JP2001004232A - Circulating geothermal heat utilizing apparatus - Google Patents

Circulating geothermal heat utilizing apparatus

Info

Publication number
JP2001004232A
JP2001004232A JP11179948A JP17994899A JP2001004232A JP 2001004232 A JP2001004232 A JP 2001004232A JP 11179948 A JP11179948 A JP 11179948A JP 17994899 A JP17994899 A JP 17994899A JP 2001004232 A JP2001004232 A JP 2001004232A
Authority
JP
Japan
Prior art keywords
pipe
heat
tube
axis
bottomed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11179948A
Other languages
Japanese (ja)
Inventor
Kazunao Sorai
一修 空井
Masahisa Fukahori
賢久 深堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP11179948A priority Critical patent/JP2001004232A/en
Publication of JP2001004232A publication Critical patent/JP2001004232A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/03Arrangements for heat transfer optimization
    • F24S2080/05Flow guiding means; Inserts inside conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

PROBLEM TO BE SOLVED: To enhance a heat transfer rate on an inner surface of a tubular wall of an outer tube with a bottom, to improve a heat exchange performance and to collect or radiate (thermally store) a large heat by generating a turbulence in a flow of an antifreeze solution (heating medium). SOLUTION: In the circulating geothermal heat utilizing apparatus, a tube axis C2 of an inner tube 4 with an open bottom is formed in a zigzag state obtained by continuing an eccentric portion eccentrically deviated in a direction opposite to a vertical tube axis C1 in one vertical plane passing an axis C1 of an outer tube 2 with a bottom and a concentric portion concentric with the axis C1, and a plurality of bent portions 10 formed in a zigzag manner in a direction of the axis C1 to the tube 4 are provided at an equal interval over the entire length. A flowing velocity of an antifreeze solution (heating medium) flowing through an annular gap 3 is changed by the plurality of the portions 10 so that a turbulence takes place in the flow of the solution. Thus, a heat transfer rate of the inner surface of the tube 2 with the bottom is enhanced to improve heat exchange performance, and a large heat can be collected or radiated (thermally stored).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冬季において土壌
からの採熱によりたとえば道路融雪設備や空調設備ある
いは給湯設備などに適用し、夏期においては外気熱を土
壌に放熱(蓄熱)して冬季に採熱して利用する循環型地
熱利用装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to, for example, road snow melting equipment, air conditioning equipment or hot water supply equipment by collecting heat from soil in winter. The present invention relates to a circulating geothermal utilization device that collects and uses heat.

【0002】[0002]

【従来の技術】この種の循環型地熱利用装置として、特
許登録第2700998号公報に記載のものが提供され
ている。この循環型地熱利用装置は、図7に示すよう
に、土壌1に埋設した有底外管2に環状の隙間3を有し
て開底内管4を同心に挿入し、かつ放射方向にスペーサ
5を設けることで、内外両管2,4で相対変位不能な二
重管6を構成し、この二重管6とたとえばヒートポンプ
7の間で不凍液(熱媒体)を循環させる循環ポンプ8A
と循環路8Bとからなる循環系8とを備えた熱交換器9
によって、冬季において土壌1からの採熱によりたとえ
ば道路融雪設備や空調設備あるいは給湯設備などに適用
し、夏期においては外気熱を土壌に放熱(蓄熱)して冬
季に採熱して利用するように構成されている。
2. Description of the Related Art As a circulation type geothermal utilization apparatus of this kind, there is provided an apparatus described in Japanese Patent No. 2700998. As shown in FIG. 7, this circulation type geothermal utilization apparatus has an open bottomed inner pipe 4 concentrically inserted into a bottomed outer pipe 2 buried in soil 1 with an annular gap 3 and a radial spacer. The circulating pump 8A that circulates an antifreeze (a heat medium) between the double pipe 6 and the heat pump 7, for example, by forming the double pipe 6 with the inner and outer pipes 2 and 4 that cannot be relatively displaced.
Heat exchanger 9 having a circulation system 8 composed of
By applying heat from the soil 1 in winter, for example, it is applied to road snow melting equipment, air conditioning equipment, hot water supply equipment, etc., and in summer, external heat is radiated to the soil (heat storage) to collect heat in winter and use it. Have been.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の循環型
地熱利用装置では、垂直管軸C1を有する有底外管2に
対して開底内管4が同心に挿入されているため、不凍液
は環状の隙間3内を一定の流速で管軸C1と同一方向に
流れることになる。このため、有底外管2の管壁内面で
の熱伝達率が高いとはいえず、大きい採熱または放熱
(蓄熱)を期待することができない。すなわち、環状の
隙間3内での不凍液の流れに乱が生じたり、あるいは不
凍液の流速が高くなることによって、有底外管2の管壁
内面での熱伝達率が高くなることが理論的および実験的
に証明されているものの、不凍液の流れを乱す機能また
は不凍液の流速を高める機能を備えていないので、有底
外管2の管壁内面での熱伝達率が低く、熱交換性能が悪
い欠点を有している。
However, in the conventional circulation type geothermal utilization apparatus, since the open bottomed inner pipe 4 is inserted concentrically with the bottomed outer pipe 2 having the vertical pipe axis C1, the antifreeze liquid is not removed. It flows in the annular gap 3 in the same direction as the pipe axis C1 at a constant flow velocity. For this reason, it cannot be said that the heat transfer coefficient on the inner surface of the tube wall of the bottomed outer tube 2 is high, and large heat collection or heat dissipation (heat storage) cannot be expected. That is, theoretically, the heat transfer coefficient on the inner wall surface of the bottomed outer tube 2 increases due to the disturbance of the flow of the antifreeze in the annular gap 3 or the increase in the flow rate of the antifreeze. Although it is experimentally proven, it does not have a function of disturbing the flow of antifreeze or a function of increasing the flow rate of antifreeze, so the heat transfer coefficient on the inner surface of the bottomed outer tube 2 is low, and the heat exchange performance is poor. Has disadvantages.

【0004】そこで、本発明は、不凍液の流れに乱れを
生じさせたりあるいは不凍液の流速を高めることによっ
て、有底外管の管壁内面での熱伝達率を高めて、熱交換
性能を向上させ、大きい採熱または放熱(蓄熱)を行う
ことができる循環型地熱利用装置を提供することを目的
としている。
Therefore, the present invention improves the heat exchange performance by increasing the heat transfer coefficient on the inner surface of the bottomed outer tube by causing turbulence in the flow of the antifreeze or increasing the flow rate of the antifreeze. It is an object of the present invention to provide a circulating-type geothermal utilization device capable of performing large heat collection or heat radiation (heat storage).

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、請求項1に記載の発明に係る循環型地熱利用装置
は、土壌に埋設した有底外管に環状の隙間を有して開底
内管を挿入した構造の二重管と、この二重管で熱媒体を
循環させる循環系とを備えた熱交換器によって、土壌か
らの採熱または土壌への放熱を行うように構成した循環
型地熱利用装置において、前記開底内管の少なくとも一
部に前記有底外管の垂直管軸方向に蛇行する屈曲部が設
けられていることを特徴としている。
In order to achieve the above object, a circulating-type geothermal utilization apparatus according to the first aspect of the present invention is provided with an open bottomed outer pipe buried in soil having an annular gap. A heat exchanger equipped with a double pipe having a structure in which a bottom inner pipe is inserted, and a circulation system for circulating a heat medium through the double pipe is configured to collect heat from the soil or radiate heat to the soil. In the circulation type geothermal utilization apparatus, a bent portion meandering in a vertical pipe axis direction of the bottomed outer pipe is provided on at least a part of the open bottom inner pipe.

【0006】また、目的を達成するために、請求項2に
記載の発明に係る循環型地熱利用装置は、土壌に埋設し
た有底外管に環状の隙間を有して開底内管を挿入した構
造の二重管と、この二重管で熱媒体を循環させる循環系
とを備えた熱交換器によって、土壌からの採熱または土
壌への放熱を行うように構成した循環型地熱利用装置に
おいて、前記開底内管の少なくとも一部が該開底内管の
管軸を前記有底外管の垂直管軸のまわりで旋回させて該
垂直管軸方向にのばしたスパイラル状に曲成した曲成部
によって構成されていることを特徴ととしている。
In order to achieve the object, a circulating-type geothermal utilization apparatus according to a second aspect of the present invention is configured such that an open bottomed inner pipe is inserted into a bottomed outer pipe buried in soil with an annular gap. Geothermal utilization device configured to collect heat from soil or radiate heat to soil by using a heat exchanger equipped with a double pipe having a structure described above and a circulation system for circulating a heat medium through the double pipe. In at least a part of the open bottomed inner pipe, the pipe axis of the open bottomed inner pipe is turned around a vertical pipe axis of the bottomed outer pipe and bent in a spiral shape extending in the vertical pipe axis direction. It is characterized by being constituted by a composed part.

【0007】請求項1に記載の発明によれば、開底内管
の少なくとも一部に設けた有底外管の垂直管軸方向に蛇
行する屈曲部によって、環状の隙間を流れる熱媒体の流
速を変化させ、この流速変化により熱媒体の流れに乱れ
を生じさせて、有底外管の管壁内面での熱伝達率を高め
ることができる。
According to the first aspect of the present invention, the flow rate of the heat medium flowing through the annular gap is formed by the bent portion of the bottomed outer tube provided on at least a part of the open bottomed inner tube meandering in the vertical tube axis direction. Is changed, and the flow of the heat medium is disturbed by the change in the flow velocity, so that the heat transfer coefficient on the inner wall surface of the bottomed outer tube can be increased.

【0008】請求項2に記載の発明によれば、開底内管
の少なくとも一部がスパイラル状に曲成した曲成部によ
って構成されているので、曲成部により環状の隙間を流
れる熱媒体の垂直方向の流れ成分に旋回成分が与えら
れ、垂直方向の流れが旋回流に変換される。これによ
り、実際の旋回流の流速を前記垂直方向の流れの流速よ
りも高くして、有底外管の管壁内面での熱伝達率を高め
ることができる。
According to the second aspect of the present invention, at least a part of the open-bottomed inner pipe is formed by the bent portion spirally bent, so that the heat medium flows through the annular gap by the bent portion. Is given a swirl component to the vertical flow component, and the vertical flow is converted into a swirl flow. Thus, the flow velocity of the actual swirling flow is made higher than the flow velocity of the vertical flow, and the heat transfer coefficient on the inner surface of the bottomed outer tube can be increased.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施の形態を図
面に基づいて説明する。図1は請求項1に記載の発明に
係る循環型地熱利用装置の一実施の形態を示す縦断面
図、図2(a)〜図2(d)は図1の横断面図である。
なお、図7の従来例と同一もしくは相当部分には同一符
号を付し、有底外管および開底内管以外の詳しい説明は
省略する。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing an embodiment of the circulation type geothermal utilization apparatus according to the first aspect of the present invention, and FIGS. 2 (a) to 2 (d) are transverse sectional views of FIG.
The same or corresponding parts as those in the conventional example of FIG. 7 are denoted by the same reference numerals, and detailed description other than the bottomed outer tube and the open bottomed inner tube is omitted.

【0010】図1および図2(a)〜図2(d)におい
て、開底内管4の管軸C2を、有底外管2の垂直管軸C
1を通る1つの垂直面F1上で垂直管軸C1に互いに反
対方向で偏心する偏心部分{図2(a)、図2(c)参
照}と垂直管軸C1と同心の同心部分{図2(b)、図
2(d)参照}とを連続させた蛇行状に形成すること
で、開底内管4は垂直管軸C1方向に蛇行する複数の屈
曲部10,10…を全長にわたって等間隔で設けた構造
になっている。この開底内管4は、有底外管2に環状の
隙間3を有して挿入されているとともに、放射方向にス
ペーサ5を設けることで、内外両管2,4で相対変位不
能な二重管6を構成している。
1 and 2 (a) to 2 (d), the pipe axis C2 of the open bottomed inner pipe 4 is changed to the vertical pipe axis C of the bottomed outer pipe 2.
Eccentric portions that are eccentric in opposite directions to the vertical tube axis C1 on one vertical plane F1 passing through {circle around 1} (see FIGS. 2A and 2C) and concentric portions concentric with the vertical tube axis C1 {FIG. (B) and FIG. 2 (d) are formed in a meandering shape that is continuous, so that the open-bottomed inner tube 4 is formed by bending a plurality of bent portions 10, 10 ... meandering in the direction of the vertical tube axis C1 over the entire length. The structure is provided at intervals. The open bottomed inner tube 4 is inserted into the bottomed outer tube 2 with an annular gap 3 and is provided with a spacer 5 in a radial direction so that the inner and outer tubes 2 and 4 cannot be displaced relative to each other. The heavy pipe 6 is constituted.

【0011】このように、管軸C2が垂直管軸C1方向
に蛇行する複数の屈曲部10,10…を全長にわたって
等間隔で設けた開底内管4が有底外管2に環状の隙間3
を有して挿入されていると、垂直管軸C1方向に蛇行す
る複数の屈曲部10,10…によって、環状の隙間3を
流れる不凍液(熱媒体)の流速が変化し、この流速変化
によって不凍液の流れに乱れが生じる。このため、有底
外管2の管壁内面での熱伝達率を高めて、熱交換性能を
向上させ、大きい採熱または放熱(蓄熱)を行うことが
できる。
As described above, the open bottom inner tube 4 having the plurality of bent portions 10, 10... In which the tube axis C2 meanders in the direction of the vertical tube axis C1 is provided at regular intervals over the entire length. 3
., The flow rate of the antifreeze (heat medium) flowing through the annular gap 3 changes due to the plurality of bent portions 10, 10 meandering in the direction of the vertical pipe axis C1, and the antifreeze is The flow of air is disturbed. For this reason, the heat transfer coefficient on the inner surface of the tube wall of the bottomed outer tube 2 can be increased, the heat exchange performance can be improved, and large heat collection or heat radiation (heat storage) can be performed.

【0012】なお、請求項1に記載の発明は、図1およ
び図2に示した実施の形態にのみ限定されるものではな
い。すなわち、前記実施の形態では、開底内管4の全長
にわたって垂直管軸C1方向に蛇行する複数の屈曲部1
0,10…を等間隔で設けているが、複数の屈曲部1
0,10…は非等間隔で設けてもよい。また、開底内管
4の一部に垂直管軸C1方向に蛇行する屈曲部10を設
けてもよい。このように、開底内管4の一部に屈曲部1
0を設ける構造では、図3に示すように、採熱または放
熱温度差の大きい開底内管4の深部に屈曲部10を設け
るのが熱交換性能上で有利である。
The invention described in claim 1 is not limited to the embodiment shown in FIGS. That is, in the above embodiment, the plurality of bent portions 1 meandering in the direction of the vertical pipe axis C1 over the entire length of the open bottom inner pipe 4.
Are provided at regular intervals, but a plurality of bent portions 1 are provided.
.. May be provided at unequal intervals. Further, a bent portion 10 meandering in the direction of the vertical tube axis C1 may be provided in a part of the open bottom inner tube 4. As described above, the bent portion 1
In the structure where 0 is provided, as shown in FIG. 3, it is advantageous in terms of heat exchange performance to provide the bent portion 10 at a deep portion of the open-bottomed inner tube 4 having a large difference in heat collection or heat release temperature.

【0013】つぎに、請求項2に記載の発明の一実施の
形態を図面に基づいて説明する。図4は請求項2に記載
の発明に係る循環型地熱利用装置の一実施の形態を示す
断面図、図5(e)〜図5(h)は図4の横断面図であ
る。なお、図7の従来例と同一もしくは相当部分には同
一符号を付し、有底外管および開底内管以外の詳しい説
明は省略する。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a cross-sectional view showing one embodiment of the circulation type geothermal utilization apparatus according to the second aspect of the present invention, and FIGS. 5 (e) to 5 (h) are cross-sectional views of FIG. The same or corresponding parts as those in the conventional example of FIG. 7 are denoted by the same reference numerals, and detailed description other than the bottomed outer tube and the open bottomed inner tube is omitted.

【0014】図4および図5(e)〜図5(h)におい
て、開底内管4は、その管軸C2を全長にわたって有底
外管2の垂直管軸C1まわりで螺旋状に旋回させること
により、スパイラル状に曲成した曲成部11によって構
成されている。この開底内管4は、有底外管2に環状の
隙間3を有して挿入されているとともに、放射方向にス
ペーサ5を設けることで、内外両管2,4で相対変位不
能な二重管6を構成している。
In FIG. 4 and FIGS. 5 (e) to 5 (h), the open bottomed inner tube 4 spirals its tube axis C2 around the vertical tube axis C1 of the bottomed outer tube 2 over its entire length. Thereby, it is constituted by the bent part 11 bent in a spiral shape. The open bottomed inner tube 4 is inserted into the bottomed outer tube 2 with an annular gap 3 and is provided with a spacer 5 in a radial direction so that the inner and outer tubes 2 and 4 cannot be displaced relative to each other. The heavy pipe 6 is constituted.

【0015】このように、管軸C2を有底外管2の垂直
管軸C1まわりで螺旋状に旋回させることで、全長をス
パイラル状に曲成した曲成部11によって構成されてい
る開底内管4が有底外管2に環状の隙間3を有して挿入
されていると、環状の隙間3を流れる不凍液(熱媒体)
の垂直方向の流れ成分に旋回成分が与えられ、垂直方向
の流れが旋回流に変換される。これにより、実際の旋回
流の流速を前記垂直方向の流れの流速よりも高くして、
有底外管2の管壁内面での熱伝達率を高めることができ
る。
As described above, by turning the pipe axis C2 in a spiral around the vertical pipe axis C1 of the bottomed outer pipe 2, the open bottom formed by the bent portion 11 whose entire length is spirally bent. When the inner pipe 4 is inserted into the bottomed outer pipe 2 with the annular gap 3, the antifreeze (heat medium) flowing through the annular gap 3
Is given a swirl component to the vertical flow component, and the vertical flow is converted into a swirl flow. Thereby, the flow velocity of the actual swirling flow is made higher than the flow velocity of the vertical flow,
The heat transfer coefficient on the inner surface of the tube wall of the bottomed outer tube 2 can be increased.

【0016】なお、請求項2に記載の発明は、図4およ
び図5に示した実施の形態にのみ限定されるものではな
い。すなわち、前記実施の形態では、開底内管4の全長
をスパイラル状に曲成した曲成部11によって構成して
いるが、開底内管4の一部をスパイラル状に曲成した曲
成部11によって構成してもよい。このように、一部が
スパイラル状に曲成した曲成部11によって構成されて
いる開底内管4では、図6に示すように、採熱または放
熱温度差の大きい開底内管4の深部に曲成部11を位置
させるのが熱交換性能上で有利である。
The invention described in claim 2 is not limited only to the embodiment shown in FIGS. That is, in the above-described embodiment, the entire length of the open-bottomed inner tube 4 is constituted by the bent portion 11 which is bent in a spiral shape. It may be constituted by the unit 11. As described above, in the open-bottomed inner tube 4 partially constituted by the bent portion 11 bent in a spiral shape, as shown in FIG. It is advantageous in terms of heat exchange performance to locate the bent portion 11 at a deep portion.

【0017】[0017]

【発明の効果】以上説明したように、請求項1に記載の
発明に係る循環型地熱利用装置は、開底内管の少なくと
も一部に有底外管の垂直管軸方向に蛇行する屈曲部が設
けられるこによって、環状の隙間を流れる不凍液(熱媒
体)の流速を変化させ、この流速変化によって不凍液の
流れに乱れを生じさせることができる。このため、有底
外管の管壁内面での熱伝達率を高めて、熱交換性能を向
上させ、大きい採熱または放熱(蓄熱)を行うことがで
きる。また、請求項2に記載の発明に係る循環型地熱利
用装置は、開底内管の少なくとも一部が該開底内管の管
軸を有底外管の垂直管軸のまわりで旋回させて該垂直管
軸方向にのばしたスパイラル状に曲成した曲成部によっ
て構成されていることにより、環状の隙間を流れる不凍
液(熱媒体)の垂直方向の流れ成分に旋回成分を与え
て、垂直方向の流れを旋回流に変換することができる。
これにより、実際の旋回流の流速を前記垂直方向の流れ
の流速よりも高くして、有底外管の管壁内面での熱伝達
率を高めて、熱交換性能を向上させ、大きい採熱または
放熱(蓄熱)を行うことができる。
As described above, the circulating geothermal utilization apparatus according to the first aspect of the present invention has a bent portion meandering in the vertical tube axis direction of the bottomed outer tube on at least a part of the open bottomed inner tube. Is provided, the flow rate of the antifreeze (heat medium) flowing through the annular gap is changed, and the flow of the antifreeze can be disturbed by the change in the flow rate. Therefore, the heat transfer coefficient of the bottomed outer tube on the inner surface of the tube wall can be increased, the heat exchange performance can be improved, and large heat collection or heat dissipation (heat storage) can be performed. Further, in the circulation type geothermal utilization apparatus according to the second aspect of the present invention, at least a part of the open bottomed inner pipe rotates the pipe axis of the open bottomed inner pipe around the vertical pipe axis of the bottomed outer pipe. By being constituted by a spirally bent portion extending in the axial direction of the vertical pipe, a swirl component is given to a vertical flow component of the antifreeze liquid (heat medium) flowing through the annular gap, thereby providing a vertical component. Directional flow can be converted to swirling flow.
Thereby, the flow velocity of the actual swirling flow is made higher than the flow velocity of the vertical flow, the heat transfer coefficient on the inner wall surface of the bottomed outer tube is increased, the heat exchange performance is improved, and Alternatively, heat radiation (heat storage) can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に記載の発明の一実施の形態を示す縦
断面図である。
FIG. 1 is a longitudinal sectional view showing an embodiment of the invention described in claim 1;

【図2】(a)は図1のA−A線断面図、(b)は図1
のB−B線断面図、(c)は図1のC−C線断面図、
(d)は図1のD−D線断面図である。
2A is a cross-sectional view taken along the line AA of FIG. 1, and FIG.
BB line sectional view, (c) is a CC line sectional view of FIG.
(D) is a sectional view taken along line DD of FIG. 1.

【図3】請求項1に記載の発明の他の実施の形態を示す
縦断面図である。
FIG. 3 is a longitudinal sectional view showing another embodiment of the invention described in claim 1.

【図4】請求項2に記載の発明の一実施の形態を示す縦
断面図である。
FIG. 4 is a longitudinal sectional view showing one embodiment of the invention described in claim 2;

【図5】(e)は図4のE−E線断面図、(f)は図4
のF−F線断面図、(g)は図4のG−G線断面図、
(h)は図4のH−H線断面図である。
5 (e) is a sectional view taken along line EE of FIG. 4, and FIG. 5 (f) is a sectional view of FIG.
FIG. 4G is a sectional view taken along line FF of FIG.
(H) is a sectional view taken along line HH in FIG. 4.

【図6】請求項2に記載の発明の他の実施の形態を示す
縦断面図である。
FIG. 6 is a longitudinal sectional view showing another embodiment of the invention described in claim 2.

【図7】従来例の縦断面図である。FIG. 7 is a longitudinal sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 土壌 2 有底外管 3 環状の隙間 4 開底内管 5 弁箱シート 6 二重管 8 循環系 9 熱交換器 10 屈曲部 11 スパイラル状の曲成部 C1 有底外管の垂直管軸 C2 開底内管管軸 Reference Signs List 1 soil 2 bottomed outer pipe 3 annular gap 4 open bottomed inner pipe 5 valve box sheet 6 double pipe 8 circulation system 9 heat exchanger 10 bent section 11 spiral bent section C1 vertical pipe axis of bottomed outer pipe C2 Open bottom inner tube tube shaft

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 土壌に埋設した有底外管に環状の隙間を
有して開底内管を挿入した構造の二重管と、この二重管
で熱媒体を循環させる循環系とを備えた熱交換器によっ
て、土壌からの採熱または土壌への放熱を行うように構
成した循環型地熱利用装置において、前記開底内管の少
なくとも一部に前記有底外管の垂直管軸方向に蛇行する
屈曲部が設けられていることを特徴とする循環型地熱利
用装置。
1. A double pipe having a structure in which an open bottom inner pipe is inserted into a bottomed outer pipe buried in soil with an annular gap, and a circulation system for circulating a heat medium through the double pipe. In the circulation type geothermal utilization device configured to perform heat collection from the soil or heat release to the soil by the heat exchanger, at least a part of the open bottomed inner pipe extends in a vertical pipe axis direction of the bottomed outer pipe. A circulation type geothermal utilization device, wherein a meandering bent portion is provided.
【請求項2】 土壌に埋設した有底外管に環状の隙間を
有して開底内管を挿入した構造の二重管と、この二重管
で熱媒体を循環させる循環系とを備えた熱交換器によっ
て、土壌からの採熱または土壌への放熱を行うように構
成した循環型地熱利用装置において、前記開底内管の少
なくとも一部が該開底内管の管軸を前記有底外管の垂直
管軸のまわりで旋回させて該垂直管軸方向にのばしたス
パイラル状に曲成した曲成部によって構成されているこ
とを特徴とする循環型地熱利用装置。
2. A double pipe having a structure in which an open bottom inner pipe is inserted into a bottomed outer pipe buried in soil with an annular gap, and a circulation system for circulating a heat medium through the double pipe. In the circulating-type geothermal utilization apparatus configured to perform heat collection from the soil or heat release to the soil by the heat exchanger, at least a part of the open-bottomed inner pipe has a pipe axis of the open-bottomed inner pipe. A circulation type geothermal utilization apparatus characterized in that it is constituted by a spirally bent portion which is turned around a vertical pipe axis of a bottom outer pipe and extended in the vertical pipe axis direction.
JP11179948A 1999-06-25 1999-06-25 Circulating geothermal heat utilizing apparatus Pending JP2001004232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11179948A JP2001004232A (en) 1999-06-25 1999-06-25 Circulating geothermal heat utilizing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11179948A JP2001004232A (en) 1999-06-25 1999-06-25 Circulating geothermal heat utilizing apparatus

Publications (1)

Publication Number Publication Date
JP2001004232A true JP2001004232A (en) 2001-01-12

Family

ID=16074758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11179948A Pending JP2001004232A (en) 1999-06-25 1999-06-25 Circulating geothermal heat utilizing apparatus

Country Status (1)

Country Link
JP (1) JP2001004232A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2434200A (en) * 2006-01-14 2007-07-18 Roxbury Ltd Heat exchanger component for a geothermal system
KR100745524B1 (en) 2006-06-05 2007-08-03 인천전문대학산학협력단 A cooling and heating system with a loop-type pipe arrangement structure
US7490657B2 (en) 2006-09-22 2009-02-17 Hiroaki Ueyama Double-pipe geothermal water circulating apparatus
US20100270003A1 (en) * 2009-04-27 2010-10-28 Alberto Sarria Two-concentric pipe system to heat fluids using the earth's interior thermal energy (deep)
EP1861668A4 (en) * 2005-03-09 2011-01-19 Kelix Heat Transfer Systems Llc Coaxial-flow heat transfer structures for use in diverse applications
ITBO20100520A1 (en) * 2010-08-13 2012-02-14 Univ Ferrara GEOTHERMAL SYSTEM
US8161759B2 (en) 2005-03-09 2012-04-24 Kelix Heat Transfer Systems, Llc Method of and apparatus for transferring heat energy between a heat exchanging subsystem above the surface of the earth and material therebeneath using one or more coaxial-flow heat exchanging structures producing turbulence in aqueous-based heat-transfering fluid flowing along helically-extending outer flow channels formed therein
WO2013068614A1 (en) * 2011-11-08 2013-05-16 Abn Pipe Systems, S.L.U. Probe for heat exchange in aerotechnical and exothermic applications
RU2591362C1 (en) * 2015-06-11 2016-07-20 Открытое акционерное общество "ИНСОЛАР-ИНВЕСТ" Geothermal heat pump system
CN106642765A (en) * 2016-10-21 2017-05-10 浙江陆特能源科技股份有限公司 Medium-shallow layer composite mode buried pipe heat conduction device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1861668A4 (en) * 2005-03-09 2011-01-19 Kelix Heat Transfer Systems Llc Coaxial-flow heat transfer structures for use in diverse applications
US8161759B2 (en) 2005-03-09 2012-04-24 Kelix Heat Transfer Systems, Llc Method of and apparatus for transferring heat energy between a heat exchanging subsystem above the surface of the earth and material therebeneath using one or more coaxial-flow heat exchanging structures producing turbulence in aqueous-based heat-transfering fluid flowing along helically-extending outer flow channels formed therein
EP1808652A3 (en) * 2006-01-14 2008-05-28 Roxbury Limited Geothermal energy system
GB2434200A (en) * 2006-01-14 2007-07-18 Roxbury Ltd Heat exchanger component for a geothermal system
EP1808652A2 (en) * 2006-01-14 2007-07-18 Roxbury Limited Geothermal energy system
KR100745524B1 (en) 2006-06-05 2007-08-03 인천전문대학산학협력단 A cooling and heating system with a loop-type pipe arrangement structure
US7490657B2 (en) 2006-09-22 2009-02-17 Hiroaki Ueyama Double-pipe geothermal water circulating apparatus
US20100270003A1 (en) * 2009-04-27 2010-10-28 Alberto Sarria Two-concentric pipe system to heat fluids using the earth's interior thermal energy (deep)
US8307896B2 (en) * 2009-04-27 2012-11-13 Alberto Sarria Two-concentric pipe system to heat fluids using the earth's interior thermal energy (deep)
ITBO20100520A1 (en) * 2010-08-13 2012-02-14 Univ Ferrara GEOTHERMAL SYSTEM
EP2418439A3 (en) * 2010-08-13 2013-12-04 Universita' degli Studi di Ferrara Geothermal system
WO2013068614A1 (en) * 2011-11-08 2013-05-16 Abn Pipe Systems, S.L.U. Probe for heat exchange in aerotechnical and exothermic applications
ES2407542A1 (en) * 2011-11-08 2013-06-12 Abn Pipe Systems, S.L.U. Probe for heat exchange in aerotechnical and exothermic applications
RU2591362C1 (en) * 2015-06-11 2016-07-20 Открытое акционерное общество "ИНСОЛАР-ИНВЕСТ" Geothermal heat pump system
CN106642765A (en) * 2016-10-21 2017-05-10 浙江陆特能源科技股份有限公司 Medium-shallow layer composite mode buried pipe heat conduction device

Similar Documents

Publication Publication Date Title
CN208655616U (en) A kind of phase transformation chip radiator
JP4182961B2 (en) Geothermal heat pump air conditioner
JP2001004232A (en) Circulating geothermal heat utilizing apparatus
CN101191703A (en) Louver fin of radiator
JP2007321383A (en) Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat
US20150247658A1 (en) Low refrigerant high performing subcooler
CN100402967C (en) Heat exchanger
JP2015068516A (en) Heat exchange pipe
JP2005083667A (en) Heat exchanger
CN108278914A (en) A kind of heat-pipe apparatus
TWI310076B (en)
JP4428453B2 (en) Bubble pump type heat transport equipment
JP2741364B2 (en) Heat pipe radiator in two-phase fluid loop thermal control system
JPS63259387A (en) Heat exchanging section of double-wall structured heat exchanger
US20140216701A1 (en) Heat exchanger and heat management system having such a heat exchanger
CN206724523U (en) A kind of automotive air-conditioning condenser
JP3622297B2 (en) Heat exchanger
JP2596219Y2 (en) Flat heat pipe
JP3001393U (en) Cobra-shaped heat pipe heat exchanger
JPS6222992A (en) Multi-tubular heat exchanger
JP3001701U (en) Wavy heat pipe heat exchanger
CN107084554A (en) A kind of automotive air-conditioning condenser
KR100364391B1 (en) Heat exchanger
EP1128148A3 (en) Heat exchanger
CN206113332U (en) Refrigerant heating device and heat pump water heater