JP2001021489A - Spectroscopic analyzer - Google Patents

Spectroscopic analyzer

Info

Publication number
JP2001021489A
JP2001021489A JP19149799A JP19149799A JP2001021489A JP 2001021489 A JP2001021489 A JP 2001021489A JP 19149799 A JP19149799 A JP 19149799A JP 19149799 A JP19149799 A JP 19149799A JP 2001021489 A JP2001021489 A JP 2001021489A
Authority
JP
Japan
Prior art keywords
light
filter
sample
irradiation
filter support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19149799A
Other languages
Japanese (ja)
Inventor
Masahiko Muto
雅彦 武藤
Hiroichi Ikeda
博一 池田
Nobuya Tsujikura
伸弥 辻倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP19149799A priority Critical patent/JP2001021489A/en
Publication of JP2001021489A publication Critical patent/JP2001021489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve cost reduction while making it possible to analyze a sample by removing the data based on disturbance light other than the reflected light or transmitted light from the sample based on measuring light. SOLUTION: In constitution such that a plurality of filters F permitting light with a measuring wavelength for analyzing a sample to transmit are provided in a filter support 7, which is driven so as to be altered positionally, so as to be selectively positioned within the irradiation light path from a light source part 1 to the sample accompanying the positional alteration of the filter support 7, a shading part 7s is provided in the filter support 7 so as to be positioned within the irradiation light path P on the way of the movement of the filter support 7 from a state wherein one filter F is positioned within the irradiation light path P to a state wherein the other filter F is positioned therewithin. An analyzing means A processes the data obtained when the shading part 7s is positioned within the irradiation light path P as the data based on disturbance light to analyze the sample.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、位置変更駆動され
るフィルタ支持体に、光源部からの光のうち、試料を分
析するための測定用波長の光を透過させる複数のフィル
タが、そのフィルタ支持体の位置変更に伴って、選択的
に、前記光源部から試料に至る照射光路内に位置するよ
うに設けられ、試料からの反射光又は透過光に基づい
て、試料を分析する分析手段が設けられた分光分析装置
に関する。
BACKGROUND OF THE INVENTION The present invention relates to a filter support for driving a position change, wherein a plurality of filters for transmitting light of a measurement wavelength for analyzing a sample among light from a light source section are provided. With the change in the position of the support, selectively provided is provided in an irradiation optical path from the light source unit to the sample, and analyzing means for analyzing the sample based on reflected light or transmitted light from the sample. The present invention relates to a spectroscopic analyzer provided.

【0002】[0002]

【従来の技術】かかる分光分析装置においては、太陽光
や電灯等、フィルタを透過した測定用光以外の光が試料
に照射されて、試料の分析のために受光する試料からの
反射光又は透過光に、測定用光以外の光に基づくものが
含まれていたり、試料からの反射光又は透過光以外の光
が分析用として受光されたりするのを防止するために、
分光分析装置の周囲を遮光したり、測定用光以外の光が
試料に照射されるのを防止したりして使用することが考
えられる。しかしながら、そのような遮光操作をして使
用するのは、使い勝手が悪いので、遮光操作無しに使用
するのが好ましい。
2. Description of the Related Art In such a spectroscopic analyzer, light other than measurement light transmitted through a filter, such as sunlight or an electric lamp, is irradiated onto a sample, and reflected or transmitted from the sample received for analysis of the sample. To prevent the light from containing light based on light other than the measurement light, or light other than reflected light or transmitted light from the sample being received for analysis,
It is conceivable to use the device in such a manner that the surroundings of the spectroscopic analyzer are shielded or light other than the measurement light is prevented from being irradiated on the sample. However, using such a light-shielding operation is inconvenient, so it is preferable to use it without the light-shielding operation.

【0003】そこで、従来では、照射光路の途中に、光
を通過させる開き状態と遮断する閉じ状態とに切り換え
操作自在なシャッタを設け、そのシャッタを前記閉じ状
態に切り換えたときに得た情報を、測定用光に基づく試
料からの反射光又は透過光以外の外乱光(以下、単に外
乱光と記載する場合がある)に基づく情報とし、そのよ
うな外乱光に基づく情報を除去処理して、試料を分析す
るよう構成していた。
Therefore, conventionally, a shutter operable to switch between an open state for transmitting light and a closed state for blocking light is provided in the middle of the irradiation optical path, and information obtained when the shutter is switched to the closed state is provided. , As information based on disturbance light other than the reflected light or transmitted light from the sample based on the measurement light (hereinafter, may be simply referred to as disturbance light), by removing the information based on such disturbance light, The sample was configured to be analyzed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来で
は、試料を分析するときの外乱光の除去処理用として、
シャッタを設けていることが、装置構成が複雑になっ
て、コストアップの原因となり、コストダウンを図る上
で改善の余地があった。
However, in the prior art, for analyzing disturbance light when analyzing a sample,
The provision of the shutter complicates the configuration of the apparatus, causing an increase in cost, and there is room for improvement in cost reduction.

【0005】本発明は、かかる実情に鑑みてなされたも
のであり、その目的は、測定用光に基づく試料からの反
射光又は透過光以外の外乱光に基づく情報の除去処理を
して、試料を分析することができるようにしながら、コ
ストダウンを図ることにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to remove information based on disturbance light other than reflected light or transmitted light from a sample based on measurement light and to remove the sample. The goal is to reduce costs while enabling the analysis of the information.

【0006】[0006]

【課題を解決するための手段】〔請求項1記載の発明〕
請求項1に記載の特徴構成は、光を遮断する遮光部が、
前記照射光路内に一つのフィルタが位置する状態から他
のフィルタが位置する状態に前記フィルタ支持体が移動
する途中で、前記照射光路内に位置するように、前記フ
ィルタ支持体に設けられ、前記分析手段が、前記遮光部
が前記照射光路内に位置するときに得た情報を、前記フ
ィルタを通過した測定用光に基づく前記試料からの反射
光又は透過光以外の外乱光に基づく情報として処理し
て、試料を分析するように構成されていることにある。
Means for Solving the Problems [Invention according to claim 1]
In the characteristic configuration according to the first aspect, the light blocking unit that blocks light includes:
While the filter support is moving from a state where one filter is located in the irradiation light path to a state where another filter is located, the filter support is provided on the filter support so as to be located in the irradiation light path, The analyzing means processes information obtained when the light shielding portion is located in the irradiation light path as information based on disturbance light other than reflected light or transmitted light from the sample based on measurement light passing through the filter. And analyzing the sample.

【0007】請求項1に記載の特徴構成によれば、フィ
ルタ支持体が位置変更駆動されると、照射光路内に一つ
のフィルタが位置する状態から他のフィルタが位置する
状態にフィルタ支持体が移動する途中で、遮光部が照射
光路内に位置する。そして、分析手段は、遮光部が照射
光路内に位置するときに得た情報を外乱光に基づく情報
として処理して、試料を分析する。つまり、照射光路内
にフィルタが位置する状態のときは、測定用光が試料に
照射されるので、そのときに得る情報は、測定用光に基
づく試料からの反射光又は透過光と外乱光とが合わさっ
た光に基づくものであり、遮光部が照射光路内に位置す
るときは、測定用光が試料に照射されないので、そのと
きに得る情報は、外乱光だけに基づくものである考えら
れる。そこで、遮光部が照射光路内に位置するときに得
た情報を外乱光に基づく情報として処理して、外乱光が
分析に与える影響を除去するようにしてある。そして、
シャッタ支持板の位置変更駆動用として元々設けられて
いる駆動手段を、測定用光が試料に照射されない状態を
現出させるために兼用するようにして、従来設けていた
シャッタを不要としている。従って、測定用光に基づく
試料からの反射光又は透過光以外の外乱光に基づく情報
の除去処理をして、試料を分析することができるように
しながら、コストダウンを図ることができるようになっ
た。
According to the first aspect, when the filter support is driven to change the position, the filter support is moved from a state where one filter is located in the irradiation optical path to a state where another filter is located. During the movement, the light shielding portion is located in the irradiation optical path. Then, the analysis means processes the information obtained when the light shielding portion is located in the irradiation optical path as information based on disturbance light, and analyzes the sample. That is, when the filter is located in the irradiation optical path, the sample is irradiated with the measurement light, and the information obtained at that time is reflected light or transmitted light from the sample based on the measurement light and disturbance light. Are based on the combined light, and when the light-shielding portion is located in the irradiation light path, the measurement light is not irradiated on the sample, and thus the information obtained at that time is considered to be based only on the disturbance light. Therefore, information obtained when the light-shielding portion is located in the irradiation optical path is processed as information based on disturbance light to remove the influence of disturbance light on the analysis. And
The drive means originally provided for driving the position change of the shutter support plate is also used to bring out a state in which the measurement light is not irradiated on the sample, so that the conventionally provided shutter is unnecessary. Therefore, it is possible to reduce the cost while performing a process of removing information based on disturbance light other than reflected light or transmitted light from the sample based on the measurement light so that the sample can be analyzed. Was.

【0008】〔請求項2記載の発明〕請求項2に記載の
特徴構成は、前記フィルタ支持体が回転駆動されるよう
に構成され、前記フィルタ支持体に、前記複数のフィル
タ及び前記遮光部が、前記フィルタ支持体の回転駆動に
伴って、前記フィルタが選択的に前記照射光路内に位置
し、且つ、前記照射光路内に一つのフィルタが位置する
状態から他のフィルタが位置する状態に前記フィルタ支
持体が移動する途中で、前記遮光部が前記照射光路内に
位置するように設けられていることにある。
According to a second aspect of the present invention, the filter support is configured to be driven to rotate, and the filter support includes the plurality of filters and the light shielding portion. The filter is selectively positioned in the irradiation light path along with the rotational driving of the filter support, and the filter is moved from a state in which one filter is positioned in the irradiation light path to a state in which another filter is positioned. The light-shielding portion is provided so as to be positioned in the irradiation optical path while the filter support is moving.

【0009】請求項2に記載の特徴構成によれば、フィ
ルタ支持体が回転駆動されると、フィルタが選択的に照
射光路内に位置し、そのように、照射光路内に一つのフ
ィルタが位置する状態から他のフィルタが位置する状態
にフィルタ支持体が移動する途中で、遮光部が照射光路
内に位置する。又、フィルタ支持体が回転駆動されるこ
とから、複数のフィルタ及び遮光部を一定の順序で照射
光路内に位置させて情報を得ることによって、1回ずつ
の分析を行ったり、1回の分析で、複数のフィルタ及び
遮光部を一定の順序で照射光路内に位置させて情報を得
る工程を繰り返して行うような場合、制御構成を簡略化
することができると共に、分析を効率良く行うことがで
きる。ちなみに、フィルタ支持体を直線移動駆動するこ
とにより、フィルタが選択的に照射光路内に位置し、そ
のように、照射光路内に一つのフィルタが位置する状態
から他のフィルタが位置する状態にフィルタ支持体が移
動する途中で、遮光部が照射光路内に位置するように構
成する場合が想定される。しかしながら、この場合は、
複数のフィルタ及び遮光部を一定の順序で照射光路内に
位置させることを繰り返し行う場合、制御構成が複雑に
なるとともに、効率良く行うことができない。従って、
請求項2に記載の特徴構成によれば、制御構成を簡略化
しながら、効率良く分析が行えるようにする上で、好ま
しい具体構成を提供することができるようになった。
According to the characteristic feature of the second aspect, when the filter support is rotationally driven, the filter is selectively positioned in the irradiation light path, and as such, one filter is positioned in the irradiation light path. During the movement of the filter support from the state where the filter is turned on to the state where another filter is located, the light shielding portion is positioned in the irradiation optical path. In addition, since the filter support is driven to rotate, a plurality of filters and light-shielding portions are positioned in the irradiation optical path in a certain order to obtain information, thereby performing one analysis or one analysis. In a case where a process of obtaining information by arranging a plurality of filters and light shielding portions in the irradiation optical path in a certain order is performed repeatedly, the control configuration can be simplified and the analysis can be performed efficiently. it can. Incidentally, by linearly driving the filter support, the filter is selectively positioned in the irradiation light path, and as such, the filter is moved from a state in which one filter is positioned in the irradiation light path to a state in which another filter is positioned. It is assumed that the light shielding unit is located in the irradiation light path while the support is moving. However, in this case,
When repeatedly arranging a plurality of filters and light-shielding portions in the irradiation light path in a certain order, the control configuration becomes complicated and it cannot be performed efficiently. Therefore,
According to the characteristic configuration of the second aspect, it is possible to provide a preferable specific configuration in order to enable efficient analysis while simplifying the control configuration.

【0010】〔請求項3記載の発明〕請求項3に記載の
特徴構成は、前記分析手段は、前記遮光部が前記照射光
路内に位置するときの情報を複数回にわたって得て、そ
れら複数回にわたって得た情報に基づいて、試料を分析
するときに、前記外乱光に基づく情報の除去処理を行う
ように構成されていることにある。
[0010] According to a third aspect of the present invention, in the characteristic configuration according to the third aspect, the analyzing means obtains information a plurality of times when the light-shielding portion is located in the irradiation optical path, and obtains the information a plurality of times. When analyzing a sample on the basis of the information obtained over a period of time, the information removal processing based on the disturbance light is performed.

【0011】外乱光は光量のバラツキが大きいと考えら
れるが、請求項3に記載の特徴構成によれば、遮光部が
照射光路内に位置するときの情報を複数回にわたって得
て、それら複数回にわたって得た情報に基づいて、試料
を分析するときに、外乱光に基づく情報の除去処理を行
うようにしてあるので、外乱光の光量のバラツキが分析
に与える影響をより小さくすることができる。従って、
試料の分析精度を一層高くすることができるようになっ
た。
Although the amount of disturbance light is considered to have a large variation in the amount of light, according to the characteristic configuration of the third aspect, information when the light-shielding portion is located in the irradiation optical path is obtained a plurality of times. When the sample is analyzed based on the information obtained over a period of time, information removal processing based on disturbance light is performed, so that the influence of variations in the amount of disturbance light on the analysis can be further reduced. Therefore,
The analysis accuracy of the sample can be further improved.

【0012】[0012]

【発明の実施の形態】以下、図面に基づいて、本発明の
実施の形態を説明する。図1に示すように、分光分析装
置は、光源部5と、光源部5からの光のうち、試料を分
析するための測定用波長を含む設定波長範囲の光を透過
させる複数の干渉フィルタFを備えて、各干渉フィルタ
Fを透過した光を測定用光として出射する測定用光照射
部U1と、測定用光照射部U1から出射される測定用光
を試料Sに照射するように案内するとともに、試料Sか
らの反射光を受光素子1に受光させるように案内する投
受光案内部U2と、その受光素子1の出力情報に基づい
て試料を分析すると共に、分光分析装置の各種制御を司
る処理部2と、その処理部2の分析情報を表示する表示
部3を備えて構成してある。つまり、受光素子1と処理
部2とから、分析手段Aを構成している。測定用光照射
部U1と投受光案内部U2とを、測定用光照射部U1か
らの測定用光が入射用開口9iから投受光案内部U2の
内部に入射するように一体的に組み付けて、投受光ユニ
ットUを構成してある。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the spectroscopic analyzer includes a light source unit 5 and a plurality of interference filters F that transmit light in a set wavelength range including a measurement wavelength for analyzing a sample among the light from the light source unit 5. To guide the sample S to irradiate the sample S with the measurement light irradiation unit U1 that emits the light transmitted through each interference filter F as measurement light, and the measurement light emitted from the measurement light irradiation unit U1. At the same time, the light emitting and receiving guide unit U2 for guiding the reflected light from the sample S to the light receiving element 1 to analyze the sample based on the output information of the light receiving element 1, and controls various controls of the spectroscopic analyzer. The processing unit 2 includes a display unit 3 for displaying analysis information of the processing unit 2. That is, the light-receiving element 1 and the processing unit 2 constitute the analysis unit A. The measuring light irradiation unit U1 and the light emitting / receiving guide unit U2 are integrally assembled so that the measuring light from the measuring light irradiation unit U1 enters the inside of the light emitting / receiving guide unit U2 from the entrance opening 9i, The light emitting / receiving unit U is configured.

【0013】図1に基づいて、測定用光照射部U1につ
いて、説明を加える。測定用光照射部U1は、暗箱4内
に、光源部5と、その光源部5からの光を平行光線にす
る光源用レンズ6を設け、更に、4個の干渉フィルタF
を支持した円板状のフィルタ支持板7を、各干渉フィル
タFが順に光源用レンズ6の光軸と交差するように、換
言すれば、各干渉フィルタFが順に光源部5から試料に
至る照射光路P内に位置するように、フィルタ用電動モ
ータ8にて回転駆動される状態で設けて構成してある。
光源部5は、赤外線光を放射するタングステン−ハロゲ
ンランプにて構成してある。
Referring to FIG. 1, a description will be given of the measuring light irradiation unit U1. The measurement light irradiation unit U1 includes a light source unit 5 and a light source lens 6 for converting light from the light source unit 5 into parallel rays in a dark box 4, and further includes four interference filters F
Is irradiated so that each interference filter F sequentially intersects the optical axis of the light source lens 6, in other words, each interference filter F sequentially emits light from the light source unit 5 to the sample. It is provided so as to be located in the optical path P in a state of being rotationally driven by the filter electric motor 8.
The light source unit 5 is configured by a tungsten-halogen lamp that emits infrared light.

【0014】フィルタ支持板7は、光を遮断する材料に
て形成し、図3にも示すように、そのフィルタ支持板7
の中心を中心とする仮想円の円周Cに沿って、等間隔に
等径の4個のフィルタ支持開口7wを形成し、各フィル
タ支持開口7wに干渉フィルタFを嵌め込み、そのフィ
ルタ支持板7を、仮想円の円周Cが、光源用レンズ6の
光軸(照射光路Pに一致する)と交差する状態で回転駆
動自在に配置するとともに、フィルタ用電動モータ8に
より、フィルタ支持板7の中心を回転軸芯として回転駆
動するように構成してある。フィルタ支持板7におい
て、干渉フィルタF同士の間の部分7sは、光を遮断す
る遮光部として機能させるようにしてある。
The filter support plate 7 is formed of a material that blocks light, and as shown in FIG.
Are formed at equal intervals along the circumference C of the virtual circle centered on the center of the filter circle, and the interference filter F is fitted into each filter support opening 7w, and the filter support plate 7 Are arranged so that the circumference C of the virtual circle intersects with the optical axis of the light source lens 6 (corresponding to the irradiation optical path P) so as to be freely rotatable, and the filter electric motor 8 It is configured to rotate around the center as the rotation axis. In the filter support plate 7, a portion 7s between the interference filters F is made to function as a light blocking portion for blocking light.

【0015】つまり、フィルタ用電動モータ8によって
回転駆動されるフィルタ支持板7に、複数のフィルタF
を、そのフィルタ支持板7の回転に伴って、選択的に、
照射光路P内に位置するように設けた構成において、光
を遮断する遮光部7sを、照射光路P内に一つの干渉フ
ィルタFが位置する状態から他の干渉フィルタFが位置
する状態にフィルタ支持板7が移動する途中で、照射光
路P内に位置させるように、フィルタ支持板7に設けて
ある。この実施形態においては、隣接する干渉フィルタ
F同士の間の夫々に、遮光部7sを設けて、干渉フィル
タFが照射光路P内に位置する状態と、遮光部7sが照
射光路P内に位置する状態とが交互に繰り返されるよう
に構成してある。
That is, a plurality of filters F are mounted on the filter support plate 7 which is rotationally driven by the filter electric motor 8.
With the rotation of the filter support plate 7,
In the configuration provided so as to be located in the irradiation optical path P, the light shielding unit 7s for blocking light is supported by a filter from a state in which one interference filter F is located in the irradiation optical path P to a state in which another interference filter F is located. The filter 7 is provided on the filter support plate 7 so as to be positioned in the irradiation optical path P while the plate 7 is moving. In this embodiment, a light shielding portion 7s is provided between adjacent interference filters F, and the interference filter F is located in the irradiation optical path P, and the light shielding portion 7s is located in the irradiation optical path P. The state is alternately repeated.

【0016】尚、4個の干渉フィルタFは、夫々、透過
させる光の波長範囲の中心波長が異なり、各干渉フィル
タFの中心波長は、後述する分析対象の成分と相関のあ
る測定用波長に設定してある。以下では、4個の干渉フ
ィルタFを中心周波数が異なることにより区別して、F
1 ,F2 ,F3 ,F4 と記載する場合がある。
The four interference filters F have different center wavelengths in the wavelength range of light to be transmitted, and the center wavelength of each interference filter F is set to a measurement wavelength correlated with a component to be analyzed, which will be described later. It has been set. In the following, the four interference filters F are distinguished by different center frequencies, and
1 , F 2 , F 3 and F 4 may be described.

【0017】図1及び図2に示すように、投受光案内部
U2は、側面に入射用開口9iを備え、一方の端面に光
通過部9oを備えた暗箱9内に、第1集光レンズ11
を、入射する測定用光を光通過部9oの前方で且つ光通
過部9oと離間した位置に焦点を結ぶべく集光するよう
に配設し、並びに、ハーフミラー10を、入射用開口9
iから入射する測定用光を第1集光レンズ11に向けて
反射すると共に、第1集光レンズ11側からの光を透過
させるように配設してある。尚、ハーフミラー10は、
第1集光レンズ11の光軸上に配設してある。更に、暗
箱9内には、第2集光レンズ12を、ハーフミラー10
における第1集光レンズ11とは反対側に、第1集光レ
ンズ11と光軸を一致させて配設して、光通過部9oか
ら入射して第1集光レンズ11を通過した平行光線状の
光を集光するようにしてある。光通過部9oは、暗箱9
に設けた開口部に、光透過可能な透明ガラス17を嵌め
込んで構成し、暗箱9内に塵埃等が入り込むのを防止し
ている。
As shown in FIGS. 1 and 2, the light transmitting / receiving guide section U2 has a first condensing lens in a dark box 9 having an incident opening 9i on a side face and a light passing section 9o on one end face. 11
Is arranged so as to focus incident measurement light so as to focus on a position in front of the light passage portion 9o and at a position separated from the light passage portion 9o.
It is arranged so that the measurement light incident from i is reflected toward the first condenser lens 11 and the light from the first condenser lens 11 side is transmitted. In addition, the half mirror 10
It is arranged on the optical axis of the first condenser lens 11. Further, in the dark box 9, a second condenser lens 12 is provided with a half mirror 10.
Is disposed on the side opposite to the first condenser lens 11 so that the optical axis of the first condenser lens 11 is coincident with that of the first condenser lens 11, and a parallel light beam entering from the light passage portion 9 o and passing through the first condenser lens 11 The light is focused. The light passage section 9o is a dark box 9
A transparent glass 17 capable of transmitting light is fitted into the opening provided in the box 9 to prevent dust and the like from entering the dark box 9.

【0018】受光素子1は、その受光面を第2集光レン
ズ12にて焦点が結ばれる位置に位置させて設けてあ
る。受光素子1は、受光した光線束強度に応じた信号を
出力するように構成してある。
The light receiving element 1 is provided such that its light receiving surface is located at a position where the light is focused by the second condenser lens 12. The light receiving element 1 is configured to output a signal corresponding to the intensity of the received light beam.

【0019】図4にも示すように、暗箱9内において、
第1集光レンズ11と光通過部9oとの間に、ミラー用
電動モータ13によって径方向に沿う軸芯周りに揺動さ
れる円板状の可動ミラー14を、鏡面が第1集光レンズ
11側を向いて、第1集光レンズ11の光軸と直交する
姿勢(図4の(イ)参照)と、光軸に沿う姿勢(図4の
(ロ)参照)に姿勢変更自在なように配設してある。つ
まり、ミラー用電動モータ13により、可動ミラー14
を、図4の(イ)に示すように、第1集光レンズ11の
光軸と直交する姿勢(以下、測定用光反射状態と記載す
る場合がある)にすることにより、光通過部9oからの
光が第1集光レンズ11に入射するのを遮断する状態
で、ハーフミラー10からの測定用光を反射して受光素
子1に受光させる状態となり、図4の(ロ)に示すよう
に、光軸に沿う姿勢(以下、測定用光照射状態と記載す
る場合がある)にすることにより、測定用光の試料Sへ
の照射を許容するとともに、光通過部9oからの入射光
を受光素子1に受光させる状態となる。
As shown in FIG. 4, in the dark box 9,
Between the first condenser lens 11 and the light passing portion 9o, there is provided a disk-shaped movable mirror 14 which is swung around a radial axis by a mirror electric motor 13, and a mirror surface of which is a first condenser lens. The first condensing lens 11 faces the 11th side so that the posture can be freely changed between a posture orthogonal to the optical axis of the first condenser lens 11 (see FIG. 4A) and a posture along the optical axis (see FIG. 4B). It is arranged in. That is, the movable mirror 14 is driven by the mirror electric motor 13.
As shown in (a) of FIG. 4, the light passing portion 9o is set in a posture orthogonal to the optical axis of the first condenser lens 11 (hereinafter, sometimes referred to as a measurement light reflection state). In a state in which light from the lens is blocked from entering the first condenser lens 11, the light for measurement from the half mirror 10 is reflected and received by the light receiving element 1, and as shown in FIG. In addition, by setting the posture along the optical axis (hereinafter, sometimes referred to as a measurement light irradiation state), the irradiation of the sample S with the measurement light is allowed, and the incident light from the light passage portion 9o is The light receiving element 1 is set to receive light.

【0020】暗箱9における光通過部9oを設けた投受
光用の端面に、4本の間隔保持用棒体15を立設し、そ
れら4本の間隔保持用棒体15の先端に、中心部に開口
16wを備えた円板16を取り付けてある。そして、円
板16の開口16w内に、第1集光レンズ11の焦点が
位置するように、間隔保持用棒体15の長さを設定して
ある。
On the end face of the dark box 9 provided with the light passing portion 9o for transmitting and receiving light, four spacing rods 15 are erected, and the tip of each of the four spacing rods 15 is provided with a central portion. A disk 16 having an opening 16w is attached to the disk. The length of the spacing rod 15 is set so that the focal point of the first condenser lens 11 is located within the opening 16w of the disk 16.

【0021】そして、干渉フィルタFを透過した測定用
光が入射用開口9iから暗箱10内に入射させるよう
に、暗箱4と暗箱9とを接続して、投受光ユニットUを
構成してある。
The dark box 4 is connected to the dark box 9 so that the measuring light transmitted through the interference filter F is made to enter the dark box 10 through the entrance opening 9i.

【0022】そして、上述のように構成した投受光ユニ
ットUを、円板16の開口16w内に試料Sにおける分
析対象箇所が位置するように設置する。そして、可動ミ
ラー14を前記測定用光照射状態にすると、フィルタF
を透過した測定用光は、ハーフミラー10にて反射され
て第1集光レンズ11に入射し、第1集光レンズ11に
て、試料Sにおける分析対象箇所に焦点が結ばれるよう
に集光される。試料Sからの反射光は、光通過部9oか
ら暗箱9内に入射し、第1集光レンズ11にて平行光線
にされて、第2集光レンズ12に入射し、第2集光レン
ズ12にて、受光素子1の受光面に焦点が結ばれるよう
に集光されて、受光素子1にて受光される。
Then, the light emitting / receiving unit U configured as described above is installed so that the analysis target portion of the sample S is located in the opening 16w of the disk 16. Then, when the movable mirror 14 is in the measurement light irradiation state, the filter F
Is reflected by the half mirror 10 and is incident on the first condenser lens 11, and is condensed by the first condenser lens 11 so as to be focused on the analysis target portion of the sample S. Is done. The reflected light from the sample S enters the dark box 9 from the light passing portion 9o, is converted into parallel rays by the first condenser lens 11, enters the second condenser lens 12, and is incident on the second condenser lens 12. The light is condensed so as to be focused on the light receiving surface of the light receiving element 1 and received by the light receiving element 1.

【0023】可動ミラー14を前記測定用光反射状態と
すると、フィルタFを透過した測定用光は、ハーフミラ
ー10にて反射され、第1集光レンズ11を透過し、可
動ミラー14にて反射され、第1集光レンズ11及びハ
ーフミラー10を透過して、第2集光レンズ12に入射
し、第2集光レンズ12にて、受光素子1の受光面に焦
点が結ばれるように集光されて、受光素子1にて受光さ
れる。
Assuming that the movable mirror 14 is in the above-mentioned measuring light reflecting state, the measuring light transmitted through the filter F is reflected by the half mirror 10, transmitted through the first condenser lens 11, and reflected by the movable mirror 14. Then, the light passes through the first condenser lens 11 and the half mirror 10, enters the second condenser lens 12, and is focused by the second condenser lens 12 so that the light receiving surface of the light receiving element 1 is focused. The light is received by the light receiving element 1.

【0024】上述のように構成した投受光ユニットUで
あれば、例えば、試料Sが水平面上にあるときは、投受
光ユニットUを、円板16によって自立させた状態で設
置することができるので、操作者が投受光ユニットUを
保持する必要が無く、取り扱いが一層楽になる。試料S
が農地等の土壌である場合は、投受光ユニットUを、分
析対象の地面上に自立させて設置すれば良い。又、光透
過部9oは、試料に対して非接触であるので、試料が光
透過部9oの透明ガラス17に付着して分析の妨げにな
るといった不具合を回避することができる。
With the light emitting / receiving unit U configured as described above, for example, when the sample S is on a horizontal plane, the light emitting / receiving unit U can be installed in a state of being independent by the disk 16. Since the operator does not need to hold the light emitting and receiving unit U, the handling is further facilitated. Sample S
Is a soil such as a farmland, the light emitting and receiving unit U may be installed independently on the ground to be analyzed. Further, since the light transmitting portion 9o is not in contact with the sample, it is possible to avoid a problem that the sample adheres to the transparent glass 17 of the light transmitting portion 9o and hinders the analysis.

【0025】処理部2は、マイクロコンピュータを用い
て構成してあり、可動ミラー14を前記測定用光照射状
態にして、フィルタ支持板7を回転させたり、可動ミラ
ー14を前記測定用光反射状態にして、フィルタ支持板
7を回転させたりするように、フィルタ用電動モータ8
及びミラー用電動モータ13の作動を制御する。又、処
理部2は、受光素子1からの出力信号に基づいて、各干
渉フィルタFを透過した測定用波長の測定用光毎に、遮
光部7sが照射光路P内に位置するときに対応する情報
を、測定用光に基づく試料からの反射光以外の外乱光に
基づく情報として、その外乱光に基づく情報を除去処理
して、吸光度を求め、各測定用波長の吸光度に基づい
て、下記の数1に示す検量式に基づいて成分量Qを算出
する。
The processing section 2 is constituted by using a microcomputer, and sets the movable mirror 14 in the measurement light irradiation state to rotate the filter support plate 7 and sets the movable mirror 14 in the measurement light reflection state. So that the filter support plate 7 is rotated.
And the operation of the mirror electric motor 13 is controlled. Further, the processing unit 2 responds to the measurement light of the measurement wavelength transmitted through each interference filter F based on the output signal from the light receiving element 1 when the light shielding unit 7s is located in the irradiation optical path P. The information, as information based on disturbance light other than the reflected light from the sample based on the measurement light, remove the information based on the disturbance light, obtain the absorbance, based on the absorbance of each measurement wavelength, the following The component amount Q is calculated based on the calibration equation shown in Expression 1.

【0026】[0026]

【数1】Q=K0 +K1 ×A(λ1 )+K2 ×A
(λ2 )+K3 ×A(λ3 )+K4 ×A(λ4 )……
## EQU1 ## Q = K 0 + K 1 × A (λ 1 ) + K 2 × A
2 ) + K 3 × A (λ 3 ) + K 4 × A (λ 4 )

【0027】但し、 λ1 ,λ2 ,λ3 ,λ4 ……;分析対象の成分と相関の
ある測定用波長 A(λ1 ),A(λ2 ),A(λ3 ),A(λ4 )…
…;測定用波長における吸光度 K0 ,K1 ,K2 ,K3 ,K4 ……;充分に多い母集団
で測定された成分量の実測値と測定用波長の吸光度に基
づいて最小二乗法にて設定した係数
Where, λ 1 , λ 2 , λ 3 , λ 4 ...; Measurement wavelengths A (λ 1 ), A (λ 2 ), A (λ 3 ), A ( λ 4 )…
…; Absorbance at measurement wavelength K 0 , K 1 , K 2 , K 3 , K 4 ……; Least squares method based on measured values of component amounts measured in a sufficiently large population and absorbance at measurement wavelength Coefficient set in

【0028】ちなみに、試料Sが土壌であり、分析対象
の成分が硝酸態窒素である場合は、以下に示すλ1 ,λ
2 ,λ3 ,λ4 の4個の測定用波長を用い、各係数
0 ,K 1 ,K2 ,K3 ,K4 を以下のように設定す
る。従って、干渉フィルタFは、上述のように4個設
け、それら4個の干渉フィルタF1 ,F2 ,F3 ,F4
夫々の中心波長を、λ1 ,λ2 ,λ3 ,λ4 の4個の測
定用波長のいずれかに設定する。尚、各干渉フィルタF
の半値幅は、10〜40nmの範囲の値に設定してあ
る。
Incidentally, the sample S is soil,
When the component is nitrate nitrogen, the following λ1, Λ
Two, ΛThree, ΛFourUsing the four measurement wavelengths of
K0, K 1, KTwo, KThree, KFourIs set as follows
You. Therefore, four interference filters F are provided as described above.
The four interference filters F1, FTwo, FThree, FFour
Let each center wavelength be λ1, ΛTwo, ΛThree, ΛFourFour measurements
Set to one of the regular wavelengths. Each interference filter F
Is set to a value in the range of 10 to 40 nm.
You.

【0029】λ1 =1574nm λ2 =1592nm λ3 =1628nm λ4 =1736nm K0 =−36.306 K1 =−92554 K2 =164580 K3 =−81344 K4 =9362.9Λ 1 = 1574 nm λ 2 = 1592 nm λ 3 = 1628 nm λ 4 = 1736 nm K 0 = −36.306 K 1 = −92554 K 2 = 164580 K 3 = −81344 K 4 = 9362.9

【0030】次に、処理部2の制御作動について説明す
る。尚、下記の制御作動においては、フィルタ支持板7
を一定速度で回転させるように、フィルタ用電動モータ
8を作動する制御を実行するが、その制御の実行によ
り、干渉フィルタFが照射光路P内に位置する状態が周
期的に起こる。換言すれば、遮光部7sが照射光路P内
に位置する状態が周期的に起こる。従って、図5に示す
ように、受光素子1からは、干渉フィルタFが照射光路
P内に位置した状態のときに対応する信号Aが一定の周
波数で出力され、信号A同士の間は、遮光部7sが照射
光路P内に位置する状態のときの信号Bが出力される。
ちなみに、フィルタ支持板7の回転数は、例えば、50
0回/秒程度に設定する。
Next, the control operation of the processing section 2 will be described. In the following control operation, the filter support plate 7
Is controlled to rotate the filter electric motor 8 at a constant speed, and the execution of the control causes a state where the interference filter F is located in the irradiation optical path P periodically. In other words, a state in which the light shielding unit 7s is located in the irradiation optical path P occurs periodically. Therefore, as shown in FIG. 5, when the interference filter F is located in the irradiation optical path P, the corresponding signal A is output from the light receiving element 1 at a constant frequency. A signal B is output when the unit 7s is in the irradiation optical path P.
Incidentally, the rotation speed of the filter support plate 7 is, for example, 50
Set to about 0 times / second.

【0031】尚、図5に示すように、信号Aは、干渉フ
ィルタF1 が照射光路P内に位置する状態のときの信号
1 、干渉フィルタF2 が照射光路P内に位置する状態
のときの信号A2 、干渉フィルタF3 が照射光路P内に
位置する状態のときの信号A 3 、及び、干渉フィルタF
4 が照射光路P内に位置する状態のときの信号A4 から
成り、それら信号A1 ,A2 ,A3 ,A4 が所定の順序
で並ぶ状態で(実施形態では、記載順に並ぶ状態)で出
力される。従って、例えば、フィルタ支持板7の回転軸
に設けたロータリーエンコーダの信号に基づいて、各干
渉フィルタF1,F2 ,F3 ,F4 、及び、遮光部7s
が照射光路P内に位置する状態のときの信号夫々を抽出
して読み出すことができる。
As shown in FIG. 5, the signal A is an interference signal.
Filter F1When the signal is located in the irradiation optical path P
A1, Interference filter FTwoIs located in the irradiation optical path P
Signal A atTwo, Interference filter FThreeIs in the irradiation optical path P
Signal A when located Three, And interference filter F
FourA in a state where is located in the irradiation optical path PFourFrom
And those signals A1, ATwo, AThree, AFourIs the prescribed order
(In the embodiment, in the order described).
Is forced. Therefore, for example, the rotation axis of the filter support plate 7
Based on the signal of the rotary encoder
Filter F1, FTwo, FThree, FFour, And the light shielding portion 7s
Extract each signal when is in the irradiation optical path P
And can be read.

【0032】可動ミラー14が前記測定用光照射状態の
ときは、信号Aは、干渉フィルタFを透過した計測用光
に基づく試料からの反射光と、それ以外の外乱光が合わ
さった光に基づく信号であり、信号Bは、外乱光に基づ
く信号である。又、可動ミラー14が前記測定用光反射
状態のときは、信号Aは、干渉フィルタFを透過した計
測用光そのものに基づく信号である。従って、可動ミラ
ー14が前記測定用光照射状態で、遮光部7sが照射光
路P内に位置する状態のときの信号Bを、外乱光に基づ
く信号として、その外乱光に基づく信号を除去して成分
を分析することができる。例えば、可動ミラー14が前
記測定用光反射状態のときの信号Aを、試料に照射した
測定用光の強度とし、可動ミラー14が前記測定用光照
射状態のときの信号Aと信号Bとの差を、試料からの反
射光の強度として、それら、試料に照射した測定用光の
強度と試料からの反射光の強度とに基づいて、吸光度を
求める。吸光度は、測定用波長毎に求め、そのように求
めた各測定用波長における吸光度に基づいて、上記の検
量式に基づいて成分を分析するのである。
When the movable mirror 14 is in the measurement light irradiation state, the signal A is based on the reflected light from the sample based on the measurement light transmitted through the interference filter F and the other combined disturbance light. The signal B is a signal based on disturbance light. When the movable mirror 14 is in the measuring light reflection state, the signal A is a signal based on the measuring light itself transmitted through the interference filter F. Therefore, the signal B when the movable mirror 14 is in the measurement light irradiation state and the light shielding unit 7s is located in the irradiation light path P is defined as a signal based on disturbance light, and a signal based on the disturbance light is removed. The components can be analyzed. For example, the signal A when the movable mirror 14 is in the measurement light reflecting state is defined as the intensity of the measurement light irradiated on the sample, and the signal A and the signal B when the movable mirror 14 is in the measurement light irradiation state are used. The difference is defined as the intensity of the reflected light from the sample, and the absorbance is determined based on the intensity of the measuring light irradiated on the sample and the intensity of the reflected light from the sample. The absorbance is determined for each measurement wavelength, and the components are analyzed based on the above-determined absorbance at each measurement wavelength based on the above calibration formula.

【0033】図6に示すフローチャートに基づいて、成
分量を算出するための制御作動の一例を説明する。フィ
ルタ支持板7を一定速度で回転させるように、フィルタ
用電動モータ8を作動し、可動ミラー14が前記測定用
光反射状態となるように、ミラー用電動モータ13を作
動する(ステップ#1,#2)。干渉フィルタF1 が照
射光路P内に位置する状態に対応する信号A1 を読み出
し、その信号A1 を試料に照射した測定用光の強度とす
る(ステップ#3)。
An example of the control operation for calculating the component amount will be described based on the flowchart shown in FIG. The filter electric motor 8 is operated so as to rotate the filter support plate 7 at a constant speed, and the mirror electric motor 13 is operated such that the movable mirror 14 is in the measuring light reflection state (step # 1, step # 1). # 2). Interference filter F 1 reads the signal A 1 corresponding to the state located in the irradiation optical path P, and the intensity of the measuring light applied to the signal A 1 to the sample (Step # 3).

【0034】続いて、可動ミラー14が前記測定用光照
射状態となるように、ミラー用電動モータ13を作動
し、受光素子1の出力信号から、信号A1 ,B,A2
B,A 3 ,B,A4 ,Bを記載順に読み出す(ステップ
#4、#5)。続いて、信号Aとその次の信号Bとの差
を算出することにより、各測定用波長毎に、試料からの
反射光の強度を求め、それら各測定用波長毎の試料から
の反射光の強度と、ステップ#3で読み出した試料に照
射した測定用光の強度とに基づいて、各測定用波長毎に
吸光度を求める(ステップ#6、#7)。
Subsequently, the movable mirror 14 is illuminated by the measuring light source.
Activates the mirror electric motor 13 so that it is in the shooting state
From the output signal of the light receiving element 1, the signal A1, B, ATwo,
B, A Three, B, AFour, B in the order described (step
# 4, # 5). Then, the difference between the signal A and the next signal B
By calculating the value of
Determine the intensity of the reflected light, and use the sample for each measurement wavelength.
The intensity of the reflected light of the sample and the sample read in step # 3.
For each measurement wavelength, based on the intensity of the emitted measurement light,
The absorbance is determined (steps # 6 and # 7).

【0035】上記のように各測定用波長毎に吸光度を算
出する制御を、設定回数のN回(例えば3回)実行する
(ステップ#2〜#10)。続いて、各測定用波長毎
に、N個の吸光度を平均して平均吸光度を求め、それら
各測定用波長での平均吸光度に基づいて、上記の検量式
により成分量を算出し、フィルタ用電動モータ8を停止
させて、終了する(ステップ#11〜#13)。
The control for calculating the absorbance for each measurement wavelength as described above is executed a set number of N times (for example, three times) (steps # 2 to # 10). Subsequently, for each measurement wavelength, the N absorbances are averaged to obtain an average absorbance. Based on the average absorbance at each measurement wavelength, the component amount is calculated by the above calibration formula, and the filter electric power is calculated. The motor 8 is stopped, and the process ends (steps # 11 to # 13).

【0036】〔別実施形態〕次に別実施形態を説明す
る。 (イ) 成分量を算出するための制御構成は、上記の実
施形態にて例示した構成に限定されるものではない。例
えば、図7及び図8に示すフローチャートに基づく制御
構成も可能である。即ち、可動ミラー14が前記測定用
光反射状態となるように、ミラー用電動モータ13を作
動し、フィルタ支持板7を一定速度で回転させるよう
に、フィルタ用電動モータ8を作動し、フィルタ支持板
7がN回転する間に、受光素子1の出力信号から、信号
1 ,A2 ,A3 ,A4 、即ち、各測定用波長の測定用
光の強度を設定回数のN回ずつ読み出す(ステップ#2
1〜#27)。続いて、各測定用波長毎に、測定用光の
強度の平均値を算出する(ステップ#28)
[Another Embodiment] Next, another embodiment will be described. (A) The control configuration for calculating the component amount is not limited to the configuration exemplified in the above embodiment. For example, a control configuration based on the flowcharts shown in FIGS. 7 and 8 is also possible. That is, the mirror electric motor 13 is operated so that the movable mirror 14 is in the measuring light reflection state, and the filter electric motor 8 is operated so as to rotate the filter support plate 7 at a constant speed. While the plate 7 rotates N times, the signals A 1 , A 2 , A 3 , and A 4 , that is, the intensity of the measuring light of each measuring wavelength, are read N times from the output signal of the light receiving element 1 a set number of times. (Step # 2
1 to # 27). Subsequently, an average value of the intensity of the measurement light is calculated for each measurement wavelength (step # 28).

【0037】続いて、可動ミラー14が前記測定用光照
射状態となるように、ミラー用電動モータ13を作動
し、フィルタ支持板7がN回転する間に、信号A1
B,A2,B,A3 ,B,A4 ,Bを記載順に夫々N回
ずつ読み出す(ステップ#29〜#34)。
Subsequently, the mirror electric motor 13 is operated so that the movable mirror 14 is brought into the above-mentioned measuring light irradiation state, and the signals A 1 ,
B, A 2 , B, A 3 , B, A 4 , and B are read N times in the order described (steps # 29 to # 34).

【0038】続いて、各測定用波長について、各回毎
に、信号Aとその次の信号Bとの差を算出して、試料か
らの反射光の強度を求めると共に、求めた反射光の強度
を平均して、反射光の強度の平均値を求める(ステップ
#35)。続いて、各測定用波長毎に、ステップ#28
で求めた測定用光の強度の平均値、及び、ステップ#3
5で求めた反射光の強度の平均値により、吸光度を算出
し、続いて、各測定用波長の吸光度に基づいて、上記の
検量式により成分量を算出し、フィルタ用電動モータ8
を停止させて、終了する(ステップ#36〜#38)。
Subsequently, for each measurement wavelength, the difference between the signal A and the next signal B is calculated each time to obtain the intensity of the reflected light from the sample, and the obtained intensity of the reflected light is calculated. By averaging, the average value of the intensity of the reflected light is obtained (step # 35). Subsequently, step # 28 is performed for each measurement wavelength.
The average value of the intensity of the measurement light obtained in step # 3 and step # 3
Absorbance is calculated based on the average value of the intensity of the reflected light obtained in step 5, and then, based on the absorbance at each measurement wavelength, the component amount is calculated according to the above calibration formula.
Is stopped, and the process ends (steps # 36 to # 38).

【0039】上記の制御構成では、測定用波長毎に、試
料に照射する測定用光の強度を求めるので、成分の分析
精度を一層向上することができる。又、可動ミラー14
の前記測定用光反射状態と前記測定用光照射状態との切
換回数を少なくすることができるので、分析に要する時
間を短縮することができる。
In the above control configuration, the intensity of the measuring light applied to the sample is obtained for each measuring wavelength, so that the analysis accuracy of the components can be further improved. Also, the movable mirror 14
Since the number of times of switching between the measurement light reflection state and the measurement light irradiation state can be reduced, the time required for analysis can be shortened.

【0040】(ロ) フィルタ支持板7に設ける干渉フ
ィルタFの個数は、上記の実施形態において例示した4
個に限定されるものではなく、分析対象の成分を分析す
るために用いる測定用波長の数により設定する。又、1
種類の成分を分析するために必要な測定用波長を含むよ
うに干渉フィルタFを設けるのではなく、複数種の成分
を求めるために必要な複数の測定用波長を含むように、
複数の干渉フィルタFをフィルタ支持板7に設けても良
い。この場合は、フィルタ支持板7に設けた複数の干渉
フィルタFから、分析対象の一つの成分に対応する干渉
フィルタFを選択して、受光素子1の信号から、選択し
た干渉フィルタFに対応する信号を抽出して読み出すよ
うにして、複数種の成分を分析できるように構成する。
(B) The number of interference filters F provided on the filter support plate 7 is 4
The number is not limited to the number but is set by the number of measurement wavelengths used for analyzing the component to be analyzed. Also, 1
Instead of providing the interference filter F so as to include the measurement wavelengths required to analyze the types of components, to include a plurality of measurement wavelengths required to obtain a plurality of types of components,
A plurality of interference filters F may be provided on the filter support plate 7. In this case, an interference filter F corresponding to one component to be analyzed is selected from the plurality of interference filters F provided on the filter support plate 7, and the signal of the light receiving element 1 corresponds to the selected interference filter F. A signal is extracted and read out, so that a plurality of types of components can be analyzed.

【0041】(ハ) 外乱光を除去するための演算方法
は、上記の実施形態において例示した方法に限定される
ものではない。例えば、信号Aに基づいて、吸光度を算
出し、そのように算出した吸光度に、信号Bに応じて設
定した係数を乗じるようにしても良い。又、信号Aに基
づいて算出した吸光度により成分量を算出し、そのよう
に算出した成分量に、信号Bに応じて設定した係数を乗
じるようにしても良い。
(C) The calculation method for removing disturbance light is not limited to the method exemplified in the above embodiment. For example, the absorbance may be calculated based on the signal A, and the calculated absorbance may be multiplied by a coefficient set according to the signal B. Alternatively, the component amount may be calculated based on the absorbance calculated based on the signal A, and the calculated component amount may be multiplied by a coefficient set according to the signal B.

【0042】(ニ) 上記の実施形態においては、信号
A、信号Bを複数回にわたって得て、それらを平均処理
して、吸光度を求めるように構成したが、信号A、信号
Bを夫々1回ずつ得て、それらにより吸光度を求めるよ
うに構成しても良い。
(D) In the above embodiment, the signal A and the signal B are obtained a plurality of times, and the signals A and B are averaged to determine the absorbance. , And the absorbance may be obtained from them.

【0043】(ホ) フィルタ支持板7を位置変更駆動
する場合の位置変更形態は、上記の実施形態において例
示した回転形態に限定されるものではなく、例えば、直
線状の移動形態でも良い。
(E) The position change mode when the filter support plate 7 is driven to change the position is not limited to the rotation mode exemplified in the above embodiment, and may be, for example, a linear movement mode.

【0044】(ヘ) 上記の実施形態においては、隣接
する干渉フィルタF同士の間の夫々に、遮光部7sを設
ける場合について例示したが、遮光部7sは、隣接する
干渉フィルタF同士の間の夫々に設ける必要が無く、例
えば、1箇所のみに設けても良い。
(F) In the above embodiment, the case where the light-shielding portions 7s are provided between the adjacent interference filters F has been exemplified. However, the light-shielding portions 7s are provided between the adjacent interference filters F. It is not necessary to provide each of them, and for example, they may be provided only at one place.

【0045】(ト)上記の実施形態においては、試料に
干渉フィルタFを透過した測定用光を照射して、試料か
らの反射光に基づいて試料を分析するように構成する場
合について例示したが、試料に干渉フィルタFを透過し
た測定用光を照射して、試料を透過した透過光に基づい
て試料を分析するように構成しても良い。
(G) In the above embodiment, the case where the sample is irradiated with the measuring light transmitted through the interference filter F and the sample is analyzed based on the reflected light from the sample has been exemplified. Alternatively, the sample may be configured to irradiate the sample with measurement light transmitted through the interference filter F and analyze the sample based on the transmitted light transmitted through the sample.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態にかかる分光分析装置の断面図FIG. 1 is a sectional view of a spectroscopic analyzer according to an embodiment.

【図2】実施形態にかかる分光分析装置の投受光ユニッ
トの斜視図
FIG. 2 is a perspective view of a light emitting and receiving unit of the spectroscopic analyzer according to the embodiment.

【図3】実施形態にかかる分光分析装置のフィルタ支持
板の回転軸芯方向視での図
FIG. 3 is a diagram of the filter support plate of the spectroscopic analyzer according to the embodiment as viewed in the direction of the rotation axis.

【図4】実施形態にかかる分光分析装置の可動ミラーの
斜視図
FIG. 4 is a perspective view of a movable mirror of the spectroscopic analyzer according to the embodiment.

【図5】実施形態にかかる分光分析装置の受光素子の出
力信号を示す図
FIG. 5 is a diagram showing an output signal of a light receiving element of the spectroscopic analyzer according to the embodiment.

【図6】実施形態にかかる分光分析装置の制御作動のフ
ローチャートを示す図
FIG. 6 is a diagram showing a flowchart of a control operation of the spectroscopic analyzer according to the embodiment.

【図7】別実施形態にかかる分光分析装置の制御作動の
フローチャートを示す図
FIG. 7 is a diagram showing a flowchart of a control operation of a spectroscopic analyzer according to another embodiment.

【図8】別実施形態にかかる分光分析装置の制御作動の
フローチャートを示す図
FIG. 8 is a diagram showing a flowchart of a control operation of a spectroscopic analyzer according to another embodiment.

【符号の説明】 5 光源部 7 フィルタ支持体 7s 遮光部 F フィルタ P 照射光路 A 分析手段[Explanation of Symbols] 5 light source unit 7 filter support 7s light shielding unit F filter P irradiation light path A analysis means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻倉 伸弥 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 Fターム(参考) 2G059 AA01 EE01 EE02 EE11 GG10 HH01 HH06 JJ03 JJ23 LL04 MM03 MM14 NN01  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Shinya Tsujikura 1-1-1 Hama, Amagasaki-shi, Hyogo F-term in Kubota Technology Development Laboratory Co., Ltd. (reference) 2G059 AA01 EE01 EE02 EE11 GG10 HH01 HH06 JJ03 JJ23 LL04 MM03 MM14 NN01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 位置変更駆動されるフィルタ支持体に、
光源部からの光のうち、試料を分析するための測定用波
長の光を透過させる複数のフィルタが、そのフィルタ支
持体の位置変更に伴って、選択的に、前記光源部から試
料に至る照射光路内に位置するように設けられ、 試料からの反射光又は透過光に基づいて、試料を分析す
る分析手段が設けられた分光分析装置であって、 光を遮断する遮光部が、前記照射光路内に一つのフィル
タが位置する状態から他のフィルタが位置する状態に前
記フィルタ支持体が移動する途中で、前記照射光路内に
位置するように、前記フィルタ支持体に設けられ、 前記分析手段が、前記遮光部が前記照射光路内に位置す
るときに得た情報を、前記フィルタを通過した測定用光
に基づく前記試料からの反射光又は透過光以外の外乱光
に基づく情報として処理して、試料を分析するように構
成されている分光分析装置。
1. A filter support driven to change its position,
Among the light from the light source unit, a plurality of filters that transmit light having a measurement wavelength for analyzing the sample are selectively irradiated with the change in the position of the filter support, from the light source unit to the sample. A spectroscopic analyzer provided so as to be located in an optical path, and provided with analysis means for analyzing a sample based on reflected light or transmitted light from the sample, wherein a light-shielding unit for blocking light is provided on the irradiation optical path. The filter support is provided on the filter support so as to be located in the irradiation optical path while the filter support is moving from a state in which one filter is located in the other filter to a state in which the other filter is located. The information obtained when the light-shielding portion is located in the irradiation light path is processed as information based on disturbance light other than reflected light or transmitted light from the sample based on the measurement light passing through the filter, Trial Spectroscopic analyzing apparatus is configured to analyze.
【請求項2】 前記フィルタ支持体が回転駆動されるよ
うに構成され、 前記フィルタ支持体に、前記複数のフィルタ及び前記遮
光部が、前記フィルタ支持体の回転駆動に伴って、前記
フィルタが選択的に前記照射光路内に位置し、且つ、前
記照射光路内に一つのフィルタが位置する状態から他の
フィルタが位置する状態に前記フィルタ支持体が移動す
る途中で、前記遮光部が前記照射光路内に位置するよう
に設けられている請求項1記載の分光分析装置。
2. The filter support is configured to be driven to rotate. The filter support includes a plurality of filters and the light-shielding portion, and the filter is selected by the drive of the filter support. The light shielding unit is positioned in the irradiation light path, and while the filter support is moving from a state in which one filter is positioned in the irradiation light path to a state in which another filter is positioned in the irradiation light path. The spectroscopic analyzer according to claim 1, wherein the spectroscopic analyzer is provided so as to be located in the inside.
【請求項3】 前記分析手段は、前記遮光部が前記照射
光路内に位置するときの情報を複数回にわたって得て、
それら複数回にわたって得た情報に基づいて、試料を分
析するときに、前記外乱光に基づく情報の除去処理を行
うように構成されている請求項1又は2記載の分光分析
装置。
3. The analysis means obtains information when the light-shielding portion is located in the irradiation optical path a plurality of times,
3. The spectroscopic analyzer according to claim 1, wherein when analyzing the sample based on the information obtained a plurality of times, a process of removing information based on the disturbance light is performed.
JP19149799A 1999-07-06 1999-07-06 Spectroscopic analyzer Pending JP2001021489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19149799A JP2001021489A (en) 1999-07-06 1999-07-06 Spectroscopic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19149799A JP2001021489A (en) 1999-07-06 1999-07-06 Spectroscopic analyzer

Publications (1)

Publication Number Publication Date
JP2001021489A true JP2001021489A (en) 2001-01-26

Family

ID=16275643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19149799A Pending JP2001021489A (en) 1999-07-06 1999-07-06 Spectroscopic analyzer

Country Status (1)

Country Link
JP (1) JP2001021489A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084238A2 (en) * 2001-04-11 2002-10-24 Rio Grande Medical Technologies, Inc. Encoded variable filter spectrometer
WO2016059865A1 (en) * 2014-10-15 2016-04-21 株式会社クボタ Optical grain evaluation device and combine harvester provided with optical grain evaluation device
JP2016200602A (en) * 2016-07-14 2016-12-01 株式会社クボタ Optical evaluation device for grain

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084238A2 (en) * 2001-04-11 2002-10-24 Rio Grande Medical Technologies, Inc. Encoded variable filter spectrometer
WO2002084238A3 (en) * 2001-04-11 2003-05-01 Rio Grande Medical Tech Inc Encoded variable filter spectrometer
WO2016059865A1 (en) * 2014-10-15 2016-04-21 株式会社クボタ Optical grain evaluation device and combine harvester provided with optical grain evaluation device
JP2016077199A (en) * 2014-10-15 2016-05-16 株式会社クボタ Optical evaluation device for grain
KR20170067679A (en) * 2014-10-15 2017-06-16 가부시끼 가이샤 구보다 Optical grain evaluation device and combine harvester provided with optical grain evaluation device
US9857296B2 (en) 2014-10-15 2018-01-02 Kubota Corporation Optical grain evaluation device and combine harvester provided with optical grain evaluation device
KR102317446B1 (en) 2014-10-15 2021-10-27 가부시끼 가이샤 구보다 Optical grain evaluation device and combine harvester provided with optical grain evaluation device
JP2016200602A (en) * 2016-07-14 2016-12-01 株式会社クボタ Optical evaluation device for grain

Similar Documents

Publication Publication Date Title
US4477190A (en) Multichannel spectrophotometer
US20050275844A1 (en) Variable Exposure Rotary Spectrometer
US4966458A (en) Optical system for a multidetector array spectrograph
JPH04244924A (en) Spectrophotometer having simultaneous modulation, switching and wavelength selective means of light source
AU609279B2 (en) New optical system for a multidetector array spectrograph
GB2128359A (en) Double-beam spectrophotometer
JP3992390B2 (en) Spectroscopic analysis method
JPH052931B2 (en)
JP2001021489A (en) Spectroscopic analyzer
JP3451536B2 (en) Soil optical property measurement device
JP3923011B2 (en) Fruit and vegetable quality evaluation equipment
JPH0480330B2 (en)
JP2002156282A (en) Spectrophotometer
JP3591427B2 (en) Spectrophotometer
JPH0720042A (en) Device for spectroscopic analysis
JP3282549B2 (en) Infrared spectrophotometer
JPS5924378B2 (en) Rotating cuvette type rapid analysis device
JPH085550A (en) Spectroscopic analyzer
JP4486805B2 (en) Spectroscopic analyzer
US4172637A (en) Common beam aperture for dual beam spectrophotometers
JPH06109538A (en) Spectroscopic analyzer
JP2000292344A (en) Light passage forming device
JP3262877B2 (en) Spectroscope
KR100688982B1 (en) Optical multiplexer
JPH04286Y2 (en)