JP2001022443A - Autonomously traveling work vehicle - Google Patents

Autonomously traveling work vehicle

Info

Publication number
JP2001022443A
JP2001022443A JP11195803A JP19580399A JP2001022443A JP 2001022443 A JP2001022443 A JP 2001022443A JP 11195803 A JP11195803 A JP 11195803A JP 19580399 A JP19580399 A JP 19580399A JP 2001022443 A JP2001022443 A JP 2001022443A
Authority
JP
Japan
Prior art keywords
distance
wall
travel
travel direction
gyro sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11195803A
Other languages
Japanese (ja)
Other versions
JP4165965B2 (en
Inventor
Nobukazu Kawagoe
宣和 川越
Original Assignee
Figla Co Ltd
フィグラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figla Co Ltd, フィグラ株式会社 filed Critical Figla Co Ltd
Priority to JP19580399A priority Critical patent/JP4165965B2/en
Publication of JP2001022443A publication Critical patent/JP2001022443A/en
Application granted granted Critical
Publication of JP4165965B2 publication Critical patent/JP4165965B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To considerably improve the linearity of an autonomously traveling work vehicle executing work while it travels on a floor along a wall face. SOLUTION: An autonomously traveling vehicle 1 has a distance sensor S1 measuring a distance to an obstacle at a side and a gyro sensor S2 detecting a travel direction and has a function which linearly travels while it holds a distance with a flat wall to be constant. A controller for selecting and adopting a first travel direction control system for controlling the direction so that the vehicle travels by following the wall based on the measurement value of the distance sensor S1 when a difference between travel direction change quantity calculated based on time sequential data from the distance sensor S1 and travel direction change quantity obtained from the gyro sensor S2 is within a prescribed rage, and a second travel direction control system for executing linear control based on the measurement value of the gyro sensor S2 without executing wall following travel direction controlled based on the measurement value of the distance sensor S1 when a difference between travel change quantity calculated based on time sequential data from the distance sensor S1 and travel direction change quantity obtained from the gyro sensor S2 is out of the prescribed range is installed.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】この発明は自律走行作業車に関し、特に清掃やワックス塗布等, 作業領域を隈なく走行し作業を行う自律走行作業車に関するものである。 TECHNICAL FIELD The present invention relates to autonomous work vehicle, and more particularly to cleaning and waxing, etc., autonomous work vehicle for performing a work traveling the work area thoroughly without.

【0002】 [0002]

【従来の技術】この種の自律走行作業車として種々のものがすでに開発されている。 Various things have already been developed as a Background of the Invention autonomous work vehicle of this kind. 例えば、特開平8 −286747 For example, JP-8 -286,747
号公報に記載されているものは、距離センサで側方の壁までの距離を周期的に測定し、壁に平行に直進する自律走行車で、壁との距離の変化が所定値以上になった場合に、超音波距離センサの距離デ一夕に基づく制御を一時中止し、車輪回転数測定値に基づく直進走行制御に切り替えて走行し、壁までの距離の変化が所定値以内になったら、再度超音波距離センサの距離データに基づく制御を開始するようにして、壁の凹凸によらず、平らな壁に平行な直進走行を行うものである。 Issue those described in JP, the distance by the distance sensor to the wall of the lateral periodically measures, at autonomous vehicle traveling straight in parallel to the wall, the change in the distance between the walls equal to or greater than a predetermined value If the, After suspend control based on the distance data Isseki ultrasonic distance sensor, and run switch to straight running control based on the wheel rotation speed measurement, the change of the distance to the wall becomes within a predetermined value , in which so as to start the control based on the distance data of the ultrasonic distance sensor again, regardless of the unevenness of the wall, performing parallel straight travel on a flat wall.

【0003】この装置における距離センサとして超音波距離センサを使用した場合、超音波距離センサは指向性が比較的広いため、段差を鋭角的に検出できず、曲面的に測定してしまうという特性がある。 [0003] When using the ultrasonic distance sensor as a distance sensor in this device, since the ultrasonic distance sensor is relatively wide directivity can not detect a step in sharp, characteristic that curved manner would measure is there. そのため、四角い柱などで実際の距離が急変している場合でも、距離デ一夕は緩やかな変化となり、所定値に達せず、誤って方向修正をしてしまうという問題点が有り、この傾向は壁から離れるほど影響は大きくなる。 Therefore, even if the actual distance, such as square pillar is a sudden change, distance de Isseki becomes a gradual change, not reach the predetermined value, accidentally there is a problem in that the direction corrected, this trend effect as the distance from the wall increases.

【0004】また、特開平 8−234838号公報に記載されているものは、超音波距離センサの指向性が広いため、 [0004] Also, those described in JP-A-8-234838, since the directivity of the ultrasonic distance sensor is wide,
段差を鋭角的に検出できず、曲面的に測定してしまうということから生じる壁倣いの誤誘導の解決策として、壁までの距離が基準値よりも大きい場合は、走行距離が所定の値に達するまでの間、複数回距離測定を行い、そのうち最小の距離データを採用して壁倣い走行制御にフィードバックし、壁までの距離が基準値よりも小さい場合は、すぐに壁倣い走行制御にフイードバックするように構成されている。 Not detect step in acute, as a solution of the wall profiling of the false derived results from the fact that curved manner thus determined, when the distance to the wall is greater than the reference value, the traveling distance to a predetermined value until it reaches performs multiple distance measurements, if them to employ the smallest distance data is fed back to the wall tracing travel control, the distance to the wall is smaller than the reference value, feedback immediately wall scanning travel control It is configured to.

【0005】しかしながら、この装置は、複数回の距離デ一夕測定値から最小のものを選ぶため、走行制御へフイ―ドバックする周期が長くなり、その間、倣い走行制御は行われず、蛇行やカーブが生じてしまう。 However, this device, to select the smallest one from a plurality of times of the distance de Isseki measurements, Hui the running control - Dobakku periodically becomes longer, during which the scanning travel control is not performed, meandering or curved It occurs. また、同じサイズの柱が一定間隔で並んでいるような場合には距離の最小値を用いることも有効であるが、壁においてある棚などはサイズが一定でなく、このような場合には有効ではない。 Although if the pillars of the same size as are arranged at regular intervals is also effective to use the minimum value of the distance, such as a shelf in the wall is not constant in size, effective in such a case is not.

【0006】さらに、特開平 8−84696 号公報に記載されているものは、壁までの距離を測定する距離センサと、方位を検出する方位センサを有し、壁際を壁に沿って走行する場合には、距離センサにより検出された壁までの距離が基準距離を維持するように走行させ、壁までの距離が基準距離に対して所定値以上に大きい場合は、 Furthermore, what is described in JP-A-8-84696 discloses a distance sensor for measuring a distance to the wall, has a direction sensor for detecting an azimuth, when traveling along the wall side to the wall case, the distance to the detected wall by the distance sensor is caused to travel so as to maintain the reference distance greater than a predetermined value with respect to the distance the reference distance to the wall,
方位センサにより検出された方位に基づいて直進走行するように制御方法を切り替えるようになっている。 So that the switch the control method to straight travel based on the detected azimuth by the azimuth sensor.

【0007】この装置は、壁から所定距離以上はなれて走行する場合には、方位センサ( ジャイロセンサ) の測定値のみに基づいて直進走行するため、走行距離が長くなるにしたがって、直進走行開始時の壁との微小な角度誤差に起因する壁との距離の誤差が大きくなり、またジャイロセンサのドリフトによる方位誤差も無視できなくなるため、清掃作業やワックス塗布作業などの場合に清掃残りや塗布残りが発生する原因となるという問題点がある。 [0007] This device, when traveling from the wall a predetermined distance or more is accustomed, in order to straight running based only on the measurement of the azimuth sensor (gyro sensor), according to the travel distance becomes longer, straight running start the error in the distance between the walls due to very small angular error between the walls is increased, and because the azimuth error due to drift of the gyro sensor also can not be ignored, cleaning residue or coating remaining when such cleaning and waxing operations but there is a problem that causes that occur.

【0008】 [0008]

【本発明が解決しようとする課題】この種の自律走行作業車は、床面における作業漏れ箇所が生じないように、 [Object of the present invention is to provide a autonomous work vehicle of this type, as the work leakage point in the floor surface does not occur,
直進性を保持して走行する必要があるが、従来のものはいずれも十分な直進性が保証できるものではなかった。 It is necessary to travel while holding the straightness, there was no conventional ones but either can guarantee sufficient straightness.
そこで本発明は、上記従来公知の装置の問題点を改良し、壁に凹凸が有る場合でも、超音波距離センサの指向性の広さに起因する壁の凹凸部分での距離測定値誤差による誤誘導を防止し、かつ、走行方向修正制御の周期を短くすることによって、直進性を大幅に改善すること、 The present invention shows the above-mentioned improvements the problems of conventional apparatus, even when the irregularities on the wall there, erroneous distance measurement value error at uneven portions of the walls due to the directivity of the width of the ultrasonic distance sensor to prevent inductive and by shortening the cycle of the traveling direction correcting control, to significantly improve the linearity,
及び、壁の凹凸のサイズが一定でなく、いろいろなサイズの凹凸が含まれる場合においても、壁倣い走行の直進性を改善することを課題としている。 And, a no size wall irregularities constant, in the case that contains the unevenness of different sizes are also an object to improve the straightness of the wall profiling running.

【0009】 [0009]

【課題を解決するための手段】上記課題を解決するため、本発明は次のような構成を採用した。 To solve the above object, according to an aspect of the present invention employs the following configuration. すなわち、本発明に係る自律走行作業車は、壁までの距離を測定する距離センサと、角速度を検出するジャイロセンサとを有し、超音波距離センサから得られる壁までの距離の時系列デ―タと、ジャイロセンサから得られる角速度や角度のデータとを比較することにより、壁までの距離の変化が壁の凹凸に起因するものであるか、または壁と走行方向との角度のズレに起因するものであるかを判断し、壁の凹凸による直進性の低下を改善することを特徴としている。 That is, autonomous work vehicle according to the present invention includes a distance sensor for measuring a distance to the wall, and a gyro sensor for detecting an angular velocity, time series data of the distance to the wall resulting from the ultrasonic distance sensor - data and, by comparing the data of angular velocity and angular obtained from the gyro sensor, due to the deviation of the angle or the change in the distance to the wall is intended to due to the unevenness of the wall or walls and the direction of travel determine is for, is characterized by improving the decrease in linearity due to the unevenness of the walls. 具体的には、壁までの距離の変化から計算した走行方向の変化値と、ジャイロセンサの角速度データとが一致した場合には、距離デ一夕の変化が、壁と走行方向との角度のズレに起因するものとみなして距離デ一夕に基づく壁倣い走行制御を行い、両者が―致しない場合には、距離データの変化が壁の凹凸に起因するものとみなして、距離データに基づく壁倣い走行制御を行わなず、 Specifically, the change value of the running direction calculated from the change in the distance to the wall, when the angular velocity data of the gyro sensor is matched, the change in distance data Isseki is, the angle between the wall and the traveling direction performs a wall tracing travel control based on the distance de Isseki considered to be due to displacement, both - if it does not match, the distance change of the data is considered to be due to the unevenness of the wall, based on the distance data not a place the wall tracing travel control,
ジャイロセンサのみによる走行制御を行う。 Performed only by the running control gyro sensor.

【0010】 [0010]

【発明の実施の形態】図1は、本発明の実施の形態を例示するもので、この自律走行作業車1は、モータによって駆動される駆動車輪2a,2bと、変向自在な従動車輪3a,3bとを備えた車体5に、駆動装置、センサ、 Figure 1 DETAILED DESCRIPTION OF THE INVENTION, illustrate the embodiments of the present invention, the autonomous work vehicle 1, driving wheels 2a driven by a motor, 2b and, deflection freely follower wheel 3a , the vehicle body 5 and a 3b, drive, sensor,
制御装置等が搭載されている。 Control device or the like are mounted. 車体5の後部には図示を省略した作業装置、例えば洗浄液吐出用のノズル、清掃用ブラシ、汚水を吸引する吸引装置等を有する作業部W Working device (not shown) at the rear of the vehicle body 5, for example a nozzle for cleaning liquid discharge, the working portion W having a suction unit, which suction cleaning brush, sewage
が装着されている。 There has been mounting. 作業部Wは、床面上を移動しつつ清掃、ワックス掛けその他の作業を行うもので、従来種々のものが公知となっている。 Working unit W is cleaned while moving on a floor surface, and performs waxing other tasks, conventional various ones have been known. したがって、作業部Wの詳細な構造と作用については省略する。 Accordingly, it will be omitted act with the detailed structure of the working portion W.

【0011】左右の駆動車輪2a,2bにはそれぞれに対応させて駆動モータ4a,4bが設けられており、該モータにはそれぞれモータドライバ6a,6bが設けられている。 [0011] left and right driving wheels 2a, the drive motor 4a in correspondence with each of the 2b, and 4b are provided, each of the said motor the motor driver 6a, 6b are provided. モータドライバ6a,6bは、制御装置(C Motor driver 6a, 6b, the control device (C
PU)10からの制御信号に応じて駆動モータを駆動するようになっている。 PU) in accordance with a control signal from 10 and drives the drive motor. 駆動モータ4a,4b、作業部W、制御装置10等には図示を省略した電池(バッテリ)から電力が供給される。 Drive motor 4a, 4b, the working section W, electric power is supplied from a battery not shown to the control unit 10 or the like (battery). 左右の駆動車輪にはそれぞれエンコーダ7a,7bが設けられ、これらエンコーダによって回転量が検出される。 Each of the left and right driving wheels encoder 7a, 7b are provided, the amount of rotation is detected by these encoders. なお、左右の駆動車輪2 It should be noted that, the left and right drive wheels 2
a,2bは互いに独立に回転制御される構成で、左右の車輪の回転速度の差によってカーブ制御が行われる。 a, 2b in the configuration which is rotated controlled independently of each other, the curve control is performed by the difference in rotational speeds of the left and right wheels.

【0012】上記駆動車輪用の駆動モータ4a,4bはパルス制御(PWM制御)の直流モータであり、通電パルスのデューテイ比を増減させることによって回転量が制御される。 [0012] driving motor 4a for the drive wheels, 4b is a DC motor pulse control (PWM control), the amount of rotation is controlled by increasing or decreasing the duty ratio of the current pulse. 各モータの回転量は、それぞれのエンコーダ7a,7bによって検出され、制御装置10に入力される。 Rotation amount of each motor, each of encoders 7a, detected by 7b, is input to the controller 10. 制御装置10は、エンコーダ7a,7b、超音波距離センサS1、ジャイロセンサS2等から入力されるデータに基づいて以下に示す演算を行うとともに、制御用の指令信号をモータドライバ6a,6bに出力する。 Controller 10, the encoder 7a, 7b, ultrasonic distance sensors S1, performs operations described below on the basis of the data inputted from the gyro sensor S2 etc., and outputs a command signal for controlling the motor driver 6a, and 6b .

【0013】次に、走行制御について説明する。 [0013] Next, the cruise control will be described. 本発明では、2種類の走行制御が選択的に採用される。 In the present invention, two kinds of driving control is adopted selectively. 制御用のセンサーとしては、超音波距離センサS1とジャイロセンサS2とロータリーエンコーダ7a,7bが設けられている。 The sensors for control, ultrasonic distance sensor S1 and the gyro sensor S2 and the rotary encoder 7a, 7b are provided. これら超音波距離センサS1もジャイロセンサS2も公知の市販品を利用できる。 These ultrasonic distance sensor S1 also gyro sensor S2 can be utilized known commercial products. 例えば、上記ジャイロセンサとしては、コリオリ効果を利用して物体が回転する時の角速度を検出する振動ジャイロセンサ等が使用される。 For example, as the gyro sensor, the object by using the Coriolis effect such as a vibration gyro sensor for detecting an angular velocity at the time of rotation is used. 上記両センサのうち、超音波距離センサS1 Of the two sensors, ultrasonic distance sensors S1
は所定周期で繰り返し側方の壁までの距離を測定し、ジャイロセンサS2は所定の周期で走行車の角速度値を測定する。 Measures the distance to the wall of the repeating side at predetermined intervals, the gyro sensor S2 measures the angular velocity value of the traveling vehicle at a predetermined period. 走行距離はエンコーダ7a,7bで車輪回転数を検出し、これを積算することによって求められる。 Mileage encoder 7a, detects the wheel rotational speed 7b, it is determined by integrating them.

【0014】走行制御方法について具体的に説明すれば以下のとおりである。 [0014] The following is a specific explanation of the travel control method. まず、変数を下記の如く設定する。 First of all, it is set as a variable of the following. i : 測定回数 Do : 壁との基準距離 D(i) : 壁までの距離測定値。 i: number of measurements Do: reference distance D between the wall (i): the distance measurement to the wall. As(i) : 壁までの距離測定値から計算した角速度。 As (i): the angular velocity calculated from the distance measured to the wall. A(i) : 角速度測定値。 A (i): the angular velocity measurements. V : 走行速度 T : 測定周期 L : 測定周期間に進む走行距離。 V: running speed T: measurement interval L: traveling distance traveled to the measurement division period. θ(i) : 壁と走行方向とのなす角度。 theta (i): the angle between the wall and the direction of travel. M(i) : 走行方向の修正量 C 1 、C 2 、C 3 : 定数 M (i): the corrected traveling direction amount C 1, C 2, C 3 : constant

【0015】ここで、 L = V ・T ・・・(1) θ(i)=sin -1 ((D(i) -D(i-1))/ L) ・・・(2) As(i)= (θ(i)-θ(i-1))/T ・・・(3) である。 [0015] Here, L = V · T ··· ( 1) θ (i) = sin -1 ((D (i) -D (i-1)) / L) ··· (2) As ( i) a = (θ (i) -θ (i-1)) / T ··· (3).

【0016】走行方向の修正量は、下記の(4) 式を基本とし、 M(i)= C 1 (D(i)-Do)+C 2・θ(i)+C 3・A(i) ・・・(4) As(i) とA(i)との比較結果に応じて、下記の二通りの計算方式のどちらかを選択する。 The correction amount of the running direction, basic to the following equation (4), M (i) = C 1 (D (i) -Do) + C 2 · θ (i) + C 3 · A (i ) (4) in accordance with the comparison result of as (i) and a (i), to select either calculation method of two ways below.

【0017】 As(i) とA(i)の差の絶対値が所定値N [0017] As (i) the absolute value of the predetermined value N of the difference between A (i)
(作業条件等に応じてあらかじめ設定しておけばよいが、通常はほぼ0とする)を超える場合は、C 1 =C 2 =OC 3 If (but it may be set in advance according to work conditions and the like, usually almost 0 to) exceeds, C 1 = C 2 = OC 3
≠Oとした下記の(5) 式で、距離測定値に基づく走行方向修正量をゼロにして、角速度測定値のみに基づいて方向修正を行う。 In ≠ O and the following equation (5), the travel direction correction amount based on the distance measurement value becomes zero and performs direction corrected based only on the angular velocity measurements. M(i) = C 3・A(i) ・・・(5) M (i) = C 3 · A (i) ··· (5)

【0018】 As(i) とA(i)の差の絶対値が所定値以内である場合は、 C 1 ≠OC 2 ≠0 C 3 ≠O とし、(4) 式に基づいて、距離測定値による走行方向修正と角速度測定値による走行方向修正を行うか、または、 C 1 ≠OC 2 ≠OC 3 = 0 として、距離測定値のみに基づいて走行方向修正を行っても良い。 [0018] If the absolute value of the difference between the As (i) and A (i) is within a predetermined value, a C 1 ≠ OC 2 ≠ 0 C 3 ≠ O, based on the equation (4), distance measurement values whether to travel direction correction by the running direction correcting the angular velocity measurements by, or as C 1 ≠ OC 2 ≠ OC 3 = 0, it may be performed a running direction corrected based only on the distance measurements.

【0019】また、の状態において、壁からどれだけ離れて平行に走行するかを決定する基準距離Doは、まず、走行開始時に、走行開始持の距離測定値 D(0) を基準距離としてD 0に代入し、 Do = D(0) それ以後は、の状態からの状態へ移行した直後の距離測定値D(i)を基準距離として、Doに代入する。 Further, in the state, the reference distance to determine whether to run in parallel how far away from the wall Do, first, the traveling start, distance running start lifting measured value D of (0) as the reference distance D substituted into 0, Do = D (0) thereafter, as the distance measurement value D (i) a reference distance immediately after transition to the state from the state, is substituted into Do. Do = D(i) Do = D (i)

【0020】図2は、壁には凹凸が無く、スリッフや床の凹凸、左右の車輪径の差などの影響により、走行方向が徐々に傾いている場合の例である。 [0020] Figure 2, the walls no irregularities, Suriffu and floor irregularities, due to the effects of the difference in the left and right wheel diameter, an example in which the traveling direction is gradually inclined. この場合は、(1) In this case, (1)
(2)(3) 式で計算した角速度値As(i) の値と、ジャイロセンサの測定値A(i)とがほぼ等しくなるので、前記の場合に相当し、距離測定値に基づいた壁倣い制御が行われる。 (2) (3) and the value of the angular velocity values ​​As (i) calculated by the equation, since the measured value A of the gyro sensor (i) is substantially equal, corresponds to a case of the, based on the distance measurement wall scanning control is performed.

【0021】図3は、やはり壁には凹凸が無い場合で、 [0021] FIG. 3 is still on the walls in case there is no unevenness,
直進はしているが走行開始時の向きが壁と平行でなかったために、徐々に壁から離れている場合の例である。 For straight are but traveling at the start of orientation were not parallel to the wall, an example in which it is gradually away from the wall. この場合、(1)(2)(3) 式で計算した角速度値As(i) の値と、ジャイロセンサによる角速度測定値A(i)は、どちらもほばゼロとなり、ほば一致するので、やはり前記の場合に相当し、距離測定値に基づいた壁倣い制御が行われ、壁との平行度および壁までの距離が維持されるように制御が行われる。 In this case, (1) (2) value and the angular velocity measurements A (i) by a gyro sensor (3) angular velocity values ​​were calculated by the formula As (i) are both Ho becomes zero if, because ho match if , also corresponds to the case of the distance measurement wall scanning control based on is performed, control is performed such that the distance to the parallelism and the wall of the wall is maintained. なお、上記特開平8 −84696号記載の装置では、壁から所定距離以上離れると壁倣い制御が行われず、ジャイロセンサのみでの制御となるので、壁との距離を一定値に保つことができなくなる恐れがある。 In the device of the JP-8 -84 696 No. described, leaving a predetermined distance or more, the wall copying control is not performed from the wall, since the control of only the gyro sensor, it is possible to keep the distance between the walls at a constant value there is a possibility that the no.

【0022】図4は、壁に凹凸がある場合の例である。 FIG. 4 is an example of a case where there is unevenness in the wall.
この場合、D(i)を測定するまでは壁倣い制御を実行し壁と平行に直進しているが、壁に段差があるため、D(i)以降で、距離測定値に変化を生じている。 In this case, although until measure D (i) is parallel to the straight wall running walls copying control, since there is a step in the wall, at D (i) and later, caused a change in the distance measurement value there. この時、壁は図示する通り急峻に変化しているが、超音波距離センサの指向性が比較的広いために、測定値は図の破線で示す曲線となり、図のD(i)の如く緩やかに変化する場合が生じる。 At this time, the wall is changing sharply as shown, due to the relatively wide directivity of the ultrasonic distance sensor, the measured value becomes a curve shown by a broken line in FIG slowly as D (i) of FIG. If you want to change it occurs in. この変化をそのまま壁倣い走行制御にフイードバックすると、直進性を損ねる結果となる。 With feedback as it wall scanning travel control this change results in impairing the linearity. この時、ジャイロセンサによる角速度測定値A(i)は、ほばゼロで有るにもかかわらず、(1)(2)(3) 式で計算した角速度値As(i) At this time, the angular velocity value measured by the gyro sensor A (i), despite there with Hobazero, (1) (2) (3) the angular velocity value As calculated by the formula (i)
はゼロとならないため、前記の場合に相当し、距離測定値に基づく壁倣い制御を中止し、ジャイロセンサのみでの制御を行う制御に切り替えることにより、直進性の低下を防止する。 Since not zero, it corresponds to the case of the distance to stop the walls copying control based on the measured value, by switching the control for controlling only the gyro sensor, to prevent deterioration of straightness.

【0023】そして、D(i+3)を測定した後、再び、As(i [0023] Then, after measuring the D (i + 3), again, As (i
+3) とA(i+3)の差が所定範囲内に納まるので、その時点の距離測定値D(i+3)を壁との基準距離として採用し、以後、壁との距離が基準距離を維持するように壁倣い走行制御を行う。 The difference between +3) and A (i + 3) is within a predetermined range, employing distance measurement value D that point (i + 3) as the reference distance between the walls, thereafter, the distance between the wall reference distance perform wall scanning travel control so as to maintain.

【0024】図5に方向修正量演算サブルーチンフログラムのフローチャートを例示する。 [0024] illustrates a flow chart of a direction correcting amount calculating subroutine flow grams in FIG.

【0025】一定周期のタイマー割り込みにより、方向修正量演算サブルーチンを実行する。 [0025] The timer interrupts at a fixed interval, executes the direction correcting amount calculation subroutine. まず、#1、#2で壁までの距離D(i)と角速度A(i)を測定し、次に#3で(1)(2) First, # 1, # 2 in measuring the distance D (i) an angular velocity A (i) to the wall, then # 3 (1) (2)
(3)式を用いて角速度計算値As(i) を計算し、#4で前記の場合であるかの場合であるかを判別する。 (3) Calculate the angular velocity calculation value As (i) using the equation to determine whether the case if it were the case of the in # 4. の場合であれば#8に進み、(5) 式を用いて走行方向修正量M In the case of the process proceeds to # 8, (5) traveling direction correcting amount using the equation M
(i)を計算して#9へ進む。 (I) calculated and the flow advances to # 9. #4の判別結果がの場合には、#5へ進み、前回、(4)式によって方向修正量を計算したか否かを判別し、肯定であればそのまま#7へ進み、 If # 4 determination result is, the process proceeds to step # 5, the last time, (4) to determine whether to calculate the direction correction amount by formula, the process proceeds to it # 7 if yes,
否定であれば、今回の距離測定値D(i)を基準距離D oに代入して#7へ進む。 If negative, the process goes this time of distance measurement values D a (i) to # 7 by substituting the reference distance D o. #7では(4) 式に基づいて壁との距離を In # 7 the distance between (4) wall on the basis of the equation
D oに維持するための方向修正量を計算して#9へ進む。 To calculate the direction correction amount for maintaining the D o proceeds to # 9. #9 # 9
では、計算されたM(i)に基づき、左右の車輪の回転速度を変更し、サブルーチンを終了する。 So based on the calculated M (i), to change the rotational speed of the left and right wheels, the subroutine is ended.

【0026】この自律走行作業車1は上記の制御により壁に沿って直進するが、作業範囲の端部に到達した時はUターンして再度逆向きに直進走行させる(必要な場合は後進も可能である)。 [0026] The autonomous work vehicle 1 is straight along the wall by the control described above, even reverse when working range end in the case of a U-turn and is traveling straight ahead in the opposite direction again (required arrival of possible is). このようにして作業対象の床面全体に対し漏れなく作業を行うのである。 Thus it perform work without omission for the entire floor surface of the work object in the. 上記の実施形態では、左右2輪独立制御の走行車に付いて例示したが、駆動輪とは別に操舵輪を持つ形式の走行車でも良い。 In the above embodiment has illustrated with the vehicle right and left two-wheel independent control may be in the form traveling vehicle having separate steering wheels and drive wheels. その場合はフローチャートの#9において、左右の車輪の回転速度を修正する変わりに、操舵輪の角度を修正すれば良い。 In # 9 in this case is the flow chart, instead modifies the rotational speed of the left and right wheels may be modifying the angle of the steering wheel.

【0027】 [0027]

【発明の効果】以上に説明したように、本発明に係る自律走行作業車は、超音波距離センサとジャイロセンサを併せ持ち、壁との距離が一定になるように平らな壁に平行に直進走行する機能を有するものであって、超音波距離センサから得られる壁までの距離の時系列データと、 As described above, according to the present invention, autonomous work vehicle according to the present invention has both an ultrasonic distance sensor and a gyro sensor, parallel to the straight running on a flat wall as the distance between the walls is constant have a function of a time-series data of the distance to the wall resulting from the ultrasonic distance sensor,
ジャイロセンサから得られる角速度データや角度データとを比較することにより、壁までの距離の変化が壁の凹凸に起因するものか、方位誤差に起因するものかを判断して直進性を維持することにより、壁の段差等による直進性の低下を改善することが可能となった。 By comparing the angular velocity data and angle data obtained from the gyro sensor, or not change in the distance to the wall is due to the unevenness of the wall, that either the to to maintain straightness of determination due to azimuth error Accordingly, it has become possible to improve the deterioration of linearity due to the step or the like of the wall.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】自律走行作業車の構成を説明する平面図である。 1 is a plan view illustrating the autonomous work vehicle configuration.

【図2】走行制御方法の説明図である。 Figure 2 is an illustration of the travel control method.

【図3】走行制御方法の説明図である。 3 is an explanatory view of a travel control method.

【図4】走行制御方法の説明図である。 4 is an explanatory view of a travel control method.

【図5】方向修正量演算サブルーチンプログラムを表すフローチャートである。 5 is a flow chart representing the direction correcting amount calculating subroutine program.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 自律走行作業車 2(a,b) 駆動車輪 3(a,b) 従動車輪 4(a,b) 駆動モータ 5 車体 6(a,b) モータードライバ 7(a,b) エンコーダ 10 制御装置 S1 超音波距離センサ S2 ジャイロセンサ W 作業装置 1 autonomous work vehicle 2 (a, b) drive wheels 3 (a, b) the driven wheel 4 (a, b) the drive motor 5 body 6 (a, b) motor driver 7 (a, b) the encoder 10 control device S1 ultrasonic distance sensor S2 gyro sensor W working device

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 側方の障害物までの距離を測定する距離センサと、走行方向を検出するジャイロセンサとを有し、平らな壁との距離を―定に保ちながら直進する機能を有する自律走行作業車において、前記距離センサからの時系列デ―タを基に計算した走行方向変化量と、前記ジャイロセンサから得られる走行方向変化量との差が所定範囲以内であれば、距離センサの測定値に基づき壁に倣って走行するように方向制御を行う第1の走行方向制御方式と、距離センサからの時系列デ一夕を基に計算した走行方向変化量と、ジャイロセンサから得られる走行方向変化量との差が所定範囲外の場合は、距離センサの測定値に基づく壁倣い走行方向制御を行わず、ジャイロセンサの測定値に基づく直進制御を行う第2の走行方向制御方式とを選択採用 A distance sensor for measuring a distance to 1. A side of the obstacle, and a gyro sensor for detecting a running direction, the distance between the flat wall - Autonomous having the function of linearly while maintaining the constant the traveling working vehicle, the time series data of from the distance sensor - difference between the running direction change amount calculated based on data and the travel direction change amount obtained from the gyro sensor is within the predetermined range, the distance sensors a first traveling directional control system for performing directional control to travel following the wall based on the measured values, and the travel direction change amount time series de Isseki from the distance sensor is calculated based on obtained from the gyro sensor If the difference between the travel direction variation is out of the predetermined range, the distance without measurements walls scanning traveling direction control based on the sensor, and a second travel direction control method for performing rectilinear control based on the measured value of the gyro sensor the selection adopted する制御装置を設けたことを特徴とする自律走行作業車。 Autonomous work vehicle, wherein a control device is provided for.
  2. 【請求項2】 前記、第1の走行方向制御方式において、壁からどれだけ離れて走行するかを決定する距離基準値として、第2の走行方向制御方式から第1の走行方向制御方式に切り替わった直後の壁との距離測定値を用いて制御を行う請求項1に記載の自律走行作業車。 Wherein said, at first traveling directional control system, as a distance reference value to determine whether to travel away much from the wall, switched from the second direction of travel control system in a first direction of travel control system autonomous work vehicle according to claim 1 for controlling using the distance measurements of the wall immediately after the.
JP19580399A 1999-07-09 1999-07-09 Autonomous work vehicle Expired - Lifetime JP4165965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19580399A JP4165965B2 (en) 1999-07-09 1999-07-09 Autonomous work vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19580399A JP4165965B2 (en) 1999-07-09 1999-07-09 Autonomous work vehicle

Publications (2)

Publication Number Publication Date
JP2001022443A true JP2001022443A (en) 2001-01-26
JP4165965B2 JP4165965B2 (en) 2008-10-15

Family

ID=16347248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19580399A Expired - Lifetime JP4165965B2 (en) 1999-07-09 1999-07-09 Autonomous work vehicle

Country Status (1)

Country Link
JP (1) JP4165965B2 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007310866A (en) * 2006-05-16 2007-11-29 Samsung Electronics Co Ltd Robot using absolute azimuth and map creation method using it
JP2009534737A (en) * 2006-04-18 2009-09-24 マースランド エヌ・ヴィMaasland N.V. Feed movement for unmanned autonomous vehicles
JP2012064240A (en) * 2001-06-12 2012-03-29 Irobot Corp Mobile robot cleaner
JP2012094027A (en) * 2010-10-28 2012-05-17 Toyota Motor Corp Mobile body
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8761935B2 (en) 2000-01-24 2014-06-24 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8478442B2 (en) 2000-01-24 2013-07-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US8686679B2 (en) 2001-01-24 2014-04-01 Irobot Corporation Robot confinement
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
JP2012064240A (en) * 2001-06-12 2012-03-29 Irobot Corp Mobile robot cleaner
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8656550B2 (en) 2002-01-03 2014-02-25 Irobot Corporation Autonomous floor-cleaning robot
US8516651B2 (en) 2002-01-03 2013-08-27 Irobot Corporation Autonomous floor-cleaning robot
US8671507B2 (en) 2002-01-03 2014-03-18 Irobot Corporation Autonomous floor-cleaning robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8781626B2 (en) 2002-09-13 2014-07-15 Irobot Corporation Navigational control system for a robotic device
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8749196B2 (en) 2004-01-21 2014-06-10 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8456125B2 (en) 2004-01-28 2013-06-04 Irobot Corporation Debris sensor for cleaning apparatus
US8598829B2 (en) 2004-01-28 2013-12-03 Irobot Corporation Debris sensor for cleaning apparatus
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9360300B2 (en) 2004-03-29 2016-06-07 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8782848B2 (en) 2005-02-18 2014-07-22 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8761931B2 (en) 2005-12-02 2014-06-24 Irobot Corporation Robot system
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8950038B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Modular robot
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US8661605B2 (en) 2005-12-02 2014-03-04 Irobot Corporation Coverage robot mobility
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US9599990B2 (en) 2005-12-02 2017-03-21 Irobot Corporation Robot system
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
JP2009534737A (en) * 2006-04-18 2009-09-24 マースランド エヌ・ヴィMaasland N.V. Feed movement for unmanned autonomous vehicles
JP2007310866A (en) * 2006-05-16 2007-11-29 Samsung Electronics Co Ltd Robot using absolute azimuth and map creation method using it
US8528157B2 (en) 2006-05-19 2013-09-10 Irobot Corporation Coverage robots and associated cleaning bins
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8572799B2 (en) 2006-05-19 2013-11-05 Irobot Corporation Removing debris from cleaning robots
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US8726454B2 (en) 2007-05-09 2014-05-20 Irobot Corporation Autonomous coverage robot
US8370985B2 (en) 2007-05-09 2013-02-12 Irobot Corporation Compact autonomous coverage robot
US8347444B2 (en) 2007-05-09 2013-01-08 Irobot Corporation Compact autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
JP2012094027A (en) * 2010-10-28 2012-05-17 Toyota Motor Corp Mobile body
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container

Also Published As

Publication number Publication date
JP4165965B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
US20040193339A1 (en) Method and device for determining position of an autonomous apparatus
JP3395874B2 (en) Moving vehicles
US5073749A (en) Mobile robot navigating method
US6038501A (en) Autonomous vehicle capable of traveling/stopping in parallel to wall and controlling method thereof
US5687294A (en) Running control system of robot and method thereof
JP3681324B2 (en) Torque detector and an electric power steering device
US6119057A (en) Autonomous vehicle with an easily set work area and easily switched mode
KR0168189B1 (en) Control method and apparatus for recognition of robot environment
JP2002204769A (en) Self-propelled cleaner
WO2011042791A1 (en) Vehicle control apparatus
US6138063A (en) Autonomous vehicle always facing target direction at end of run and control method thereof
JP2006110322A (en) Coordinate correction method of robotic cleaner and robotic cleaner system using it
JPH10105236A (en) Positioning device for traveling object and its method
US20030028306A1 (en) Steering wheel position compensating apparatus in steering apparatus
JP2004291865A (en) Parking assist device
JPH0566829A (en) Running controller of self-propelled truck
KR950026477A (en) Drive control method of a robot cleaner
JP2006260161A (en) Self-propelled working robot
JP3660042B2 (en) Method of controlling the cleaning robot
JPH11175149A (en) Autonomous traveling vehicle
JPH11102220A (en) Controller for moving body
US20060253224A1 (en) Self-guided cleaning robot, self-guided robot, and program product for performing method for controlling travel of self-guided robot
JPH11102219A (en) Controller for moving body
CN102015403A (en) Autonomous parking strategy based on available parking space
US6546323B2 (en) Vehicle front/rear wheel steering angle control apparatus and vehicle front/rear wheel steering angle control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5