未満、Fe:30質量%以下を含み、残部Coおよ
びNiのいずれか1種または2種ならびに不可避的不純
物からなることを特徴とする超硬合金接合用合金。
2. The alloy composition contains C: 0.6% by mass or more and less than 2.0% by mass, W: 9.3% by mass or more and less than 15.5% by mass, and Fe: 30% by mass or less, with the balance being the balance. An alloy for cemented carbide joining, comprising one or two of Co and Ni and unavoidable impurities.
【請求項3】 上記合金成分に加えて、さらに、Si:
3質量%以下およびMn:3質量%以下のいづれか1種
または2種を含むことを特徴とする請求項1または請求
項2のいずれか一項記載の超硬合金接合用合金。
3. In addition to the above alloy components, Si:
The cemented carbide according to claim 1, further comprising one or more of 3% by mass or less and Mn: 3% by mass or less.
【請求項4】 上記合金成分に加えて、さらに、Cr、
Mo、V、Nb、Ti、Zr、Taのうち何れか1種ま
たは2種以上を10質量%以下含むことを特徴とする請
求項1〜3のいずれか一項記載の超硬合金接合用合金。
4. In addition to the above alloy components, Cr,
The alloy for cemented cemented carbide according to any one of claims 1 to 3, wherein one or more of Mo, V, Nb, Ti, Zr, and Ta are contained in an amount of 10 mass% or less. .
【請求項5】 超硬合金と接合用合金とが接合されて一
体構造をなす複合材において、前記接合用合金が請求項
1〜4のいずれか一項記載の超硬合金接合用合金である
ことを特徴とする複合材。
5. A composite material in which a cemented carbide and a joining alloy are joined to form an integral structure, wherein the joining alloy is the cemented carbide joining alloy according to any one of claims 1 to 4. A composite material characterized in that:
【請求項6】 超硬合金と接合用合金、および該接合用
合金と鋼とが接合されて一体構造をなす複合材におい
て、前記接合用合金が請求項1〜4のいずれか一項記載
の超硬合金接合用合金であることを特徴とする複合材。
6. A cemented carbide and a joining alloy, and a composite material in which the joining alloy and steel are joined to form an integrated structure, wherein the joining alloy is any one of claims 1 to 4. A composite material characterized by being a cemented carbide alloy.
JP29006199A 1999-10-12 1999-10-12 Alloy for joining cemented carbide and its composite material Pending JP2001107166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29006199A JP2001107166A (en) 1999-10-12 1999-10-12 Alloy for joining cemented carbide and its composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29006199A JP2001107166A (en) 1999-10-12 1999-10-12 Alloy for joining cemented carbide and its composite material

Publications (1)

Publication Number Publication Date
JP2001107166A true JP2001107166A (en) 2001-04-17

Family

ID=17751292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29006199A Pending JP2001107166A (en) 1999-10-12 1999-10-12 Alloy for joining cemented carbide and its composite material

Country Status (1)

Country Link
JP (1) JP2001107166A (en)

Similar Documents

Publication Publication Date Title
EP0899051B1 (en) Alloy used for joining to cemented carbide, and composite materials made thereof
KR102253406B1 (en) Bonding material for dissimilar metal and brazing method using the same
WO1997046347A1 (en) Iron-base alloy foils for liquid-phase diffusion bonding of iron-base material bondable in oxidizing atmosphere
US20050129565A1 (en) Tungsten alloy high temperature tool materials
JP3243184B2 (en) Alloy foil for liquid phase diffusion bonding that can be bonded in oxidizing atmosphere
KR20000076093A (en) A steel and a heat treated tool thereof manufactured by an integrated powder metallurgical process and use of the steel for tools
WO1995027586A1 (en) Alloy foil capable of liquid-phase diffusion welding of heat-resisting material in oxidizing atmosphere
Kawamura et al. Electron beam welding of Zr-based bulk metallic glass to crystalline Zr metal
JP3743793B2 (en) Composite roll for hot rolling, method for producing the same, and hot rolling method using the same
US7687023B1 (en) Titanium carbide alloy
EP0362711B1 (en) Joined body of ceramic member and metallic member
JP3690617B2 (en) Cemented carbide composite roll
JP2005262321A (en) Composite roll made of cemented carbide
JPH09323175A (en) Alloy foil for liquid phase diffusion joining of fe base metal enabling joining in oxidizing atmosphere
JP2001107166A (en) Alloy for joining cemented carbide and its composite material
JP2893886B2 (en) Composite hard alloy material
JP4218239B2 (en) Method of manufacturing tool steel by lamination and tool steel
JPH0266139A (en) High speed tool steel made of powder reduced in oxygen content
JP2999655B2 (en) High toughness powder HSS
JP2000290757A (en) Alloy for joining cemented carbide and composite material thereof
EP3141625A1 (en) Heat-resistant tungsten alloy, friction stir welding tool, and method for manufacturing same
JP3690618B2 (en) Cemented carbide composite roll
JPH1034311A (en) Member for molten metal and manufacture thereof
JP2760926B2 (en) High-strength cemented carbide composite material combining low carbon steel and method for producing the same
JPS603987A (en) Assembly