JP2001053308A - Manufacture of conductive film - Google Patents

Manufacture of conductive film

Info

Publication number
JP2001053308A
JP2001053308A JP11223108A JP22310899A JP2001053308A JP 2001053308 A JP2001053308 A JP 2001053308A JP 11223108 A JP11223108 A JP 11223108A JP 22310899 A JP22310899 A JP 22310899A JP 2001053308 A JP2001053308 A JP 2001053308A
Authority
JP
Japan
Prior art keywords
film
conductive film
tin oxide
thickness
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11223108A
Other languages
Japanese (ja)
Inventor
Tsutomu Otani
強 大谷
Yukio Sueyoshi
幸雄 末吉
Akira Fujisawa
章 藤沢
Masahiro Hirata
昌宏 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP11223108A priority Critical patent/JP2001053308A/en
Publication of JP2001053308A publication Critical patent/JP2001053308A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit as much as possible change in film characteristics, such as transmission properties, a resistance value or the like, and to adjust the irregular shapes of film surfaces by forming films having the same quality of the material at a plurality of times by adjusting a film-thickness distribution. SOLUTION: In a substrate for an optoelectric converter, to which a conductive film is formed, a foundation film 1 and a transparent conductive film 2 using tin oxide by forming plural number of times as a main component are formed on a glass pane 5 in this order. Irregularities 3 are formed to the surface of the conductive film 2. The irregularities contribute to the increase of optical confinement effect in a photoelectric conversion layer. When the conductive film 2 having an irregular shape on the surface is formed, the conductive film 2 in a desired film thickness is laminated by film formation by plural number of times. The film-thickness distribution is optimized so that film thickness formed at a plurality of times is formed into an optimum irregular shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス板と透明導
電膜とを含み、薄膜型太陽電 池に用いられる積層体の
製造方法に関し、特に透明導電膜の表面の凹凸形状の制
御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a laminate including a glass plate and a transparent conductive film and used for a thin-film solar cell, and more particularly to a method for controlling the unevenness of the surface of the transparent conductive film.

【0002】[0002]

【従来の技術】透明導電膜をガラス板上に形成した積層
体は、熱線反射ガラス、薄膜型太陽電池などとして広く
用いられている。
2. Description of the Related Art A laminate in which a transparent conductive film is formed on a glass plate is widely used as a heat-reflective glass, a thin-film solar cell and the like.

【0003】透明導電膜としては、フッ素をドープした
酸化錫膜が多用されている。この膜は、錫をドープした
酸化インジウム(ITO)膜よりも耐プラズマ性能など
の化学的安定性に優れており、プラズマCVD法が適用
される光電変換層(アモルファスシリコン層)の成膜時
にも劣化が少ない。
As a transparent conductive film, a tin oxide film doped with fluorine is frequently used. This film has better chemical stability such as plasma resistance than a tin-doped indium oxide (ITO) film, and is suitable for forming a photoelectric conversion layer (amorphous silicon layer) to which a plasma CVD method is applied. Less deterioration.

【0004】酸化錫膜は、熱分解酸化反応を伴う方法、
特にCVD法により成膜されているが、高温の基板上で
熱分解法によりガラス板上に成膜された透明導電膜の酸
化錫は多結晶体となることが知られている。
[0004] The tin oxide film is formed by a method involving a thermal decomposition oxidation reaction,
In particular, although a film is formed by a CVD method, it is known that tin oxide of a transparent conductive film formed on a glass plate by a thermal decomposition method on a high-temperature substrate becomes polycrystalline.

【0005】酸化錫の多結晶体は、膜厚の増加に伴う粒
径の成長により、表面で凹凸形状を示す。薄膜型太陽電
池では、酸化錫膜の表面の凹凸形状が光閉じこめ効果に
よる光電変換特性の向上をもたらす。そこで、従来か
ら、酸化錫膜の表面の凹凸形状、およびその形成方法に
ついて種々の検討が行われてきた。
[0005] The polycrystalline tin oxide exhibits an uneven shape on the surface due to the growth of the particle size with an increase in the film thickness. In a thin-film solar cell, the unevenness of the surface of the tin oxide film improves the photoelectric conversion characteristics due to the light confinement effect. Therefore, various studies have been made on the uneven shape of the surface of the tin oxide film and the method of forming the same.

【0006】例えば、特表平2−503615号公報に
は、直径が0.1〜0.3μmであって、高さ/直径の
比が0.7〜1.2である凸部を表面に有する酸化錫膜
を含む太陽電池用基板が開示されている。同公報では、
酸化錫膜の製造方法として、四塩化錫、水蒸気、メタノ
ール、窒素などを含む混合ガスを用いたCVD法が示さ
れている。
For example, Japanese Patent Laid-Open Publication No. 2-503615 discloses a convex portion having a diameter of 0.1 to 0.3 μm and a height / diameter ratio of 0.7 to 1.2 on the surface. There is disclosed a solar cell substrate including a tin oxide film. In that publication,
As a method for producing a tin oxide film, a CVD method using a mixed gas containing tin tetrachloride, water vapor, methanol, nitrogen and the like is disclosed.

【0007】また、透明導電膜の表面に形成された凸凹
の程度は、ヘイズ率により表示することができる。特開
昭63−242947号公報では、CVD法で酸化錫膜
を成膜する際のジメチル錫ジクロライドと水とのモル比
を調整することにより、酸化錫膜のヘイズ率を変化させ
た例が記載されている。
[0007] The degree of unevenness formed on the surface of the transparent conductive film can be indicated by a haze ratio. JP-A-63-242947 describes an example in which the haze ratio of a tin oxide film is changed by adjusting the molar ratio of dimethyltin dichloride and water when forming a tin oxide film by a CVD method. Have been.

【0008】上記各公報では、CVD法で酸化錫膜を成
膜する場合において、供給する原料ガス組成比を変化さ
せて、表面凹凸形状を調整している。また、透明導電膜
上に、光電変換層として非晶質(アモルファス)シリコ
ン膜を堆積させて得られる非晶質シリコン太陽電池の特
性の向上を目的として凹凸形状が調整されている。
In each of the above publications, when forming a tin oxide film by the CVD method, the composition of the surface irregularities is adjusted by changing the composition ratio of the supplied source gas. In addition, the unevenness is adjusted for the purpose of improving the characteristics of an amorphous silicon solar cell obtained by depositing an amorphous silicon film as a photoelectric conversion layer on a transparent conductive film.

【0009】[0009]

【発明が解決しようとする課題】ところで、非晶質シリ
コン以外を光電変換材料とした太陽電池としては、多結
晶シリコンや微結晶相を含むシリコン、あるいはCuI
nSeなどを光電変換層とする結晶薄膜型太陽電池が
挙げられる。
By the way, as a solar cell using a photoelectric conversion material other than amorphous silicon, polycrystalline silicon, silicon containing a microcrystalline phase, or CuI
A crystalline thin-film solar cell using nSe 2 or the like as a photoelectric conversion layer is given.

【0010】この結晶薄膜型太陽電池では、光電変換材
料である結晶薄膜の結晶性が良好な特性を得るための重
要な因子となる。結晶薄膜においては、結晶性が薄膜の
特性、特に電気的特性を決めるからである。特に、結晶
構造を有する光電変換材料を、透明導電膜表面に直接も
しくは緩和層を介して形成する場合、光電変換材料の結
晶性を損なわないような透明導電膜の表面凹凸形状が必
要となる。
In this crystal thin film type solar cell, the crystallinity of the crystal thin film as a photoelectric conversion material is an important factor for obtaining good characteristics. This is because, in a crystalline thin film, the crystallinity determines the characteristics of the thin film, particularly the electrical characteristics. In particular, when a photoelectric conversion material having a crystal structure is formed directly on the surface of the transparent conductive film or via a relaxation layer, the surface of the transparent conductive film needs to have a surface unevenness that does not impair the crystallinity of the photoelectric conversion material.

【0011】すなわち、従来の非晶質シリコン太陽電池
用途に調整されてきた表面凹凸形状から、結晶薄膜型太
陽電池にとって最適な表面凹凸形状に調整する必要があ
る。
That is, it is necessary to adjust the surface unevenness shape which has been adjusted for the conventional amorphous silicon solar cell application to the optimum surface unevenness shape for the crystal thin film type solar cell.

【0012】ここで、従来は、CVD法で酸化錫膜を成
膜する場合において、供給する原料ガス組成比を変化さ
せて、表面凹凸形状を調整している。しかしながら、薄
膜型太陽電池用の透明導電膜には、透過率が高いこと、
抵抗が低いことが求められるているが、原料ガス組成比
を変更すると、この重要な特性が損なわれることが多く
見受けられる。
Here, conventionally, when forming a tin oxide film by the CVD method, the composition of the supplied source gas is changed to adjust the surface unevenness. However, a transparent conductive film for a thin-film solar cell has a high transmittance,
It is required that the resistance be low, but it is often observed that changing the composition ratio of the source gas impairs this important characteristic.

【0013】したがって、表面凹凸形状だけでなく、透
過性、抵抗値が最適となるガス条件を再調節する必要が
ある。
Therefore, it is necessary to readjust not only the irregularities on the surface but also the gas conditions under which the permeability and the resistance value become optimal.

【0014】そこで、本発明は、透過性、抵抗値などの
膜特性変化を極力抑制すると同時に、膜表面の凹凸形状
が調節可能な透明導電膜の製造方法を提供することを目
的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a transparent conductive film in which changes in film characteristics such as permeability and resistance value can be suppressed as much as possible, and the uneven shape of the film surface can be adjusted.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、本発明の透明導電膜の製造方法は、ガラス基板上へ
の導電膜の成膜において、同一材質の膜を膜厚配分を調
節して複数回成膜を行う導電膜の製造方法である。
In order to achieve the above object, a method of manufacturing a transparent conductive film according to the present invention comprises adjusting the film thickness distribution of a film of the same material in forming a conductive film on a glass substrate. This is a method for producing a conductive film in which a film is formed a plurality of times.

【0016】ここで、前記ガラス基板上に同一材質の膜
を順次n回成膜する時の各膜厚をDi(2≦i≦n)と
するとき、D1≦D2・・・≦Dnを満足することが望
ましい。ただし、D1は1回目の成膜時の膜厚で、Di
は2回目以降i回目の成膜時の膜厚である。
Here, when the film of the same material is sequentially formed n times on the glass substrate by Di (2 ≦ i ≦ n), D1 ≦ D2... ≦ Dn is satisfied. It is desirable to do. Here, D1 is the film thickness at the time of the first film formation, and Di1
Is the film thickness at the time of the i-th film formation from the second time.

【0017】尚、酸化錫を初めとする導電膜のガラス基
板上での結晶の成長過程、並びに表面凹凸形状の形成過
程は、未だ明らかにされていないが、成長初期段階の膜
厚が小さい領域では、小さい等粒状の結晶が生成し、表
面凹凸形状は均一と考えられる。更に結晶成長が進行す
ると、長柱状の結晶が形成されるが、多結晶体を形成す
る酸化錫などでは、伴に成長過程にある隣接する結晶と
の相互作用により、大きく成長する結晶もあれば、結晶
成長が抑制される結晶も存在するようになる。この結
果、表面凹凸形状が不均一となると考えられる。この結
晶成長形態を利用するば、表面凹凸形状を調節すること
が可能となる。
The crystal growth process of the conductive film such as tin oxide on the glass substrate and the process of forming the surface irregularities have not been clarified yet. In this case, small, equigranular crystals are generated, and the surface irregularities are considered to be uniform. As the crystal growth further progresses, long columnar crystals are formed.In the case of tin oxide or the like that forms a polycrystal, some crystals grow larger due to the interaction with the adjacent crystal in the growth process. In addition, there are crystals whose crystal growth is suppressed. As a result, it is considered that the surface unevenness becomes non-uniform. If this crystal growth mode is used, it is possible to adjust the surface irregularities.

【0018】すなわち、表面凹凸形状をできるだけ均一
にするには、一回あたりに成膜させる膜厚をできるだけ
小さくした複数回の成膜により、所望する膜厚の導電膜
を形成するばよいことになる。
That is, in order to make the surface unevenness as uniform as possible, a conductive film having a desired film thickness may be formed by performing film formation a plurality of times with the film thickness formed at one time being as small as possible. Become.

【0019】複数回の成膜により形成される導電膜の結
晶は、その前の成膜で形成された導電膜の結晶成長に引
き続いた形態で成長すると考えると、(n+1)回目の
成膜過程における隣接する結晶との相互作用は、n回目
の相互作用と比較してより大きくなるので、n回目の成
膜における相互作用はできるだけ小さくすることが望ま
しい。したがって、特に、表面凹凸形状を均一にするた
めには、(n+1)回目に成膜する膜厚は、n回目に成
膜する膜厚より大きくすることが望ましい。
Considering that the crystal of the conductive film formed by a plurality of film formations grows in a form following the crystal growth of the conductive film formed by the previous film formation, the (n + 1) th film formation process Is larger than the n-th interaction, it is desirable that the interaction in the n-th film formation be as small as possible. Therefore, in particular, in order to make the surface unevenness uniform, it is desirable that the film thickness formed in the (n + 1) th film be larger than the film thickness formed in the nth film.

【0020】本発明の導電膜の製造方法によれば、膜表
面の凹凸形状を調節することが可能となって、表面凹凸
形状を均一にすることができるため、最終的にはこの導
電膜を用いた薄膜型太陽電池の光電変換層での光閉じ込
め効果の増大に寄与し、光電変換効率を上げることがで
きる。
According to the method of manufacturing a conductive film of the present invention, the unevenness of the film surface can be adjusted and the unevenness of the surface can be made uniform. It contributes to an increase in the light confinement effect in the photoelectric conversion layer of the used thin-film solar cell, and can increase the photoelectric conversion efficiency.

【0021】[0021]

【発明の実施の形態】以下、本発明の導電膜の製造方法
の好ましい実施形態について説明する。図1は、本発明
の導電膜の製造方法により導電膜が形成された光電変換
素子用基板の一形態の断面図である。本発明の導電膜の
製造方法により導電膜が形成された光電変換素子用基板
では、ガラス板5上に、下地膜1、複数回の成膜による
酸化錫を主成分とする透明導電膜2がこの順に形成され
ており、この導電膜2の表面に凹凸3が形成されてい
る。この凹凸が光電変換層での光閉じ込め効果の増大に
寄与する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the method for producing a conductive film according to the present invention will be described below. FIG. 1 is a cross-sectional view of one embodiment of a photoelectric conversion element substrate on which a conductive film is formed by the method for manufacturing a conductive film of the present invention. In the substrate for a photoelectric conversion element on which a conductive film is formed by the method for producing a conductive film of the present invention, a base film 1 and a transparent conductive film 2 containing tin oxide as a main component obtained by forming a plurality of times are formed on a glass plate 5. The conductive films 2 are formed in this order, and irregularities 3 are formed on the surface of the conductive film 2. This unevenness contributes to an increase in the light confinement effect in the photoelectric conversion layer.

【0022】本発明の導電膜の製造方法は、表面に凹凸
形状を有する導電膜2を形成する際に、複数回の成膜に
より所望する膜厚の導電膜2を積層する製造方法であ
り、複数回で成膜される膜厚を最適な凹凸形状になるよ
うに、その膜厚配分を最適化する方法である。
The method of manufacturing a conductive film according to the present invention is a manufacturing method in which a conductive film 2 having a desired film thickness is laminated by a plurality of film formations when forming a conductive film 2 having an uneven surface. This is a method of optimizing the film thickness distribution so that the film thickness formed in a plurality of times has an optimum uneven shape.

【0023】下地層1は、酸化珪素および酸化アルミニ
ウムから選ばれる少なくとも一方を主成分として含む。
また下地層1は、第1の下地層1aと第2の下地層1b
からなる2層膜とすることができる。この場合、第1の
下地層1aは、酸化錫を主成分とすることが好ましい。
また、第2の下地層1bは、酸化珪素および酸化アルミ
ニウムから選ばれる少なくとも一方を主成分として含む
ことが好ましく、酸化珪素膜であることが特に好まし
い。
Underlayer 1 contains at least one selected from silicon oxide and aluminum oxide as a main component.
The underlayer 1 includes a first underlayer 1a and a second underlayer 1b.
Can be formed as a two-layer film. In this case, the first underlayer 1a preferably contains tin oxide as a main component.
Further, second underlayer 1b preferably contains at least one selected from silicon oxide and aluminum oxide as a main component, and is particularly preferably a silicon oxide film.

【0024】酸化錫を主成分とする透明導電膜2は、特
に限定されないが、導電性向上のために、フッ素などの
元素が所定量添加された酸化錫を主成分とする薄膜であ
ることが好ましい。
The transparent conductive film 2 containing tin oxide as a main component is not particularly limited, but may be a thin film containing tin oxide as a main component to which a predetermined amount of an element such as fluorine is added for improving conductivity. preferable.

【0025】本発明の製造方法で成膜される導電膜の成
膜法は、特に限定されないが、原料液を霧化してガラス
リボン表面に供給するスプレー法や原料を気化させてガ
ラスリボン表面に供給するCVD法が利用できる。特に
フロートガラス製造工程において、ガラスリボンが有す
る熱を利用することにより、上記各膜をガラスリボンの
トップ面に順次堆積する方法を適用することが好まし
い。この理由は、高温での成膜に適しているからであ
り、ガラスリボンが有する熱を利用できるからである。
The method of forming a conductive film formed by the manufacturing method of the present invention is not particularly limited, but a spraying method in which a raw material liquid is atomized and supplied to the glass ribbon surface, or a raw material is vaporized by vaporizing the raw material liquid, The supplied CVD method can be used. In particular, in the float glass manufacturing process, it is preferable to apply a method of sequentially depositing the above films on the top surface of the glass ribbon by utilizing the heat of the glass ribbon. The reason for this is that it is suitable for film formation at a high temperature and that the heat of the glass ribbon can be used.

【0026】CVD法により酸化錫を主成分とする薄膜
を形成する場合、錫原料としては、モノブチル錫トリク
ロライド、四塩化錫、ジメチル錫ジクロライド、ジブチ
ル錫ジクロライド、ジオクチル錫ジクロライド、テトラ
メチル錫などが挙げられる。錫原料としては、モノブチ
ル錫トリクロライド、ジメチル錫ジクロライドなどの有
機錫塩化物が好適である。錫原料の酸化のためには、酸
素、水蒸気、乾燥空気などを酸化原料として用いること
ができる。また、導電膜にフッ素を添加する場合のフッ
素原料としては、フッ化水素、トリフルオロ酢酸、ブロ
モトリフルオロメタン、クロロジフルオロメタンなどが
挙げられる。
When a thin film containing tin oxide as a main component is formed by the CVD method, tin raw materials include monobutyltin trichloride, tin tetrachloride, dimethyltin dichloride, dibutyltin dichloride, dioctyltin dichloride, and tetramethyltin. No. Organic tin chlorides such as monobutyltin trichloride and dimethyltin dichloride are suitable as tin raw materials. For the oxidation of the tin raw material, oxygen, steam, dry air or the like can be used as the oxidizing raw material. In addition, as a fluorine raw material when fluorine is added to the conductive film, hydrogen fluoride, trifluoroacetic acid, bromotrifluoromethane, chlorodifluoromethane, and the like can be given.

【0027】CVD法により酸化珪素を主成分とする薄
膜を形成する場合、珪素原料としては、モノシラン、ジ
シラン、トリシラン、モノクロロシラン、1,2-ジメチル
シラン、1,1,2-トリメチルジシラン、1,1,2,2-テトラメ
チルジシラン、テトラメチルオルソシリケート、テトラ
エチルオルソシリケートなどが挙げられる。
When a thin film containing silicon oxide as a main component is formed by the CVD method, monosilane, disilane, trisilane, monochlorosilane, 1,2-dimethylsilane, 1,1,2-trimethyldisilane, 1 , 1,2,2-tetramethyldisilane, tetramethylorthosilicate, tetraethylorthosilicate and the like.

【0028】酸化原料としては、酸素、水蒸気、乾燥空
気、二酸化炭素、一酸化炭素、二酸化窒素、オゾンなど
が挙げられる。また、モノシランなど反応性の極めて高
い原料を使用する場合には、エチレン、アセチレン、ト
ルエンなどの不飽和炭化水素ガスを添加して反応性を制
御してもよい。
Examples of the oxidizing material include oxygen, steam, dry air, carbon dioxide, carbon monoxide, nitrogen dioxide, ozone and the like. When a raw material having extremely high reactivity such as monosilane is used, the reactivity may be controlled by adding an unsaturated hydrocarbon gas such as ethylene, acetylene or toluene.

【0029】酸化珪素と同様、第2の下地層として好適
な酸化アルミニウムを主成分とする膜をCVD法により
成膜する場合のアルミニウム原料としては、トリメチル
アルミニウム、アルミニウムトリイソポプロポキサイ
ド、塩化ジエチルアルミニウム、アルミニウムアセチル
アセトネート、塩化アルミニウムなどが挙げられる。ま
た、この場合の酸化原料としては、酸素、水蒸気、乾燥
空気などが挙げられる。
As in the case of silicon oxide, when a film containing aluminum oxide as a main component, which is suitable as the second underlayer, is formed by a CVD method, aluminum materials include trimethylaluminum, aluminum triisopropoxide, and diethyl chloride. Examples include aluminum, aluminum acetylacetonate, and aluminum chloride. In this case, examples of the oxidizing material include oxygen, steam, and dry air.

【0030】[0030]

【実施例】以下実施例により本発明をさらに詳細に説明
するが、本発明は以下の実施例により制限されるもので
はない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.

【0031】(実施例1)100mm×100mmで厚
み1.1mmの無アルカリガラス(コーニング社製70
59)を洗浄、乾燥し基板とした。このガラス基板上
に、大気開放型の搬送炉内において、常圧CVD法で、
1回目の成膜として、膜厚が約100nmのフッ素含有
酸化錫膜を成膜した。成膜は、ガラス基板を、メッシュ
ベルトを用いて約600℃に加熱された炉内を搬送しな
がら行った。原料ガスとしては、ジメチル錫ジクロラ
イ、水、酸素、窒素、トリフルオロ酢酸を供給して成膜
を行った。
Example 1 Alkali-free glass having a size of 100 mm × 100 mm and a thickness of 1.1 mm (70 manufactured by Corning Incorporated)
59) was washed and dried to obtain a substrate. On this glass substrate, in a transfer furnace of open-to-atmosphere, by atmospheric pressure CVD,
As the first film formation, a fluorine-containing tin oxide film having a thickness of about 100 nm was formed. The film formation was performed while the glass substrate was transported in a furnace heated to about 600 ° C. using a mesh belt. As a source gas, dimethyltin dichlory, water, oxygen, nitrogen, and trifluoroacetic acid were supplied to form a film.

【0032】次いで2回目の成膜として、1回目の成膜
で得られた約100nmのフッ素含有酸化錫膜付きガラ
ス基板を用いて、約100nmのフッ素含有酸化錫膜上
に、1回目と同様な成膜法により、膜厚が約200nm
のフッ素含有酸化錫膜を成膜し、膜厚が約300nmの
フッ素含有酸化錫膜を成膜した。
Next, as a second film formation, using the glass substrate with a fluorine-containing tin oxide film of about 100 nm obtained in the first film formation, on a fluorine-containing tin oxide film of about 100 nm in the same manner as the first film formation Film thickness of about 200nm
Was formed, and a fluorine-containing tin oxide film having a thickness of about 300 nm was formed.

【0033】次いで3回目の成膜として、2回目の成膜
で得られた約300nmのフッ素含有酸化錫膜付きガラ
ス基板を用いて、約300nmのフッ素含有酸化錫膜上
に、1回目と同様な成膜法により、膜厚が約300nm
のフッ素含有酸化錫膜を成膜し、膜厚が約600nmの
フッ素含有酸化錫膜を成膜した。
Next, as the third film formation, using the glass substrate with the fluorine-containing tin oxide film of about 300 nm obtained in the second film formation, on the fluorine-containing tin oxide film of about 300 nm in the same manner as the first film formation The thickness is about 300 nm by a simple film formation method
Was formed, and a fluorine-containing tin oxide film having a thickness of about 600 nm was formed.

【0034】すなわち、本実施例では、成膜回数が3回
であり、約100nm、約200nm、約300nmの
フッ素含有酸化錫膜を順次成膜し、合計膜厚が約600
nmのフッ素含有酸化錫膜を成膜し、試料とした。
That is, in this embodiment, the number of times of film formation is three, and a fluorine-containing tin oxide film having a total thickness of about 100 nm, about 200 nm, and about 300 nm is sequentially formed.
A fluorine-containing tin oxide film having a thickness of nm was formed and used as a sample.

【0035】(実施例2)実施例1と同じ方法を用い
て、成膜回数が3回であり、約300nm、約200n
m、約100nmのフッ素含有酸化錫膜を順次成膜し、
合計膜厚が約600nmのフッ素含有酸化錫膜を成膜
し、試料とした。
(Example 2) Using the same method as in Example 1, the number of times of film formation was three, and was about 300 nm and about 200 n.
m, a fluorine-containing tin oxide film of about 100 nm is sequentially formed,
A fluorine-containing tin oxide film having a total film thickness of about 600 nm was formed as a sample.

【0036】こうして得た供試体の導電膜の表面凹凸形
状を以下のように評価した。原子間力顕微鏡によって1
0μm×10μmの範囲内で、上記試料の導電膜の表面
形状プロファイルを計測し、最大凹凸値(表面最高凸部
と表面最低凹部の距離)を求めた。実施例1の最大凹凸
値の値は、275nmで、実施例2の最大凹凸値の値
は、277nmあった。
The surface irregularities of the conductive film of the specimen thus obtained were evaluated as follows. 1 by atomic force microscope
Within the range of 0 μm × 10 μm, the surface shape profile of the conductive film of the sample was measured, and the maximum unevenness value (the distance between the highest surface convex portion and the lowest surface concave portion) was determined. The value of the maximum unevenness value in Example 1 was 275 nm, and the value of the maximum unevenness value in Example 2 was 277 nm.

【0037】次に上記計測で得られたデータを基に最大
高さ(表面最高凸部)と最低高さ(表面最低凹部)の間
を10個に分割して各断面の面積を求め、深さ方向にお
ける断面積分布をプロットして断面積分布曲線を得た。
下記にこのデータを示す。 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例1 実施例2 深さ(nm)断面積比 深さ(nm)断面積比 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 28 0 27 0 55 0.00006 55 0.00008 83 0.00116 84 0.00065 109 0.00908 111 0.00394 137 0.06574 139 0.02148 165 0.29844 166 0.09190 193 0.70624 195 0.31945 220 0.94827 222 0.69303 247 0.98898 249 0.95284 275 0.98989 277 0.99839 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 図2に、断面積分布曲線を示した。
Next, based on the data obtained by the above measurement, the area between the maximum height (the highest convex portion on the surface) and the minimum height (the lowest concave portion on the surface) is divided into ten, and the area of each section is obtained. The cross-sectional area distribution in the vertical direction was plotted to obtain a cross-sectional area distribution curve.
The data is shown below. Example 1 Example 2 Depth (nm) Cross-sectional area ratio Depth ( nm) Cross-sectional area ratio------------------------------28 0 27 0 55 0.00006 55 0.00008 83 0.00116 84 0.00065 109 0.00908 111 0.00394 137 0.06574 139 0.02148 165 0.29844 166 0.09190 193 0.70624 195 0.31945 220 0.94827 222 0.69303 247 0 .9888 249 0.95284 275 0.98989 277 0.99839 ------------------------------------------------------------------------ FIG. 2 , Section integral It showed the curve.

【0038】この断面積分布曲線から、実施例1、実施
例2の試料の表面凹凸形状が相違することが理解でき
る。実施例1の試料の表面凹凸形状は、実施例2と比較
すると、表面凹凸形状がより均一であり、また凸部の形
状がより丸まった形状である。すなわち、実施例2の試
料の表面凸部は、実施例1の試料の表面凸部に比べて凸
部先端が尖っている。
From the cross-sectional area distribution curves, it can be understood that the surface irregularities of the samples of Examples 1 and 2 are different. The surface unevenness of the sample of Example 1 is more uniform than that of Example 2, and the shape of the convex portion is more rounded. That is, the surface convex portion of the sample of Example 2 has a sharper tip than the surface convex portion of the sample of Example 1.

【0039】透明導電膜の表面を凹凸形状とすると、そ
の表面に光電変換層を形成して得た薄膜型太陽電池の特
性は、光閉じこめ効果などにより向上する。しかし、全
体に表面凹凸形状の大きさが均一でない形状や、先端が
尖った凸部が多数存在する透明導電膜を用いると、薄膜
型太陽電池の光電変換効率は低下する。
When the surface of the transparent conductive film is made uneven, the characteristics of the thin-film solar cell obtained by forming a photoelectric conversion layer on the surface are improved by the light confinement effect and the like. However, when a transparent conductive film having a non-uniform surface unevenness or a large number of convex portions with sharp tips is used, the photoelectric conversion efficiency of the thin-film solar cell is reduced.

【0040】このような特性の低下には、透明導電膜上
におけるアモルファスシリコン層などの光電変換層によ
るステップカバレージ性の低下、光電変換層の膜質の低
下による層界面での光吸収の増大などが影響していると
考えられる。また、光電変換層と透明導電膜との接合不
良に伴う抵抗値の増加も性能低下の一因と考えられる。
The deterioration of such characteristics includes a decrease in step coverage due to a photoelectric conversion layer such as an amorphous silicon layer on a transparent conductive film, and an increase in light absorption at a layer interface due to a decrease in film quality of the photoelectric conversion layer. It is thought that it is affecting. In addition, it is considered that an increase in resistance value due to poor bonding between the photoelectric conversion layer and the transparent conductive film is also a cause of the performance degradation.

【0041】本実施例の中では、実施例1の試料の形状
とすることにより、薄膜型太陽電池の特性の大きな向上
が期待できる。
In this embodiment, the characteristics of the thin-film solar cell can be greatly improved by adopting the shape of the sample of the first embodiment.

【0042】本発明は、フロート法におけるガラスリボ
ン表面にCVD法により薄膜を形成する場合にも適用可
能であることは言うまでもない。図3に、フロート法に
おける本発明実施の装置の一形態を示す。
It is needless to say that the present invention can be applied to a case where a thin film is formed on the surface of a glass ribbon in a float method by a CVD method. FIG. 3 shows an embodiment of the apparatus according to the present invention in the float method.

【0043】図3に示したように、この装置では溶融窯
11から錫フロート槽12内に流れ出し、錫浴15で帯
状に成形されて移動するガラスリボン10の直上に所定
個数のコータ16(図示した形態では5つのコータ16
a、16b、16c、16d、16e)が配置されてい
る。これらのコータから、あらかじめ調整、気化された
原料が供給され、ガラスリボン10表面(トップ面;錫
非接触面)に連続的に被膜が形成される。通常はコータ
16aで第1の下地層、コータ16bで第2の下地層、
コータ16c、16d、16eで酸化錫の透明導電膜を
連続的に積層することができる。この透明導電膜である
酸化錫を、3個のコータを用いて成膜する場合には、そ
れぞれのコータで成膜する酸化錫の膜厚を調整すること
により、酸化錫膜の表面凹凸形状を制御することが可能
となる。
As shown in FIG. 3, in this apparatus, a predetermined number of coaters 16 (shown in FIG. 3) immediately flow out of a glass ribbon 10 which flows out of a melting furnace 11 into a tin float tank 12, is formed into a strip shape in a tin bath 15, and moves. In the form shown, five coaters 16
a, 16b, 16c, 16d, 16e) are arranged. Raw materials that have been adjusted and vaporized in advance are supplied from these coaters, and a film is continuously formed on the surface (top surface; non-tin contact surface) of the glass ribbon 10. Usually, the coater 16a has a first underlayer, the coater 16b has a second underlayer,
The transparent conductive films of tin oxide can be continuously laminated by the coaters 16c, 16d and 16e. In the case where tin oxide, which is a transparent conductive film, is formed using three coaters, the surface roughness of the tin oxide film is adjusted by adjusting the thickness of the tin oxide formed by each coater. It becomes possible to control.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
薄膜型太陽電池基板などに好適に使用できる透明導電膜
の表面凹凸形状を制御すること、すなわち表面凹凸形状
を均一にすることが可能となる。この発明により製造さ
れた透明導電膜は、光閉じ込めに効果があるだけでな
く、凹凸形状分布が均一な良好な表面凹凸形状を有する
ため、光電変換層との接合を良好に確保できる。
As described above, according to the present invention,
It is possible to control the surface unevenness of a transparent conductive film that can be suitably used for a thin film solar cell substrate or the like, that is, to make the surface unevenness uniform. The transparent conductive film manufactured according to the present invention not only has an effect of confining light, but also has a good surface unevenness with a uniform unevenness distribution, so that good bonding with the photoelectric conversion layer can be ensured.

【0045】[0045]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造法により作成された積層体の一
形態の断面図である。
FIG. 1 is a cross-sectional view of one embodiment of a laminate produced by a production method of the present invention.

【図2】 本発明の製造法により作成された積層体にお
ける透明導電膜の表層部分における屈折率分布曲線の例
を示す図である。
FIG. 2 is a diagram showing an example of a refractive index distribution curve in a surface layer portion of a transparent conductive film in a laminate produced by the production method of the present invention.

【図3】 本発明の製造法により積層体を製造するため
に用い得る装置の構成を示した図である。
FIG. 3 is a diagram showing a configuration of an apparatus that can be used for manufacturing a laminate by the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 下地層 1a 第1の下地層 1b 第2の下地層 2 透明導電膜 3 比較的先の尖っていない均一な凹凸 5 ガラス板 10 ガラスリボン 11 溶融炉 12 錫フロート槽 13 徐冷炉 16 コータ 17 ローラ DESCRIPTION OF SYMBOLS 1 Underlayer 1a 1st underlayer 1b 2nd underlayer 2 Transparent conductive film 3 Uniform unevenness which is not relatively sharp 5 Glass plate 10 Glass ribbon 11 Melting furnace 12 Tin float tank 13 Slow cooling furnace 16 Coater 17 Roller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤沢 章 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 (72)発明者 平田 昌宏 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 Fターム(参考) 4G059 AA08 AC06 AC11 EA02 EB02 GA01 GA02 GA04 GA12 5F051 CB27 FA03 FA19 FA22 FA24 GA03 GA06 5G323 BA03 BB02 BB03 5H032 AA06 BB10 EE07 EE18 HH04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Akira Fujisawa, Inventor 3-5-1-11 Doshomachi, Chuo-ku, Osaka-shi, Osaka Inside Nippon Sheet Glass Co., Ltd. (72) Inventor Masahiro Hirata 3-chome, Doshucho, Chuo-ku, Osaka-shi, Osaka No. 5-11 Nippon Sheet Glass Co., Ltd. F term (reference) 4G059 AA08 AC06 AC11 EA02 EB02 GA01 GA02 GA04 GA12 5F051 CB27 FA03 FA19 FA22 FA24 GA03 GA06 5G323 BA03 BB02 BB03 5H032 AA06 BB10 EE07 EE18 HH04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガラス基板上への導電膜の成膜において、
同一材質の膜を膜厚配分を調節して複数回成膜を行うこ
とを特徴とする導電膜の製造方法。
(1) In forming a conductive film on a glass substrate,
A method for manufacturing a conductive film, comprising forming a film of the same material a plurality of times by adjusting the film thickness distribution.
【請求項2】請求項1に記載の導電膜の製造方法におい
て、前記ガラス基板上に同一材質の膜を順次n回成膜す
る時の各膜厚をDi(2≦i≦n)とするとき、 D1≦D2・・・≦Dnを満足する導電膜の製造方法。
ただし、D1は1回目の成膜時の膜厚で、Diは2回目
以降i回目の成膜時の膜厚。
2. The method for manufacturing a conductive film according to claim 1, wherein each film thickness when sequentially forming a film of the same material n times on the glass substrate is Di (2 ≦ i ≦ n). A method for producing a conductive film that satisfies D1 ≦ D2... ≦ Dn.
Here, D1 is the film thickness at the time of the first film formation, and Di is the film thickness at the time of the second and subsequent i-th film formation.
JP11223108A 1999-08-05 1999-08-05 Manufacture of conductive film Withdrawn JP2001053308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11223108A JP2001053308A (en) 1999-08-05 1999-08-05 Manufacture of conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11223108A JP2001053308A (en) 1999-08-05 1999-08-05 Manufacture of conductive film

Publications (1)

Publication Number Publication Date
JP2001053308A true JP2001053308A (en) 2001-02-23

Family

ID=16792962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11223108A Withdrawn JP2001053308A (en) 1999-08-05 1999-08-05 Manufacture of conductive film

Country Status (1)

Country Link
JP (1) JP2001053308A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063195A (en) * 2002-07-26 2004-02-26 Konica Minolta Holdings Inc Article with transparent conductive thin film, its manufacturing method, and thin film forming device
WO2012128051A1 (en) * 2011-03-24 2012-09-27 三洋電機株式会社 Method for producing transparent conductive film and method for manufacturing solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063195A (en) * 2002-07-26 2004-02-26 Konica Minolta Holdings Inc Article with transparent conductive thin film, its manufacturing method, and thin film forming device
WO2012128051A1 (en) * 2011-03-24 2012-09-27 三洋電機株式会社 Method for producing transparent conductive film and method for manufacturing solar cell

Similar Documents

Publication Publication Date Title
US6444898B1 (en) Transparent layered product and glass article using the same
JP3227449B2 (en) Substrate for photoelectric conversion device, method for manufacturing the same, and photoelectric conversion device using the same
JP5095776B2 (en) Transparent substrate with transparent conductive film, method for producing the same, and photoelectric conversion element including the substrate
JP4430194B2 (en) Transparent laminate and glass article using the same
WO2002043079A1 (en) Conductive film, production method therefor, substrate provided with it and photoelectric conversion device
GB2355467A (en) Glass sheet with conductive film
JP2001085722A (en) Method for manufacturing transparent electrode film and solar battery
EP1471541A1 (en) Method of forming transparent conductive film, transparent conductive film, glass substrate having the same and photoelectric transduction unit including the glass substrate
US6498380B1 (en) Substrate for photoelectric conversion device, and photoelectric conversion device using the same
JP4468894B2 (en) Transparent conductive substrate, manufacturing method thereof, and photoelectric conversion element
WO2003017377A1 (en) Glass plate having electroconductive film formed thereon
JP2001053308A (en) Manufacture of conductive film
JP4430193B2 (en) Manufacturing method of glass plate with conductive film
JP2001035262A (en) Glass plate with conductive film, its manufacture and photoelectric transfer device using the same
JP2004362842A (en) Transparent base substrate with transparent conductive film, its manufacturing method, photoelectric conversion device and substrate therefor
JP4516657B2 (en) SUBSTRATE FOR PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOELECTRIC CONVERSION DEVICE USING THE SAME
JP2000340815A (en) Optoelectronic transducer element substrate
JP2005029464A (en) Glass plate with thin film, its production method, and photoelectric conversion device using the glass plate
JPH0477281B2 (en)
JP2001177127A (en) Board for photoelectric conversion device
JP3558519B2 (en) Method for manufacturing transparent conductive film and method for manufacturing photovoltaic element
JP2001036107A (en) Photoelectric transducer and substrate there for
JP2005029463A (en) Glass plate with transparent conductive film, its production method, and photoelectric conversion device using the glass plate
KR101064517B1 (en) Method for growth of zinc oxide thin films and thin film solar cell using the same
JP2002158366A (en) Photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090605