JP2001104942A - Method and apparatus for making degassed liquid - Google Patents

Method and apparatus for making degassed liquid

Info

Publication number
JP2001104942A
JP2001104942A JP29091799A JP29091799A JP2001104942A JP 2001104942 A JP2001104942 A JP 2001104942A JP 29091799 A JP29091799 A JP 29091799A JP 29091799 A JP29091799 A JP 29091799A JP 2001104942 A JP2001104942 A JP 2001104942A
Authority
JP
Japan
Prior art keywords
water
degassed
liquid
ultrasonic
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29091799A
Other languages
Japanese (ja)
Inventor
Ichiro Toyoda
一郎 豊田
Noburo Goto
信郎 後藤
Kiyoshi Tatsuhara
潔 龍原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29091799A priority Critical patent/JP2001104942A/en
Publication of JP2001104942A publication Critical patent/JP2001104942A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for making degassed water especially for deoxygenation capable of effectively adapted even to a method supplying nitrogen gas without increasing size of an ultrasonic treatment device to perform deoxygenation. SOLUTION: In the apparatus for making deoxygenated water, wherein gas to be degassed is mainly oxygen, being water used in an atomic power plant, a steam power plant, a food plant, a semiconductor manufacturing plant or the like, an ultrasonic treatment chamber utilizing an ultrasonic vibrator to generate no cavitation in raw water is provided on the water feed side of a degassing apparatus for supplying nitrogen gas to perform deoxygenation and raw water is modified in the ultrasonic treatment chamber to form water easy to degass and nitrogen gas is supplied to this water in the degassing device to deoxygenate the same.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を利用した
脱気液体の製造方法とその装置に係り、特に、原子力プ
ラント、火力プラント、食品プラント、半導体製造施設
等において使用される液体、特に水に対し含有している
気体、特に酸素を除去する脱気液体の製造方法とその装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a degassed liquid using ultrasonic waves, and more particularly to a liquid used in a nuclear power plant, a thermal power plant, a food plant, a semiconductor manufacturing facility, etc. The present invention relates to a method and an apparatus for producing a degassed liquid for removing gas, particularly oxygen, contained in water.

【0002】[0002]

【従来の技術】従来より、配管内での腐食や、食品の腐
敗を防止するために、液体、特に水に含有している酸素
を除去する脱気液体製造装置がプラントでは多く用いら
れている。脱気装置としては、窒素ガスを吹き込んで溶
存酸素を追い出す方法、または加熱処理することにより
溶存ガスを追い出す方法、または、真空排気により溶存
ガスを取り除く方法等が用途ごとに用いられている。
2. Description of the Related Art Conventionally, in order to prevent corrosion in pipes and spoilage of food, degassing liquid producing apparatuses for removing liquids, particularly oxygen contained in water, have been widely used in plants. . As a deaerator, a method of blowing out nitrogen gas to blow out dissolved oxygen, a method of blowing out dissolved gas by heat treatment, a method of removing dissolved gas by evacuation, and the like are used for each application.

【0003】一例として、窒素ガスで溶存酸素を追い出
す従来の脱気装置の一例について図5に基づいて説明す
る。図5において、1は円筒容器状の脱気塔であり、2
は該脱気塔1内部に設置された気液接触面積を増やすた
めのグリッドである。グリッド2は装置により設置され
ている場合と設置されていない場合がある。脱気塔1上
部のグリッド2上方に設置された噴霧管3から原水4を
脱気塔1内部に噴霧する。脱気塔1内部の下部のグリッ
ド2下方には窒素ガス供給管5を設置し、窒素ガス6を
脱気塔1内部に供給する。噴霧管3から噴霧された原水
4中の溶存酸素は、窒素ガス6と接触することによりグ
リッド2内等で置換し、溶存酸素が原水4から取り除か
れる。脱酸素された脱気水8は、脱気塔1下部に溜ま
り、バルブ7を介し、脱気塔外へ排出され各種プラント
で利用される。また、脱気塔1内のガスは排気管9から
排気される。
[0003] As an example, an example of a conventional deaerator for purging dissolved oxygen with nitrogen gas will be described with reference to FIG. In FIG. 5, reference numeral 1 denotes a cylindrical vessel-shaped deaeration tower;
Is a grid provided inside the degassing tower 1 for increasing the gas-liquid contact area. The grid 2 may or may not be installed by the device. Raw water 4 is sprayed into the degassing tower 1 from a spray pipe 3 installed above the grid 2 above the degassing tower 1. A nitrogen gas supply pipe 5 is provided below the lower grid 2 inside the degassing tower 1 to supply a nitrogen gas 6 into the degassing tower 1. The dissolved oxygen in the raw water 4 sprayed from the spray pipe 3 is replaced in the grid 2 or the like by contact with the nitrogen gas 6, and the dissolved oxygen is removed from the raw water 4. The degassed degassed water 8 accumulates in the lower part of the degassing tower 1, is discharged to the outside of the degassing tower via the valve 7, and is used in various plants. The gas in the degassing tower 1 is exhausted from the exhaust pipe 9.

【0004】[0004]

【発明が解決しようとする課題】原子力プラント、火力
プラント、食品プラント、半導体製造施設等の各種プラ
ントでは多量の水を所定の低濃度の溶存酸素濃度まで処
理する必要がある。このため通常1段で所定濃度まで脱
酸素出来ない場合には、脱気塔を複数段組み合わせたタ
ンデム方式がとられているが、このことは装置の大型化
と脱気時間の長期化につながる。
In various plants such as a nuclear power plant, a thermal power plant, a food plant, and a semiconductor manufacturing facility, it is necessary to treat a large amount of water to a predetermined low concentration of dissolved oxygen. For this reason, when it is not possible to deoxidize to a predetermined concentration in a single stage, a tandem system in which a plurality of degassing towers are combined is adopted, but this leads to an increase in the size of the apparatus and a prolonged degassing time. .

【0005】このため従来より、装置の小型化、及び省
エネの観点から脱気速度を早くすることが望まれてい
る。又従来より少量の水を脱気する場合には、超音波を
照射しキャビテーションの作用を利用して脱気する方法
が周知の事実として知られているが、この方法では脱気
速度は早くなるが、界面擾乱作用により超音波を如何に
長く照射してもある程度以上の脱気が不可能であること
が知られている(超音波技術便覧 1086頁 昭和6
2年8月10日新訂6刷 日本工業新聞社)。
For this reason, it has been conventionally desired to increase the deaeration speed from the viewpoint of miniaturization of the apparatus and energy saving. In the case where a small amount of water is degassed conventionally, a method of irradiating ultrasonic waves and degassing using the action of cavitation is known as a well-known fact, but this method increases the degassing speed. However, it is known that degassing of a certain degree or more is impossible even if ultrasonic waves are irradiated no matter how long due to interfacial disturbance action (Ultrasonics Technology Handbook, page 1086, Showa 6)
August 10, 2010, 6th revised edition, Nihon Kogyo Shimbun).

【0006】また、超音波を照射する方法は、真空排気
しながら脱気する場合に適用されているものもあるが、
超音波照射と真空排気が同時に行なわれるシステムにお
いては、キャビテーションの作用と真空排気が組み合わ
されて有効であるが、窒素ガスを供給し脱酸素する方法
には適用できない。さらに、この方法では脱気塔全体の
水に超音波を照射する必要があり、超音波処理装置が大
型化するため多量の水を処理するプラント用には適さな
い。従って、現状とられている方法は、気液接触面積を
増大させるために、水滴を小さくしたり、グリッド2を
挿入する方法が取られているのみである。
Further, a method of irradiating ultrasonic waves is applied to a case where air is evacuated while evacuating.
In a system in which ultrasonic irradiation and evacuation are performed at the same time, the action of cavitation and evacuation are effective in combination, but cannot be applied to a method of supplying nitrogen gas and deoxidizing. Further, in this method, it is necessary to irradiate ultrasonic waves to the water in the entire degassing tower, and the ultrasonic processing apparatus becomes large in size, so that it is not suitable for a plant that processes a large amount of water. Therefore, the only current method is to reduce the size of water droplets or to insert the grid 2 in order to increase the gas-liquid contact area.

【0007】本発明は、かかる従来技術の課題に鑑み、
超音波処理装置が大型化することなく、且つ窒素ガスを
供給し脱酸素する方法にも有効に適用できる脱気液体の
製造方法とその装置、特に脱酸素用の脱気水の製造方法
とその装置を提供することにある。
The present invention has been made in view of the problems of the prior art,
A method and a device for producing a degassed liquid which can be effectively applied to a method for supplying nitrogen gas and deoxidizing without increasing the size of an ultrasonic treatment device, and particularly a method for producing degassed water for deoxygenation and its method It is to provide a device.

【0008】[0008]

【課題を解決するための手段】本発明人等は、脱気速度
を早くする方法として、キャビテーションを起こさない
程度の弱い超音波照射した水が脱気されやすい水に改質
されていることを見出し本発明にいたった。即ち、請求
項1記載の発明は、原液にキャビテーションを起こさな
い程度の弱い超音波照射を施して、脱気しやすい液に改
質後、所定の脱気を行なうことを特徴とするもので、又
請求項3記載の発明は前記発明を効果的に実施する装置
に関し、超音波振動子を利用して原液にキャビテーショ
ンを起こさない程度の弱い超音波照射を施す超音波処理
室を、脱気装置の給液側に設けたことを特徴とするもの
である。尚、前記超音波の周波数は20KHz〜1MH
zの範囲が望ましい。
Means for Solving the Problems As a method for increasing the degassing rate, the present inventors have determined that water irradiated with ultrasonic waves that is weak enough not to cause cavitation has been reformed into water that is easily degassed. Heading to the present invention. That is, the invention according to claim 1 is characterized in that the raw solution is subjected to weak ultrasonic irradiation to such an extent that cavitation does not occur, reformed into a liquid that is easily degassed, and then subjected to predetermined degassing. The invention according to claim 3 relates to an apparatus for effectively carrying out the invention, wherein an ultrasonic processing chamber for applying a weak ultrasonic wave to the undiluted solution using an ultrasonic vibrator so as not to cause cavitation is provided with a deaerator. Is provided on the liquid supply side. The frequency of the ultrasonic wave is 20 KHz to 1 MH
A range of z is desirable.

【0009】本発明は、脱気装置へ供給する前の液に対
する処理に関するものであるため、脱気液体製造装置の
方法については特に限定しないが、特に窒素ガスを供給
し脱酸素する脱酸素用の脱気水の製造方法とその装置に
有効である。即ち、前記液体が原子力プラント、火力プ
ラント、食品プラント、半導体製造施設等において使用
される水であり、脱気される気体が主として酸素である
脱酸素水の製造方法において、原水にキャビテーション
を起こさない程度の弱い超音波照射を施して、脱気しや
すい水に改質後、窒素ガスを供給し脱酸素することによ
り好ましい製造方法が提供できる。
Since the present invention relates to the treatment of the liquid before being supplied to the degassing apparatus, the method of the degassed liquid producing apparatus is not particularly limited. This is effective for the method and apparatus for producing degassed water. That is, the liquid is water used in a nuclear power plant, a thermal power plant, a food plant, a semiconductor manufacturing facility, and the like, and in the method for producing deoxygenated water in which the gas to be degassed is mainly oxygen, does not cause cavitation in raw water. A preferable production method can be provided by supplying a nitrogen gas and deoxygenating the water by irradiating a slightly weak ultrasonic wave to reform water to be easily degassed.

【0010】又請求項4記載の発明は前記発明を効果的
に実施する装置に関する発明で、超音波振動子を利用し
て原水にキャビテーションを起こさない程度の弱い超音
波照射を施す超音波処理室を、窒素ガスを供給し脱酸素
する脱気装置の給水側に設け、前記超音波処理室で、脱
気しやすい水に改質後、脱気装置内で窒素ガスを供給し
脱酸素することを特徴とする。
[0010] The invention according to claim 4 relates to an apparatus for effectively implementing the above-mentioned invention, and is an ultrasonic processing chamber for performing weak ultrasonic irradiation that does not cause cavitation in raw water using an ultrasonic vibrator. Is provided on the water supply side of a deaerator that supplies and deoxygenates nitrogen gas, and in the sonication chamber, after reforming into water that is easily deaerated, supplying nitrogen gas in the deaerator to perform deoxygenation. It is characterized by.

【0011】本発明を具体的に説明するに、超音波を照
射した水は、超音波照射を止めても脱酸素し易い水に改
質されて、その特性を保持していることを本発明人等は
実験で見出した。メカニズムはまだ明確になっていない
が、水に溶解している溶存酸素の周りの水分子集合体の
構造が超音波を照射することにより破壊され、溶存酸素
が水の中を拡散しやすい構造に改質されるのではないか
と考えている。すなわち、この効果を適用すれば、脱気
装置に供給される前の原水にキャビテーションを起こさ
ない程度の弱い超音波照射を施すだけで、脱気しやすい
水に改質可能であり、その水を従来と同様な方式で脱気
するだけで、脱気速度が早くなるため装置の小型化、及
び処理の高速化、窒素ガス量の低減化が可能になる。
The present invention will be described in more detail with reference to the fact that water irradiated with ultrasonic waves is modified into water which is easily deoxygenated even after the ultrasonic irradiation is stopped, and retains its characteristics. People have found in experiments. Although the mechanism is not clear yet, the structure of the water molecule aggregate around the dissolved oxygen dissolved in water is destroyed by irradiating ultrasonic waves, and the dissolved oxygen is easily diffused in water. We think it may be reformed. In other words, if this effect is applied, the raw water before being supplied to the degassing device can be reformed into water that can be easily degassed simply by applying a weak ultrasonic irradiation that does not cause cavitation. The degassing speed is increased only by degassing in the same manner as the conventional method, so that the size of the apparatus can be reduced, the processing speed can be increased, and the amount of nitrogen gas can be reduced.

【0012】そしてかかる発明は、窒素ガスを供給し脱
酸素する方法、より具体的には脱気塔を用いる大型のプ
ラントにも有効に適用できるのみならず、さらに、大型
の脱気塔を用いても脱気塔全体の水に超音波を照射する
必要がなく、その上流側の給水通路側で超音波処理をす
ればよいために、装置を大型化しなくても好ましい装置
構成が得られ、多量の水を処理するプラント用にも適用
できる。且つ脱気塔を端断行性にしても十分な脱気が可
能である。
The present invention can be effectively applied not only to a method for supplying nitrogen gas for deoxygenation, more specifically to a large plant using a degassing tower, but also using a large degassing tower. Even if it is not necessary to irradiate ultrasonic waves to the water in the entire degassing tower, and it is sufficient to perform ultrasonic treatment on the upstream water supply passage side, a preferable apparatus configuration can be obtained without increasing the size of the apparatus, It can also be applied to plants that process large amounts of water. In addition, sufficient deaeration is possible even if the deaeration tower is made endless.

【0013】[0013]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、形状、その相対配置などは特に特定
的な記載がない限り、この発明の範囲をそれのみに限定
する趣旨ではなく単なる説明例に過ぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, unless otherwise specified, dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the invention, but are merely illustrative examples.

【0014】図1は本発明の実施形態にかかる脱気液体
製造装置で、図中1〜9の符号で示す要素機器は図5に
示す従来の脱気液体製造装置と同一の機能を持つために
その説明を省略する。そして脱気塔1内に原水4を噴霧
する噴霧管3に連接され、前工程側より原水4を供給す
る給水管40の通路途中に、原水4を貯留し、その底部
に設けた超音波振動子12を利用して前記貯留した原水
4にキャビテーションを起こさない程度の弱い超音波照
射を施す超音波処理室11を設け、該超音波処理室11
で、脱気しやすい水に改質後、該改質された水を噴霧管
3より脱気塔1内に噴霧させ、窒素ガス供給管5より供
給された窒素ガス6とグリッド2内等で気液接触させ脱
酸素するものである。図中13は超音波電源で、キャビ
テーションを起こさない程度の弱い20KHz〜1MH
zの範囲の周波数の超音波を生成する。
FIG. 1 shows an apparatus for producing a degassed liquid according to an embodiment of the present invention. Element devices indicated by reference numerals 1 to 9 in the figure have the same functions as those of the conventional apparatus for producing a degassed liquid shown in FIG. The description is omitted. Then, the raw water 4 is stored in the middle of a passage of a water supply pipe 40 which is connected to the spray pipe 3 for spraying the raw water 4 into the degassing tower 1 and supplies the raw water 4 from the previous process side. An ultrasonic treatment chamber 11 for irradiating the stored raw water 4 with a weak ultrasonic wave so as not to cause cavitation by using a probe 12;
After the water is reformed into water that is easily degassed, the reformed water is sprayed into the degassing tower 1 from the spray pipe 3 and the nitrogen gas 6 supplied from the nitrogen gas supply pipe 5 and the inside of the grid 2 or the like. It is deoxygenated by gas-liquid contact. In the figure, reference numeral 13 denotes an ultrasonic power source, which is weak enough not to cause cavitation, from 20 KHz to 1 MHz.
An ultrasonic wave having a frequency in the range of z is generated.

【0015】かかる装置によれば、給水管40より供給
された原水4は、まず超音波処理室11に供給貯留され
る。該超音波処理室11の底部には、超音波振動子12
が取り付けられており、超音波電源13によって超音波
振動子12が駆動され、超音波処理室11内の原水4に
キャビテーションを起こさない程度の弱い超音波が照射
される構造になっている。超音波処理室11で一定の滞
留時間の間、超音波照射された改質水は、噴霧管3より
脱気塔1内に噴霧され、従来と同様に窒素ガス供給管5
より供給された窒素ガス6とグリッド2内等で気液接触
され、脱酸素処理が施される。
According to such an apparatus, the raw water 4 supplied from the water supply pipe 40 is first supplied and stored in the ultrasonic treatment chamber 11. An ultrasonic vibrator 12 is provided at the bottom of the ultrasonic processing chamber 11.
The ultrasonic vibrator 12 is driven by an ultrasonic power source 13 and the raw water 4 in the ultrasonic processing chamber 11 is irradiated with a weak ultrasonic wave that does not cause cavitation. During a certain residence time in the ultrasonic treatment chamber 11, the reformed water irradiated with ultrasonic waves is sprayed into the degassing tower 1 from the spray pipe 3, and the nitrogen gas supply pipe 5
The supplied nitrogen gas 6 is brought into gas-liquid contact with the inside of the grid 2 or the like, and subjected to a deoxygenation treatment.

【0016】次に超音波照射することによって水の脱気
特性が改質されることを見出した実験結果について図
2、図3、図4で説明する。実験は、図2で示すように
25℃で飽和溶存酸素状態にした蒸留水(本試験では2
50cc和光純薬製)をビーカー21に入れ、超音波洗
浄機11a内にて所定の時間、超音波照射を施し、その
蒸留水を25℃に管理した容器22内に移し、攪拌機2
3にて溶液を攪拌しながら気相部に窒素ボンベ24より
窒素ガスを供給し、溶存酸素計25にて脱酸素過程を計
測した。
Next, the results of an experiment in which it has been found that the degassing characteristics of water are improved by ultrasonic irradiation will be described with reference to FIGS. 2, 3 and 4. FIG. As shown in FIG. 2, the experiment was carried out with distilled water in a state of saturated dissolved oxygen at 25.degree.
50 cc manufactured by Wako Pure Chemical Industries, Ltd.) into a beaker 21, subjected to ultrasonic irradiation for a predetermined time in an ultrasonic cleaner 11a, and transferred the distilled water into a container 22 controlled at 25 ° C.
While stirring the solution in 3, nitrogen gas was supplied to the gas phase from the nitrogen cylinder 24, and the deoxygenation process was measured by the dissolved oxygen meter 25.

【0017】超音波は水全体にキャビテーションを起こ
さない程度の弱い超音波を照射されることが望ましく、
本実験では簡便な実験のため超音波洗浄機を利用し、そ
の効果を確認した。図3にその結果を示す。図3は未処
理の蒸留水に対して脱酸素試験を行なった結果と、超音
波洗浄機11aにて28KHz×1分間超音波照射した
蒸留水に対して、脱酸素試験を行なった結果を示す。液
温は25℃に管理されており、超音波照射による液温上
昇は0.2℃以下である。
Preferably, the ultrasonic wave is irradiated with a weak ultrasonic wave which does not cause cavitation in the whole water.
In this experiment, the effect was confirmed by using an ultrasonic cleaner for a simple experiment. FIG. 3 shows the result. FIG. 3 shows the results of a deoxygenation test performed on untreated distilled water and the results of a deoxygenation test performed on distilled water irradiated with ultrasonic waves at 28 KHz × 1 minute using an ultrasonic cleaner 11a. . The liquid temperature is controlled at 25 ° C., and the liquid temperature rise due to ultrasonic irradiation is 0.2 ° C. or less.

【0018】図3から明らかなように、未処理の蒸留水
と1分間超音波照射を加えられた水とでは、溶存酸素濃
度の時系列変化に大きな差がみられ、超音波照射を加え
られた水は脱酸素し易い水に改質されていることが分か
る。また、より低濃度の酸素濃度までの脱酸素特性が要
求される場合には、より短時間で脱酸素が進むため本発
明は有利に作用することが分かる。
As is apparent from FIG. 3, there is a large difference in the time-series change in the dissolved oxygen concentration between untreated distilled water and water subjected to ultrasonic irradiation for one minute. It can be seen that the waste water is reformed into water that is easily deoxygenated. In addition, when deoxidation characteristics up to a lower concentration of oxygen are required, the deoxygenation proceeds in a shorter time, so that the present invention works advantageously.

【0019】図4は、超音波照射時の周波数を28KH
z、47KHz、100KHzに対して、照射時間を変
えて試験した結果を示す。図中の横軸は、超音波照射時
間を、縦軸は上記脱酸素試験方式で脱酸素を開始してか
ら、溶存酸素濃度が0.1[mg/1]以下まで到達す
るまでの時間を示した。この図から、この効果は超音波
の周波数にはそれほど影響される現象ではないことが分
かる。そのため、周波数としては超音波として取り扱い
安い20kHz〜1MHzが望ましい。
FIG. 4 shows that the frequency at the time of ultrasonic irradiation is 28 KH.
The results of a test with different irradiation times for z, 47 KHz, and 100 KHz are shown. The horizontal axis in the figure indicates the ultrasonic irradiation time, and the vertical axis indicates the time from the start of deoxidation by the above-described deoxygenation test method until the dissolved oxygen concentration reaches 0.1 [mg / 1] or less. Indicated. From this figure, it can be seen that this effect is not so much affected by the frequency of the ultrasonic wave. Therefore, the frequency is desirably 20 kHz to 1 MHz, which is cheap to handle as an ultrasonic wave.

【0020】また、この実験では、超音波照射開始と共
に特性が改善され、1分程度の照射で脱酸素し易い水に
改質されていることが分かる。そのため、原水4の供給
流量から、脱酸素効果が最大になる超音波照射時間が維
持されるように超音波照射室11の容積を適宜決めれ
ば、最大の効果が期待できることが理解できる。
Further, in this experiment, it can be seen that the characteristics are improved with the start of the ultrasonic irradiation, and the water is reformed into water which is easily deoxygenated by irradiation for about 1 minute. Therefore, it can be understood that the maximum effect can be expected if the volume of the ultrasonic irradiation chamber 11 is appropriately determined from the supply flow rate of the raw water 4 so that the ultrasonic irradiation time at which the deoxygenation effect is maximized is maintained.

【0021】[0021]

【発明の効果】以上記載のごとく本発明によれば、脱気
装置に供給する水や油等の液にキャビテーションを起こ
さない程度の弱い超音波照射を加えることで、脱気処理
前に水を脱気し易い水に簡便な方法で改質する方法を得
ることが出来、特に請求項2若しくは4記載の発明によ
り、脱酸素速度の向上が図れることにより、より低濃度
レベルまでの溶存酸素濃度の脱気水の製造が可能にな
る。また、同じ溶存酸素濃度レベルの脱気水製造では、
タンデム構造にしなくても十分な脱気が可能であるため
に、脱気装置のコンパクトか及び処理速度の向上、使用
窒素ガス量の低減が可能である。
As described above, according to the present invention, the water such as water or oil supplied to the deaerator is irradiated with a weak ultrasonic wave which does not cause cavitation so that the water can be removed before the deaeration process. It is possible to obtain a method for reforming water that can be easily degassed by a simple method. In particular, the invention according to claim 2 or 4 can improve the deoxygenation rate, thereby increasing the dissolved oxygen concentration to a lower concentration level. The production of degassed water becomes possible. Also, in the production of degassed water with the same dissolved oxygen concentration level,
Since sufficient deaeration is possible without using a tandem structure, the deaerator can be compact, the processing speed can be improved, and the amount of nitrogen gas used can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態に係る、超音波処理室を設
けた脱気水製造装置の構成図である。
FIG. 1 is a configuration diagram of an apparatus for producing degassed water provided with an ultrasonic treatment chamber according to an embodiment of the present invention.

【図2】 超音波照射による脱酸素促進効果を確認した
本発明の実験装置の概略を示す概略構成図である。
FIG. 2 is a schematic configuration diagram showing an outline of an experimental apparatus of the present invention in which an effect of promoting deoxygenation by ultrasonic irradiation has been confirmed.

【図3】 図3、図4は、未処理蒸留水と超音波照射を
施した蒸留水に対する脱酸素特性の実験結果を示し、図
3は未処理の蒸留水と超音波照射を加えた水との、溶存
酸素濃度の時系列変化を示すグラフ図である。
FIG. 3 and FIG. 4 show experimental results of the deoxidation characteristics of untreated distilled water and distilled water subjected to ultrasonic irradiation, and FIG. 3 shows untreated distilled water and water irradiated with ultrasonic irradiation. FIG. 4 is a graph showing a time-series change in the dissolved oxygen concentration.

【図4】 超音波照射時の周波数を28KHz、47K
Hz、100KHzに対して、照射時間を変えて試験し
た結果を示すグラフ図である。
[Fig. 4] The frequency at the time of ultrasonic irradiation is 28KHz, 47K.
It is a graph which shows the result of having changed irradiation time with respect to 100 Hz and 100 KHz.

【図5】 従来の脱酸素装置の一例を示す脱気水製造装
置の構成図である。
FIG. 5 is a configuration diagram of an apparatus for producing degassed water showing an example of a conventional deoxygenation apparatus.

【符号の説明】[Explanation of symbols]

1 脱気塔 2 グリッド 3 噴霧管 4 原水 5 窒素ガス供給管 6 窒素ガス 8 脱気水 11 超音波処理室 12 超音波振動子 13 超音波電源 40 給水管 DESCRIPTION OF SYMBOLS 1 Deaeration tower 2 Grid 3 Spray pipe 4 Raw water 5 Nitrogen gas supply pipe 6 Nitrogen gas 8 Deaeration water 11 Ultrasonic processing room 12 Ultrasonic transducer 13 Ultrasonic power supply 40 Water supply pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 龍原 潔 横浜市金沢区幸浦一丁目8番地1 三菱重 工業株式会社基盤技術研究所内 Fターム(参考) 4B021 LA42 LT03 MC04 MK01 MK13 MP01 MQ02 MQ03 4D011 AA15 AA18 AB01 AC06 AD03 4D037 AA08 AB11 BA23 BA24 BA26 BB05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kiyoshi Tatsuhara 1-8-1 Koura, Kanazawa-ku, Yokohama-shi F-term in Mitsubishi Heavy Industries, Ltd. Fundamental Technology Research Laboratories 4B021 LA42 LT03 MC04 MK01 MK13 MP01 MQ02 MQ03 4D011 AA15 AA18 AB01 AC06 AD03 4D037 AA08 AB11 BA23 BA24 BA26 BB05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原液にキャビテーションを起こさない程
度の弱い超音波照射を施して、脱気しやすい液に改質
後、所定の脱気を行なうことを特徴とする脱気液体の製
造方法。
1. A method for producing a degassed liquid, comprising subjecting an undiluted liquid to weak ultrasonic irradiation that does not cause cavitation, reforming the liquid to be easily degassed, and performing a predetermined degassing.
【請求項2】 前記液体が原子力プラント、火力プラン
ト、食品プラント、半導体製造施設等において使用され
る水であり、脱気される気体が主として酸素である脱酸
素水の製造方法において、 原水にキャビテーションを起こさない程度の弱い超音波
照射を施して、脱気しやすい水に改質後、窒素ガスを供
給し脱酸素することを特徴とする脱気液体の製造方法。
2. A method for producing deoxygenated water, wherein the liquid is water used in a nuclear power plant, a thermal power plant, a food plant, a semiconductor manufacturing facility, and the like, and the gas to be degassed is mainly oxygen. A method for producing a degassed liquid, comprising: applying a weak ultrasonic irradiation to a degree that does not cause water generation, reforming the water to be easily degassed, and supplying nitrogen gas for deoxygenation.
【請求項3】 超音波振動子を利用して原液にキャビテ
ーションを起こさない程度の弱い超音波照射を施す超音
波処理室を、脱気装置の給液側に設けたことを特徴とす
る脱気液体の製造装置。
3. A degassing apparatus characterized in that an ultrasonic treatment chamber for applying a weak ultrasonic wave that does not cause cavitation to the undiluted solution using an ultrasonic vibrator is provided on the liquid supply side of the deaerator. Liquid production equipment.
【請求項4】 前記液体が原子力プラント、火力プラン
ト、食品プラント、半導体製造施設等において使用され
る水であり、脱気される気体が主として酸素である脱酸
素水の製造装置において、 超音波振動子を利用して原水にキャビテーションを起こ
さない程度の弱い超音波照射を施す超音波処理室を、窒
素ガスを供給し脱酸素する脱気装置の給水側に設け、前
記超音波処理室で、脱気しやすい水に改質後、脱気装置
内で窒素ガスを供給し脱酸素することを特徴とする脱気
液体の製造装置。
4. An apparatus for producing deoxidized water, wherein the liquid is water used in a nuclear power plant, a thermal power plant, a food plant, a semiconductor manufacturing facility, and the like, and the gas to be degassed is mainly oxygen. An ultrasonic treatment chamber for performing weak ultrasonic irradiation that does not cause cavitation in the raw water by using an element is provided on the water supply side of a deaerator that supplies nitrogen gas and deoxygenates. An apparatus for producing a degassed liquid, comprising supplying nitrogen gas in a degassing apparatus for deoxygenation after reforming the water into easily permeable water.
JP29091799A 1999-10-13 1999-10-13 Method and apparatus for making degassed liquid Withdrawn JP2001104942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29091799A JP2001104942A (en) 1999-10-13 1999-10-13 Method and apparatus for making degassed liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29091799A JP2001104942A (en) 1999-10-13 1999-10-13 Method and apparatus for making degassed liquid

Publications (1)

Publication Number Publication Date
JP2001104942A true JP2001104942A (en) 2001-04-17

Family

ID=17762193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29091799A Withdrawn JP2001104942A (en) 1999-10-13 1999-10-13 Method and apparatus for making degassed liquid

Country Status (1)

Country Link
JP (1) JP2001104942A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100635398B1 (en) 2003-12-12 2006-10-18 유나이티드 테크놀로지스 코포레이션 Acoustic fuel deoxygenation system
FR2894154A1 (en) * 2005-12-06 2007-06-08 Pharmatop Scr NOVEL METHOD FOR STABILIZING OXIDATION - SENSITIVE MINERAL OR ORGANIC SUBSTANCES.
WO2011000452A1 (en) * 2009-06-29 2011-01-06 Khs Gmbh Method for degassing a liquid
KR20210144896A (en) * 2019-06-06 2021-11-30 프라마톰 게엠베하 Degassing system for nuclear power plant and method of degassing reactor coolant stream
WO2022100870A1 (en) * 2020-11-16 2022-05-19 Framatome Gmbh Nuclear power plant comprising a system for degasification of a gaseous liquid
RU2792420C1 (en) * 2019-06-06 2023-03-22 Фраматом Гмбх Degassing system for nuclear power plant and method for degassing reactor coolant flow

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100635398B1 (en) 2003-12-12 2006-10-18 유나이티드 테크놀로지스 코포레이션 Acoustic fuel deoxygenation system
FR2894154A1 (en) * 2005-12-06 2007-06-08 Pharmatop Scr NOVEL METHOD FOR STABILIZING OXIDATION - SENSITIVE MINERAL OR ORGANIC SUBSTANCES.
WO2007065999A2 (en) * 2005-12-06 2007-06-14 Pharmatop Method for producing injectable solutions by degassing liquids and the use thereof for stabilising oxidation-sensitive substances
WO2007065999A3 (en) * 2005-12-06 2007-09-20 Pharmatop Scr Method for producing injectable solutions by degassing liquids and the use thereof for stabilising oxidation-sensitive substances
WO2011000452A1 (en) * 2009-06-29 2011-01-06 Khs Gmbh Method for degassing a liquid
DE102009031106B4 (en) 2009-06-29 2022-02-17 Khs Gmbh Process and device for degassing a liquid
KR20210144896A (en) * 2019-06-06 2021-11-30 프라마톰 게엠베하 Degassing system for nuclear power plant and method of degassing reactor coolant stream
RU2792420C1 (en) * 2019-06-06 2023-03-22 Фраматом Гмбх Degassing system for nuclear power plant and method for degassing reactor coolant flow
KR102637429B1 (en) * 2019-06-06 2024-02-15 프라마톰 게엠베하 Deaeration system for nuclear power plants and method for deaeration of reactor coolant flow
WO2022100870A1 (en) * 2020-11-16 2022-05-19 Framatome Gmbh Nuclear power plant comprising a system for degasification of a gaseous liquid

Similar Documents

Publication Publication Date Title
CN100480192C (en) Method and apparatus for treating electrodeless discharging liquid
JP5778911B2 (en) Water sterilizer and water sterilization method
JP2006272232A (en) Method for forming superfine bubble, its device and sterilizing or disinfecting facility using it
CN103896361B (en) Device and method for treating organic waste water by water plasma torch
Choi et al. Effects of gas sparging and mechanical mixing on sonochemical oxidation activity
KR101751502B1 (en) Process system for treating food waste effluent
WO2014046229A1 (en) Cleaning method and cleaning device
Komarov et al. Combined effect of acoustic cavitation and pulsed discharge plasma on wastewater treatment efficiency in a circulating reactor: A case study of Rhodamine B
ATE279247T1 (en) DISTILLATION APPARATUS FOR LIQUIDS, METHOD FOR DISTILLATION OF LIQUIDS AND EQUIPMENT FOR THE TREATMENT OF WASTE WATER CONTAINING THE DISTILLATION APPARATUS
JP2001104942A (en) Method and apparatus for making degassed liquid
Wu et al. Decomposition of chloroform and succinic acid by ozonation in a suction-cavitation system: effects of gas flow
EA025910B1 (en) Method for treatment of sulphide-containing spent caustic
JP2009082862A (en) Vacuum disruption apparatus with triple variable intersecting ultrasonic beams
JP2000325702A (en) Device for sterilizing and degassing
JP2000325995A (en) Ozone treatment apparatus of organic sludge
CN205892957U (en) Ammonia nitrogen blows and takes off sewage treatment plant
JP3825149B2 (en) Water treatment equipment
Shokrollahi et al. The influence of acoustic power on chemical absorption of CO2 using Slow Kinetic Solvent
JP2005211869A (en) Method and apparatus for ozone deodorizing malodorous gas
JP2010221068A (en) Apparatus and method for processing organic waste liquid
KR970008390A (en) Wet processing method and processing apparatus
CN103787526A (en) Method for removing blue-green algae by using microbubble hydrodynamic cavitation enhanced coagulation
JPH11253744A (en) Exhaust gas desulfurizer
JPH05185075A (en) Ozone contact equipment
CN107042054A (en) A kind of processing method of aldehydes waste gas

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109