JP2001068158A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JP2001068158A
JP2001068158A JP24124299A JP24124299A JP2001068158A JP 2001068158 A JP2001068158 A JP 2001068158A JP 24124299 A JP24124299 A JP 24124299A JP 24124299 A JP24124299 A JP 24124299A JP 2001068158 A JP2001068158 A JP 2001068158A
Authority
JP
Japan
Prior art keywords
gel electrolyte
separator
polymer
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24124299A
Other languages
Japanese (ja)
Other versions
JP4379966B2 (en
Inventor
Hiroe Nakagawa
裕江 中川
Toshiyuki Watanabe
俊行 渡辺
Shuichi Ido
秀一 井土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP24124299A priority Critical patent/JP4379966B2/en
Publication of JP2001068158A publication Critical patent/JP2001068158A/en
Application granted granted Critical
Publication of JP4379966B2 publication Critical patent/JP4379966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep sufficient battery performance even in high rate discharging, and obtain stable battery performance having a long life by making the gel electrolyte composition in a separator different from the gel electrolyte composition in at least one of positive electrode and a negative electrode, and specifying concentration of the polymers contained in the separator, the positive electrode, and the negative electrode. SOLUTION: The concentration of the polymers contained in the separator, the positive electrode, and the negative electrode is adjusted in the relation represented in the formula. In the formula, Cs is the weight percent of the polymer contained in the gel electrolyte in the separator, Cp is the weight percent of the polymer contained in the gel electrolyte in the positive electrode, and Cn is the weight percent of the polymer contained in the gel electrolyte in the negative electrode. Crosslinking density of the polymer contained in the separator is preferable to be lower than that of the polymer contained in at least one of the positive electrode and the negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム電池に関す
るもので、さらに詳しくは、リチウム電池に用いるゲル
電解質の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery, and more particularly, to an improvement in a gel electrolyte used for a lithium battery.

【0002】[0002]

【従来の技術】近年、携帯電話、PHS、小型パーソナ
ルコンピュータなどの携帯機器類は、エレクトロニクス
技術の進展に伴って小型化、軽量化が著しく、これらの
機器類に用いられる電源としての電池においても小型
化、軽量化が求められるようになってきている。
2. Description of the Related Art In recent years, portable devices such as cellular phones, PHSs, and small personal computers have been significantly reduced in size and weight with the development of electronics technology. Miniaturization and weight reduction are required.

【0003】このような用途に期待できる電池の1つと
してリチウム電池があるが、既に実用化されているリチ
ウム一次電池に加えて、リチウム二次電池の実用化、高
容量化、長寿命化のための研究が進められている。
A lithium battery is one of the batteries that can be expected for such uses. In addition to the lithium primary battery that has already been put into practical use, a lithium secondary battery has been put to practical use, has a higher capacity, and has a longer life. Research is being pursued.

【0004】上記した種々のリチウム電池はいずれも円
筒形あるいは角形が中心である。一方、リチウム一次電
池においては固体電解質を用い、プリント技術を応用し
た製法により、薄形形状のものも実用化されている。こ
のような技術を応用し、リチウム二次電池やリチウムイ
オン二次電池においても、固体またはゲル状電解質を用
いた薄形形状の電池の実用化のために、従来より各種の
研究開発がなされている。
[0004] The above-mentioned various lithium batteries are mainly cylindrical or prismatic. On the other hand, in a lithium primary battery, a thin-shaped lithium-ion battery has been put into practical use by a manufacturing method using a printing technique and applying a printing technique. With the application of such technologies, various research and developments have been made on lithium secondary batteries and lithium ion secondary batteries in order to commercialize thin batteries using solid or gel electrolytes. I have.

【0005】円筒形あるいは角形リチウム二次電池の場
合、正極、負極、およびセパレータからなる極群を円筒
形あるいは角形の電槽に挿入した後、液体状の電解液を
注液するという工程を経て作製される。これに対し、固
体電解質リチウム二次電池においては、正極と負極を固
体あるいはゲル状の電解質を介して対向させた後、パッ
キングする方法で作製される。しかし、このような固体
電解質電池は、円筒形あるいは角形電池に比較して、ハ
イレート充放電性能やサイクル寿命が短いという欠点が
あった。
[0005] In the case of a cylindrical or prismatic lithium secondary battery, a group of electrodes consisting of a positive electrode, a negative electrode, and a separator is inserted into a cylindrical or square battery case, and then a liquid electrolyte is injected. It is made. On the other hand, the solid electrolyte lithium secondary battery is manufactured by a method in which the positive electrode and the negative electrode are opposed to each other via a solid or gel electrolyte and then packed. However, such a solid electrolyte battery has a drawback that high-rate charge / discharge performance and cycle life are short as compared with a cylindrical or rectangular battery.

【0006】この原因として、以下のような要因が挙げ
られる。すなわち、円筒形あるいは角形電池の場合、液
体状の電解液を注液するため、電極およびセパレータ中
のリチウムイオン伝導度が、一般に電池作動に必要なレ
ベルと言われる1×10-3S/cmオーダーの確保が容
易であり、リチウムイオンの拡散速度も速い。これに対
し、固体電解質電池の場合、電解質が固体のため、リチ
ウムイオン伝導度が液系に比較して低くならざるを得
ず、多量の有機溶媒を加えてゲル状にし、イオン伝導度
を向上させたゲル電解質であっても、1×10-3S/c
mオーダーのイオン伝導度は確保できるが、リチウムイ
オンの拡散速度は遅いという欠点があった。
The following factors can be cited as the causes. That is, in the case of a cylindrical or prismatic battery, since a liquid electrolyte is injected, the lithium ion conductivity in the electrode and the separator is 1 × 10 −3 S / cm, which is generally said to be a level necessary for battery operation. It is easy to secure orders and the diffusion speed of lithium ions is high. On the other hand, in the case of solid electrolyte batteries, since the electrolyte is a solid, the lithium ion conductivity must be lower than that of a liquid system, and a large amount of organic solvent is added to make it into a gel, improving the ion conductivity. 1 × 10 −3 S / c
Although ion conductivity on the order of m can be ensured, there is a disadvantage that the diffusion rate of lithium ions is low.

【0007】リチウムイオン伝導度を向上させたゲル電
解質の実例として、ポリエチレンオキサイドをポリマー
骨格に用い、これにリチウム塩および有機溶媒からなる
電解液を加えたゲル電解質が挙げられる。固体でありな
がらリチウムイオン伝導性を有するポリエチレンオキサ
イドをポリマー骨格に用い、リチウム塩や有機溶媒との
混合比を規定することにより、現在までに液系電解質に
匹敵する1×10-3S/cmオーダーのリチウムイオン
伝導度を実現しており、このゲル電解質を用いたリチウ
ム電池は、ほぼ実用化レベルに至っている。
As a practical example of a gel electrolyte having improved lithium ion conductivity, there is a gel electrolyte in which polyethylene oxide is used for a polymer skeleton, and an electrolyte comprising a lithium salt and an organic solvent is added thereto. By using polyethylene oxide having lithium ion conductivity as a polymer skeleton while being solid, and defining the mixing ratio with a lithium salt or an organic solvent, 1 × 10 −3 S / cm, which is comparable to a liquid electrolyte to date, Lithium ion conductivity on the order of magnitude has been realized, and lithium batteries using this gel electrolyte have almost reached practical use.

【0008】[0008]

【発明が解決しようとする課題】しかし、上記したよう
なポリエチレンオキサイドに代表されるゲル電解質を用
いたリチウム電池は、ローレート放電時には充分な電池
性能を示すが、ハイレート放電時には、今なおリチウム
イオンの拡散速度が遅いため、リチウムイオンがスムー
ズに移動できず、電池性能を充分なレベルに保持するこ
とが困難であるという問題点があった。
However, a lithium battery using a gel electrolyte typified by polyethylene oxide as described above exhibits sufficient battery performance during low-rate discharge, but still has high lithium ion discharge during high-rate discharge. Due to the low diffusion rate, there is a problem that lithium ions cannot move smoothly, and it is difficult to maintain battery performance at a sufficient level.

【0009】本発明は上記問題点に鑑みてなされたもの
であり、特殊な製造工程などを必要としなくてもセパレ
ータ中のゲル電解質のイオン伝導度を1×10-3S/c
mオーダーに保持し、ゲル電解質中のリチウムイオンの
スムーズな移動を実現することにより、ハイレート放電
時にも電池性能を充分なレベルに保持し、長寿命で安定
した電池性能を得ることができるリチウム電池を提供す
ることを目的とするものである。
[0009] The present invention has been made in view of the above problems, and can reduce the ionic conductivity of the gel electrolyte in the separator to 1 × 10 -3 S / c without requiring a special manufacturing process or the like.
Lithium battery that can maintain the battery performance at a sufficient level even during high-rate discharge by maintaining the m-order and smooth movement of lithium ions in the gel electrolyte to obtain long-life and stable battery performance The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明の第1は、電極活物質とポリマーとリチウム
塩と有機溶媒からなるゲル電解質とを少なくとも含む正
極および負極を、ポリマーとリチウム塩と有機溶媒から
なるゲル電解質を含むセパレータを介して対向させたリ
チウム電池において、前記セパレータ中のゲル電解質組
成と、前記正極および負極のうちの少なくとも一方のゲ
ル電解質組成とが異なるものであって、前記セパレー
タ、正極および負極に含まれるポリマー濃度が、以下の
範囲内であることを特徴とするリチウム電池である。
In order to solve the above problems, a first aspect of the present invention is to form a positive electrode and a negative electrode containing at least an electrode active material, a polymer, a lithium salt and a gel electrolyte comprising an organic solvent with a polymer and a lithium electrolyte. In a lithium battery opposed via a separator containing a gel electrolyte comprising a salt and an organic solvent, the gel electrolyte composition in the separator and the gel electrolyte composition of at least one of the positive electrode and the negative electrode are different. And a separator, a positive electrode, and a negative electrode, wherein the polymer concentration is within the following range.

【0011】7≦(Cs+Cp+Cn)/3≦20 ただし、Cs=セパレータ中のゲル電解質に含まれるポ
リマーの重量パーセント Cp=正極中のゲル電解質に含まれるポリマーの重量パ
ーセント Cn=負極中のゲル電解質に含まれるポリマーの重量パ
ーセント 本発明の第2は、前記セパレータ中に含まれるポリマー
の架橋密度が、前記正極および負極の内の少なくとも一
方に含まれるポリマーの架橋密度よりも低いことを特徴
するリチウム電池である。
7 ≦ (Cs + Cp + Cn) / 3 ≦ 20 where Cs = weight percentage of polymer contained in gel electrolyte in separator Cp = weight percentage of polymer contained in gel electrolyte in positive electrode Cn = gel percentage in gel electrolyte in negative electrode Weight percent of polymer included The second aspect of the present invention is a lithium battery, wherein the crosslink density of the polymer included in the separator is lower than the crosslink density of the polymer included in at least one of the positive electrode and the negative electrode. It is.

【0012】本発明の第3は、前記セパレータ中に含ま
れるゲル電解質に用いるポリマーは、前記正極および負
極のうちの少なくとも一方に含まれるゲル電解質に用い
るポリマーよりも、電解液に対する親和性が高い構造を
主に有することを特徴とするリチウム電池である。
A third aspect of the present invention is that the polymer used for the gel electrolyte contained in the separator has a higher affinity for the electrolyte than the polymer used for the gel electrolyte contained in at least one of the positive electrode and the negative electrode. A lithium battery mainly having a structure.

【0013】[0013]

【作用】本発明により、以下のような作用が期待でき
る。一般に、ゲル電解質中のポリマー濃度が低いほどゲ
ル電解質の性能は、ポリマーの性能よりも液体状の電解
液の性能に支配される割合が高くなるため、ゲル電解質
中のイオン伝導度は高くなり、リチウムイオンの拡散速
度も速くなる。従って、電池に使用する場合、ポリマー
濃度が低いゲル電解質を使用するほど充放電中のリチウ
ムイオンが移動しやすく、充放電性能に優れた電池が得
られることは容易に予想される。一方、電極中のポリマ
ーには、ポリマーのネットワークにより活物質粒子を結
着し、充放電反応による膨張収縮を抑制するバインダー
としての機能も期待される。そのため、電極中のポリマ
ー濃度はある一定以上の濃度が必要となる。そこで、電
池として必要なイオン伝導度やリチウムイオンの拡散速
度を保持するための1つの手段として、電極中のポリマ
ー濃度がある一定以上高い場合、セパレータ中のポリマ
ー濃度を低くすることにより、電池としての充放電性能
を維持することが可能となる。また、第2の方法とし
て、電極中のポリマー骨格に電解液との親和性の低いも
のを用いることにより、電極中のゲル電解質のイオン伝
導度やリチウムイオンの拡散速度を高め、電池としての
充放電性能を維持することが可能となる。
According to the present invention, the following effects can be expected. In general, the lower the polymer concentration in the gel electrolyte, the higher the performance of the gel electrolyte is governed by the performance of the liquid electrolyte than the performance of the polymer, so the ionic conductivity in the gel electrolyte increases, The diffusion rate of lithium ions also increases. Therefore, when the battery is used for a battery, it is easily expected that the use of a gel electrolyte having a lower polymer concentration facilitates the movement of lithium ions during charge and discharge, and that a battery having excellent charge and discharge performance is obtained. On the other hand, the polymer in the electrode is also expected to function as a binder that binds active material particles by a polymer network and suppresses expansion and contraction due to a charge / discharge reaction. Therefore, the polymer concentration in the electrode needs to be a certain level or more. Therefore, as one means for maintaining the ion conductivity and diffusion rate of lithium ions necessary for a battery, when the polymer concentration in the electrode is higher than a certain level, the polymer concentration in the separator is lowered, so that the battery Can be maintained. Also, as a second method, by using a polymer skeleton in the electrode having a low affinity for the electrolytic solution, the ion conductivity of the gel electrolyte in the electrode and the diffusion rate of lithium ions are increased, and the battery is charged. Discharge performance can be maintained.

【0014】従って、第1に、セパレータ中のゲル電解
質組成と、正極および負極のうちの少なくとも一方のゲ
ル電解質組成とが異なるものであって、前記セパレー
タ、正極および負極に含まれるポリマー濃度を本発明に
示す範囲内に規定することにより、電池系内の電解質中
のリチウムイオンの移動がスムーズに行われ、充放電中
の電極への充分なリチウムイオンの供給を実現すること
ができる。このときのゲル電解質組成とは、ポリマー骨
格の種類、ポリマーの架橋密度、ポリマーとそれ以外の
電解質成分との混合比のいずれかを意味する。
Therefore, first, the gel electrolyte composition in the separator is different from the gel electrolyte composition of at least one of the positive electrode and the negative electrode. By defining the range within the range shown in the invention, lithium ions in the electrolyte in the battery system can be smoothly moved, and sufficient supply of lithium ions to the electrode during charging and discharging can be realized. The gel electrolyte composition at this time means any of the type of polymer skeleton, the crosslink density of the polymer, and the mixing ratio of the polymer to the other electrolyte components.

【0015】なお、本発明において、セパレータ、正極
および負極に含まれるポリマー濃度を本発明に示す範囲
内に規定するにあたり、セパレータ、正極および負極に
含まれるポリマー濃度を、各々個別に規定するものでは
ないが、電池としての充放電性能を維持する上では、5
〜25重量パーセントの範囲内とすることにより、ハイ
レート放電時にも電池性能を充分なレベルに保持し、長
寿命で安定した電池性能を得ることができる。特に、ポ
リマー濃度は低い方が電池としての充放電性能を維持す
る上では望ましいが、5重量パーセント以下になると、
漏液などの問題が発生し、望ましくない。
In the present invention, when defining the polymer concentration contained in the separator, the positive electrode and the negative electrode within the range shown in the present invention, the polymer concentration contained in the separator, the positive electrode and the negative electrode is not individually specified. However, to maintain the charge / discharge performance as a battery, 5
By setting the content within the range of 2525% by weight, the battery performance can be maintained at a sufficient level even at the time of high-rate discharge, and a long life and stable battery performance can be obtained. In particular, a lower polymer concentration is desirable for maintaining charge / discharge performance as a battery, but when the polymer concentration is 5% by weight or less,
Problems such as liquid leakage occur, which is not desirable.

【0016】また第2に、セパレータ中に含まれるポリ
マーの架橋密度を、正極および負極のうちの少なくとも
一方に含まれるポリマーの架橋密度よりも低くすること
により、上記効果をより効果的に得ることができる。
Second, the above effect can be more effectively obtained by making the crosslink density of the polymer contained in the separator lower than the crosslink density of the polymer contained in at least one of the positive electrode and the negative electrode. Can be.

【0017】さらに第3に、セパレータ中に含まれるゲ
ル電解質が、リチウム塩と、有機溶媒と、リチウム塩を
有機溶媒に溶解してなる電解液に対して親和性が高い構
造を主に有するポリマーとからなるものとすることによ
り、セパレータ中のポリマー濃度を低くした場合や、電
極中のポリマー骨格に電解液との親和性の低いものを用
いた場合にも、セパレータ中のポリマー骨格が電解液と
容易にゲル化し、かつ、電池反応の進行に充分な電解液
を保持することができる上、電池としての充放電性能を
維持することができる。その結果、安定した電池性能が
得られるだけでなく、漏液などの危険性もない。
Third, the gel electrolyte contained in the separator is mainly composed of a polymer having a structure having a high affinity for a lithium salt, an organic solvent, and an electrolyte obtained by dissolving the lithium salt in the organic solvent. In the case where the polymer concentration in the separator is reduced, or when the polymer skeleton in the electrode has low affinity with the electrolytic solution, the polymer skeleton in the separator is In addition, it is possible to easily gel, and to retain an electrolyte sufficient for the progress of the battery reaction, and to maintain the charge / discharge performance of the battery. As a result, not only can stable battery performance be obtained, but there is no danger of liquid leakage or the like.

【0018】従って、本発明は、以上の作用が相乗的に
得られるため、信頼性に優れ、かつ、初期容量やハイレ
ート充放電性能、サイクル寿命などに優れたリチウム電
池を容易に提供することができるものである。
Accordingly, the present invention can provide a lithium battery excellent in reliability and excellent in initial capacity, high-rate charge / discharge performance, cycle life, etc., because the above actions are synergistically obtained. You can do it.

【0019】[0019]

【実施例】以下に本発明の詳細について、実施例に基づ
き説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below based on embodiments.

【0020】図1に本発明のリチウム電池の断面図を示
す。
FIG. 1 is a sectional view of the lithium battery of the present invention.

【0021】図1において、1は正極活物質であるコバ
ルト酸リチウムを主成分とした正極合剤であり、アルミ
箔からなる正極集電体3上に塗布されてなる。また、2
は負極活物質であるカーボンを主成分とした負極合剤で
あり、銅箔からなる負極集電体4上に塗布されてなる。
また、前記正極合剤1と負極合剤2は、ゲル電解質から
なるセパレータ5を介して積層されている。さらに、こ
のようにして積層した極群をアルミラミネートフィルム
6で覆い、四方を熱溶着により封止し、リチウム電池と
したものである。
In FIG. 1, reference numeral 1 denotes a positive electrode mixture mainly composed of lithium cobalt oxide as a positive electrode active material, which is applied on a positive electrode current collector 3 made of aluminum foil. Also, 2
Is a negative electrode mixture mainly composed of carbon, which is a negative electrode active material, and is applied on a negative electrode current collector 4 made of copper foil.
The positive electrode mixture 1 and the negative electrode mixture 2 are laminated via a separator 5 made of a gel electrolyte. Further, the electrode group thus laminated is covered with an aluminum laminated film 6, and the four sides are sealed by heat welding to obtain a lithium battery.

【0022】次に、上記構成のリチウム電池の製造方法
を説明する。はじめに、正極合剤1は以下のようにして
得た。まず、正極活物質であるコバルト酸リチウムと、
導電剤であるアセチレンブラックを混合し、さらに結着
剤としてポリフッ化ビニリデンのN−メチル−2−ピロ
リドン溶液を混合したものを正極集電体3であるアルミ
箔上に塗布した後、乾燥し、合剤厚みが0.1mmとな
るようにプレスすることにより、正極活物質シートを得
た。次に、γ−ブチロラクトン1リットルに2モルのL
iBF4 を溶解した電解液に化1で示される構造を持つ
アクリレートモノマーを混合した電解質溶液を作製し
た。このとき、電解液とアクリレートモノマーの混合比
は、電解液が95重量パーセント、アクリレートモノマ
ーが5重量パーセントとした。これに前記正極活物質シ
ートを浸漬し、電解質溶液を含浸した。続いて、電解質
溶液から正極活物質シートを取り出し、電子線照射によ
りモノマーを重合させてポリマーを形成させた。以上の
工程により正極合剤1を得た。従って、本発明電池A1
における正極中ゲル電解質に含まれるポリマーの重量パ
ーセントは、Cp=5である。また、負極合剤2は負極
活物質であるカーボンを用い、負極集電体4に銅箔を用
いる以外は前記正極合剤1と同様の方法により得た。従
って、本発明電池A1における負極中ゲル電解質に含ま
れるポリマーの重量パーセントは、Cn=5である。
Next, a method of manufacturing the lithium battery having the above configuration will be described. First, the positive electrode mixture 1 was obtained as follows. First, lithium cobalt oxide which is a positive electrode active material,
A mixture of acetylene black, which is a conductive agent, and an N-methyl-2-pyrrolidone solution of polyvinylidene fluoride as a binder was applied on an aluminum foil as the positive electrode current collector 3, and then dried. By pressing the mixture so as to have a thickness of 0.1 mm, a positive electrode active material sheet was obtained. Next, 2 mol of L is added to 1 liter of γ-butyrolactone.
An electrolyte solution was prepared by mixing an acrylate monomer having the structure shown in Chemical Formula 1 with an electrolyte solution in which iBF 4 was dissolved. At this time, the mixing ratio between the electrolytic solution and the acrylate monomer was 95% by weight of the electrolytic solution and 5% by weight of the acrylate monomer. The positive electrode active material sheet was immersed in this, and impregnated with an electrolyte solution. Subsequently, the positive electrode active material sheet was taken out of the electrolyte solution, and the monomer was polymerized by electron beam irradiation to form a polymer. Through the above steps, positive electrode mixture 1 was obtained. Therefore, the battery A1 of the present invention
The weight percentage of the polymer contained in the gel electrolyte in the positive electrode was Cp = 5. The negative electrode mixture 2 was obtained by the same method as the positive electrode mixture 1 except that carbon as the negative electrode active material was used and a copper foil was used for the negative electrode current collector 4. Therefore, the weight percentage of the polymer contained in the gel electrolyte in the negative electrode of the battery A1 of the present invention is Cn = 5.

【0023】[0023]

【化1】 Embedded image

【0024】一方、セパレータ5は以下のようにして得
た。まず、有機溶媒としてのγ−ブチロラクトン1リッ
トルに2モルのリチウム塩であるLiBF4 を溶解した
電解液に、化2で示される構造を持つ3官能アクリレー
トモノマーを混合した電解質溶液を作製した。このと
き、電解液とアクリレートモノマーの混合比は、電解液
が75重量パーセント、アクリレートモノマーが25重
量パーセントとした。これを正極合剤1上に塗布した
後、電子線照射によりモノマーを重合させてポリマーを
形成させ、ゲル状の電解質とした。以上の工程によりセ
パレータ5を得た。従って、本発明電池A1におけるセ
パレータ中ゲル電解質に含まれるポリマーの重量パーセ
ントは、Cs=25である。
On the other hand, the separator 5 was obtained as follows. First, an electrolyte solution was prepared by mixing a trifunctional acrylate monomer having the structure shown in Chemical Formula 2 with an electrolyte solution in which 2 mol of lithium salt LiBF 4 was dissolved in 1 liter of γ-butyrolactone as an organic solvent. At this time, the mixing ratio of the electrolytic solution and the acrylate monomer was 75% by weight of the electrolytic solution and 25% by weight of the acrylate monomer. After this was applied on the positive electrode mixture 1, the monomer was polymerized by electron beam irradiation to form a polymer, thereby obtaining a gel electrolyte. Through the above steps, the separator 5 was obtained. Therefore, the weight percentage of the polymer contained in the gel electrolyte in the separator in the battery A1 of the present invention is Cs = 25.

【0025】[0025]

【化2】 Embedded image

【0026】以上のような原料および製法により作製し
た容量10mAhのリチウム電池を、本発明電池A1と
した。なお、本発明電池A1におけるゲル電解質の(C
s+Cp+Cn)/3値は、11.7である。
The lithium battery having a capacity of 10 mAh produced by the above-described raw materials and the production method was designated as Battery A1 of the present invention. In the battery A1 of the present invention, the gel electrolyte (C
(s + Cp + Cn) / 3 value is 11.7.

【0027】また、正極合剤1および負極合剤2に用い
る電解質とセパレータ5に用いる電解質に表1に示すも
のを用い、その他の条件は本発明電池A1と同一の原料
および製法により、容量10mAhのリチウム電池を作
製し、本発明電池A2〜A6および比較電池B1〜B4
とした。
The electrolyte used in the positive electrode mixture 1 and the negative electrode mixture 2 and the electrolyte used in the separator 5 are those shown in Table 1, and the other conditions are the same as those of the battery A1 of the present invention, and the capacity is 10 mAh. Of the present invention batteries A2 to A6 and comparative batteries B1 to B4
And

【0028】[0028]

【表1】 [Table 1]

【0029】なお、本発明電池A1〜A6および比較電
池B1〜B4に用いた、セパレータおよび正、負極のゲ
ル電解質のリチウムイオン伝導度は、少なくとも20℃
付近では全て1×10-3S/cmオーダーを保持してお
り、また、低温下でもそれほど大きな温度依存性は示さ
ないことから、これらの電解質を用いた本発明電池A1
〜A6および比較電池B1〜B4のいずれも、少なくと
も常温低レート充放電時の初期容量は、設計容量近くの
性能が得られると予想される。
The lithium ion conductivity of the separator and the positive and negative electrode gel electrolytes used in the batteries A1 to A6 of the present invention and the comparative batteries B1 to B4 was at least 20 ° C.
In the vicinity, all of them maintain an order of 1 × 10 −3 S / cm, and do not show much temperature dependency even at a low temperature. Therefore, the battery A1 of the present invention using these electrolytes
-A6 and Comparative Batteries B1 to B4 are expected to have performances near at least the initial capacity at the time of normal-temperature low-rate charge / discharge.

【0030】そこでまず、これらの本発明電池A1〜A
6および比較電池B1〜B4について、各種電流値で放
電を行い、その結果得られた放電電流と放電容量の関係
を図2に示す。なお、試験条件は、20℃の温度下で1
mA(0.1CmA相当)の電流で終止電圧4.2Vま
で充電した後、各種電流で終止電圧2.7Vまで放電し
たものであり、放電容量は1mAの電流で放電したとき
に得られた容量を100としたときのパーセントで示し
ている。なお、本発明電池A1〜A6および比較電池B
1〜B4のいずれも、放電電流1mAでの放電容量は、
設計容量のほぼ100%が得られた。
First, these batteries A1 to A of the present invention were used.
6 and comparative batteries B1 to B4 were discharged at various current values, and the relationship between the resulting discharge current and discharge capacity is shown in FIG. The test conditions were as follows: 1 at a temperature of 20 ° C.
The battery was charged to a final voltage of 4.2 V with a current of mA (corresponding to 0.1 CmA) and then discharged to a final voltage of 2.7 V with various currents. The discharge capacity was obtained when the battery was discharged at a current of 1 mA. Is expressed as a percentage with respect to 100. The batteries A1 to A6 of the present invention and the comparative battery B
In any one of 1 to B4, the discharge capacity at a discharge current of 1 mA is:
Almost 100% of the design capacity was obtained.

【0031】図2から、放電電流10mAでは、比較電
池B1〜B4は放電電流1mAでの放電容量の30〜6
0%程度の放電容量しか得られないのに対し、本発明電
池A1〜A6では放電電流10mAでも設計容量の85
〜95%の放電容量が得られることが分かった。
As shown in FIG. 2, when the discharge current is 10 mA, the comparative batteries B1 to B4 have a discharge capacity of 30 to 6 at a discharge current of 1 mA.
While only about 0% of the discharge capacity can be obtained, the batteries A1 to A6 of the present invention have a design capacity of 85% even at a discharge current of 10 mA.
It was found that a discharge capacity of ~ 95% was obtained.

【0032】この原因として、以下の要因が考えられ
る。まず、本発明電池A1〜A6では、セパレータ中の
ゲル電解質中のポリマー骨格と正極および負極中のゲル
電解質中のポリマー骨格が異なり、かつ、セパレータお
よび電極中のゲル電解質の平均ポリマー濃度が、10〜
20重量パーセントの範囲内にある。従って、本発明電
池A1〜A6では、ゲル電解質中のリチウムイオンのス
ムーズな移動を実現することができており、ハイレート
放電時にも正極側のリチウムイオンが十分供給されるた
め、放電容量が十分得られると考えられる。
As the cause, the following factors are considered. First, in the batteries A1 to A6 of the present invention, the polymer skeleton in the gel electrolyte in the separator is different from the polymer skeleton in the gel electrolyte in the positive electrode and the negative electrode, and the average polymer concentration of the gel electrolyte in the separator and the electrode is 10%. ~
It is in the range of 20 weight percent. Therefore, in the batteries A1 to A6 of the present invention, smooth movement of lithium ions in the gel electrolyte can be realized, and lithium ions on the positive electrode side are sufficiently supplied even at the time of high-rate discharge, so that sufficient discharge capacity can be obtained. It is thought that it is possible.

【0033】しかし、比較電池B1〜B4では、本発明
電池A1〜A4同様セパレータ中のゲル電解質中のポリ
マー骨格と正極および負極中のゲル電解質中のポリマー
骨格が異なるにもかかわらず、期待されるような性能改
善は見られない。これは、セパレータ中もしくは電極中
ゲル電解質のいずれかに含まれるポリマー濃度が、高す
ぎるもしくは低すぎることにより、セパレータおよび電
極中のゲル電解質の(Cs+Cp+Cn)/3値が、7
〜20の範囲内にないことに起因するものと思われる。
ポリマー濃度が高すぎると、イオン伝導度が低くなるこ
とから、リチウムイオンの移動が困難となり、充分な電
池性能が得られない原因となる。また逆に、ポリマー濃
度が低すぎると、リチウムイオンの移動は容易だが、ゲ
ル電解質の電解液保持力が不足し、電池内で電解液が遊
離してしまい、結果的に極群内の電解液が不足して充分
な電池性能が得られない原因となる。
However, in the comparative batteries B1 to B4, similar to the batteries A1 to A4 of the present invention, although the polymer skeleton in the gel electrolyte in the separator is different from the polymer skeleton in the gel electrolyte in the positive electrode and the negative electrode, it is expected. No such performance improvement is seen. This is because the (Cs + Cp + Cn) / 3 value of the gel electrolyte in the separator and the electrode is 7 because the concentration of the polymer contained in either the separator or the gel electrolyte in the electrode is too high or too low.
It is thought to be due to being out of the range of 2020.
If the polymer concentration is too high, the ionic conductivity will be low, so that the movement of lithium ions will be difficult, causing insufficient battery performance. Conversely, if the polymer concentration is too low, lithium ions can move easily, but the electrolyte retention of the gel electrolyte is insufficient, and the electrolyte is released in the battery, resulting in the electrolyte in the electrode group. Is insufficient to cause sufficient battery performance to be obtained.

【0034】以上の結果より、セパレータ中のゲル電解
質中のポリマー骨格と正極および負極中のゲル電解質中
のポリマー骨格を異なるものとした上で、セパレータお
よび電極中のゲル電解質の(Cs+Cp+Cn)/3値
を7〜20の範囲内に規定することにより、ゲル電解質
中のリチウムイオンのスムーズな移動を実現することが
できることが分かった。特に、セパレータおよび電極中
に含まれるゲル電解質のポリマー濃度を、5〜25重量
パーセントとすることにより、リチウムイオンのスムー
ズな移動を最適に実現できることが分かった。
From the above results, the polymer skeleton in the gel electrolyte in the separator was different from the polymer skeleton in the gel electrolyte in the positive electrode and the negative electrode, and (Cs + Cp + Cn) / 3 of the gel electrolyte in the separator and the electrode. It was found that by setting the value within the range of 7 to 20, smooth movement of lithium ions in the gel electrolyte can be realized. In particular, it was found that by setting the polymer concentration of the gel electrolyte contained in the separator and the electrode to 5 to 25% by weight, smooth movement of lithium ions can be optimally realized.

【0035】さらに、これらの本発明電池の内A5、A
6、および比較電池B1、B2について、充放電サイク
ル試験を行い、その結果得られたサイクル数と放電容量
の関係を図3に示す。なお、試験条件は、20℃の温度
下で2mAの電流で終止電圧4.2Vまで充電した後、
2mAの電流で終止電圧2.7Vまで放電したものであ
り、放電容量は正極の設計容量を100としたときのパ
ーセントで示している。
Further, among the batteries of the present invention, A5 and A
6 and the comparative batteries B1 and B2 were subjected to a charge / discharge cycle test, and the relationship between the number of cycles and the discharge capacity obtained as a result is shown in FIG. The test conditions were as follows: after charging at a temperature of 20 ° C. and a current of 2 mA to a final voltage of 4.2 V,
The battery was discharged to a cutoff voltage of 2.7 V at a current of 2 mA, and the discharge capacity is shown as a percentage when the designed capacity of the positive electrode was set to 100.

【0036】図3から、本発明電池A5、A6および比
較電池B1、B2のいずれも、充放電初期は設計容量の
90%以上が得られており、いずれの電解質の組み合わ
せを用いても充放電初期においては良好に作動すること
が分かる。しかし、比較電池B1、B2はサイクルを経
過すると徐々に容量が低下し、比較電池B2は150サ
イクル目には50%を、比較電池B1は300サイクル
目には設計容量の50%を下回る。これに対し、本発明
電池A5、A6は充放電初期より設計容量のほぼ100
%が得られるだけでなく、さらに300サイクル経過後
も若干の容量低下が見られるが、設計容量の80%以上
の容量が保持されることが分かった。
FIG. 3 shows that the batteries A5 and A6 of the present invention and the comparative batteries B1 and B2 each obtained at least 90% of the designed capacity at the initial stage of charge and discharge. It turns out that it works well in the early stage. However, the capacity of the comparative batteries B1 and B2 gradually decreases as the cycle passes, and the comparative battery B2 falls below 50% of the designed capacity at the 150th cycle and the comparative battery B1 falls below 50% of the designed capacity at the 300th cycle. On the other hand, the batteries A5 and A6 of the present invention have a design capacity of approximately 100 from the initial stage of charge and discharge.
%, And a slight decrease in capacity is observed even after 300 cycles, but it was found that 80% or more of the designed capacity was maintained.

【0037】この原因として、以下の要因が考えられ
る。まず、電極中のゲル電解質が化1で示される構造を
持つ2官能アクリレートモノマーを重合させたポリマー
を用いており、比較的電解液との親和性の低いポリマー
骨格を有するのに対し、セパレータ中のゲル電解質が、
化2で示される構造を持つ3官能アクリレートモノマー
を重合させたポリマーを用いたものである。すなわち、
ポリマー骨格が電解液との親和性が高いエチレンオキサ
イド構造およびプロピレンオキサイド構造を有し、3次
元網目構造を持っているため、電解液と容易にゲル化
し、かつ、電池反応の進行に充分な電解液を保持するこ
とができる上、機械的強度に優れたゲル電解質である。
そのため、充放電時にリチウムイオンおよび電解液の移
動が繰り返し起こっても、セパレータ中に十分なリチウ
ムイオンおよび電解液が保持され、安定した電池性能が
得られるだけでなく、漏液などの危険性もない。その
上、電極中のゲル電解質に用いている化1で示される構
造を持つ2官能アクリレートモノマーを重合させたポリ
マーに比較して、化2で示される構造を持つ3官能アク
リレートモノマーを重合させたポリマーは重合基間の距
離が大きく、ポリマーの架橋密度は低いものとなってい
る。従って、ポリマーと溶媒および支持塩との相互作用
が強いと一般に考えられるエチレンオキサイド構造およ
びプロピレンオキサイド構造を有しているにも関わら
ず、セパレータ部分の抵抗上昇は抑制され、安定した電
池性能が得られる。
The following factors are considered as the cause. First, the gel electrolyte in the electrode uses a polymer obtained by polymerizing a bifunctional acrylate monomer having the structure shown in Chemical Formula 1, and has a polymer skeleton having a relatively low affinity with the electrolyte, whereas the gel electrolyte in the separator is Of the gel electrolyte
This is a polymer obtained by polymerizing a trifunctional acrylate monomer having a structure represented by Chemical Formula 2. That is,
Since the polymer skeleton has an ethylene oxide structure and a propylene oxide structure with high affinity for the electrolyte, and has a three-dimensional network structure, it easily gels with the electrolyte and has sufficient electrolysis for the progress of the battery reaction. It is a gel electrolyte that can hold a liquid and has excellent mechanical strength.
Therefore, even if lithium ions and the electrolyte move repeatedly during charge and discharge, sufficient lithium ions and the electrolyte are retained in the separator, and not only stable battery performance is obtained, but also danger such as liquid leakage is caused. Absent. In addition, a trifunctional acrylate monomer having the structure shown in Chemical Formula 2 was polymerized compared to a polymer obtained by polymerizing a bifunctional acrylate monomer having the structure shown in Chemical Formula 1 used for the gel electrolyte in the electrode. In the polymer, the distance between the polymer groups is large, and the crosslinking density of the polymer is low. Therefore, despite having an ethylene oxide structure and a propylene oxide structure, which are generally considered to have a strong interaction between the polymer, the solvent, and the supporting salt, an increase in resistance of the separator portion is suppressed, and stable battery performance is obtained. Can be

【0038】一方、電極中においては、電解液の保持能
力よりもイオンの動きやすさが優先されるため、電解液
との親和性が高いポリマーを用いるとイオンが拘束さ
れ、移動が制限される。
On the other hand, in the electrode, the ease of movement of the ions is given priority over the ability to hold the electrolytic solution. Therefore, when a polymer having a high affinity for the electrolytic solution is used, the ions are restricted and the movement is restricted. .

【0039】これに加えて、本発明電池A5、A6で
は、上記と同じく、セパレータおよび電極中のゲル電解
質の(Cs+Cp+Cn)/3値が、7〜20の範囲内
となっているため、ゲル電解質中のリチウムイオンの移
動がスムーズに実現できていると考えられる。そのた
め、本発明電池A5、A6では、充放電サイクル進行後
もセパレータ中に十分なリチウムイオンおよび電解液が
保持され、サイクル進行による容量の低下が抑制される
ものと考えられる。
In addition, in the batteries A5 and A6 of the present invention, the (Cs + Cp + Cn) / 3 value of the gel electrolyte in the separator and the electrode is in the range of 7 to 20, as in the above, so that the gel electrolyte It is considered that the movement of lithium ions in the interior was realized smoothly. Therefore, in the batteries A5 and A6 of the present invention, it is considered that sufficient lithium ions and the electrolytic solution are retained in the separator even after the progress of the charge / discharge cycle, and a decrease in capacity due to the progress of the cycle is suppressed.

【0040】[0040]

【発明の効果】上記したとおりであるから、本発明によ
れば、特殊な製造工程などを必要としなくても初期容量
およびハイレート充放電性能、サイクル寿命に優れたリ
チウム電池を提供することができるものである。
As described above, according to the present invention, a lithium battery having excellent initial capacity, high-rate charge / discharge performance, and cycle life can be provided without requiring a special manufacturing process. Things.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のリチウム電池の断面図である。FIG. 1 is a sectional view of a lithium battery of the present invention.

【図2】本発明電池A1〜A6、比較電池B1〜B4に
ついて、各種電流値で放電を行ったときの放電電流と放
電容量の関係を示した図である。
FIG. 2 is a diagram showing the relationship between discharge current and discharge capacity when discharging at various current values for the batteries A1 to A6 of the present invention and comparative batteries B1 to B4.

【図3】本発明電池A5、A6、比較電池B1、B2に
ついて、充放電サイクル試験を行ったときのサイクル数
と放電容量の関係を示した図である。
FIG. 3 is a diagram showing the relationship between the number of cycles and the discharge capacity when a charge / discharge cycle test is performed on batteries A5 and A6 of the present invention and comparative batteries B1 and B2.

【符号の説明】[Explanation of symbols]

1 正極合剤 2 負極合剤 5 セパレータ 1 Positive electrode mixture 2 Negative electrode mixture 5 Separator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電極活物質とポリマーとリチウム塩と有
機溶媒からなるゲル電解質とを少なくとも含む正極およ
び負極を、ポリマーとリチウム塩と有機溶媒からなるゲ
ル電解質を含むセパレータを介して対向させたリチウム
電池において、前記セパレータ中のゲル電解質組成と、
前記正極および負極のうちの少なくとも一方のゲル電解
質組成とが異なるものであって、前記セパレータ、正極
および負極に含まれるポリマー濃度が、以下の範囲内で
あることを特徴とするリチウム電池。 7≦(Cs+Cp+Cn)/3≦20 ただし、Cs=セパレータ中のゲル電解質に含まれるポ
リマーの重量パーセント Cp=正極中のゲル電解質に含まれるポリマーの重量パ
ーセント Cn=負極中のゲル電解質に含まれるポリマーの重量パ
ーセント
1. A lithium battery comprising: a positive electrode and a negative electrode each containing at least an electrode active material, a polymer, a lithium salt and a gel electrolyte made of an organic solvent; In a battery, a gel electrolyte composition in the separator,
A lithium battery, wherein a gel electrolyte composition of at least one of the positive electrode and the negative electrode is different, and a polymer concentration contained in the separator, the positive electrode, and the negative electrode is in the following range. 7 ≦ (Cs + Cp + Cn) / 3 ≦ 20 where Cs = weight percent of polymer contained in gel electrolyte in separator Cp = weight percent of polymer contained in gel electrolyte in positive electrode Cn = polymer contained in gel electrolyte in negative electrode Weight percent of
【請求項2】 前記セパレータ中に含まれるポリマーの
架橋密度が、前記正極および負極のうちの少なくとも一
方に含まれるポリマーの架橋密度よりも低いことを特徴
とする請求項1記載のリチウム電池。
2. The lithium battery according to claim 1, wherein the crosslink density of the polymer contained in the separator is lower than the crosslink density of the polymer contained in at least one of the positive electrode and the negative electrode.
【請求項3】 前記セパレータ中に含まれるゲル電解質
に用いるポリマーは、前記正極および負極のうちの少な
くとも一方に含まれるゲル電解質に用いるポリマーより
も、電解液に対する親和性が高い構造を主に有すること
を特徴とする請求項1又は2記載のリチウム電池。
3. The polymer used for the gel electrolyte contained in the separator mainly has a structure having a higher affinity for the electrolyte than the polymer used for the gel electrolyte contained in at least one of the positive electrode and the negative electrode. The lithium battery according to claim 1, wherein:
JP24124299A 1999-08-27 1999-08-27 Lithium battery Expired - Fee Related JP4379966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24124299A JP4379966B2 (en) 1999-08-27 1999-08-27 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24124299A JP4379966B2 (en) 1999-08-27 1999-08-27 Lithium battery

Publications (2)

Publication Number Publication Date
JP2001068158A true JP2001068158A (en) 2001-03-16
JP4379966B2 JP4379966B2 (en) 2009-12-09

Family

ID=17071332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24124299A Expired - Fee Related JP4379966B2 (en) 1999-08-27 1999-08-27 Lithium battery

Country Status (1)

Country Link
JP (1) JP4379966B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086747A1 (en) * 2000-05-12 2001-11-15 Matsushita Electric Industrial Co., Ltd. Lithium polymer secondary cell
WO2004001878A1 (en) * 2002-06-19 2003-12-31 Sharp Kabushiki Kaisha Lithium polymer secondary battery and process for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086747A1 (en) * 2000-05-12 2001-11-15 Matsushita Electric Industrial Co., Ltd. Lithium polymer secondary cell
US6670075B2 (en) 2000-05-12 2003-12-30 Matsushita Electric Industrial Co., Ltd. Lithium polymer secondary cell
WO2004001878A1 (en) * 2002-06-19 2003-12-31 Sharp Kabushiki Kaisha Lithium polymer secondary battery and process for producing the same

Also Published As

Publication number Publication date
JP4379966B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP2004327423A (en) Composite polymer electrolyte for lithium secondary battery containing single ion conductor and method of manufacturing it
CN101494302B (en) Battery
JP2003242964A (en) Non-aqueous electrolyte secondary battery
JP4632020B2 (en) Non-aqueous electrolyte secondary battery
CN102368562A (en) Lithium ion battery
JP2005209498A6 (en) Non-aqueous electrolyte secondary battery
JP2002008730A (en) Lithium secondary battery
JP2003331838A (en) Lithium secondary battery
JP4161437B2 (en) Lithium battery
JP2001307735A (en) Lithium secondary battery
JPH10112321A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3538185B2 (en) Secondary batteries and capacitors using indole compounds
JP4379966B2 (en) Lithium battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP4054925B2 (en) Lithium battery
JPH1145725A (en) Lithium battery
JP3700736B2 (en) Manufacturing method of thin lithium battery
JPH04190557A (en) Lithium secondary battery
JP2004071244A (en) Nonaqueous electrolyte battery
CN1194278A (en) Polymer electrolyte and lithium-polymer cell using said electrolyte
JP4669980B2 (en) Thin lithium secondary battery
JP3512082B2 (en) Thin lithium battery and method of manufacturing the same
JPH1197026A (en) Electrode for li cell
JP3928167B2 (en) Method for manufacturing electrode plate for lithium secondary battery
JP4624589B2 (en) Vanadium-based composite positive electrode for solid-state lithium polymer battery and lithium polymer battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees