JP2001021590A - Current detecting circuit - Google Patents

Current detecting circuit

Info

Publication number
JP2001021590A
JP2001021590A JP11191146A JP19114699A JP2001021590A JP 2001021590 A JP2001021590 A JP 2001021590A JP 11191146 A JP11191146 A JP 11191146A JP 19114699 A JP19114699 A JP 19114699A JP 2001021590 A JP2001021590 A JP 2001021590A
Authority
JP
Japan
Prior art keywords
voltage
current
power supply
resistance
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11191146A
Other languages
Japanese (ja)
Other versions
JP4223632B2 (en
Inventor
Hiroyuki Kida
弘幸 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP19114699A priority Critical patent/JP4223632B2/en
Publication of JP2001021590A publication Critical patent/JP2001021590A/en
Application granted granted Critical
Publication of JP4223632B2 publication Critical patent/JP4223632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately detect a supply current value by means of a current detecting circuit without being affected by variations in resistance values of two resistances constituting a potential dividing part and fluctuations of two source voltages, in a circuit detecting the supply current value of a power supply device which supplies electric power from a first power supply part to the external by the measuring means of a second power supply part of a low voltage value. SOLUTION: A switch part 424 which can be on/off-controlled is provided in parallel with a current detecting resistance provided inward of a resistive potential dividing means. The switch is turned on to cause a current to bypass the current detecting resistance, and a voltage divided by the resistance under this state is measured by an A/D converter 422. Next, the switch is turned off, and under this state the divided voltage is measured again by the A/D converter 422. Since the difference between the measured voltages equals a voltage proportional to a current supplied to the external, the current supplied to the external is detected with accuracy by dividing the voltage difference by the resistance inserted in a current path.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通常離れた所に設
置されたプリアンプ等へ同軸ケーブル等を介して電流を
供給する受信機側の電源供給回路において、供給電流が
正常か否かを判断する自己診断回路の一部を構成する電
流検出回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply circuit on the receiver side for supplying a current to a preamplifier or the like which is usually installed at a remote place via a coaxial cable or the like, and judges whether or not the supply current is normal. The present invention relates to a current detection circuit which constitutes a part of a self-diagnosis circuit which performs the operation.

【0002】[0002]

【従来の技術】従来、プリアンプ内蔵のアンテナと受信
機間を同軸ケーブルで接続するGPS受信機などにおい
ては、アンテナの接続忘れや、プリアンプの故障、同軸
ケーブルの短絡などの異常を、供給電流値を電流検出回
路で測定することによって判断し、受信機の利用者に注
意を促すための自己診断回路が設けられている。
2. Description of the Related Art Conventionally, in a GPS receiver or the like in which a coaxial cable is used to connect an antenna with a built-in preamplifier to a receiver, abnormalities such as forgetting to connect the antenna, failure of the preamplifier, short circuit of the coaxial cable, and the like are determined by the supply current Is measured by a current detection circuit, and a self-diagnosis circuit is provided for calling attention to the user of the receiver.

【0003】図2はGPS受信装置の自己診断回路の一
般的な構成図であり、1はアンテナ、2はプリアンプ、
3は同軸ケーブル、4はGPS受信機である。GPS受
信機4は、コイル41、電流検出回路42を少なくとも
有している。
FIG. 2 is a general configuration diagram of a self-diagnosis circuit of a GPS receiver, wherein 1 is an antenna, 2 is a preamplifier,
3 is a coaxial cable and 4 is a GPS receiver. The GPS receiver 4 has at least a coil 41 and a current detection circuit 42.

【0004】図2のGPS受信装置のアンテナ部はアン
テナ1とプリアンプ2とから成り、アンテナ部は例えば
衛星を見通せる自動車の屋根等に設置される。GPS受
信機4は通常、車内に設置されるので、アンテナ部とG
PS受信機4は少し離れたところに設置され、その間は
同軸ケーブル3で接続される。
The antenna section of the GPS receiver shown in FIG. 2 includes an antenna 1 and a preamplifier 2, and the antenna section is installed, for example, on a roof of a car that can see a satellite. Since the GPS receiver 4 is usually installed inside a vehicle, the antenna unit and the G
The PS receiver 4 is installed at a little distance, and the PS receiver 4 is connected with the coaxial cable 3 therebetween.

【0005】アンテナ部に内蔵のプリアンプ2の電源
は、GPS受信機4内の電流検出回路42とコイル41
を通り、GPS受信機4に接続された同軸ケーブル3を
介して供給される。一方、アンテナ1で受信したGPS
の無線周波数信号(RF信号)はプリアンプ2で増幅さ
れた後、同軸ケーブル3を通り、GPS受信機4へ導か
れる。すなわち、同軸ケーブル3には直流電力とRF信
号が重畳されている。
[0005] The power supply of the preamplifier 2 built in the antenna section is connected to a current detection circuit 42 and a coil 41 in the GPS receiver 4.
Through the coaxial cable 3 connected to the GPS receiver 4. On the other hand, GPS received by antenna 1
Is amplified by the preamplifier 2, passes through the coaxial cable 3, and is guided to the GPS receiver 4. That is, the DC power and the RF signal are superimposed on the coaxial cable 3.

【0006】GPS受信機4の中のコイル41は電流検
出回路42からプリアンプ2へ供給される直流電力と、
プリアンプ2から送られてきた高周波のRF信号を分離
するための部品であり、高周波のRF信号は図2には示
されていないRF増幅回路へ導かれる。ここでは分離す
るための部品としてコイル41を例として示している
が、これに代えて、GPS受信機4でRF信号の伝送線
として用いられるストリップラインやマイクロストリッ
プライン等を利用し、そのRF信号の周波数に対して所
定の長さ、幅(例えば、1/4波長、極細)のストリッ
プラインやマイクロストリップライン等で構成しても同
様な効果が得られる。
[0006] The coil 41 in the GPS receiver 4 includes a DC power supplied from the current detection circuit 42 to the preamplifier 2,
This is a component for separating the high-frequency RF signal sent from the preamplifier 2, and the high-frequency RF signal is guided to an RF amplifier circuit not shown in FIG. Here, the coil 41 is shown as an example of a component for separation, but instead, a strip line or a microstrip line used as a transmission line of an RF signal in the GPS receiver 4 is used, and the RF signal is used. A similar effect can be obtained by using a strip line or microstrip line having a predetermined length and width (for example, 1/4 wavelength, ultrafine) for the frequency of.

【0007】この自己診断回路中の電流検出回路42
は、供給電流の経路中に設けた抵抗で降下した電圧を内
部のA/D変換器でディジタル値に変換し測定してい
る。この場合、GPS用プリアンプ2の電源電圧は5V
系であり、受信機側に設けた電流検出回路42に含まれ
るA/D変換器も同じ5V系で動作させていたため、電
源電圧は5V系で統一されており、A/D変換器の使用
上の問題はなかった。
The current detection circuit 42 in the self-diagnosis circuit
Measures the voltage dropped by a resistor provided in the path of the supply current, which is converted into a digital value by an internal A / D converter. In this case, the power supply voltage of the GPS preamplifier 2 is 5 V
Since the A / D converter included in the current detection circuit 42 provided on the receiver side was operated in the same 5 V system, the power supply voltage was unified in the 5 V system, and the use of the A / D converter There was no problem above.

【0008】ところで、近年ASIC(Application Sp
ecific Integrated Circuit)に使用するCMOS回路
の微細化が進んだことでASICの電源電圧が低下し、
その結果、ASICに内蔵されるA/D変換器の基準電
圧やA/D入力端子の許容電圧範囲もASICの電源電
圧以下とせざるを得なくなった。例えば、設計ルール
0.25μmのCMOS ASICの電源電圧は2.5
Vが標準であり、この設計ルールで作成されたA/D変
換器の電源電圧、基準電圧、A/D入力端子の許容電圧
範囲も0〜2.5Vとなる。
In recent years, ASICs (Application Sp
ecific integrated circuit), the power supply voltage of the ASIC has been reduced due to the miniaturization of the CMOS circuit used.
As a result, the reference voltage of the A / D converter built in the ASIC and the allowable voltage range of the A / D input terminal have to be reduced to the power supply voltage of the ASIC or less. For example, the power supply voltage of a CMOS ASIC with a design rule of 0.25 μm is 2.5
V is standard, and the power supply voltage of the A / D converter, the reference voltage, and the allowable voltage range of the A / D input terminal, which are created according to the design rule, are also 0 to 2.5 V.

【0009】一方、プリアンプ等のアナログ回路は低電
圧化の傾向にはあるもののASICほど低電圧化が進ん
でおらず、依然として5V系の電源電圧が多い。プリア
ンプが5V系なので、従来の電流検出回路の電流検出電
圧も5V系であり、これをA/D変換器のA/D入力に
そのまま入力するとA/D変換器の入力耐圧がもたず、
ASICが壌れてしまう。そこで、ASICが壊れるの
を防ぐため、5V系の電流検出電圧を抵抗分割により分
圧し、電流検出電圧をA/D入力端子の許容電圧2.5
V以下に下げる必要がある。このように分圧部を備えて
構成された従来の電流検出回路を図3に示す。
On the other hand, although analog circuits such as preamplifiers tend to lower the voltage, the voltage has not been reduced as much as the ASIC, and the power supply voltage of the 5V system is still large. Since the preamplifier is a 5V system, the current detection voltage of the conventional current detection circuit is also a 5V system. If this is directly input to the A / D input of the A / D converter, there is no input withstand voltage of the A / D converter.
The ASIC is messing around. Therefore, in order to prevent the ASIC from being broken, the 5V system current detection voltage is divided by resistance division, and the current detection voltage is divided into the allowable voltage of the A / D input terminal of 2.5V.
V. FIG. 3 shows a conventional current detection circuit having a voltage dividing section.

【0010】図3において、421は供給電力による電
圧降下を生じさせる検出用の抵抗であり、この抵抗42
1には電源部の内部抵抗も含まれる。423は抵抗42
3a・423bからなる分圧部、422は10ビットの
A/D変換器である。A/D変換器422の電源電圧V
ddと基準電圧Vrefは2.5Vとする。一方、出力
端子Voutからコイル41、同軸ケーブル3を介して
5V系、消費電流20mAのプリアンプ2が接続される
ので、電源電圧Vccは直流5Vとする。A/D変換器
422の電源電圧Vddが2.5VなのでA/D入力端
子には2.5V以下の電圧しか入力できない。Vcc端
子から抵抗421を通った電圧Vaは5V系であるの
で、これをそのままA/D変換器422のA/D入力端
子に入力できず、抵抗423aと423bで分圧し、
2.5V以下に電圧を下げて入力する必要がある。
In FIG. 3, reference numeral 421 denotes a detecting resistor for causing a voltage drop due to the supplied power.
1 also includes the internal resistance of the power supply unit. 423 is the resistor 42
A voltage divider 422 composed of 3a and 423b is a 10-bit A / D converter. Power supply voltage V of A / D converter 422
dd and the reference voltage Vref are 2.5V. On the other hand, since the preamplifier 2 having a 5 V system and a current consumption of 20 mA is connected from the output terminal Vout via the coil 41 and the coaxial cable 3, the power supply voltage Vcc is DC 5 V. Since the power supply voltage Vdd of the A / D converter 422 is 2.5 V, only a voltage of 2.5 V or less can be input to the A / D input terminal. Since the voltage Va passed from the Vcc terminal to the resistor 421 is a 5 V system, the voltage Va cannot be directly input to the A / D input terminal of the A / D converter 422, and is divided by the resistors 423a and 423b.
It is necessary to lower the voltage to 2.5 V or less and input.

【0011】図3の例では、抵抗421は22オーム、
抵抗423aは15kオーム、抵抗423bは10kオ
ームである。出力端子Voutから流れ出る電流を20
mAと仮定すると抵抗421で0.44V(=22×
0.02)の電圧降下が生じ、分圧部423の電圧Va
は4.56V(=5−0.44)となる。従って、A/
D入力端子の分圧電圧Vdiagは1.824V(=
4.56×10/25)となる。A/D変換器422の
出力であるA/D変換値は746(=1.824/2.
5×1023)となる。ここで、プリアンプ電流の許容
誤差を考慮して、プリアンプ電流が10mA〜30mA
であれば正常と判断する自己診断回路を構成したとする
と、この電流に相当するA/D変換器422の出力は7
46土36の範囲に相当する。従って、A/D変換器4
22の出力がどの程度であるか、或いは所定の範囲内
(746土36)にあるか否か、に応じて、アンテナの
接続忘れや、プリアンプの故障、同軸ケーブルの短絡な
どの異常を、判断することができる。
In the example of FIG. 3, the resistor 421 is 22 ohms,
The resistance 423a is 15k ohm, and the resistance 423b is 10k ohm. The current flowing out of the output terminal Vout is 20
Assuming mA, 0.44 V (= 22 ×
0.02), and the voltage Va of the voltage divider 423
Becomes 4.56 V (= 5-0.44). Therefore, A /
The divided voltage Vdiag of the D input terminal is 1.824 V (=
(4.56 × 10/25). The A / D conversion value output from the A / D converter 422 is 746 (= 1.824 / 2.
5 × 1023). Here, in consideration of the tolerance of the preamplifier current, the preamplifier current is 10 mA to 30 mA.
If a self-diagnosis circuit for determining normal is configured, the output of the A / D converter 422 corresponding to this current is 7
It corresponds to the range of 46 soils 36. Therefore, the A / D converter 4
An abnormality such as forgetting to connect an antenna, a failure in a preamplifier, or a short circuit in a coaxial cable is determined according to the output level of the power supply 22 or within a predetermined range (746 soil 36). can do.

【0012】しかしながら、抵抗器423a、423b
として通常市販されている抵抗器を使用すると、これら
の抵抗値には通常士5%以内の誤差があるのが普通であ
る。一例として、一番厳しい条件である、抵抗423a
が14.25kオーム(−5%)で抵抗423bが1
0.5kオーム(+5%)であったとする。この場合、
プリアンプ電流は標準状態で20mAであるから分圧電
圧Vdiag電圧は電圧Vaの4.56V を分圧した
1.9345V(=4.56×10.5/24.75)
となり、A/D変換値は791となり、正常な監視範囲
である、746土36を逸脱してしまう。このように、
分圧抵抗器の抵抗値の誤差によって、プリアンプの異常
と判断し、警報を出すことになる。なお、検出用の抵抗
421に数%程度の誤差があったとしても、この抵抗誤
差は検出値に大きく影響することはない。
However, the resistors 423a, 423b
When using resistors which are usually commercially available, these resistors usually have an error of typically within 5%. As an example, the most severe condition, the resistance 423a
Is 14.25k ohm (-5%) and the resistance 423b is 1
Suppose that it was 0.5 kOhm (+ 5%). in this case,
Since the preamplifier current is 20 mA in a standard state, the divided voltage Vdiag is obtained by dividing 4.56 V of the voltage Va.
1.9345V (= 4.56 × 10.5 / 24.75)
And the A / D conversion value is 791, which deviates from the normal monitoring range of 746 soil 36. in this way,
An error in the resistance value of the voltage dividing resistor determines that the preamplifier is abnormal and issues an alarm. Even if the detection resistor 421 has an error of about several percent, the resistance error does not significantly affect the detection value.

【0013】また、A/D変換器422の電源電圧Vd
d,基準電圧Vrefは2.5Vであり、一方プリアン
プの電源電圧Vccは5Vであり、別の電源として構成
される。従って、それぞれの電圧値も別々に変動するこ
とになる。例えば、A/D変換器422の電源電圧Vd
d,基準電圧Vrefは2.5Vで変化せず、プリアン
プの電源電圧Vccが5%低下したとすると、プリアン
プ電流は標準状態で20mAであるから分圧電圧Vdi
ag電圧は電圧Vaの4.31V を分圧した1.72
4V(=4.31×10/25)となり、A/D変換値
は705となり、正常な監視範囲である、746土36
を大きく逸脱してしまう。このように、2つの電源電圧
Vcc,Vddの変動誤差によって、プリアンプに正常
な20mAの電流が流れているにもかかわらす、自己診
断回路はプリアンプの異常と判断し、警報を出すことに
なる。
The power supply voltage Vd of the A / D converter 422
d, the reference voltage Vref is 2.5 V, while the power supply voltage Vcc of the preamplifier is 5 V, and is configured as another power supply. Therefore, each voltage value also changes separately. For example, the power supply voltage Vd of the A / D converter 422
d, If the reference voltage Vref does not change at 2.5 V and the power supply voltage Vcc of the preamplifier is reduced by 5%, the preamplifier current is 20 mA in a standard state, so the divided voltage Vdi
The ag voltage was 1.72 obtained by dividing 4.31 V of the voltage Va.
4V (= 4.31 × 10/25), the A / D conversion value becomes 705, which is a normal monitoring range, 746 soil 36
Greatly deviates. As described above, the self-diagnosis circuit determines that the preamplifier is abnormal and issues an alarm even though a normal current of 20 mA flows through the preamplifier due to the fluctuation error between the two power supply voltages Vcc and Vdd.

【0014】[0014]

【発明が解決しようとする課題】このように、プリアン
プ等へ供給する電流は通常20mA程度の電流であり、
ただ単に抵抗分圧部を構成しただけでは、分圧抵抗の抵
抗値のばらつきとか、2系統の電源電圧Vcc,Vdd
の変動によって、正確な供給電流の測定ができず、正常
な供給電流にもかかわらず異常な状態と判断する自己診
断回路の誤動作が起きることになる。
As described above, the current supplied to the preamplifier and the like is usually about 20 mA.
The mere configuration of the resistor voltage dividing unit may cause variations in the resistance value of the voltage dividing resistor or the power supply voltages Vcc and Vdd of the two systems.
, The supply current cannot be measured accurately, and a malfunction of the self-diagnosis circuit that determines that the supply current is abnormal despite the normal supply current occurs.

【0015】本発明は、このような問題点を解決するこ
とを課題としてなされたものであり、分圧部を構成する
2つの抵抗の抵抗値のばらつきとか、2系統の電源電圧
Vcc,Vddの変動に左右されずに、供給電流値を正
確に検出することができる電流検出回路を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has been made in consideration of the variation in the resistance values of the two resistors constituting the voltage dividing section and the difference between the two power supply voltages Vcc and Vdd. An object of the present invention is to provide a current detection circuit that can accurately detect a supply current value without being affected by fluctuations.

【0016】[0016]

【課題を解決するための手段】本発明の電流検出回路
は、第1電源部から外部へ電力を供給する電力供給装置
の供給電流値を検出する電流検出回路において、前記電
力供給装置の供給電圧を分圧する抵抗分圧手段と、この
抵抗分圧手段の分圧電圧を被測定信号として入力し、前
記第1電源部の供給電圧より低い電圧値の第2電源部を
制御電源として有する測定手段と、前記抵抗分圧手段よ
り内部側に設けられる電流検出抵抗と、この電流検出抵
抗に並列にオン・オフ制御可能なスイッチ手段とを備
え、前記スイッチ手段がオン状態の時の前記分圧電圧
と、前記スイッチ手段がオフ状態の時の前記分圧電圧を
前記測定手段で測定し、これらの測定値に基づいて前記
電力供給装置の供給電流値を検出することを特徴とす
る。
A current detection circuit according to the present invention is a current detection circuit for detecting a supply current value of a power supply device for supplying power from a first power supply unit to the outside. Voltage dividing means for dividing the voltage, and a divided voltage of the resistive voltage dividing means as a signal to be measured, and a measuring means having as a control power supply a second power supply having a voltage value lower than the supply voltage of the first power supply. A current detection resistor provided on the inner side of the resistance voltage dividing means; and switch means capable of on / off control in parallel with the current detection resistance, wherein the divided voltage when the switch means is in an on state. And measuring the divided voltage when the switch means is in an off state by the measuring means, and detecting a supply current value of the power supply device based on the measured values.

【0017】この構成によれば、抵抗分圧手段より内部
側に設けられる電流検出抵抗に並列にオン・オフ制御可
能なスイッチ手段を設け、このスイッチをオンすること
により電流検出抵抗をバイパスし、この状態で抵抗分圧
された電圧をA/D変換器により測定する。次に本電流
検出回路のスイッチ手段をオフし、この状態で、再度分
圧電圧をA/D変換器により測定する。この両測定電圧
の差は外部へ供給されている電流に比例した電圧である
から、この電圧差を電流経路中に入れた抵抗で割れば外
部へ供給されている電流が求められる。従って、本発明
の電流検出回路では、外部へ供給される電流を遮断する
ことなく、分圧部に用いている抵抗誤差を補償し、微少
電流でも正確な測定を行うことができる。また、2系統
の電源電圧の変動にも影響されることなく、正確な測定
を行うことができる。
According to this configuration, switch means capable of on / off control is provided in parallel with the current detection resistor provided on the inner side of the resistance voltage dividing means, and by turning on this switch, the current detection resistor is bypassed. In this state, the voltage divided by the resistance is measured by the A / D converter. Next, the switch means of the current detection circuit is turned off, and in this state, the divided voltage is measured again by the A / D converter. Since the difference between the two measured voltages is a voltage proportional to the current supplied to the outside, the current supplied to the outside can be obtained by dividing the voltage difference by the resistance inserted in the current path. Therefore, the current detection circuit of the present invention can compensate for the resistance error used in the voltage dividing section without interrupting the current supplied to the outside, and can perform accurate measurement even with a small current. In addition, accurate measurement can be performed without being affected by fluctuations in the power supply voltages of the two systems.

【0018】[0018]

【発明の実施の形態】以下、本発明に係る電流検出回路
の好適な一実施例として、GPS受信装置の自己診断回
路を挙げ、図1を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A self-diagnosis circuit of a GPS receiver will be described below as a preferred embodiment of a current detection circuit according to the present invention with reference to FIG.

【0019】図1は本発明の一実施例に係る電流検出回
路であり、従来の図3と比較して、電流検出抵抗421
に並列にスイッチ部424を設けている。このスイッチ
部424は、PNPトランジスタ424c、NPNトラ
ンジスタ424d、抵抗424a,抵抗424bで構成
され、制御端子への制御信号(制御端子電圧)Vcon
tによりオン、オフされる。その他の構成は、従来の図
3と同様であり、対応する構成要素には同一の符号を付
している。
FIG. 1 shows a current detecting circuit according to an embodiment of the present invention.
And a switch unit 424 is provided in parallel. The switch unit 424 includes a PNP transistor 424c, an NPN transistor 424d, a resistor 424a, and a resistor 424b, and a control signal (control terminal voltage) Vcon to a control terminal.
It is turned on and off by t. Other configurations are the same as those of the conventional FIG. 3, and corresponding components are denoted by the same reference numerals.

【0020】さて、このように構成される本発明に係る
実施例の動作を以下説明する。
The operation of the embodiment according to the present invention will now be described.

【0021】まず、制御端子電圧Vcontをハイ電位
(2.1V以上)にすると、トランジスタ424dがオ
ンし、その結果トランジスタ424cもオンする。ここ
で、トランジスタ424cのオン抵抗は抵抗421の抵
抗値に比べて充分小さく無視できるように抵抗421の
抵抗値を選んでいるので、出力端子電圧Voutは電源
電圧Vccに等しいと考えることができる。この場合、
出力端子から外部へ流れる電流の値に関わらず、分圧部
423の電圧Vaは電源電圧Vccと同一の5Vとな
り、分圧電圧VdiagはVcc×R423b/(R4
23a+R423b)となり、抵抗423a、423b
に誤差がなければ、分圧電圧Vdiagは2.00Vと
なり、A/D変換値は818となる。
First, when the control terminal voltage Vcont is set to the high potential (2.1 V or more), the transistor 424d is turned on, and as a result, the transistor 424c is also turned on. Here, the resistance value of the resistor 421 is selected so that the on-resistance of the transistor 424c is sufficiently smaller than the resistance value of the resistor 421 and can be ignored, so that the output terminal voltage Vout can be considered to be equal to the power supply voltage Vcc. in this case,
Regardless of the value of the current flowing from the output terminal to the outside, the voltage Va of the voltage dividing section 423 becomes the same 5 V as the power supply voltage Vcc, and the divided voltage Vdiag is Vcc × R423b / (R4
23a + R423b), and the resistors 423a and 423b
If there is no error, the divided voltage Vdiag becomes 2.00 V and the A / D converted value becomes 818.

【0022】次に、制御端子電圧Vcontをロー電位
(0.5V以下)にすると、トランジスタ424dがオ
フし、その結果トランジスタ424cもオフするので、
出力端子は抵抗421を通して電源電圧Vccに接続さ
れる。出力端子から外部へ20mAの電流が流れると、
分圧電圧Vdiagは前述のように1.824V、A/
D変換値は746となるから、この差72(=818‐
746)に相当する電圧降下が抵抗421で生じている
ことがわかる。従って、プリアンプ2の許容電流を20
mA士10mAとすると、抵抗421で生じる電圧降下
が72±36以内に入っていれば、正常と判断すること
に等しい。
Next, when the control terminal voltage Vcont is set to a low potential (0.5 V or less), the transistor 424d is turned off, and as a result, the transistor 424c is also turned off.
The output terminal is connected to the power supply voltage Vcc through the resistor 421. When a current of 20 mA flows from the output terminal to the outside,
The divided voltage Vdiag is 1.824 V, A / A
Since the D conversion value is 746, the difference 72 (= 818−
746) is generated at the resistor 421. Therefore, the allowable current of the preamplifier 2 is set to 20
Assuming that the mA is 10 mA, if the voltage drop generated by the resistor 421 is within 72 ± 36, it is equivalent to determining that the voltage is normal.

【0023】プリアンプの消費電力が20mAで、分圧
抵抗423aが15kオーム、抵抗423bが10kオ
ームの場合を例に取り説明する。外部へ流れる電流の大
きさは、制御端子電圧Vcontをハイ電位にしたとき
のA/D変換値と、ロー電位にしたときのA/D変換値
の差を求め、それに0.2777/1000(=2.5
/1023×25/220)を掛ければ求めることがで
きる。制御端子電圧Vcontをハイ電位にしても、ロ
ー電位にしても、外部へ流れる電流の大きさにはほとん
ど影響を与えないので、外部へ電流を供給しながら、そ
の電流値を測定することができる。
The case where the power consumption of the preamplifier is 20 mA, the voltage dividing resistor 423a is 15k ohm, and the resistor 423b is 10k ohm will be described as an example. The magnitude of the current flowing to the outside is obtained by calculating the difference between the A / D conversion value when the control terminal voltage Vcont is set to the high potential and the A / D conversion value when the control terminal voltage Vcont is set to the low potential. = 2.5
/ 1023 × 25/220). Even if the control terminal voltage Vcont is set to the high potential or the low potential, the magnitude of the current flowing to the outside is hardly affected, so that the current value can be measured while supplying the current to the outside. .

【0024】今、制御端子電圧Vcontがロー電位で
あるとすると、この時A/D変換値を読み取ると746
が得られる。次に、制御端子電圧Vcontをハイ電位
にし、A/D変換値を読み取ると818が得られる。A
/D変換値を読み取った後、制御端子電圧Vcontを
もとどおりロー電位に戻す。A/D変換値818と74
6の差は72であり、72±36以内に入っているか
ら、プリアンプに正常な電流が流れていると判断でき
る。
Now, assuming that the control terminal voltage Vcont is at a low potential, the A / D converted value is read as 746 at this time.
Is obtained. Next, when the control terminal voltage Vcont is set to the high potential and the A / D converted value is read, 818 is obtained. A
After reading the / D conversion value, the control terminal voltage Vcont is returned to the low potential as before. A / D conversion values 818 and 74
6 is 72, which is within 72 ± 36, so it can be determined that a normal current is flowing through the preamplifier.

【0025】次に、分圧抵抗に±5%の許容誤差があっ
た場合について説明する。一例として、抵抗423aが
14.25kオーム(−5%)で、抵抗423bが1
0.5kオーム(+5%)であったとする。まず、制御
端子電圧Vcontをハイ電位(2.1V以上)にする
と、出力端子から外部へ20mAの電流が流れている状
態でも、分圧部423の電圧Vaは電源電圧Vccと同
一の5Vとなる。従って、分圧電圧Vdiagは2.1
212Vとなり、A/D変換値は868となる。次に制
御端子電圧Vcontをロー電位(0.5V以下)にす
ると、出力端子から外部へ20mAの電流が流れている
状態では、分圧電圧Vdiagは1.9345V、A/
D変換値は791となるので、抵抗421で生じる電圧
降下に相当するA/D値は77(=868−791)が
得られる。前述のように、本実施例の電流検出回路では
抵抗421で生じる電圧降下に相当するA/D値が72
土36以内に入っていれば、正常と判断するようにして
いる。
Next, a case where the voltage dividing resistor has a tolerance of ± 5% will be described. As an example, the resistance 423a is 14.25k ohm (-5%) and the resistance 423b is 1
Suppose that it was 0.5 kOhm (+ 5%). First, when the control terminal voltage Vcont is set to a high potential (2.1 V or more), the voltage Va of the voltage divider 423 becomes 5 V, which is the same as the power supply voltage Vcc, even when a current of 20 mA flows from the output terminal to the outside. . Therefore, the divided voltage Vdiag is 2.1
212V, and the A / D conversion value is 868. Next, when the control terminal voltage Vcont is set to a low potential (0.5 V or less), the divided voltage Vdiag is 1.9345 V, A / A in a state where a current of 20 mA flows from the output terminal to the outside.
Since the D conversion value is 791, an A / D value corresponding to the voltage drop generated by the resistor 421 is 77 (= 868-791). As described above, in the current detection circuit of this embodiment, the A / D value corresponding to the voltage drop generated by the resistor 421 is 72
If it is within the soil 36, it is determined to be normal.

【0026】この電圧降下に相当するA/D値77はこ
の中に入っており、抵抗423a、423b にそれぞ
れ、‐5%、+5%の誤差があったにもかかわらず、抵
抗の誤差を補償することが出来、20mAに対して誤差
1.39mA((77−72)×2.5/1023×2
5/220)という精度で電流が測定できる。
The A / D value 77 corresponding to this voltage drop is included therein, and compensates for the error of the resistors 423a and 423b despite the errors of -5% and + 5%, respectively. Error of 1.39 mA for 20 mA ((77-72) × 2.5 / 1023 × 2
The current can be measured with an accuracy of 5/220).

【0027】次に、プリアンプの電源電圧Vccに5%
の電圧低下があった場合について説明する。まず、分圧
部423の電圧Vaは制御端子電圧Vcontがハイ電
位の時、電源電圧Vccと同一の4.75Vとなり、分
圧電圧Vdiagは1.9Vとなり、A/D変換値は7
77となる。次に制御端子電圧Vcontをロー電位に
すると、分圧電圧Vdiag電圧は1.724V、A/
D変換値は705となるので、抵抗421で生じる電圧
降下に相当するA/D値は72(=777−705)が
得られる。
Next, 5% is applied to the power supply voltage Vcc of the preamplifier.
A description will be given of the case where the voltage drop occurs. First, when the control terminal voltage Vcont is at the high potential, the voltage Va of the voltage dividing section 423 becomes 4.75 V, which is the same as the power supply voltage Vcc, the divided voltage Vdiag becomes 1.9 V, and the A / D conversion value becomes 7
77. Next, when the control terminal voltage Vcont is set to the low potential, the divided voltage Vdiag is 1.724V, and A / A
Since the D-converted value is 705, an A / D value corresponding to the voltage drop generated by the resistor 421 is 72 (= 777-705).

【0028】前述のように、本実施例の電流検出回路で
は抵抗421で生じる電圧降下に相当するA/D値が7
2土36以内に入っていれば、正常と判断するようにし
ている。A/D値72はこの72土36の中心値であ
り、プリアンプの電源電圧Vccに5%の電圧低下があ
ったにもかかわらず、電源電圧の変動の誤差を補償する
ことが出来、高精度で電流が測定できる。
As described above, in the current detection circuit of this embodiment, the A / D value corresponding to the voltage drop generated by the resistor 421 is 7
If it is within two soils 36, it is determined that it is normal. The A / D value 72 is the central value of the soil 72, and can compensate for the power supply voltage fluctuation error despite the 5% drop in the power supply voltage Vcc of the preamplifier. Can measure the current.

【0029】本電流検出回路の使用方法としては、例え
ば、GPS受信装置の電源投入時に、制御端子電圧Vc
ontを一度ハイ電位にし、A/D変換値を読み取り、
その値(例えば、A/Dhigh、とする)をRAMな
どに記憶しておく。次に、制御端子電圧Vcont を
ロー電位にし、A/D変換値を読み取り、その値(例え
ば、A/Dlow、とする)をRAMに記憶する。そし
て、RAMに記憶しておいた値A/Dhighと今回測
定した値A/Dlowとの差を計算する。その差が、7
2土36の範囲に入っていれば、プリアンプへの電流値
は正常と判断する。
As a method of using the current detection circuit, for example, when the power of the GPS receiver is turned on, the control terminal voltage Vc
once to high potential, read the A / D conversion value,
The value (for example, A / Dhigh) is stored in a RAM or the like. Next, the control terminal voltage Vcont is set to the low potential, the A / D conversion value is read, and the value (for example, A / Dlow) is stored in the RAM. Then, a difference between the value A / Dhigh stored in the RAM and the value A / Dlow measured this time is calculated. The difference is 7
If the current value is within the range of 2 soil 36, it is determined that the current value to the preamplifier is normal.

【0030】以後、制御端子電圧Vcontはロー電位
に保ったまま、定期的(例えば1秒ごと)にA/D変換
値を読み取り、ROMに記憶された1回前のA/Dlo
wと比較する。比較した結果、値が変化していなけれ
ば、制御端子電圧vcontをハイ電位にすることな
く、A/Dhighと今回のA/Dlowの差を計算
し、正常か、異常かを判断する。
Thereafter, while the control terminal voltage Vcont is kept at the low potential, the A / D conversion value is read periodically (for example, every one second) and the previous A / Dlo stored in the ROM is read.
Compare with w. As a result of the comparison, if the value has not changed, the difference between A / Dhigh and the current A / Dlow is calculated without setting the control terminal voltage vcont to the high potential, and it is determined whether it is normal or abnormal.

【0031】もし、前回のA/Dlowと今回のA/D
lowが大きく違っている場合には、外部へ流れる電流
値に大きな変化が起こった可能性があるので、確認のた
め、制御端子電圧Vcontをハイ電位にし、A/D変
換値を読み取り、RAMにA/Dhighとして記憶し
直す。その後、制御端子電圧Vcontをロー電位に
し、A/D変換値を読み取り、RAMにA/Dlowと
して記憶する。RAMのA/DhighとA/Dlow
の差が72土36の範囲に入っているかどうかで、供給
電流が正常か、異常かを判断する。
If the previous A / Dlow and the current A / D
If the low is significantly different, there is a possibility that a large change has occurred in the value of the current flowing to the outside. Therefore, for confirmation, the control terminal voltage Vcont is set to the high potential, the A / D conversion value is read, and Store again as A / Dhigh. Thereafter, the control terminal voltage Vcont is set to the low potential, the A / D converted value is read, and stored as A / Dlow in the RAM. A / Dhigh and A / Dlow of RAM
It is determined whether the supply current is normal or abnormal based on whether the difference is within the range of 72 soil 36.

【0032】このように、プリアンプ2への電源供給経
路中に電流検出抵抗が挿入された状態でのA/D変換器
の測定電圧と電流検出抵抗がスイッチ424cでバイパ
スされた状態でのA/D変換器の測定電圧との差に基づ
いて、供給電流が正常であるか、異常であるかを判断す
る構成としているから、両方の状態に共通する変動分
(分圧部423に用いている抵抗誤差、2系統の電源電
圧Vcc、Vddの変動など)を補償して、正確に電流
値を測定することができる。
As described above, the measured voltage of the A / D converter when the current detection resistor is inserted in the power supply path to the preamplifier 2 and the A / D when the current detection resistor is bypassed by the switch 424c. Since the configuration is such that it is determined whether the supply current is normal or abnormal based on the difference from the measured voltage of the D converter, a fluctuation common to both states (used for the voltage dividing unit 423). It is possible to accurately measure the current value by compensating for the resistance error and the fluctuation of the power supply voltages Vcc and Vdd of the two systems.

【0033】また、電流検出抵抗421に並列にバイパ
ススイッチであるトランジスタ424cが設けられてい
るから、万一、制御用ソフトウエアの暴走とか、トラン
ジスタスイッチ424c、424dの故障などの異常状
態が発生し、トランジスタスイッチ424cが導通状態
あるいは開放状態になったとしても、プリアンプ2への
電源供給は継続して行うことができる。
Since the transistor 424c, which is a bypass switch, is provided in parallel with the current detection resistor 421, an abnormal state such as runaway of control software or failure of the transistor switches 424c and 424d occurs. Even if the transistor switch 424c is turned on or off, the power supply to the preamplifier 2 can be continued.

【0034】[0034]

【発明の効果】本発明によれば、抵抗分圧手段より内部
側に設けられる電流検出抵抗に並列にオン・オフ制御可
能なスイッチ手段を設け、このスイッチをオンすること
により電流検出抵抗をバイパスし、この状態で抵抗分圧
された電圧をA/D変換器により測定する。次に本電流
検出回路のスイッチ手段をオフし、この状態で、再度分
圧電圧をA/D変換器により測定する。この両測定電圧
の差は外部へ供給されている電流に比例した電圧である
から、この電圧差を電流経路中に入れた抵抗で割れば外
部へ供給されている電流が正確に求められる。
According to the present invention, a switch means capable of on / off control is provided in parallel with a current detection resistor provided inside the resistance voltage dividing means, and the current detection resistor is bypassed by turning on this switch. Then, the resistance-divided voltage is measured by the A / D converter in this state. Next, the switch means of the current detection circuit is turned off, and in this state, the divided voltage is measured again by the A / D converter. Since the difference between the two measured voltages is a voltage proportional to the current supplied to the outside, the current supplied to the outside can be accurately obtained by dividing the voltage difference by the resistance inserted in the current path.

【0035】従って、本発明の電流検出回路では、外部
へ供給される電流を遮断することなく、分圧部に用いて
いる抵抗誤差を補償し、微少電流でも正確な測定を行う
ことができる。また、2系統の電源電圧の変動にも影響
されることなく、正確な測定を行うことができる。
Therefore, the current detection circuit of the present invention can compensate for the resistance error used in the voltage dividing section without interrupting the current supplied to the outside, and can perform accurate measurement even with a very small current. In addition, accurate measurement can be performed without being affected by fluctuations in the power supply voltages of the two systems.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例による分圧部を備えた電流検出回路。FIG. 1 is a current detection circuit including a voltage dividing unit according to an embodiment.

【図2】GPS受信装置の自己診断回路の一般的な構成
図。
FIG. 2 is a general configuration diagram of a self-diagnosis circuit of the GPS receiver.

【図3】従来の、分圧部を備えた電流検出回路。FIG. 3 is a conventional current detection circuit including a voltage dividing unit.

【符号の説明】[Explanation of symbols]

1 アンテナ 2 プリアンプ 3 同軸ケーブル 4 GPS受信機 41 コイル 42 電流検出回路 421 電流検出抵抗 422 A/D変換器 423 分圧部 424 スイッチ部 Reference Signs List 1 antenna 2 preamplifier 3 coaxial cable 4 GPS receiver 41 coil 42 current detection circuit 421 current detection resistor 422 A / D converter 423 voltage divider 424 switch

フロントページの続き Fターム(参考) 2G035 AA11 AA15 AA26 AB02 AC02 AC08 AC19 AD02 AD10 AD11 AD26 AD44 AD65 5G065 BA00 GA07 LA02 PA05 5H410 CC02 DD02 EA10 FF05 FF22 5K042 AA00 CA02 CA24 DA35 FA03 JA01 KA03 Continued on front page F-term (reference) 2G035 AA11 AA15 AA26 AB02 AC02 AC08 AC19 AD02 AD10 AD11 AD26 AD44 AD65 5G065 BA00 GA07 LA02 PA05 5H410 CC02 DD02 EA10 FF05 FF22 5K042 AA00 CA02 CA24 DA35 FA03 JA01 KA03

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1電源部から外部へ電力を供給する電
力供給装置の供給電流値を検出する電流検出回路におい
て、 前記電力供給装置の供給電圧を分圧する抵抗分圧手段
と、 この抵抗分圧手段の分圧電圧を被測定信号として入力
し、前記第1電源部の供給電圧より低い電圧値の第2電
源部を制御電源として有する測定手段と、 前記抵抗分圧手段より内部側に設けられる電流検出抵抗
と、 この電流検出抵抗に並列にオン・オフ制御可能なスイッ
チ手段とを備え、 前記スイッチ手段がオン状態の時の前記分圧電圧と、前
記スイッチ手段がオフ状態の時の前記分圧電圧を前記測
定手段で測定し、これらの測定値に基づいて前記電力供
給装置の供給電流値を検出することを特徴とする電流検
出回路。
1. A current detecting circuit for detecting a supply current value of a power supply device for supplying power from a first power supply unit to the outside, comprising: a resistor voltage dividing means for dividing a supply voltage of the power supply device; Measuring means having a divided voltage of the voltage means as a signal to be measured and having a second power supply section having a voltage value lower than the supply voltage of the first power supply section as a control power supply; A current detecting resistor, and switch means capable of on / off control in parallel with the current detecting resistor, wherein the divided voltage when the switch means is in an on state, and the divided voltage when the switch means is in an off state. A current detection circuit, wherein a divided voltage is measured by the measuring means, and a supply current value of the power supply device is detected based on the measured values.
JP19114699A 1999-07-06 1999-07-06 Current detection circuit Expired - Fee Related JP4223632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19114699A JP4223632B2 (en) 1999-07-06 1999-07-06 Current detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19114699A JP4223632B2 (en) 1999-07-06 1999-07-06 Current detection circuit

Publications (2)

Publication Number Publication Date
JP2001021590A true JP2001021590A (en) 2001-01-26
JP4223632B2 JP4223632B2 (en) 2009-02-12

Family

ID=16269670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19114699A Expired - Fee Related JP4223632B2 (en) 1999-07-06 1999-07-06 Current detection circuit

Country Status (1)

Country Link
JP (1) JP4223632B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7555384B2 (en) 2003-02-14 2009-06-30 Toyota Jidosha Kabushiki Kaisha Mobile object position detecting apparatus
JP2012191381A (en) * 2011-03-10 2012-10-04 Alps Electric Co Ltd Antenna connection state detection circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7555384B2 (en) 2003-02-14 2009-06-30 Toyota Jidosha Kabushiki Kaisha Mobile object position detecting apparatus
US7996150B2 (en) 2003-02-14 2011-08-09 Toyota Jidosha Kabushiki Kaisha Mobile object position detecting method
JP2012191381A (en) * 2011-03-10 2012-10-04 Alps Electric Co Ltd Antenna connection state detection circuit

Also Published As

Publication number Publication date
JP4223632B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
US5143452A (en) System for interfacing a single sensor unit with multiple data processing modules
JP4703643B2 (en) Analog-to-digital converter with range error detection
US7367712B2 (en) RTD measurement unit including detection mechanism for automatic selection of 3-wire or 4-wire RTD measurement mode
CN102384795A (en) Process fluid temperature measurement
EP1512976B1 (en) Dynamic-quantity sensor
US20090076760A1 (en) Sensor interface with integrated current measurement
US8154312B2 (en) Sensor system
US20050083068A1 (en) Testing and calibration device with diagnostics
JP2001021590A (en) Current detecting circuit
JP3627038B2 (en) Current detection circuit
JP2009118077A (en) Receiver and its control method
JP3575573B2 (en) Thermal air flow meter
US10671103B2 (en) Voltage supply apparatus
CN111123106B (en) Sensor and method for checking a sensor
JP2010107331A (en) Device and system for detecting physical quantity
JP2002084151A (en) Physical quantity detector
JP2000049718A (en) Gps antenna current detector
JPH0462439A (en) Wire breaking detecting circuit of temperature measuring instrument
US20230375645A1 (en) Sensor device
CN216748569U (en) Circuit for improving temperature detection precision, temperature detection circuit and air conditioner
JP5457152B2 (en) Inverter device
WO2004015857A1 (en) Sensor signal output circuit
JP2022125458A (en) Field apparatus
JP2000214030A (en) Pressure sensor circuit
JP2007124284A (en) Output circuit and constant current source circuit used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees