JP2000515627A - Chiral non-particulate solvent - Google Patents

Chiral non-particulate solvent

Info

Publication number
JP2000515627A
JP2000515627A JP10506491A JP50649198A JP2000515627A JP 2000515627 A JP2000515627 A JP 2000515627A JP 10506491 A JP10506491 A JP 10506491A JP 50649198 A JP50649198 A JP 50649198A JP 2000515627 A JP2000515627 A JP 2000515627A
Authority
JP
Japan
Prior art keywords
chiral
particulate
solvent
solvents
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10506491A
Other languages
Japanese (ja)
Inventor
ミュラー、エグベルト
ルブダ、ディエター
ヴィエラント、ゲルハルト
カブレラ、カリン
ツァーニイ、クリスティーナ
ディクス、エディト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19629206A external-priority patent/DE19629206A1/en
Priority claimed from DE1997126152 external-priority patent/DE19726152A1/en
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of JP2000515627A publication Critical patent/JP2000515627A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/29Chiral phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • B01J20/28092Bimodal, polymodal, different types of pores or different pore size distributions in different parts of the sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • B01J20/287Non-polar phases; Reversed phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • B01J20/3263Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. an heterocyclic or heteroaromatic structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • C08G81/028Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyamide sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/80Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J2220/82Shaped bodies, e.g. monoliths, plugs, tubes, continuous beds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/52Physical parameters
    • G01N2030/524Physical parameters structural properties
    • G01N2030/528Monolithic sorbent material

Abstract

(57)【要約】 本発明は例えばモノリス(一体構造の)基礎保持体または誘導ポリアミド膜を基体としてキラル基によって変性された非微粒子状溶媒に関する。これら溶媒は鏡像体を分離する間高い流速で用いることができる。   (57) [Summary] The present invention relates to non-particulate solvents modified with chiral groups, for example on the basis of monolithic (monolithic) base supports or derived polyamide membranes. These solvents can be used at high flow rates while separating the enantiomers.

Description

【発明の詳細な説明】 キラル非微粒子状溶媒 本発明はキラルな非微粒子状溶媒と鏡像異性体を分割するためのその使用に関 する。 鏡像異性体を分割するための多くのキラル分離物質が先行技術から知られてい る。これらは全て微粒子状の分離物質である。既知のキラル分離物質はキラル化 合物そのもの(例えば三醋酸セルローズ)よりなるか、キラル分離エフェクター を保持体に塗布するかあるいは保持体に化学的に結合させる。また溶離液に固定 相と相互に作用するキラル分離エフェクターを加えることも可能である(動的塗 布)。 多くのキラル分離エフェクターが知られている;最も重要なグループの既知の キラル分離エフェクターは a)アミノ酸とその誘導体、例えば、L−フェニルアラニンまたはD−フェニ ルアラニン、アミノ酸またはアシル化アミノ酸のエステルまたはアミドあるいは オリゴペプチド; b)主鎖中に不斉または不均斉を有する天然または合成ポリマー;この中には タンパク質(例えば酸性α1糖タンパク質、ウシ血清アルブミン、セルラーゼ;J .Chrom.264、63〜68ページ(1983)、J.Chrom.269、71〜80ページ (1983)、WO91/12221参照)、セルローズとセルローズ誘導体および他の 多糖類とその誘導体(例:三安息香酸セルローズ、セルローズトリベンジルエー テル、トリスフェニルカルバミン酸セルローズ、トリス−3−クロロ安息香酸セ ルローズ、トリス(3,5−ジメチルフェニルカルバミン酸)アミローズ、トリ ス(3,5−ジメチル安息香酸)セルローズ、トリス(3,5−ジメチルフェニル カルバミン酸)セルローズ;EP 0 147 804,EP 0 155 637,EP 0 718 625参照)が ある; c)シクロデキストリンおよびシクロデキストリン誘導体(例えばJ.High Reso l.Chrom.&Chromat.Comm.、147〜148ページ(1984);EP 0407412;EP 0 445 604); d)側鎖に不斉中心をもつポリマー(例えばEP 0 249 078;EP 0 282 770;EP 0 448 823) e)キラル構造体のまわりで重合するポリマー(“インプリント”ポリマー( 例えばJ.Chromt.707、199〜203ページ(1995);J.Chromat.694、3〜 13ページ(1995))。 先行技術のキラル分離物質は微粒子状の溶媒でカラムクロマトグラフィーで用 いることが好ましい。このために用いられるカラム充填物質は許容できる流速を 達成するために可成りの操作圧を必要とする。その上微粒子状溶媒床の物理的安 定性はあまり良好ではない。 従って本発明の目的は、より高い流速を可能にするより安定な溶媒充填物を用 いて鏡像異性体を分割する方法と、またより安定なキラルに変性した溶媒を提供 することである。 鏡像異性体を分割するために非微粒子状溶媒を用いることができ、また高い溶 離速度を与えることができることがわかった。上記目的はキラル分離エフェクタ ーを含む非微粒子状溶媒を提供することによって達成される。非微粒子状溶媒は 、特に、モノリスな(一体構造の)保持体を基体とする溶媒とまた多孔質膜を基 体とする溶媒である。 本発明は多孔質造形体を基体とする、特に、マクロ細孔の壁の中で互いに連絡 するマクロ細孔とメソ細孔を有する多孔質造形セラミック体を基体として、その マクロ細孔の直径が0.1μmより大きい中央値をもちそのメソ細孔の直径が2 から100nmの中央値をもつ多孔質造形セラミック体を基体とする、あるいは 多孔質造形ポリアミド体を基体とする、キラル非微粒子状溶媒を提供する。 本発明は鏡像異性体をクロマトグラフ分割するために本発明のキラル非微粒子 状溶媒を使用することを提供する。 本発明はまた本発明のキラル非微粒子状溶媒を用いて鏡像異性体のクロマトグ ラフ分割をする方法を提供する。 図1から3は種々の適用例の溶離図を示す;実験の詳細は使用例A〜Cに記さ れている。 驚くことに、非微粒子状の、特に、モノリスな、溶媒を使用すると、H/U曲 線は平らであることがわかった。さらに、生ずる差圧が低い非微粒子状溶媒の場 合分離段階の長さが短いことがわかった。その結果、非微粒子状溶媒を用いる分 取クロマトグラフィ分離法は、微粒子状溶媒を用いる場合と比べて著しく最適化 することができる;これらの方法の経済性は十分に改善される。 本発明のために用いられる“非微粒子状溶媒”という用語は、溶媒床が個々の 分離している粒子からできている既知の上記微粒子状溶媒との差異を示している 。分離エフェクターを用いて変性したモノリスな溶媒と膜は共に非微粒子状溶媒 という用語に含まれる。 モノリス溶媒は文献から原理がわかっている;その中には特にWO94/19 687 とWO95/03 256に開示された多孔質造形セラミック体がある。F.SvecとJ.M.Fre chet(1992)Anal.Chem.64、820〜822ページおよびS.Hjertenら(1989)J.C hromatogr.473、273〜275ページに記載されているように、モノリス溶媒 という用語はまた、広い意味で、ポリマーでできた造形体も含む。 基礎保持体として、マクロ細孔の壁の中で互いに連絡しているマクロ細孔とメ ソ細孔を有する、WO95/03 256に開示された多孔質造形セラミック体が特に好 ましく、ここでマクロ細孔の径は0.1μmより大きい中央値をもち、メソ細孔 の径は2〜100nmの中央値をもっている。これらの基礎保持体は本来知られ ている方法によって変性することができ、本発明による鏡像異性体の分割に適し た溶媒を与える。適当な変性方法は当業者には知られており、ハンドブック、例 えばUnger K.K.(編集)Porus Silica,Elsevier Scientific Publishing Compa ny(1979)またはUnger K.K.Packings and Stationry Phases in Chromatogarap hic Techniques,Marcel Dekker(1990)に記載されている。 分離エフェクターを用いて変性した吸着膜はWO91/03 506,DE196 27 302.1と WO96/22 316、およびまたPCT/EP97/02 768に開示されている。WO96/22 316, DE 196 27 302.1とPCT/EP97/02 768に開示された変性ポリアミド膜を用いること が特に好ましい。これらの膜をつくる方法はこれらの刊行物に示されている。こ れらの膜もまたキラル分離エフェクターを用いて変性することができる。 特に膜用の基体ポリマーとして適したポリアミドは当業者には知られており、のような膜はDE 195 01 726.9やDE 19 624 813.2で用いられたような反応条件下 (反応温度80℃以下)ではその形状を保持するのに対し、ポリアミドを変性す る他の方法は溶融体または溶液中で行われるので、このような膜の反応は好まし い。 アザラクトン基やエポキシ基とは別に、上記出願に開示された変性ポリアミド は特にカルボキシル基、アミノ基またはヒドロキシ基を含有することができる。 これらの基は本来知られた方法でキラル分離エフェクターをポリアミドに結合さ せうる。例えばEP 0 249 078,EP 0 282 770およびEP 0 448 823に開示された光 学活性モノマーを、本来知られた方法で上記出願に開示された重合性変性ポリア ミドに重合させることができる。 キラル分離エフェクターの吸着または化学結合は、例えば、まずアミノ基、カ ルボキシル基、カルボニル基、ヒドロキシ基またはエポキシ基のような官能基あ るいはアザラクトン基を基礎保持体中に導入することによって達成することがで きる。次に、例えば、アミノ基を含有するキラル分離エフェクター(例:例えば EP 0 249 078に開示された光学活性アミン、アミノ酸、アミノ酸エステルおよび アミド、オリゴペプチド、タンパク質、アミノ糖)をカルボジイミドのような水 除去剤を用いてカルボキシル基で変性した基礎保持体に結合させることができる 。これらのキラル分離エフェクターはまたアザラクトン基またはエポキシ基で変 性した基礎保持体を用いて結合させることもできる。カルボキシル基を含有する キラル分離エフェクター(例:アミノ酸またはN−アシル化アミノ酸、オリゴペ プチド、タンパク質、光学活性カルボン酸)はカルボジイミドのような水除去剤 を用いてアミノ基またはヒドロキシ基で変性した基礎保持体に結合させることが できる。ヒドロキシル基を含有するキラル分離エフェクター(例:多糖類とその 誘導体、シクロデキストリンとその誘導体)はカルボジイミドのような水除去剤 を用いてカルボキシル基で変性した基礎保持体に結合させることができる。さら に、キラル分離エフェクターを、二官能性試薬(例:ジイソシアネート)を用い て、適当に変性した基礎保持体に結合させることができる。キラル分離エフェク ター として化学的に結合したシクロデキストリンを含むキラル溶媒はEP 0 445 604に 開示された方法によって好ましい基礎保持体から得ることができる。 これらの方法とその習慣的な変法は当業者には知られており、ハンドブックや 評論記事に記載されている。 本発明のために、“キラルに変性した非微粒子状溶媒”あるいは“変性した非 微粒子状造形体”はキラル分離エフェクターを含む非微粒子状基礎保持体である 。ここで、キラル分離エフェクターは化学的に結合し、または吸着しまたは動的 塗布として存在することができる。 これらの好ましい溶媒を用いると、分離性状に悪影響を及ぼすことなく流量を 広範囲で変化させることができることがわかった。この特性を利用すると、分離 性能を損なうことなく流量を溶離プロフィールに合わせることができる。これに より分離に要する時間は十分に減少し、特に予備的分離あるいは日常分析にとっ て大きな利点を生じる。 さらに詳細に述べなくても、当業者は上記説明を最大限に利用することができ ると思われる。従って好ましい実施態様は単に説明のためのものと考えるべきで あって、開示を限定する如何なる形態をも構成するものではない。 上記および下記の全ての出願、特許および出版物ならびに対応する出願、なら びに1996年7月19日提出のDE 196 29 206.9および1997年6月20日 提出のDE 197 26 152.3、の全開示は引例として本出願に組み込まれる。 実施例 次の実施例は本発明を例証するものであって本発明を何ら限定するものではな い。 下記において、室温は15から30℃の温度を意味する。 実施例1:β−シクロデキストリンを化学的に結合したキラル溶媒の製造 EP 0 445 604の実施例2に記載された方法と同様の方法を用いて、EP 0 710 2 19に記載のように製造した多孔質造形体をβ−シクロデキストリン、クロロ蟻酸 p−ニトロフェニルおよび3−(2−アミノエチル)アミノプロピルトリメトキ シシランよりなる反応溶液と反応させて化学的に結合したβ−シクロデキストリ ンを含有するキラル溶媒を得る。このために反応溶液は造形体中をポンプで流 される。 この結果、β−シクロデキストリンを化学的に結合した変性モノリス造形体が 得られる。 実施例2:C18−RP溶媒の製造 EP 0 710 219に記載のように製造した多孔質造形体をメチルオクタデシルジク ロロシランを用いて化学的に変性する;このために、反応溶液は造形体中をポン プで流される。 この結果、C18−アルキル基で変性され、かつ動的に塗布された溶媒を用いる 鏡像体分割用の固定相として適した、変性モノリス造形体が得られる(使用例B とC参照)。 実施例3:ポリアミド中空繊維膜とビニルジメチルアザラクトンの反応 2.56gの1,8−ジアザビシクロ[5.4.0]ウンデ−7−セン(DBU)と 32mlのビニルジメチルアザラクトンを160mlのジメチルホルムアミドに 溶解する。ポリアミド中空繊維束(ポリアミド6、糸数64:個々の繊維の直径 :内径0.2mm、外径0.5mm;平均気孔開度:0.5μm)を300〜10 mm し、上記溶液を室温でまた2ml/分の流量で24時間中空繊維束を通してポン プで循環させる。次に変性した中空繊維束をジメチルホルムアミド、アセトン、 醋酸エチルおよびアセトンで洗浄し真空乾燥器中で50℃で乾燥する。 実施例4:ビニルジメチルアザラクトンで活性化したポリアミド中空繊維膜上 でのγ−グロブリンの生成 1gのγ−グロブリンを100mlのトリス緩衝液(50mM、pH7.4)に 溶かし、実施例1に記載の装置を用いて、実施例3に記載のように変性した中空 繊維束中を、室温でポンプを用いて循環させる(流量:5ml/分)。この操作 中、溶液中のタンパク質濃度とその減少度を紫外分光測光法によって連続的に測 定した;2時間後ポンプで循環されている溶液中のタンパク質濃度は一定であっ た。中空繊維束をトリス緩衝液(50mM、pH7.4)と0.1M醋酸で洗浄し た後、中空繊維中で共有的に結合したタンパク質を測定した:66.5mg γ−グロブリンは主鎖にキラリティをもつポリマーである。キラルに変性され たポリアミド膜をもつ中空繊維モジュールが得られる。 同様に、例えばウシ血清アルブミンはアザラクトン基またはエポキシ基によっ て活性化されたポリアミド膜に結合することができる。この結果J.Chrom.264, 63〜68ページ(1983)に記載の溶媒と同様の、鏡像体の分割に適したキ ラル溶媒が得られる。 使用例A:化学的に結合したβ−シクロデキストリンを含有するキラル溶媒上 でのラセミクロマカリンの分割 実施例1に記載のように製造した変性モノリス造形体(83×7.2mm)を 溶媒として用い、ラセミクロマカリンを次の条件下で分割する。 試料:クロマカリン(エタノール中0.2mg/ml) 注入容量:5μl 溶離液:メタノール/水(20/80;容量比) 温度:室温 流量:1.0ml/分 検出:254nm 溶離図を図1に示す 使用例B:β−シクロデキストリンの動的塗布を用いるラセミクロルタリドン の分割 実施例2に記載のように製造した変性モノリス造形体(RP−18;83×7 2mm)を溶媒として用い、ラセミクロルタリドンを次の条件下で分割する。 試料:クロルタリドン(0.44mg/ml) 注入量:5μl 溶離液:メタノール/10mMのβ−シクロデキストリンを含有する25 mMリン酸ナトリウム水溶液(p H2)(20/80、容量比) 温度:室温 流量:1.0ml/分 検出:254nm 溶離図を図2に示す。 使用例C:β−シクロデキストリンの動的塗布を用いるラセミプロミナルの 分割 実施例2に記載のように製造した変性モノリス造形体(RP−18;83×7 .2mm)を溶媒として用い、ラセミプロミナルを次の条件下で分割する。 試料:プロミナル(0.55mg/ml) 注入量:5μl 溶離液:メタノール/10mMのβ−シクロデキストリンを含有する25 mMリン酸ナトリウム水溶液(p H2)(20/80、容量比) 温度:室温 流量:1.0ml/分 検出:254nm 溶離図を図3に示す。The present invention relates to chiral non-particulate solvents and their use for resolving enantiomers. Many chiral separating materials for resolving enantiomers are known from the prior art. These are all particulate separation materials. Known chiral separation materials consist of the chiral compound itself (eg, cellulose triacetate), or the chiral separation effector is applied to the support or chemically attached to the support. It is also possible to add to the eluate a chiral separation effector which interacts with the stationary phase (dynamic application). Many chiral separating effectors are known; the most important group of known chiral separating effectors are: a) amino acids and derivatives thereof, such as L-phenylalanine or D-phenylalanine, esters or amides or oligos of amino acids or acylated amino acids. peptide; b) a natural or synthetic polymers having an asymmetric or asymmetry in the main chain; among the protein (e.g., an acidic alpha 1-glycoprotein, bovine serum albumin, cellulase;. J .Chrom 264, 63~68 page ( 1983), J. Chrom. 269 , pp. 71-80 (1983), WO 91/12221), cellulose and cellulose derivatives and other polysaccharides and derivatives thereof (eg, cellulose tribenzoate, cellulose tribenzyl ether, trisphenyl) Carbamate cellulose, tris-3-chlorobenzo EP 0 147 804, EP 0 155 Cellulose perfume, tris (3,5-dimethylphenylcarbamic acid) amylose, tris (3,5-dimethylbenzoic acid) cellulose, tris (3,5-dimethylphenylcarbamic acid) cellulose; 637, EP 0 718 625); c) cyclodextrins and cyclodextrin derivatives (eg J. High Resources. Chrom. & Chromat. Comm. 3 , pp. 147-148 (1984); EP 0407412; EP 0 445 604). D) a polymer having an asymmetric center in the side chain (eg EP 0 249 078; EP 0 282 770; EP 0 448 823) e) a polymer which polymerizes around a chiral structure (eg an “imprint” polymer (eg J . .Chromt 707, 199~203 page (1995);.. J.Chromat 694 , 3~ 13 pages (1995)) chiral separation material of the prior art good be used in column chromatography particulate solvent The column packing material used for this requires a considerable operating pressure to achieve an acceptable flow rate, and the physical stability of the particulate solvent bed is not very good. The objective is to provide a method for resolving enantiomers with more stable solvent packings that allows higher flow rates, and also to provide more stable chiral modified solvents. Therefore, it was found that a non-particulate solvent can be used and a high elution rate can be provided. The above objective is accomplished by providing a non-particulate solvent comprising a chiral separation effector. Non-particulate solvents are, in particular, solvents based on monolithic (integral structure) carriers and solvents based on porous membranes. The present invention uses a porous molded body as a substrate, in particular, a porous molded ceramic body having macropores and mesopores communicating with each other in a macropore wall, and the diameter of the macropores is A chiral non-particulate solvent having a median larger than 0.1 μm and having a mesopore diameter having a median of 2 to 100 nm as a base or a porous shaped polyamide as a base. I will provide a. The present invention provides for the use of the chiral non-particulate solvents of the present invention for chromatographic resolution of enantiomers. The present invention also provides a method for chromatographic resolution of enantiomers using the chiral non-particulate solvents of the present invention. Figures 1 to 3 show elution diagrams for various applications; experimental details are given in Examples AC. Surprisingly, the H / U curve was found to be flat when using non-particulate, especially monolithic, solvents. In addition, it has been found that the length of the separation step is short for non-particulate solvents with a low differential pressure. As a result, preparative chromatography separation methods using non-particulate solvents can be significantly optimized compared to using particulate solvents; the economics of these methods are significantly improved. The term "non-particulate solvent" as used for the present invention indicates a difference from the above-mentioned known particulate solvents in which the solvent bed is made up of individual, discrete particles. Both monolithic solvents and membranes modified using separation effectors are included in the term non-particulate solvent. Monolithic solvents are known in principle from the literature; among others are the porous shaped ceramic bodies disclosed in WO 94/19 687 and WO 95/03 256. F. Svec and JMFrechet (1992) Anal. Chem. 64 , pp. 820-822 and S. Hjerten et al. (1989) JChromatogr. 473 , pages 273-275, the term monolith solvent also broadly includes shaped bodies made of polymers. Particularly preferred as base support is a porous shaped ceramic body disclosed in WO 95/03 256, having macropores and mesopores interconnected in the macropore wall, wherein the macropores Has a median of greater than 0.1 μm, and the diameter of the mesopores has a median of 2 to 100 nm. These base supports can be modified by methods known per se and provide suitable solvents for the resolution of the enantiomers according to the invention. Suitable denaturing methods are known to those skilled in the art and are described in handbooks such as Unger KK. (Editor) Porus Silica, Elsevier Scientific Publishing Company (1979) or Unger KK Packings and Stationry Phases in Chromatogarapic Techniques, Marcel Dekker (1990). Adsorption membranes modified using separation effectors are disclosed in WO 91/03 506, DE 196 27 302.1 and WO 96/22 316, and also in PCT / EP97 / 02768. It is particularly preferred to use the modified polyamide membranes disclosed in WO 96/22 316, DE 196 27 302.1 and PCT / EP97 / 02768. Methods for making these films are given in these publications. These membranes can also be denatured using chiral separation effectors. Polyamides particularly suitable as base polymers for membranes are known to those skilled in the art, Such a film retains its shape under the reaction conditions used at DE 195 01 726.9 and DE 19 624 813.2 (reaction temperatures below 80 ° C.), whereas the other method of modifying polyamide is melt Alternatively, the reaction of such a membrane is preferred because it is performed in a solution. Apart from the azalactone groups and the epoxy groups, the modified polyamides disclosed in the above-mentioned application can contain in particular carboxyl groups, amino groups or hydroxy groups. These groups can attach the chiral separation effector to the polyamide in a manner known per se. For example, the optically active monomers disclosed in EP 0 249 078, EP 0 282 770 and EP 0 448 823 can be polymerized in a manner known per se to the polymerizable modified polyamide disclosed in the above-mentioned application. Adsorption or chemical bonding of the chiral separation effector can be achieved, for example, by first introducing a functional group such as an amino group, a carboxyl group, a carbonyl group, a hydroxy group or an epoxy group or an azalactone group into the base support. . Next, for example, a chiral separation effector containing an amino group (eg, optically active amines, amino acids, amino acid esters and amides, oligopeptides, proteins, amino sugars disclosed in EP 0 249 078) is converted to a water such as carbodiimide. It can be attached to a base support modified with a carboxyl group using a removing agent. These chiral separation effectors can also be attached using a base support modified with azalactone or epoxy groups. Chiral separation effectors containing carboxyl groups (eg, amino acids or N-acylated amino acids, oligopeptides, proteins, optically active carboxylic acids) have been modified with amino or hydroxy groups using a water scavenger such as carbodiimide to retain the base. Can be bound to the body. Chiral separation effectors containing hydroxyl groups (eg, polysaccharides and their derivatives, cyclodextrins and their derivatives) can be attached to carboxyl-modified base supports using water-removing agents such as carbodiimides. In addition, the chiral separation effector can be attached to a suitably modified base support using a bifunctional reagent (eg, diisocyanate). Chiral solvents containing cyclodextrin chemically attached as chiral separation effectors can be obtained from the preferred base supports by the method disclosed in EP 0 445 604. These methods and their customary variants are known to those skilled in the art and are described in handbooks and review articles. For the purposes of the present invention, a "chiral modified non-particulate solvent" or "modified non-particulate shaped body" is a non-particulate base support that includes a chiral separation effector. Here, the chiral separation effector can be chemically bound or adsorbed or present as a dynamic application. It has been found that use of these preferred solvents allows the flow rate to be varied over a wide range without adversely affecting the separation properties. Utilizing this property, the flow rate can be tailored to the elution profile without compromising the separation performance. This significantly reduces the time required for the separation, and provides significant advantages, especially for preliminary separations or routine analysis. Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the above to its fullest extent. Accordingly, the preferred embodiments should be considered as illustrative only and not in any way limiting of the disclosure. The entire disclosures of all the above and below applications, patents and publications and corresponding applications, as well as DE 196 29 206.9 filed on July 19, 1996 and DE 197 26 152.3 filed on June 20, 1997, are by way of reference. Incorporated in the present application. Examples The following examples illustrate the invention but do not limit it in any way. In the following, room temperature means a temperature of 15 to 30 ° C. Example 1 Preparation of a Chiral Solvent Chemically Linked with β-Cyclodextrin Prepared as described in EP 0 710 219 using a method similar to that described in Example 2 of EP 0 445 604 Containing the chemically bonded β-cyclodextrin by reacting the porous shaped body thus obtained with a reaction solution comprising β-cyclodextrin, p-nitrophenyl chloroformate and 3- (2-aminoethyl) aminopropyltrimethoxysilane. To obtain a chiral solvent. For this purpose, the reaction solution is pumped through the shaped body. As a result, a modified monolith molded article in which β-cyclodextrin is chemically bonded is obtained. Example 2 Preparation of a C 18 -RP Solvent A porous shaped body prepared as described in EP 0 710 219 is chemically modified with methyloctadecyldichlorosilane; Is pumped away. The result is a modified monolith sculpture, modified with a C 18 -alkyl group and suitable as stationary phase for enantiomer resolution using dynamically applied solvents (see Examples B and C). Example 3 Reaction of Polyamide Hollow Fiber Membrane with Vinyl Dimethylazalactone 2.56 g of 1,8-diazabicyclo [5.4.0] unde-7-cene (DBU) and 32 ml of vinyldimethylazalactone were converted to 160 ml of dimethyl Dissolve in formamide. Polyamide hollow fiber bundle (polyamide 6, number of yarns 64: diameter of each fiber: inner diameter 0.2 mm, outer diameter 0.5 mm; average pore opening: 0.5 μm) is 300 to 10 mm The solution is then pumped through the hollow fiber bundle at room temperature and at a flow rate of 2 ml / min for 24 hours. Next, the denatured hollow fiber bundle is washed with dimethylformamide, acetone, ethyl acetate and acetone, and dried at 50 ° C. in a vacuum dryer. Example 4 Production of γ-globulin on Polyvinyl Hollow Fiber Membrane Activated with Vinyldimethylazalactone 1 g of γ-globulin was dissolved in 100 ml of Tris buffer (50 mM, pH 7.4) and described in Example 1. Is circulated in the hollow fiber bundle modified as described in Example 3 using a pump at room temperature using a pump (flow rate: 5 ml / min). During this procedure, the protein concentration in the solution and the degree of its decrease were continuously measured by UV spectrophotometry; after 2 hours, the protein concentration in the solution circulated by the pump was constant. After washing the hollow fiber bundle with Tris buffer (50 mM, pH 7.4) and 0.1 M acetic acid, the protein covalently bound in the hollow fiber was measured: 66.5 mg γ-globulin added chirality to the main chain. It is a polymer that has A hollow fiber module with a chirally modified polyamide membrane is obtained. Similarly, for example, bovine serum albumin can bind to a polyamide membrane activated by azalactone or epoxy groups. As a result, a chiral solvent suitable for resolving the enantiomer similar to the solvent described in J. Chrom. 264 , pp. 63-68 (1983) is obtained. Use Example A: Resolution of racemic macalin over a chiral solvent containing chemically bound β-cyclodextrin The modified monolithic shaped body (83 × 7.2 mm) prepared as described in Example 1 was used as the solvent. And the racemic macalin is resolved under the following conditions. Sample: cromakalin (0.2 mg / ml in ethanol) Injection volume: 5 μl Eluent: methanol / water (20/80; volume ratio) Temperature: room temperature Flow rate: 1.0 ml / min Detection: 254 nm The elution diagram is shown in FIG. Use Example B : Resolution of racemic ltalidone using dynamic application of β-cyclodextrin The modified monolith shaped body (RP-18; 83 × 72 mm) prepared as described in Example 2 was used as a solvent, Chlorthalidone is split under the following conditions. Sample: chlorthalidone (0.44 mg / ml) Injection volume: 5 μl Eluent: 25 mM sodium phosphate aqueous solution (pH 2) containing methanol / 10 mM β-cyclodextrin (20/80, volume ratio) Temperature: room temperature Flow rate 1.0 ml / min Detection: 254 nm The elution diagram is shown in FIG. Use Example C : Resolution of racemic prominal using dynamic application of β-cyclodextrin The modified monolithic shaped body (RP-18; 83 × 7.2 mm) prepared as described in Example 2 was used as a solvent, The semiprominal is split under the following conditions. Sample: Prominal (0.55 mg / ml) Injection volume: 5 μl Eluent: 25 mM sodium phosphate aqueous solution (pH 2) containing methanol / 10 mM β-cyclodextrin (20/80, volume ratio) Temperature: room temperature Flow rate 1.0 ml / min Detection: 254 nm The elution diagram is shown in FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 30/48 G01N 30/48 D (81)指定国 EP(AT,BE,CH,DE, DK,ES,FI,FR,GB,GR,IE,IT,L U,MC,NL,PT,SE),JP,US (72)発明者 ヴィエラント、ゲルハルト ドイツ連邦共和国 デー―64625 ベンス ハイム イム バンゲルト 19 (72)発明者 カブレラ、カリン ドイツ連邦共和国 デー―63303 ドライ アイヒ ミュールヴェーク 14 (72)発明者 ツァーニイ、クリスティーナ ドイツ連邦共和国 デー―64331 ヴァイ ターシュタット カスタンイーンヴェーク 33 (72)発明者 ディクス、エディト ドイツ連邦共和国 デー―64297 ダルム シュタット エベルシュタッター キルヒ スシュトラーセ 16──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) G01N 30/48 G01N 30/48 D (81) Designated country EP (AT, BE, CH, DE, DK, ES) , FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), JP, US (72) Inventor Wierland, Gerhard DE-64625 Bensheim im Bangert 19 (72) Inventor Cabrera, Karin Germany Day 63303 Drei Eich Mühlweg 14 (72) Inventor Zagnii, Christina Germany Day 64331 Wei Tästadt Kastaneenweg 33 (72) Inventor Dix, Edith Germany Day 64297 Darmstadt Eberstadt Kirch Strasse 16

Claims (1)

【特許請求の範囲】 1.多孔質造形体を基体とするキラル非微粒子状溶媒。 2.マクロ細孔の壁の中で互いに連絡するマクロ細孔とメソ細孔を有する多孔 質造形セラミック体であって、そのマクロ細孔の直径が0.1μmより大きい中 央値をもちそのメソ細孔の直径が2から100nmの中央値をもつ多孔質造形セ ラミック体を基体とする請求項1のキラル溶媒。 3.多孔質造形ポリアミド体を基体とする請求項1のキラル溶媒。 4.鏡像体をクロマトグラフ分割するための請求項1から3のいずれか1項の キラル非微粒子状溶媒の使用。 5.請求項1から3のいずれか1項のキラル非微粒子状溶媒を用いることを特 徴とする鏡像体をクロマトグラフ分割する方法。[Claims]   1. A chiral non-particulate solvent based on a porous shaped body.   2. Pores with interconnecting macropores and mesopores in the walls of the macropores A shaped ceramic body having a macropore diameter of more than 0.1 μm. A porous molding cell with a median and a median pore diameter of 2 to 100 nm 2. The chiral solvent according to claim 1, wherein the chiral solvent comprises a lamic body.   3. The chiral solvent according to claim 1, wherein the base is a porous shaped polyamide.   4. The method according to claim 1, wherein the enantiomer is chromatographed. Use of chiral non-particulate solvents.   5. The use of the chiral non-particulate solvent according to any one of claims 1 to 3 is characterized. A method for chromatographic division of a mirror image.
JP10506491A 1996-07-19 1997-07-08 Chiral non-particulate solvent Pending JP2000515627A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19629206A DE19629206A1 (en) 1995-01-20 1996-07-19 Polymerisable poly:amide derivatives containing double bonds
DE19629206.9 1997-06-20
DE1997126152 DE19726152A1 (en) 1997-06-20 1997-06-20 Chiral sorbent for rapid enantiomer separation
PCT/EP1997/003600 WO1998003261A1 (en) 1996-07-19 1997-07-08 Chiral non-particulate sorbents
DE19726152.3 1998-01-19

Publications (1)

Publication Number Publication Date
JP2000515627A true JP2000515627A (en) 2000-11-21

Family

ID=26027662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10506491A Pending JP2000515627A (en) 1996-07-19 1997-07-08 Chiral non-particulate solvent

Country Status (3)

Country Link
EP (1) EP0912242A1 (en)
JP (1) JP2000515627A (en)
WO (1) WO1998003261A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296258A (en) * 2001-03-30 2002-10-09 Gl Sciences Inc Porous body for chromatograpy and column
JP2006504515A (en) * 2002-10-31 2006-02-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Inorganic integrated molded product coated with organic polymer
US8764979B2 (en) 2004-01-16 2014-07-01 Organo Corporation Non-particulate organic porous material having optical resolution capability and method for manufacturing same
US8883002B2 (en) 2004-11-29 2014-11-11 Daicel Chemical Industries, Ltd. Separating agent for optical isomers and separation column for optical isomers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT409095B (en) * 1999-05-31 2002-05-27 Michael Rudolf Mag Buchmeiser METHOD FOR PRODUCING MONOLITHIC SUPPORT MATERIALS ON THE BASIS OF POLYMERS PRODUCED BY METATHESIS
DE19946674A1 (en) * 1999-09-29 2001-04-19 Merck Patent Gmbh Porous organic polymer molded body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3843226A1 (en) * 1988-12-22 1990-06-28 Boehringer Ingelheim Kg Chromatography plates and methods for thin-layer chromatographic separation of enantiomers
US5080795A (en) * 1990-05-23 1992-01-14 Research Corporation Technologies, Inc. Supported chiral liquid membrane for the separation of enantiomers
DE59107131D1 (en) * 1990-07-10 1996-02-01 Sartorius Gmbh POROUS, NON-PARTICULAR AND CONVECTIVE PERMEABLE MATRIX
WO1993007945A1 (en) * 1991-10-21 1993-04-29 Cornell Research Foundation, Inc. Column with macroporous polymer media
DE59409547D1 (en) * 1993-02-26 2000-11-16 Merck Patent Gmbh RELEASE AGENT
EP0710219B1 (en) * 1993-07-19 1997-12-10 MERCK PATENT GmbH Inorganic porous material and process for making same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296258A (en) * 2001-03-30 2002-10-09 Gl Sciences Inc Porous body for chromatograpy and column
JP2006504515A (en) * 2002-10-31 2006-02-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Inorganic integrated molded product coated with organic polymer
US8764979B2 (en) 2004-01-16 2014-07-01 Organo Corporation Non-particulate organic porous material having optical resolution capability and method for manufacturing same
US9028694B2 (en) 2004-01-16 2015-05-12 Organo Corporation Non-particulate organic porous material having optical resolution capability and method for manufacturing same
US8883002B2 (en) 2004-11-29 2014-11-11 Daicel Chemical Industries, Ltd. Separating agent for optical isomers and separation column for optical isomers
US8883001B2 (en) 2004-11-29 2014-11-11 Daicel Chemical Industries, Ltd. Separating agent for optical isomers and separation column for optical isomers

Also Published As

Publication number Publication date
EP0912242A1 (en) 1999-05-06
WO1998003261A1 (en) 1998-01-29

Similar Documents

Publication Publication Date Title
CN109569026B (en) Preparation of chromatographic stationary phase with porous frame material as matrix for chiral separation
Miwa et al. Direct liquid chromatographic resolution of racemic compounds. Use of ovomucoid as a column ligand
Alpert et al. Preparation of a porous microparticulatee anion-exchange chromatography support for proteins
Li et al. Fabrication and evaluation of chiral monolithic column modified by β-cyclodextrin derivatives
US7749389B2 (en) Filler used for separating optical isomers and process for separating optical isomers with the filler
Nakamura et al. Chiral separation of DL-tryptophan using porous membranes containing multilayered bovine serum albumin crosslinked with glutaraldehyde
Deng et al. Recognition and separation of enantiomers based on functionalized magnetic nanomaterials
Tang et al. Light-assisted preparation of a cyclodextrin-based chiral stationary phase and its separation performance in liquid chromatography
KR20000069261A (en) Separating agents for optical isomers and process for producing the same
JP2000515627A (en) Chiral non-particulate solvent
Yang et al. Chitosan/coarse filter paper composite membrane for fast purification of IgG from human serum
US7306734B2 (en) Method for separation of enantiomeric isomers by simulated moving bed chromatography
KR0167138B1 (en) Separating agent for optical isomers
US7615150B2 (en) Separation agent for separating optical isomer and method for preparation thereof
US20080314835A1 (en) Chiral separating agents with active support
Aboul-Enein et al. Polysaccharide and cyclodextrin-based monolithic chiral stationary phases and its application to chiral separation
Park et al. Separation of enantiomers on bovine serum albumin coated zirconia in reversed-phase liquid chromatography
Fan et al. Polysaccharides as separation media for the separation of proteins, peptides and stereoisomers of amino acids
JP2021515698A (en) Composite material for bioseparation
JP3635002B2 (en) Filler for separation of optical isomers for liquid chromatography
CA2055869A1 (en) Optical isomer separating agents
Šėrys et al. Preparation and characterization of cellulose based adsorbents for large scale hydrophobic interaction chromatography
Malik et al. Structural characteristics of pendant and copolymeric cyclodextrin polysiloxane stationary phases and their influence on chiral selectivity and resolution in capillary gas chromatography
JP4485742B2 (en) Selective binding material
JP4430881B2 (en) Method for producing filler for separation of optical isomers for liquid chromatography