JP2000357853A - Electric structure and formation method for it - Google Patents

Electric structure and formation method for it

Info

Publication number
JP2000357853A
JP2000357853A JP2000131843A JP2000131843A JP2000357853A JP 2000357853 A JP2000357853 A JP 2000357853A JP 2000131843 A JP2000131843 A JP 2000131843A JP 2000131843 A JP2000131843 A JP 2000131843A JP 2000357853 A JP2000357853 A JP 2000357853A
Authority
JP
Japan
Prior art keywords
conductor
solder
substrate
conductive
solderable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000131843A
Other languages
Japanese (ja)
Other versions
JP3418972B2 (en
Inventor
Angeru Himaresu Migeru
ミゲル・アンゲル・ヒマレス
Susan Milkovich Cynthia
シンシア・スーザン・ミルコヴィッチ
Vincent Pearson Mark
マーク・ビンセント・ピアソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JP2000357853A publication Critical patent/JP2000357853A/en
Application granted granted Critical
Publication of JP3418972B2 publication Critical patent/JP3418972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05671Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/1012Auxiliary members for bump connectors, e.g. spacers
    • H01L2224/10122Auxiliary members for bump connectors, e.g. spacers being formed on the semiconductor or solid-state body to be connected
    • H01L2224/10125Reinforcing structures
    • H01L2224/10126Bump collar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13022Disposition the bump connector being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81009Pre-treatment of the bump connector or the bonding area
    • H01L2224/8101Cleaning the bump connector, e.g. oxide removal step, desmearing
    • H01L2224/81013Plasma cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0379Stacked conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10977Encapsulated connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10992Using different connection materials, e.g. different solders, for the same connection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0415Small preforms other than balls, e.g. discs, cylinders or pillars
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/043Reflowing of solder coated conductors, not during connection of components, e.g. reflowing solder paste
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0465Shape of solder, e.g. differing from spherical shape, different shapes due to different solder pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To allow easy re-working by jointing a second conductor to an uncoated surface of a first conductor mechanically and electrically, and jointing the second conductor to a second substrate mechanically and electrically. SOLUTION: Two pads 16 are provided on a surface 13 of a first substrate 12, and a first conductor 14 is formed on each of the pads 16. The first conductor 14 and an upper surface 13 are washed and roughened in a plasma processing, and the first conductor 14 and the upper surface 13 are coated with a material 18 such as photo-sensitized resin. The material 18 is irradiated with the light of appropriate wavelength using a photo-mask to form an uncoated surface 26. A second conductor 52 is mechanically and electrically connected to the surface 26 while the second conductor 52 is mechanically and electrically connected to a second substrate 42 through a pad 46, for easy re-working.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、第1の基板を第2
の基板にはんだ接合する際の熱によって生じるひずみを
低減する電気構造およびそれに付随する製作方法に関す
る。第1の基板は、チップまたはモジュールを含むこと
ができる。第2の基板は、チップ・キャリヤまたは回路
板を含むことができる。したがって、本発明は、チップ
とチップ・キャリヤ、チップと回路板、およびモジュー
ルと回路板などの結合を含む。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to an electrical structure for reducing distortion caused by heat when soldering to a substrate and an associated manufacturing method. The first substrate can include a chip or a module. The second substrate can include a chip carrier or a circuit board. Thus, the present invention includes the coupling of chips and chip carriers, chips and circuit boards, and modules and circuit boards.

【0002】[0002]

【関連する技術】チップ・キャリヤにチップを結合する
周知の方法は、C4はんだボールによってチップをチッ
プ・キャリヤに結合する、「C4」(Controlled Colla
pse ChipConnection)法である。C4はんだボールは、
チップ上のパッドに結合され、C4はんだボールは、チ
ップ・キャリヤ上のはんだ付け可能な場所ではんだ接合
を使用することによってチップ・キャリヤに接続され
る。C4はんだボールは、当技術分野で周知のいずれか
の組成を有し、一般には、90/10または97/3な
どの高い鉛/スズ重量比の、鉛とスズとの合金を含む。
他のC4はんだボール組成は、重量比が50/50の鉛
/インジウム合金である。
2. Related Art A well-known method of bonding a chip to a chip carrier is to connect the chip to the chip carrier by C4 solder balls.
pse ChipConnection) method. C4 solder ball is
Coupled to pads on the chip, the C4 solder balls are connected to the chip carrier by using solder joints at solderable locations on the chip carrier. C4 solder balls have any composition known in the art and generally comprise a high lead / tin weight ratio, such as 90/10 or 97/3, of an alloy of lead and tin.
Another C4 solder ball composition is a 50/50 weight ratio lead / indium alloy.

【0003】上記の構造を加熱または冷却すると、はん
だ接合は、チップとチップ・キャリヤの熱膨張率の相違
によって生じるひずみを起こしやすい。たとえば、チッ
プは一般にはシリコンを含み、約3〜6ppm/℃の熱
膨張率(「CTE」)を有する(ppmは100万分の
1を表す)。チップ・キャリヤは、一般には、アルミナ
を含む積層または有機材料を含む積層である。アルミナ
・チップ・キャリヤのCTEは約6ppm/℃であり、
有機チップ・キャリヤのCTEは約6〜24ppm/℃
の範囲である。熱サイクル中のCTEの不一致によって
生じる熱応力とその結果としてのひずみは、はんだ接合
の疲労障害を起こし、その結果として、疲労障害を起こ
すまでの達成可能サイクル数によって評価される信頼性
の低下を生じさせることがある。
[0003] When the above structures are heated or cooled, the solder joints are susceptible to distortion caused by differences in the coefficient of thermal expansion between the chip and the chip carrier. For example, chips typically include silicon and have a coefficient of thermal expansion ("CTE") of about 3-6 ppm / C (ppm represents parts per million). The chip carrier is generally a laminate comprising alumina or a laminate comprising organic material. The CTE of the alumina chip carrier is about 6 ppm / ° C,
CTE of organic chip carrier is about 6-24ppm / ℃
Range. The thermal stresses and consequent strains caused by CTE mismatch during thermal cycling cause solder joint fatigue failure, and consequently, loss of reliability as assessed by the number of achievable cycles to fatigue failure. May cause.

【0004】CTE不一致が疲労寿命に与える影響を軽
減する従来技術の方法は、米国特許第5656862号
に記載のチップとチップ・キャリヤとの間の空間に、C
4はんだボールを含めてチップをチップ・キャリヤに接
合する相互接続構造をカプセル封止する材料を充填する
ことである。このカプセル封止材料は典型的には、約2
4〜40ppm/℃のCTEを有し、熱サイクル中に構
造全体を一つの複合構造として移動させる。カプセル封
止材料の剛性が高いため、カプセル封止材料は、普通な
らはんだ接合部で作用するはずの熱応力を吸収すること
ができる。この目的に使用可能な材料は、約106ps
iの剛性を持つHysol45121である。カプセル
封止材料の使用に関する問題は、カプセル封止材料の汚
染や破砕などの条件によって、カプセル封止材料が相互
接続構造に適切に接着しないことである。その結果、カ
プセル材料が分離し、相互接続構造が露出し、それによ
って、熱応力を軽減するというカプセル封止材料の役割
が果たせなくなる。もう一つの難点は、熱応力を有効に
解放するのに必要なカプセル封止材料の高い剛性によ
り、残念なことに相互接続構造にかかる高い機械応力が
生じ、それによって相互接続構造の構造的保全性を弱め
る可能性があることである。カプセル封止材料の剛性が
弱くなると、相互接続構造にかかる機械応力が増大し、
カプセル封止材料が衝撃と振動を吸収する能力が増す。
考慮すべき他の点は、チップ−チップ・キャリヤ構造の
ライフ・サイクル中および試験段階に生じる問題を修正
するために、構造を再加工することが、カプセル封止材
料のためにできなくなることである。
[0004] Prior art methods of reducing the effect of CTE mismatch on fatigue life are described in US Pat. No. 5,656,862, in which the space between the chip and the chip carrier is reduced by CTE.
4. Filling the material that encapsulates the interconnect structure that joins the chip to the chip carrier, including the solder balls. The encapsulation material typically has a thickness of about 2
It has a CTE of 4-40 ppm / ° C and moves the entire structure as a single composite structure during thermal cycling. Due to the high stiffness of the encapsulant, the encapsulant can absorb thermal stresses that would otherwise act at the solder joint. Materials that can be used for this purpose are approximately 10 6 ps
Hysol 45121 having i rigidity. A problem with the use of encapsulants is that conditions such as contamination or crushing of the encapsulant do not allow the encapsulant to properly adhere to the interconnect structure. As a result, the encapsulant separates, exposing the interconnect structure, thereby rendering the encapsulant less capable of reducing thermal stress. Another difficulty is that the high stiffness of the encapsulant needed to effectively release the thermal stress unfortunately results in high mechanical stresses on the interconnect structure, thereby resulting in structural integrity of the interconnect structure It may weaken the sex. As the stiffness of the encapsulant decreases, the mechanical stress on the interconnect structure increases,
The ability of the encapsulant to absorb shock and vibration is increased.
Another point to consider is that the encapsulant makes it impossible to rework the structure to correct problems that occur during the life cycle of the chip-to-chip carrier structure and during the testing phase. is there.

【0005】CTE不一致が疲労寿命に与える影響を低
減する従来技術の他の方法は、米国特許第564111
3号で開示されている方法である。この特許では、第1
のはんだバンプの切頭球体と、第2のはんだバンプの切
頭球体とを融着することによって、基板にチップを結合
する方法が開示されている。この融着は、第1のプロセ
スの後、第2のプロセスの前に行われる。第1のプロセ
スは、第1のはんだバンプを形成してチップに接続し、
第1のはんだバンプを硬化させる前の室温では液体であ
る非導電性の樹脂で被覆し、この樹脂層を硬化させ、第
2のはんだバンプと融着させることになる第1のはんだ
バンプの表面を露出させるように樹脂層の一部を除去す
るステップを含む。この第1のプロセスの後、第1のは
んだバンプと第2のはんだバンプの両方が溶けて融着す
る温度で第1のはんだバンプと第2のはんだバンプをリ
フローすることによって融着を行う。次に、第2のプロ
セスによって、第2のはんだバンプを基板に接合する。
残念ながら、この方法は、構造のライフ・サイクル中お
よび試験段階に生じる問題を是正するためにチップ−基
板構造を再加工するには実際的ではない。再加工が困難
なのは、融着された第1と第2のはんだバンプを分離す
るために熱を加えることによって第1と第2の両方のは
んだバンプが溶けるためである。チップと基板を引き離
すとき、溶けたはんだが樹脂層から流出し、チップに付
着した部分的または完全に空の樹脂殻が残る。その結果
できたチップ構成は、実際的なコストで手直しすること
ができず、したがってそのチップは使用できなくなる。
Another prior art method of reducing the effect of CTE mismatch on fatigue life is disclosed in US Pat. No. 5,564,111.
No. 3 discloses the method. In this patent, the first
A method of bonding a chip to a substrate by fusing a truncated sphere of a solder bump with a truncated sphere of a second solder bump is disclosed. This fusion is performed after the first process and before the second process. The first process is to form a first solder bump and connect to the chip,
The surface of the first solder bump to be coated with a non-conductive resin that is liquid at room temperature before the first solder bump is cured, and this resin layer is cured to be fused with the second solder bump. And removing a part of the resin layer so as to expose the resin layer. After the first process, fusion is performed by reflowing the first solder bump and the second solder bump at a temperature at which both the first solder bump and the second solder bump melt and fuse. Next, the second solder bump is bonded to the substrate by a second process.
Unfortunately, this method is not practical for reworking the chip-substrate structure to correct problems that occur during the life cycle of the structure and during the testing phase. Rework is difficult because both the first and second solder bumps are melted by applying heat to separate the fused first and second solder bumps. When the chip and the substrate are separated, the melted solder flows out of the resin layer, leaving a partially or completely empty resin shell attached to the chip. The resulting chip configuration cannot be reworked at a practical cost, thus rendering the chip unusable.

【0006】[0006]

【発明が解決しようとする課題】再加工を容易にする
か、カプセル封止材料を不要にするか、または剛性を弱
くしたカプセル封止材料の使用を可能にする、熱応力低
減方法が必要である。
There is a need for a thermal stress reduction method that facilitates rework, eliminates the need for encapsulation material, or allows for the use of less rigid encapsulation material. is there.

【0007】[0007]

【課題を解決するための手段】本発明は、第2の基板に
結合された第1の基板の第1の電気構造を提供する。第
1の基板に第1の導電体を機械的および電気的に結合す
る。被覆されない表面が残るようにして、第1の導電体
の表面の一部をはんだ付け不能な非導電性の被覆材料に
よって被覆する。第1の導電体の被覆されていない表面
に、表面接着によって第2の導電体を機械的および電気
的に結合する。第2の導電体の融点は、第1の導電体の
融点より低い。ただし、融点は物質が溶ける最低温度で
あると定義する。第2の導電体を第2の基板に機械的お
よび電気的に結合する。
SUMMARY OF THE INVENTION The present invention provides a first electrical structure of a first substrate coupled to a second substrate. A first conductor is mechanically and electrically coupled to the first substrate. A portion of the surface of the first conductor is coated with a non-soldering, non-conductive coating material such that the uncoated surface remains. A second conductor is mechanically and electrically coupled to the uncoated surface of the first conductor by surface bonding. The melting point of the second conductor is lower than the melting point of the first conductor. However, the melting point is defined as the lowest temperature at which a substance melts. A second conductor is mechanically and electrically coupled to the second substrate.

【0008】本発明は、第2の基板に結合された第1の
基板の第2の電気構造を提供する。第1の基板に第1の
導電体を機械的および電気的に結合する。被覆されない
表面が残るようにして、第1の導電体の表面の一部をは
んだ付け不能な非導電性の被覆材料によって被覆する。
この電気構造は、第1の導電体に第2の導電体を表面接
着によって機械的および電気的に結合する手段も含む。
この結合手段は、第1の導電体と第2の導電体とに温度
を加える手段も含み、この温度は第1の導電体の融点よ
り低く、第2の導電体の融点より高い。第2の導電体を
第2の基板に機械的および電気的に結合する。
The present invention provides a second electrical structure on a first substrate coupled to a second substrate. A first conductor is mechanically and electrically coupled to the first substrate. A portion of the surface of the first conductor is coated with a non-soldering, non-conductive coating material such that the uncoated surface remains.
The electrical structure also includes means for mechanically and electrically coupling the second conductor to the first conductor by surface bonding.
The coupling means also includes means for applying a temperature to the first conductor and the second conductor, the temperature being lower than the melting point of the first conductor and higher than the melting point of the second conductor. A second conductor is mechanically and electrically coupled to the second substrate.

【0009】本発明は、電気構造を形成する方法であっ
て、第1の基板と、この第1の基板に機械的および電気
的に結合された第1の導電体と、はんだ付け不能な非導
電性の材料の被覆とを含む第1の構造を設けるステップ
であって、第1の導電体の表面の一部が、第1の導電体
の被覆されない表面が残るように、はんだ付け不能な非
導電性の材料によって被覆されるステップと、第2の基
板と第2の基板に機械的および電気的に結合された導電
性バンプとを含む第2の構造を設けるステップと、導電
性バンプが第1の導電体の被覆されていない表面と接触
するように、第2の構造を第1の構造に接触させるステ
ップと、第1の導電体のどの部分も溶融させることなく
導電性バンプをリフローさせて、第1の導電体の被覆さ
れていない表面を被覆する第2の導電体を形成するステ
ップと、第1の構造体と第2の構造体を冷却して第2の
導電体を固化させ、第1の導体の被覆されていない表面
において第2の導電体を第1の導電体に表面接着によっ
て機械的および電気的に結合するステップとを含む方法
を提供する。
The present invention is a method of forming an electrical structure, comprising: a first substrate; a first conductor mechanically and electrically coupled to the first substrate; Providing a first structure comprising a coating of a conductive material, wherein a portion of the surface of the first conductor is non-solderable such that an uncoated surface of the first conductor remains. Providing a second structure including a second substrate and a conductive bump mechanically and electrically coupled to the second substrate, the conductive bump being coated with a non-conductive material; Contacting the second structure with the first structure so as to contact the uncoated surface of the first conductor; and reflowing the conductive bump without melting any portion of the first conductor. Let the uncoated surface of the first conductor be Forming a second conductor overlying; cooling the first structure and the second structure to solidify the second conductor and forming a second conductor on the uncoated surface of the first conductor; Mechanically and electrically bonding the conductor to the first conductor by surface bonding.

【0010】本発明は、はんだ柱を形成する方法であっ
て、付着パッドを有する構造と、パッドと接触したはん
だ体と、はんだ体と接触したはんだ付け可能な表面を有
する引き込み可能物(retractable object)とを含む構
造を設けるステップと、構造をはんだ本体の融点より高
い温度に加熱するステップと、はんだ本体をパッドとは
んだ付け可能表面の両方にはんだ接続する間、はんだ体
からはんだ柱が形成されるまで、引き込み可能物をパッ
ドから離すステップと、はんだ柱を冷却するステップ
と、はんだ柱が固化した後で、はんだ柱から引き込み可
能物を分離するステップとを含む方法を提供する。
The present invention is a method of forming a solder pillar, comprising a structure having an attachment pad, a solder body in contact with the pad, and a retractable object having a solderable surface in contact with the solder body. ), Heating the structure to a temperature above the melting point of the solder body, and forming solder columns from the solder body while soldering the solder body to both the pad and the solderable surface. Providing the pullable with the pad until the solder pillar cools, and separating the retractable from the solder pillar after the solder pillar has solidified.

【0011】本発明は、構造内のはんだ接合部の熱によ
るひずみを低減することによって、電気構造の疲労寿命
を延ばす(すなわち、疲労障害を起こす前の熱サイクル
数を減らす)という利点を有する。
The present invention has the advantage of extending the fatigue life of an electrical structure (ie, reducing the number of thermal cycles before fatigue failure occurs) by reducing the thermal strain of solder joints in the structure.

【0012】本発明は、カプセル封止材料を必要としな
いか、またはカプセル封止材料の必要剛性を低くすると
いう利点を有する。
The present invention has the advantage that no encapsulant is required or the required rigidity of the encapsulant is reduced.

【0013】本発明は、電気構造のライフ・サイクル中
および試験段階中に発生する問題を修正するために容易
に再加工可能であるという利点を有する。この再加工可
能性は、第2の導電体を溶融させるが第1の導電体は溶
融させない温度の熱を加えることによって、第1の導電
体と第2の導電体との表面接着を容易になくすことがで
きることによるものである。回復不能または高くつく障
害を引き起こさずに電気構造を再加工することができる
ことによって、回路カードにチップを直接装着する実際
性も高められ、それによってチップ・キャリヤの必要を
なくすこともできる。したがって、本発明の基板は、チ
ップ・キャリヤまたは回路カードのいずれかを含むこと
ができる。
The present invention has the advantage that it can be easily reworked to correct problems that occur during the life cycle of the electrical structure and during the testing phase. This reworkability is to facilitate the surface adhesion between the first and second conductors by applying heat at a temperature that melts the second conductor but does not melt the first conductor. It is because it can be eliminated. The ability to rework the electrical structure without causing irreparable or costly damage also increases the practicality of directly mounting the chip on the circuit card, thereby eliminating the need for a chip carrier. Thus, the substrate of the present invention can include either a chip carrier or a circuit card.

【0014】本発明は、引き込み可能物の移動を使用し
てはんだ柱の長さと形状を形成することによってはんだ
柱を形成する実用的な方法を提供するという利点を有す
る。
The present invention has the advantage of providing a practical method of forming a solder pillar by forming the length and shape of the solder pillar using the movement of the retractable object.

【0015】[0015]

【発明の実施の形態】図1から図8に、本発明の第1の
好ましい実施形態によるプロセス・ステップを示す。図
1には、第1の基板12の上表面13上に2つのパッド
16を有する第1の構造10の正面断面図が示されてい
る。各パッド16上には導電体14がある。2つのパッ
ド16とそれに付随する2つの第1の導電体14が図示
されているが、第1の構造10は、任意の数のパッド1
6上に置かれたそれ同数の第1の導電体14とを含むこ
とができる。第1の基板12は、チップまたはモジュー
ルを含むことができる。第1の各導電体14は、コント
ロールド・コラップス・チップ接続(「C4」)などの
周知のプロセスによって形成されたはんだバンプなどの
はんだバンプを含むことができる。基板12がモジュー
ルを含む場合、第1の各導電体14はボール・グリッド
・アレイ(「BGA」)のボールを含むことができる。
第1の各導電体14は、合金の融点が共融合金の融点を
明確に超える濃度の鉛とスズとの合金など、適合するは
んだを含む。たとえば、第1の各導電体14は、融点が
約327〜330℃で重量比が90/10の鉛/スズ比
を有することができる。それに対して、重量比が約63
/37の共融鉛/スズは、約183℃の融点を有する。
第1の各導電体14は、はんだバンプ、またはBGAモ
ジュールのボールの大きさと形状の特性である任意の適
合する形状および大きさを有することができる。たとえ
ば、第1の各導電体14は、直径約0.13mm(5ミ
ル)、高さ約0.10mm(4ミル)の切頭球形とする
ことができる。
1 to 8 illustrate process steps according to a first preferred embodiment of the present invention. FIG. 1 shows a front sectional view of a first structure 10 having two pads 16 on an upper surface 13 of a first substrate 12. On each pad 16 is a conductor 14. Although two pads 16 and two associated first electrical conductors 14 are shown, the first structure 10 may include any number of pads 1
6 and an equal number of first conductors 14 placed on the same. The first substrate 12 can include a chip or a module. Each first conductor 14 may include a solder bump, such as a solder bump formed by a known process, such as a controlled collapsed chip connection ("C4"). If the substrate 12 includes a module, each first conductor 14 may include a ball of a ball grid array ("BGA").
Each first conductor 14 comprises a compatible solder, such as an alloy of lead and tin with a melting point of the alloy that clearly exceeds the melting point of the eutectic alloy. For example, each first conductor 14 may have a lead / tin ratio of about 327-330 ° C. and a weight ratio of 90/10 by weight. In contrast, the weight ratio is about 63
/ 37 eutectic lead / tin has a melting point of about 183 ° C.
Each first conductor 14 can have any suitable shape and size that is a property of the size and shape of the solder bumps or balls of the BGA module. For example, each first conductor 14 can be a truncated sphere having a diameter of about 0.13 mm (5 mils) and a height of about 0.10 mm (4 mils).

【0016】図1には、材料18の被覆によって被覆さ
れた第1の導電体14と上表面13とが図示されてい
る。材料18の被覆は、ポリイミドや感光性樹脂などの
はんだ付け不能な非導電性の材料を含む。適合するポリ
イミドの一例は、デュポンPI5878材料である。適
合する感光性樹脂の一例は、タイヨウPSR4000−
SP50材料である。ポリイミド層は、スピン・コーテ
ィングやスプレイ・コーティングなど、当技術分野で周
知の任意の適切な方法で形成することができる。材料1
8の被覆を形成する前に、プラズマ処理などの標準技法
を使用して上表面13と第1の導電体14の洗浄と粗面
化を行い、上表面13と第1の導電体14への材料18
の被覆の表面接着を強化する。ポリイミドなどの材料1
8の場合について、図2にレーザ30からの放射32を
加えて材料18の被覆の一部を除去し、被覆されていな
い表面20を形成した結果を示す。このレーザ融除(ab
lation)プロセスによって、第1の各導電体14から少
量の材料(たとえば約0.0063mm(4分の1ミ
ル)の高さ)も除去されることがある。レーザ融除を適
用する代わりとして、図3に、材料18の被覆の一部
と、第1の各導電体14のいくらかの材料とを研削し
て、第1の各導電体14上に平らな被覆されていない表
面22を形成した結果を示す。材料18の被覆が感光性
樹脂の場合、図4に、フォトマスクを併用して材料18
の感光性被覆に光源34から適切な波長の光36を加え
た結果として形成された被覆されていない表面24を示
す。露光の後、感光性材料が不要な場所、すなわち被覆
されない表面24の感光材料が除去される。(後述す
る)図7および図8の被覆されていない表面26は、被
覆されていない表面26の形成に使用された方法(たと
えば、それぞれ図2、図3、および図4に示すレーザ融
除、研削、フォトリソグラフィ)を問わず、第1の導電
体14の被覆されていない表面を示す。図7〜図8につ
いて後述するように、後で行う導電性バンプ44との面
接着を強化させるために、プラズマ処理などの標準技法
を使用して、被覆されていない表面26を洗浄、粗面化
することができる。
FIG. 1 shows a first conductor 14 and an upper surface 13 covered by a coating of a material 18. The coating of material 18 includes a non-soldering, non-conductive material such as polyimide or a photosensitive resin. One example of a compatible polyimide is DuPont PI5878 material. An example of a suitable photosensitive resin is Taiyo PSR4000-
SP50 material. The polyimide layer can be formed by any suitable method known in the art, such as spin coating or spray coating. Material 1
Prior to forming the coating of FIG. 8, the upper surface 13 and the first conductor 14 are cleaned and roughened using standard techniques such as plasma treatment, and are applied to the upper surface 13 and the first conductor 14. Material 18
Enhance the surface adhesion of the coating. Materials 1 such as polyimide
For case 8, FIG. 2 shows the result of applying radiation 32 from laser 30 to remove a portion of the coating of material 18 to form uncoated surface 20. This laser ablation (ab
The process may also remove a small amount of material (eg, about 0.0063 mm (quarter mil) high) from each first conductor 14. As an alternative to applying laser ablation, FIG. 3 illustrates that a portion of the coating of material 18 and some of the material of each first electrical conductor 14 are ground so that a flat 3 shows the result of forming an uncoated surface 22. In the case where the coating of the material 18 is a photosensitive resin, FIG.
3 shows the uncoated surface 24 formed as a result of adding light 36 of the appropriate wavelength from light source 34 to the photosensitive coating of FIG. After exposure, the photosensitive material is removed where it is not needed, i.e. the uncoated surface 24. The uncoated surface 26 of FIGS. 7 and 8 (discussed below) can be formed using the method used to form the uncoated surface 26 (eg, laser ablation, as shown in FIGS. 2, 3 and 4, respectively). Irrespective of grinding or photolithography), an uncoated surface of the first conductor 14 is shown. The uncoated surface 26 is cleaned, roughened using standard techniques such as plasma treatment to enhance subsequent surface adhesion with the conductive bumps 44, as described below with respect to FIGS. Can be

【0017】図5に、第2の基板42の上表面43上に
2つのパッド46を有する第2の構造40の正面断面図
を示す。事前洗浄されたはんだボールの形態のC4共融
はんだバンプなどの導電性バンプ44が各パッド46上
に配置されている。2つのパッド46とそれに付随する
2つの導電性バンプ44が図示されているが、第2の構
造40は任意の数のパッド46上に配置されたそれと同
数の導電性バンプ44を含むことができる。図1の第1
の基板12がチップを含む場合、第2の基板42はチッ
プ・キャリヤまたは回路カードを含むことができる。図
1の第1の基板12がモジュールの場合、第2の基板4
2は回路カードを含むことができる。第1の構造と第2
の構造とのその他の構造的組合せも可能である。導電性
バンプ44の融点は第1の導電体14(図1参照)の融
点よりも低い。たとえば、第1の導電体14が90/1
0の重量組成の鉛/スズ合金(融点327〜330℃)
の場合、導電性バンプ44は共融63/37鉛/スズ合
金(融点183℃)を含むことができ、その結果、融点
の差は140℃を超える。また、導電性バンプ44が共
融点を超える融点を有する組成の合金を含む場合も本発
明の範囲内に含まれる。なお、導電性バンプ44とそれ
に付随する第1の導電体14のそれぞれの融点は、導電
性バンプ44が溶融してリフローすると同時にそれに付
随する第1の導電体14が固体のままである共通の温度
まで、導電性バンプ44とそれに付随する第1の導電体
14を加熱できるような関係でなければならない。導電
性バンプ44は、直径約0.025〜約1.0mm(1
〜40ミル)の、切頭球形など、任意の適合する形状お
よび大きさとすることができる。
FIG. 5 shows a front sectional view of a second structure 40 having two pads 46 on an upper surface 43 of a second substrate 42. A conductive bump 44, such as a C4 eutectic solder bump in the form of a pre-cleaned solder ball, is disposed on each pad 46. Although two pads 46 and their associated two conductive bumps 44 are shown, the second structure 40 can include as many conductive bumps 44 disposed on any number of pads 46. . 1 of FIG.
If the substrate 12 includes a chip, the second substrate 42 may include a chip carrier or a circuit card. When the first substrate 12 in FIG. 1 is a module, the second substrate 4
2 may include a circuit card. The first structure and the second
Other structural combinations with this structure are also possible. The melting point of the conductive bump 44 is lower than the melting point of the first conductor 14 (see FIG. 1). For example, if the first conductor 14 is 90/1
Lead / tin alloy with a weight composition of 0 (melting point 327-330 ° C)
In this case, the conductive bumps 44 can include a eutectic 63/37 lead / tin alloy (melting point 183 ° C.), so that the difference in melting points exceeds 140 ° C. Further, the case where the conductive bump 44 includes an alloy having a composition having a melting point higher than the eutectic point is also included in the scope of the present invention. The melting point of each of the conductive bumps 44 and the associated first conductors 14 is the same as that of the common bumps in which the associated first conductors 14 remain solid at the same time that the conductive bumps 44 melt and reflow. The relationship must be such that the conductive bump 44 and its associated first conductor 14 can be heated to a temperature. The conductive bump 44 has a diameter of about 0.025 to about 1.0 mm (1 mm).
-40 mils) and any suitable shape and size, such as a truncated sphere.

【0018】図6に、硬化感光性樹脂などの材料48の
被覆によって覆われた導電性バンプ44と上表面43と
を示す。図6で、それぞれ図2、図3、および図4を参
照しながら前述したレーザ融除、研削、フォトリソグラ
フィなど、第1の導電体14の被覆されていない表面を
形成する方法のいずれかで、各導電性バンプ44の被覆
されていない表面49を形成することができる。材料4
8の被覆を形成する前に、プラズマ処理などの標準技法
を使用して、上表面43を洗浄および粗面化し、材料4
8の被覆と上表面43との表面接着を強化することがで
きる。図6の材料48の被覆は任意選択であり、リフロ
ー時に導電性バンプ材料44が、横方向ではなく、矢印
50で示すようにほぼ上方に移動するように強制する役
割を果たす。したがって、導電性バンプ材料44の横方
向の移動を防止することによって、リフロー中に導電性
バンプ44の高さが低くなるのを被覆材料48が防ぐ。
FIG. 6 shows the conductive bumps 44 and the upper surface 43 covered with a coating of a material 48 such as a cured photosensitive resin. In FIG. 6, any of the methods for forming the uncoated surface of the first conductor 14, such as laser ablation, grinding, and photolithography as described above with reference to FIGS. 2, 3, and 4, respectively. The uncovered surface 49 of each conductive bump 44 can be formed. Material 4
Prior to forming the coating of 8, the upper surface 43 is cleaned and roughened using standard techniques such as plasma treatment and the material 4
8 and the upper surface 43 can be strengthened. The coating of the material 48 of FIG. 6 is optional and serves to force the conductive bump material 44 to move substantially upward as shown by arrow 50, rather than laterally, during reflow. Thus, by preventing the lateral movement of the conductive bump material 44, the coating material 48 prevents the conductive bump 44 from being lowered during reflow.

【0019】図7に、第1の各導電体14が対応する導
電性バンプ44上に置かれるようにして、第1の構造1
0が第2の構造40の上に置かれた様子を示す。第1の
各導電体14の被覆されていない表面26は、まず、第
1の各導電体14のすべての露出表面を被覆し、次に、
図2、図3、または図4について前述したようにレーザ
融除、研削、フォトリソグラフィなどの方法によって被
覆の一部を除去するなど、当技術分野で周知の任意の適
合する方式で形成することができる。あるいは、付随す
る被覆されていない表面26を形成するように第1の各
導電体14を最初に部分的にのみ被覆し、最初の被覆の
一部を後で除去する必要がないようにすることもでき
る。各導電性バンプ44が被覆されていないように図示
しているが、導電性バンプ44は、任意選択により、前
述の図6の説明に従って被覆することもできる。
FIG. 7 shows a first structure 1 with each first conductor 14 placed on a corresponding conductive bump 44.
0 is placed on the second structure 40. The uncoated surface 26 of each first conductor 14 first covers all exposed surfaces of each first conductor 14 and then
Forming in any suitable manner known in the art, such as removing portions of the coating by methods such as laser ablation, grinding, photolithography, etc. as described above for FIG. 2, FIG. 3, or FIG. Can be. Alternatively, each first conductor 14 is only partially coated first to form an associated uncoated surface 26 such that a portion of the initial coating need not be subsequently removed. Can also. Although each conductive bump 44 is shown as uncoated, the conductive bump 44 may optionally be coated as described above in FIG.

【0020】図8に、第1の好ましい実施形態のプロセ
スの完了した電気構造60を示す。この電気構造60
は、図7の導電性バンプ44を、導電性バンプ44が溶
融し、第1の導電体14が溶融しない温度でリフローし
た結果、形成されたものである。実際には、リフロー温
度は、導電性バンプ44内に存在する可能性のある不純
物と、炉の温度変化を反映する十分な高さでなければな
らない。たとえば、導電性バンプ44内の不純物は、一
般に、導電性バンプ44の融点を20℃以上、上昇させ
る可能性があり、炉の温度変化は10〜15℃になるこ
とがある。したがって、導電性バンプ44が鉛とスズと
の共融混合物から成る場合、不純物のない融点である約
183℃は、前述の不純物と炉温度変化を考慮に入れ
て、少なくとも約215〜220℃のリフロー温度が必
要であることを意味する。約220℃のリフロー温度
は、第1の導電体14を327〜330℃で溶融する9
0/10の鉛/スズ混合物を含むものにして、それによ
ってリフロー中に第1の導電体14が溶融しないように
保証することと両立する。このリフロー温度は、リフロ
ー・プロセス中に材料18の被覆が硬化状態を維持する
のに十分な低い温度でなければならないことに留意され
たい。たとえば、ポリイミドは、一般には約375℃ま
では硬化状態を維持し、この温度は上述の例における約
220℃のリフロー温度より十分に高い。また、第2の
基板が、溶融可能な有機チップ・キャリヤを含み(たと
えば、エポキシを含浸させたガラス繊維を含み、その間
に銅層を有する基板)、したがって約25℃という低い
温度で破壊される場合、220℃という低い温度でリフ
ローするのは有利である。それに対して、セラミック・
チップ・キャリヤは、それよりもはるかに高温(約13
70℃)で破壊される。リフロー後、電気構造60を冷
却し、それによって第2の導電体52が固化する。冷却
された電気構造60において、第1の各導電体14とそ
れに対応する第2の導電体52とを、被覆されていない
表面26での表面接着によって機械的および電気的に結
合する。
FIG. 8 shows the completed electrical structure 60 of the process of the first preferred embodiment. This electric structure 60
Is formed as a result of reflowing the conductive bumps 44 of FIG. 7 at a temperature at which the conductive bumps 44 melt and the first conductor 14 does not melt. In practice, the reflow temperature must be high enough to reflect impurities that may be present in the conductive bumps 44 and changes in furnace temperature. For example, impurities in the conductive bumps 44 may generally increase the melting point of the conductive bumps 44 by 20 ° C. or more, and the temperature change of the furnace may be 10 ° C. to 15 ° C. Thus, if the conductive bumps 44 are made of a eutectic mixture of lead and tin, the impurity-free melting point of about 183 ° C. should be at least about 215-220 ° C., taking into account the aforementioned impurities and furnace temperature variations. This means that a reflow temperature is required. A reflow temperature of about 220 ° C. melts the first conductor 14 at 327-330 ° C. 9
It is compatible with including a 0/10 lead / tin mixture, thereby ensuring that the first conductor 14 does not melt during reflow. Note that this reflow temperature must be low enough that the coating of material 18 remains cured during the reflow process. For example, polyimide generally remains cured up to about 375 ° C, which is well above the reflow temperature of about 220 ° C in the example above. Also, the second substrate includes a fusible organic chip carrier (e.g., a substrate including glass fibers impregnated with epoxy and having a copper layer therebetween) and is therefore destroyed at temperatures as low as about 25C. In that case, reflow at a temperature as low as 220 ° C. is advantageous. In contrast, ceramic
Chip carriers are much hotter (about 13
70 ° C). After reflow, the electrical structure 60 cools, thereby solidifying the second conductor 52. In the cooled electrical structure 60, each first conductor 14 and its corresponding second conductor 52 are mechanically and electrically coupled by surface bonding at the uncoated surface 26.

【0021】図8に、リフローされた各導電性バンプ4
4で形成された第2の導電体52を示す。図8の第2の
導電体52の高さΔY1は、図7の対応する導電性バン
プ44の高さΔYとほぼ等しい。本発明は、熱サイクル
中に生じる第1の基板12と第2の基板42との間の熱
剪断応力とそれに伴うひずみを可能な限り高い有効高さ
にわたって分散させるために、ΔY1を最大限にしよう
とする。リフローされた導電性バンプ材料44は、第2
の基板42の上表面43ではなく、第1の導電体14の
材料に接着する傾向がある。既存の技術では、リフロー
された導電性バンプ材料44が第1の導電体14の表面
15に沿って再分布するため、ΔY1はΔYよりもかな
り小さい。本発明では、2つの関連する作用によるリフ
ローされた導電性バンプ材料44の方向70への横方向
の移動のためのわずかな減少を除けば、ΔY1はΔYと
あまり差がない。第1に、材料18の被覆が、リフロー
された導電性バンプ材料44が被覆されていない表面2
6を除く第1の導電体14に接着するのを防ぐ。第2
に、材料18の被覆の非はんだ付け性によって、リフロ
ーされた導電性バンプ材料44が材料18の被覆に接着
するのが防止される。上述の2つの作用が相まって、導
電性バンプ材料44が、リフローの前に占めていた場所
から流出するのを防ぐ。導電性バンプ44上に材料48
の被覆がある場合(図6参照)、材料48の被覆は、リ
フローされた導電性バンプ材料44の横方向の移動を制
限する役割を果たす。これは、図6と共に前述したよう
に、材料48の被覆がない場合に対してΔY1を大きく
することになる。さらに、図8の材料18の被覆は、リ
フローされた導電性バンプ材料44がパッド16と接触
するのを防ぐ役割も果たす。これは、導電性バンプ材料
がスズを含む場合には重要である。スズは、パッド16
が銅、クロム、金などの材料を含む場合、第1の導電体
14の近傍にあるパッド16のボール・リミティング・
メタラジ(BLM)に破壊的作用を及ぼす可能性があ
る。パッド16がスズの作用を受けると、パッド16は
第1の基板12から分離する可能性が高い。材料18の
被覆は、材料18の被覆が前述の目的を果たせるように
する、約0.013mm(2分の1ミル)などの任意の
厚さを有することができる。材料18の被覆を使用する
利点は、材料18の被覆の表面積が、被覆されていない
表面26の表面積を少なくとも約10倍以上など大幅に
超える場合、さらに大きくなる。
FIG. 8 shows each of the reflowed conductive bumps 4.
4 shows a second conductor 52 formed by reference numeral 4. The height ΔY 1 of the second conductor 52 in FIG. 8 is substantially equal to the height ΔY of the corresponding conductive bump 44 in FIG. The present invention maximizes ΔY 1 to distribute the thermal shear stress and the associated strain between the first substrate 12 and the second substrate 42 that occur during thermal cycling over the highest possible height. Try to. The reflowed conductive bump material 44 has a second
There is a tendency to adhere to the material of the first conductor 14 instead of the upper surface 43 of the substrate 42. In existing techniques, ΔY 1 is much smaller than ΔY because the reflowed conductive bump material 44 redistributes along the surface 15 of the first conductor 14. In the present invention, ΔY 1 is not much different from ΔY, except for a slight reduction due to lateral movement of reflowed conductive bump material 44 in direction 70 by two related actions. First, the coating of the material 18 is applied to the uncoated surface 2 of the reflowed conductive bump material 44.
6 to prevent adhesion to the first conductor 14. Second
In addition, the non-solderability of the coating of material 18 prevents the reflowed conductive bump material 44 from adhering to the coating of material 18. Together, the two effects described above prevent the conductive bump material 44 from escaping from the location it occupied before reflow. Material 48 on conductive bumps 44
(See FIG. 6), the coating of material 48 serves to limit lateral movement of reflowed conductive bump material 44. This results in a larger ΔY 1 than when there is no coating of the material 48, as described above with reference to FIG. In addition, the coating of material 18 of FIG. 8 also serves to prevent reflowed conductive bump material 44 from contacting pad 16. This is important if the conductive bump material contains tin. Tin pad 16
Includes a material such as copper, chromium, gold, etc., the ball limiting of the pad 16 near the first conductor 14.
It can have destructive effects on metallurgy (BLM). When the pad 16 receives the action of tin, the pad 16 is likely to separate from the first substrate 12. The coating of material 18 can have any thickness, such as about one-half mil, that allows the coating of material 18 to serve the aforementioned purposes. The advantage of using a coating of material 18 is even greater if the surface area of the coating of material 18 significantly exceeds the surface area of uncoated surface 26, such as at least about ten times or more.

【0022】第2の各導電体52は、被覆されていない
表面26における表面接着によって対応する第1の導電
体14と機械的および電気的に結合されることに留意さ
れたい。第2の導電体52とそれに対応する第1の導電
体14との間に、溶融による融着がないというこの特徴
は、第1の導電体14が、それに対応する導電性バンプ
44がリフローされている間に溶融しないことによる。
It should be noted that each second conductor 52 is mechanically and electrically coupled to the corresponding first conductor 14 by surface adhesion at the uncoated surface 26. This feature that there is no fusion between the second conductor 52 and the corresponding first conductor 14 due to melting is that the first conductor 14 is reflowed by the corresponding conductive bump 44. Due to not melting during

【0023】図8には、第1の基板12と第2の基板4
2の間の空間に満たすことができる、シリカ充填材が入
った無水エポキシなどの任意選択のカプセル封止材料5
4も図示されている。カプセル封止材料54は、毛管作
用によって注入された空間を満たし、第1の導電体14
と第2の導電体52の両方を含む様々な表面に接着す
る。カプセル封止材料54が接着する様々な表面は、接
着の前に、プラズマ処理などの標準技法を使用して洗浄
し、粗面化して接着を強化することができる。「関連す
る技術」の項で前述したように、このようなカプセル封
止材料は、熱サイクル中に電気構造60が1つの複合構
造として移動するように、電気構造60の各部分を機械
的に結合する。すなわち、カプセル封止材料54は熱剪
断応力を吸収する。熱応力を軽減するカプセル封止材料
54の有効性は、カプセル封止材料の剛性が増すにつれ
て増大する。しかし、カプセル封止材料54を使用する
必要性は、第1の基板12と第2の基板42との間の分
離距離が大きくなるにつれて増大する。第2の導電体5
2の高さを使用して分離を大きくすると、必要なカプセ
ル封止材料54の剛性の大きさが小さくなり、それによ
って、カプセル封止材料54自体によって生じる第1の
導電体14と第2の導電体52にかかる機械応力が低減
される。さらに、カプセル封止材料の剛性を小さくする
と、カプセル封止材料が衝撃と振動を吸収する能力が高
まる。さらに、高さΔY1が、熱応力を受容可能なレベ
ルで一方向に維持するのに十分な高さである場合、カプ
セル封止材料54をまったくなくすことも可能である。
したがって、カプセル封止材料54は、熱剪断応力を緩
和するΔY1の役割を増強するか、または不要である。
「関連する技術」の項で前述したように、電気構造60
のライフ・サイクル中および試験段階での問題2を修正
する必要が生じた場合、カプセル封止材料54は電気構
造60の再加工性を妨げるため、カプセル封止材料54
を省くことが望ましい。カプセル封止材料54がない場
合、電気構造60を容易に再加工することができる。再
加工性は、本発明で、第1の各導電体14の融点と第2
の各導電体52の融点との間の温度まで電気構造60を
加熱し、次に第2の構造40から第1の構造10を引き
離すことによって実現される。第1の各導電体14とそ
れに対応する第2の導電体52は被覆されていない表面
26で表面接着されているに過ぎないため、第1の各導
電体14は対応する第2の導電体52から破損すること
なく容易に分離する。これは、「関連する技術」の項で
前述したように2つのはんだバンプを融着させた米国特
許第5641113号の発明とは著しく異なる。カプセ
ル封止材料を使用するか否かを決定する際、ユーザは再
加工性と熱応力低減の向上とを比較考量する必要があ
る。
FIG. 8 shows a first substrate 12 and a second substrate 4.
An optional encapsulant 5 such as anhydrous epoxy with silica filler, which can fill the space between the two
4 is also shown. The encapsulation material 54 fills the space injected by capillary action and the first conductor 14
To various surfaces including both the first and second conductors 52. The various surfaces to which the encapsulant 54 adheres can be cleaned and roughened prior to bonding using standard techniques such as plasma treatment to enhance the bond. As described above in the "Related Art" section, such encapsulants mechanically mechanically position portions of electrical structure 60 such that electrical structure 60 moves as one composite structure during thermal cycling. Join. That is, the encapsulation material 54 absorbs thermal shear stress. The effectiveness of the encapsulant 54 in reducing thermal stress increases as the stiffness of the encapsulant increases. However, the need to use encapsulant 54 increases as the separation distance between first substrate 12 and second substrate 42 increases. Second conductor 5
Increasing the separation using a height of two reduces the required stiffness of the encapsulant 54, thereby causing the first conductor 14 and the second Mechanical stress applied to the conductor 52 is reduced. In addition, reducing the stiffness of the encapsulant increases the ability of the encapsulant to absorb shock and vibration. Furthermore, if the height ΔY 1 is high enough to maintain thermal stress in one direction at an acceptable level, it is possible to eliminate the encapsulant material 54 at all.
Thus, encapsulant 54 enhances or eliminates the role of ΔY 1 in mitigating thermal shear stress.
As described above in the “Related Technology” section, the electrical structure 60
If it becomes necessary to correct problem 2 during the life cycle of the device and during the testing phase, the encapsulant
Is desirably omitted. Without the encapsulant 54, the electrical structure 60 can be easily reworked. In the present invention, the reworkability depends on the melting point of the first conductor 14 and the second melting point.
This is achieved by heating the electrical structure 60 to a temperature between the melting points of the respective conductors 52 and then separating the first structure 10 from the second structure 40. The first conductors 14 and the corresponding second conductors 52 are only surface bonded at the uncoated surface 26, so that the first conductors 14 correspond to the corresponding second conductors. 52, easily separated without damage. This is significantly different from the invention of U.S. Pat. No. 5,641,113 in which two solder bumps are fused as described above in the "Related Art" section. When deciding whether to use an encapsulant, the user must weigh the reworkability and the improvement in thermal stress reduction.

【0024】第2の導電体52の実質的な高さΔY1
形成することによって、本発明の第1の好ましい実施形
態は、図8の第1の基板12と第2の基板42との間の
構造的結合経路に沿った部分、特にパッド16および4
6における単位熱剪断応力とそれに付随するひずみを低
減する。熱応力は熱サイクル中に生じ、第1の基板12
と第2の基板42との間のCTE不一致が原因で生じ
る。前述のように、第1の基板12はチップまたはモジ
ュールを含むことができ、第2の基板42はチップ・キ
ャリヤ、モジュール、または回路カードを含むことがで
きる。チップは、一般に、約3〜6ppm/℃の典型的
なCTEを有するシリコンを含む。アルミナ・チップ・
キャリヤのCTEは約6ppm/℃であり、有機チップ
・キャリヤのCTEは約6〜24ppm/℃の範囲であ
る。回路カードは一般に、約14〜22ppm/℃のC
TEを有する。CTE不一致の影響を克服するために
は、ΔY1を、第1の導電体14の高さの少なくとも約
50%(すなわち図7のΔY)にする必要がある。ΔY
1の典型的な最小値は約0.076mm(約3ミル)で
ある。
By forming a substantial height ΔY 1 of the second conductor 52, the first preferred embodiment of the present invention provides for the first substrate 12 and the second substrate 42 of FIG. Parts along the structural coupling path between, especially the pads 16 and 4
6. Reduce the unit thermal shear stress and associated strain at 6. Thermal stress occurs during the thermal cycle, and the first substrate 12
Due to a CTE mismatch between the second substrate and the second substrate. As described above, the first substrate 12 can include a chip or module, and the second substrate 42 can include a chip carrier, module, or circuit card. The chip typically comprises silicon having a typical CTE of about 3-6 ppm / ° C. Alumina chip
The CTE of the carrier is about 6 ppm / ° C, and the CTE of the organic chip carrier ranges from about 6-24 ppm / ° C. Circuit cards generally have a C of about 14-22 ppm / ° C.
Has TE. To overcome the effects of CTE mismatch, ΔY 1 needs to be at least about 50% of the height of first conductor 14 (ie, ΔY in FIG. 7). ΔY
A typical minimum value for 1 is about 3 mils.

【0025】図9から図16に、本発明の第2の好まし
い実施形態によるプロセス・ステップを示す。図9に
は、第1の基板112の上表面113上にパッド116
を有する第1の構造110の正面断面図が図示されてい
る。パッド116上には第1の導電体114がある。第
1の基板112は、チップまたはモジュールを含むこと
ができる。第1の導電体114は、C4はんだ柱のよう
なはんだ柱を含むことができる。第1の導電体114
は、合金の融点が共融合金の融点より高くなる濃度の鉛
とスズとの合金などの適切なはんだを含む。たとえば、
第1の導電体114は、融点が約327〜330℃で、
重量比が90/10の鉛/スズを有することができる。
それに対して、重量比が約63/37の共融鉛/スズ
は、約183℃の融点を有する。第1の導電体114
は、任意の適合する円柱形の形状とサイズを有すること
ができる。たとえば、第1の導電体114は、高さが約
1.3mm〜約2.2mm(約50ミル〜約87ミル)
の範囲で、直径が約0.51mm〜約0.56mm(約
20ミル〜約22ミル)の範囲の円柱とすることができ
る。この高さは、図1から図8の第1の実施形態におけ
る第1の導電体114の高さより著しく高い。熱応力を
軽減する効果は、第1の導電体114の高さが高くなる
につれて大きくなるが、標準C4はんだボールの高さを
超える高さであればどの高さであっても熱応力性能が向
上する。第1の導電体114の上記の高さ/直径比β
(たとえば87/22、50/20など)は代表的なも
のであるが、それより小さいβ値でも大きいβ値でも使
用することができる。βは、第1の導電体114が機械
応力、衝撃、および振動に耐えることができる能力を損
なうほどの大きさであってはならない。したがって、β
の上限は、第1の導電体114の材料、カプセル封止材
料を使用する場合はカプセル封止材料の剛性、第1の導
電体114が寿命期間中にさらされる温度などの要因に
よって決まる。下限については、βの値が低すぎると、
第1の導電体114が横方向(すなわちその高さに対し
て垂直な方向)に移動できる能力を制限し、したがって
熱応力を軽減する能力を低下させることになる。したが
って、約1以下のβの値は、応用分野によっては小さす
ぎて効果がない可能性がある。βの実際の下限は、応用
分野によって異なり、第1の導電体114の材料への依
存も含まれる。
FIGS. 9 to 16 illustrate process steps according to a second preferred embodiment of the present invention. FIG. 9 shows that pads 116 are formed on the upper surface 113 of the first substrate 112.
A front cross-sectional view of a first structure 110 having a. A first conductor 114 is on the pad 116. The first substrate 112 can include a chip or a module. The first conductor 114 can include a solder post, such as a C4 solder post. First conductor 114
Include suitable solders, such as alloys of lead and tin, such that the melting point of the alloy is higher than the melting point of the eutectic alloy. For example,
The first conductor 114 has a melting point of about 327 to 330 ° C.
It may have a lead / tin weight ratio of 90/10.
In contrast, a eutectic lead / tin with a weight ratio of about 63/37 has a melting point of about 183 ° C. First conductor 114
Can have any suitable cylindrical shape and size. For example, first conductor 114 may have a height of about 1.3 mm to about 2.2 mm (about 50 mils to about 87 mils).
In the range of about 0.51 mm to about 0.56 mm (about 20 mils to about 22 mils). This height is significantly higher than the height of the first conductor 114 in the first embodiment of FIGS. The effect of reducing the thermal stress increases as the height of the first conductor 114 increases, but the thermal stress performance can be increased at any height exceeding the height of the standard C4 solder ball. improves. The above height / diameter ratio β of the first conductor 114
(Eg, 87/22, 50/20, etc.) are typical, but smaller or larger β values can be used. β should not be so large as to impair the ability of the first conductor 114 to withstand mechanical stress, shock, and vibration. Therefore, β
Is determined by factors such as the material of the first conductor 114, the stiffness of the encapsulation material if an encapsulation material is used, the temperature to which the first conductor 114 is exposed during its lifetime. Regarding the lower limit, if the value of β is too low,
This limits the ability of the first conductor 114 to move laterally (ie, in a direction perpendicular to its height), thus reducing its ability to reduce thermal stress. Thus, values of β of about 1 or less may be too small for some applications to be effective. The actual lower limit of β depends on the field of application, including the dependence on the material of the first conductor 114.

【0026】図9には、材料118の被覆によって覆わ
れた第1の導電体114と上表面113とが図示されて
いる。材料118の被覆は、ポリイミドや感光性樹脂な
どのはんだ付け不能で非導電性の材料を含む。この第2
の好ましい実施形態の材料118の被覆は、図1〜図8
について前述した第1の好ましい実施形態の材料18の
被覆と同じ特性および機能を有する。材料118の被覆
を形成する前に、プラズマ処理などの標準技法を使用し
て上表面113と第1の導電体114を洗浄、粗面化し
て、材料118の被覆と上表面113および第1の導電
体114との表面接着を強化することができる。
FIG. 9 illustrates a first conductor 114 and an upper surface 113 covered by a coating of a material 118. The coating of material 118 includes a non-solderable, non-conductive material such as polyimide or photosensitive resin. This second
The coating of material 118 of the preferred embodiment of FIGS.
Has the same properties and functions as the coating of the material 18 of the first preferred embodiment described above. Prior to forming the coating of material 118, the top surface 113 and the first conductor 114 are cleaned and roughened using standard techniques such as plasma treatment to provide a coating of the material 118 and the top surface 113 and the first surface. The surface adhesion with the conductor 114 can be enhanced.

【0027】図10に、材料118の被覆の一部を除去
して被覆されていない表面126を形成した結果を示
す。材料118の被覆の一部を除去して被覆されない表
面126を形成する方法は、第1の好ましい実施形態に
ついてそれぞれ図2、図3、および図4と共に前述し
た、レーザ融除、研削、フォトリソグラフィなどの任意
の適合する方法とすることができる。被覆されない表面
126を、標準技法を使用して洗浄および粗面化し、図
15から図16について後述するように後で行う導電性
バンプ144との表面接着を強化することができる。
FIG. 10 shows the result of removing a portion of the coating of material 118 to form an uncoated surface 126. The method of removing a portion of the coating of material 118 to form uncoated surface 126 includes laser ablation, grinding, and photolithography as described above with respect to FIGS. 2, 3, and 4, respectively, for the first preferred embodiment. And any other suitable method. The uncoated surface 126 can be cleaned and roughened using standard techniques to enhance subsequent surface adhesion with the conductive bump 144 as described below with respect to FIGS.

【0028】図11に、第2の基板142の上表面14
3上にパッド146を有する第2の構造140の正面断
面図を示す。パッド146上には、事前洗浄されたはん
だボールの形態のC4共融はんだバンプなどの導電性バ
ンプ144がある。図9の第1の基板112がチップを
含む場合、第2の基板142はチップ・キャリヤまたは
回路カードを含むことができる。図9の第1の基板11
2がモジュールの場合、第2の基板142は回路カード
を含むことができる。導電性バンプ144の融点は、第
1の導電体114(図9参照)の融点より低い。たとえ
ば、第1の導電体114が90/10の重量組成の鉛/
スズ合金(融点327〜330℃)を含む場合、導電性
バンプ144は共融63/37鉛/スズ合金(融点18
3℃)を含むことができ、その結果、融点の差は約15
0℃になる。導電性バンプ144が共融点より高い融点
を有する組成の合金を含む場合も本発明の範囲に含まれ
る。なお、導電性バンプ144と第1の導電体114の
それぞれの融点は、導電性バンプ144と第1の導電体
114とを、導電性バンプ144が溶融してリフローす
ると同時に第1の導電体114が硬化したままである共
通の温度で加熱することができるような関係でなければ
ならない。導電性バンプ144は、直径約0.025〜
約1.0mm(1〜40ミル)の、切頭球形など、任意
の適合する形状および大きさとすることができる。
FIG. 11 shows the upper surface 14 of the second substrate 142.
3 shows a front sectional view of a second structure 140 having a pad 146 on 3. On the pads 146 are conductive bumps 144 such as C4 eutectic solder bumps in the form of pre-cleaned solder balls. Where the first substrate 112 of FIG. 9 includes a chip, the second substrate 142 may include a chip carrier or a circuit card. First substrate 11 in FIG.
If 2 is a module, the second substrate 142 can include a circuit card. The melting point of the conductive bump 144 is lower than the melting point of the first conductor 114 (see FIG. 9). For example, if the first conductor 114 has a 90/10 weight composition of lead /
When a tin alloy (melting point 327-330 ° C.) is included, the conductive bump 144 is made of a eutectic 63/37 lead / tin alloy (melting point 18
3 ° C.) so that the difference in melting points is about 15
It reaches 0 ° C. The case where the conductive bump 144 includes an alloy having a composition having a melting point higher than the eutectic point is also included in the scope of the present invention. The melting points of the conductive bumps 144 and the first conductors 114 are determined by melting the conductive bumps 144 and the first conductors 114 at the same time that the conductive bumps 144 are melted and reflowed. Must be able to be heated at a common temperature while they remain cured. The conductive bump 144 has a diameter of about 0.025 to
It can be of any suitable shape and size, such as a truncated sphere of about 1.0 mm (1-40 mils).

【0029】図12に、硬化感光性樹脂などの材料14
8の被覆によって覆われた導電性バンプ144と上表面
143とを示す。図12では、前述のようにレーザ融
除、研削、フォトリソグラフィなど、第1の導電体11
4(図9参照)の被覆されていない表面を形成する方法
のいずれかによって、導電性バンプ144の被覆されて
いない表面149を形成することができる。材料148
の被覆を形成する前に、材料148の被覆と上表面14
3との表面接着を強化するために、プラズマ処理などの
標準技法を使用して、上表面143を洗浄および粗面化
することができる。図12の材料148の被覆は任意選
択であり、リフロー時に導電性バンプ材料144が、横
方向ではなく、矢印150で示すようにほぼ上方に移動
するように強制する役割を果たす。
FIG. 12 shows a material 14 such as a cured photosensitive resin.
8 shows the conductive bumps 144 and the upper surface 143 covered by the eight coatings. In FIG. 12, the first conductor 11 is formed by laser ablation, grinding, photolithography, etc. as described above.
4 (see FIG. 9), the uncoated surface 149 of the conductive bump 144 can be formed. Material 148
Prior to forming a coating of material, the coating of material 148 and the upper surface 14
The top surface 143 can be cleaned and roughened using standard techniques such as plasma treatment to enhance surface adhesion with the third. The coating of material 148 of FIG. 12 is optional and serves to force the conductive bump material 144 to relocate substantially upward, as shown by arrow 150, rather than laterally.

【0030】図13に、第1の導電体114が導電性バ
ンプ144上に配置されるようにして、第2の構造14
0上に配置された第1の構造110を示す。第1の導電
体114の被覆されていない表面126は、まず、第1
の導電体114のすべての露出面を被覆し、次に、第1
の好ましい実施形態のそれぞれ図2、図3、または図4
について前述したようにレーザ融除、研削、またはフォ
トリソグラフィなどによって被覆の一部を除去するな
ど、当技術分野で周知の任意の適合する方式で形成する
ことができる。あるいは、最初に第1の導電体114
を、被覆されない表面126が形成されるように一部の
みを被覆し、最初の被覆の一部を後で除去する必要がな
いようにすることもできる。導電性バンプ144は被覆
されていないように図示されているが、任意選択によ
り、図12の前述の説明に従って導電性バンプ144を
被覆することもできる。したがって、図14に、図12
の材料148の被覆を加えた図13の構造を示す。
FIG. 13 shows a second structure 14 having a first conductor 114 disposed on a conductive bump 144.
1 shows a first structure 110 located on the first zero. The uncoated surface 126 of the first conductor 114 first
Cover all exposed surfaces of conductor 114 of
2, 3 or 4 of the preferred embodiment of FIG.
Can be formed in any suitable manner known in the art, such as by removing portions of the coating by laser ablation, grinding, or photolithography as described above. Alternatively, first, the first conductor 114
Can be coated only partially so as to form an uncoated surface 126 so that a portion of the original coating does not need to be removed later. Although the conductive bumps 144 are shown uncoated, the conductive bumps 144 may optionally be coated according to the above description of FIG. Therefore, FIG.
FIG. 14 shows the structure of FIG.

【0031】図15に、第2の好ましい実施形態のプロ
セスが完了した電気構造160を示す。この電気構造1
60は、図13(または材料148の被覆がある場合は
図14)の導電性バンプ144を、導電性バンプ144
が溶融し、第1の導電体114が溶融しない温度でリフ
ローした結果形成されたものである。実際には、リフロ
ー温度は、第1の好ましい実施形態に関する図8の前述
の説明で述べた考慮すべき点に従って、導電性バンプ1
44中に存在する可能性がある不純物と炉の温度変化と
を反映させるのに十分な高さでなければならない。リフ
ロー後、電気構造160を冷却すると、第2の導電体1
52が固化する。冷却された電気構造160において、
第1の導電体114と第2の導電体152が、被覆され
ていない面126における表面接着によって機械的およ
び電気的に結合される。
FIG. 15 shows the electrical structure 160 after the process of the second preferred embodiment has been completed. This electric structure 1
60, the conductive bump 144 of FIG. 13 (or FIG. 14 if there is a coating of the material 148) is replaced with the conductive bump 144.
Are formed as a result of reflow at a temperature at which the first conductor 114 melts and the first conductor 114 does not melt. In practice, the reflow temperature is set according to the considerations set forth in the previous description of FIG. 8 for the first preferred embodiment.
It must be high enough to reflect any impurities that may be present in 44 and changes in furnace temperature. After the electric structure 160 is cooled after the reflow, the second conductor 1
52 solidifies. In the cooled electrical structure 160,
First conductor 114 and second conductor 152 are mechanically and electrically coupled by surface bonding at uncoated surface 126.

【0032】図15に、図12のリフローされた導電性
バンプ144から形成された第2の導電体152を示
す。リフローされた導電性バンプ材料144は、第2の
基板142の上表面143ではなく第1の導電体114
の材料に接着する性質を持つ。したがって、材料118
の被覆は、いくつかの目的に役立つ。材料118の被覆
によって、被覆されていない表面126を除き、リフロ
ーされた導電性バンプ材料144が第1の導電体114
に接着するのを防止する。材料118の被覆の非はんだ
付け性は、リフローされたバンプ材料144が材料11
8の被覆に接着するのを防ぐ役割を果たす。さらに、材
料118の被覆は、リフローされた導電性バンプ材料1
44がパッド116に接触するのを防ぐ。これは、図8
に関して前述したように、導電性バンプ材料144がス
ズを含む場合に重要である。材料118の被覆は約0.
013mm(2分の1ミル)など、材料118が上述の
目的を果たすことができる厚さであれば任意の厚さとす
ることができる。材料118の被覆を使用する利点は、
材料118の被覆の表面積が被覆されていない表面12
6の表面積より、少なくとも約10倍など大幅に広けれ
ばさらに大きくなる。
FIG. 15 shows a second conductor 152 formed from the reflowed conductive bump 144 of FIG. The reflowed conductive bump material 144 is applied to the first conductor 114 instead of the upper surface 143 of the second substrate 142.
It has the property of bonding to other materials. Therefore, material 118
The coating serves several purposes. The coating of material 118 removes the reflowed conductive bump material 144 except for the uncoated surface 126 so that the first conductor 114
To prevent adhesion to The non-solderability of the coating of material 118 is such that the reflowed bump material 144
8 serves to prevent adhesion to the coating. Further, the coating of material 118 may be applied to the reflowed conductive bump material 1
44 is prevented from contacting pad 116. This is shown in FIG.
This is important when the conductive bump material 144 includes tin, as described above with reference to FIG. The coating of material 118 may be about 0.
Any thickness, such as 013 mm (1/2 mil), can be used as long as the material 118 is capable of serving the above purpose. The advantage of using a coating of material 118 is that
The surface area of the coating of material 118 is the uncoated surface 12
Even larger than at least about 10 times the surface area of 6 would be even greater.

【0033】第2の導電体152は、被覆されていない
表面126における表面接着によって第1の導電体11
4に機械的および電気的に結合されることに留意された
い。第1の導電体152と第1の導電体114との間に
溶融による融着がないというこの特徴は、導電性バンプ
144がリフローされている間に第1の導電体114が
溶融しないことによる。
The second conductor 152 is bonded to the first conductor 11 by surface bonding on the uncoated surface 126.
Note that 4 is mechanically and electrically coupled. This feature of no melting fusion between the first conductor 152 and the first conductor 114 is due to the fact that the first conductor 114 does not melt while the conductive bump 144 is being reflowed. .

【0034】第1の導電体114の実質的な高さによっ
て、第1の基板112と第2の基板142との間の構造
的結合経路に沿った部分、特に図15のパッド116と
146において、単位熱剪断応力とそれに付随するひず
みが大幅に低減される。熱サイクル中に生じる熱応力の
原因は、図8の第1の基板12と第2の基板42に関し
て前述したのと同じ第1の基板112と第2の基板14
2のCTEの範囲であることから、第1の基板112と
第2の基板142とのCTE不一致による。第1の導電
体114の実施的高さによって所期の熱応力低減が生じ
るため、電気構造160は熱剪断応力の低減について第
2の導電体152の高さには依存しない。さらに、第1
の導電体114の実質的高さによる熱応力の低減の効果
のために、図8に関して前述したカプセル封止材料54
などのカプセル封止材料は、熱応力低減の必要がない。
Due to the substantial height of the first conductor 114, portions along the structural coupling path between the first substrate 112 and the second substrate 142, particularly at the pads 116 and 146 of FIG. The unit thermal shear stress and its associated strain are greatly reduced. The cause of the thermal stress generated during the thermal cycle is the same as the first substrate 112 and the second substrate 14 described above with respect to the first substrate 12 and the second substrate 42 of FIG.
2 because of the CTE mismatch between the first substrate 112 and the second substrate 142. The electrical structure 160 does not depend on the height of the second conductor 152 for reducing thermal shear stress, as the effective height of the first conductor 114 causes the desired thermal stress reduction. Furthermore, the first
8 due to the effect of reducing thermal stress due to the substantial height of the conductor 114 of FIG.
Such encapsulation materials do not require thermal stress reduction.

【0035】図16に、図15の第1の導電体114
を、ストレート・エッジ・テーパの形の側面120を有
するテーパ形の第1の導電体115に置き換え、電気構
造162を形成した図を示す。テーパ形であることによ
って、第1の導電体115の製作を容易にすることがで
きる。第1の導電体115は、スチール金型などの型に
第1の液化した第1の導電体材料を加圧注入した後、冷
却して固化させる射出成形によって製作することができ
る。固化した第1の導電体材料を型から取り外すとき、
第1の導電体115と型の内面との摩擦接触によって、
第1の導電体材料が損傷する可能性がある。図15の第
1の導電体114は第1の導電体114が型を離れるま
で摩擦接触を保持するため、図16のテーパ形の第1の
導電体115より図15の円柱形の第1の導電体114
の方がこのような損傷の発生率が高い。それに対して、
テーパ形の第1の導電体115はタッピングするだけ
で、タッピングされた第1の導電体115と型との摩擦
接触が分離される。
FIG. 16 shows the first conductor 114 of FIG.
Is replaced by a tapered first conductor 115 having a side 120 in the form of a straight edge taper, forming an electrical structure 162. With the tapered shape, the first conductor 115 can be easily manufactured. The first conductor 115 can be manufactured by injection molding in which a first liquefied first conductor material is injected under pressure into a mold such as a steel mold, and then cooled and solidified. When removing the solidified first conductive material from the mold,
Due to the frictional contact between the first conductor 115 and the inner surface of the mold,
The first conductor material may be damaged. The first conductor 114 of FIG. 15 retains frictional contact until the first conductor 114 leaves the mold, so the first first conductor 115 of FIG. Conductor 114
Have a higher incidence of such damage. On the other hand,
The tapping of the tapered first conductor 115 only separates the frictional contact between the tapped first conductor 115 and the mold.

【0036】図17から図22に、本発明の第3の好ま
しい実施形態によるはんだ柱構造の形成プロセスを示
す。このプロセスによって、図16の第1の導電体11
5と類似したテーパ形または砂時計型の第1の導電体が
形成される。このプロセスによって形成される第1の導
電体は、図9から図10および図13から図15の第1
の導電体114または図16の第1の導電体115とし
て使用することができる。図17から図19および図2
0から図22に、それぞれ第3の好ましい実施形態のプ
ロセスを実施する代替方法を示す。
FIGS. 17 to 22 show a process for forming a solder pillar structure according to a third preferred embodiment of the present invention. By this process, the first conductor 11 shown in FIG.
A tapered or hourglass-shaped first conductor similar to 5 is formed. The first conductor formed by this process is the first conductor shown in FIGS. 9 to 10 and FIGS.
16 or the first conductor 115 in FIG. 17 to 19 and FIG.
FIGS. 0 to 22 each show an alternative way of implementing the process of the third preferred embodiment.

【0037】図17に、装着されたパッド116を有す
る基板112と、パッド116と接触したはんだ体17
2と、引き込み可能物174とを含むはんだ体構造20
0を設けるステップを図示する。基板112は、チップ
やモジュールなどのデバイスを含むことができる。はん
だ体172は、図9から図10および図13から図15
の第1の導電体114または図16の第1の導電体11
5のものと同じ材料(たとえば重量比が90/10の鉛
/スズはんだ)で作られた固体はんだ塊を含む。図17
の引き込み可能物174は、ピン180とはんだ付け不
能スリーブ182とを含む。ピン180は、はんだ付け
可能表面181と側面183とを含む。はんだ付け不能
スリーブ182は、ピン180を囲み、ピン180と側
面183で接触している。引き込み可能物174は、は
んだ付け可能表面181ではんだ体172と接触してい
る。ピン180は、銅、ニッケル、鋼など、はんだ付け
可能材料を含むことができる。はんだ付け不能スリーブ
182は、ポリイミド、光撮像可能エポキシ材料、また
はクロムなどのはんだ付け不能材料を含むことができ
る。ピン180とはんだ付け不能スリーブ182は、そ
れぞれはんだ体172の融点よりも高い融点を有する。
FIG. 17 shows a substrate 112 having a pad 116 mounted thereon and a solder body 17 in contact with the pad 116.
2 and a retractable object 174
The step of providing 0 is illustrated. Substrate 112 can include devices such as chips and modules. 9 to 10 and FIGS. 13 to 15
Of the first conductor 114 of FIG. 16 or the first conductor 11 of FIG.
5 includes a solid solder mass made of the same material as that of 5 (eg, a 90/10 weight ratio of lead / tin solder). FIG.
The retractable 174 includes a pin 180 and a non-solderable sleeve 182. Pin 180 includes a solderable surface 181 and a side 183. Non-solderable sleeve 182 surrounds pin 180 and is in contact with pin 180 at side surface 183. Retractable 174 is in contact with solder body 172 at solderable surface 181. Pin 180 may include a solderable material, such as copper, nickel, steel, and the like. Non-solderable sleeve 182 may include a non-solderable material, such as polyimide, a photoimageable epoxy material, or chrome. Pin 180 and non-solderable sleeve 182 each have a higher melting point than the melting point of solder body 172.

【0038】加熱ステップによって、はんだ体172の
融点より高く、ピン180およびはんだ付け不能スリー
ブ182の融点より低い最終温度まで、はんだ体構造2
00を加熱する。加熱ステップは、特に、はんだ体20
0を炉内に入れ、炉を加熱することによって行うことが
できる。加熱によってはんだ体172が溶融し、はんだ
体172がピン180にはんだ付け可能面181ではん
だ接続され、パッド116にもはんだ接続される。はん
だ付け不能面182は、溶融したはんだがピン180の
側面183に接着するのを防ぐ役割をする。したがっ
て、ピン180の側面183がはんだ付け不能の場合、
はんだ付け不能スリーブ182は不要であり、省くこと
ができる。たとえば、ピン180が、アルミニウムやク
ロムなどの十分な高さの融点を持つはんだ付け不能材料
でできており、その上にはんだ付け可能面181を含む
銅などのはんだ付け可能材料の薄い接着層を被せた場
合、はんだ付け不能スリープ182は不要である。
The heating step causes the solder body structure 2 to reach a final temperature above the melting point of the solder body 172 and below the melting points of the pins 180 and the non-soldering sleeve 182.
Heat 00. The heating step is, in particular, the solder body 20
0 can be placed in a furnace and the furnace heated. The heating melts the solder body 172, and the solder body 172 is soldered to the pins 180 at the solderable surface 181 and also to the pads 116. Non-solderable surface 182 serves to prevent molten solder from adhering to side surface 183 of pin 180. Therefore, when the side surface 183 of the pin 180 cannot be soldered,
The non-soldering sleeve 182 is unnecessary and can be omitted. For example, the pin 180 is made of a non-solderable material with a sufficiently high melting point, such as aluminum or chrome, on which a thin adhesive layer of solderable material, such as copper, including a solderable surface 181 is provided. When covered, the non-soldering sleep 182 is unnecessary.

【0039】加熱ステップの後、行うステップは、はん
だ体172をパッド116とはんだ付け可能面181の
両方にはんだ接続させたままにした状態で、はんだ体1
72からはんだ柱が形成されるまで引き込み可能物17
4をパッド116から187の方向に引き離すことであ
る。その結果形成されたはんだ柱190を図18に示
す。はんだ体172が上述のはんだ接続を維持すること
ができるように、引き込み可能物174の速度および加
速度を制御しなければならない。図18のはんだ柱19
0のテーパ形エッジ191の湾曲は、ストレート・エッ
ジ・テーパ形面の場合よりも熱応力および機械応力を受
けにくい。はんだ柱190のテーパ形エッジ191の湾
曲は、溶融したはんだをエッジ191部分で半径方向に
内向きの方向198に引っ張るエッジ191における表
面張力によって生じる。エッジ191の湾曲の詳細に
は、はんだ柱190に使用されている特定の材料の表面
張力特性への依存と、はんだ柱の高さ(H)、パッド1
16におけるはんだ柱の側方への広がり(Dpad)、ピ
ン180のはんだ付け可能面181におけるはんだ柱の
側方への広がり(Dpin)などの幾何形状因子の相対値
への依存が含まれる。図18のエッジ191のテーパ形
は、Dpin/Dpad≪1である結果である。それに対し
て、後述の図21のエッジは、Dpin≒Dpadに類似した
関係の結果としての砂時計形エッジ193を示してい
る。DpadおよびDpinが一定した値の場合、エッジ19
1の湾曲の半径はHが大きくなるにつれて大きくなる。
したがって、Hが十分な大きさになると、エッジ191
は図16の表面120に類似した直線エッジに近づく。
Hの到達可能最大値は、図17のはんだ体172中の材
料の量によって制限される。Dpin/Dpadの比は、上限
が少なくとも1の正数である。同様に、はんだ付け可能
面181の面積とパッド116の面積の比(R)は、上
限が少なくとも1の正数である。Dpin/Dpadの上限
と、RとHの前述の上限は、基板112上の隣接し合う
パッド116間の間隔によって決まる。これは、隣接し
合うパッド116上のはんだ体172は絶縁されるよう
に分離されたままでなければならないためである。そう
しないと、隣接するパッド116上の電子構造が電気的
に短絡する可能性がある。
After the heating step, the steps performed are as follows: with solder body 172 remaining soldered to both pad 116 and solderable surface 181, solder body 1
Pullable object 17 from 72 until a solder pillar is formed 17
4 in the direction of 187 from the pad 116. The resulting solder pillar 190 is shown in FIG. The speed and acceleration of the retractable 174 must be controlled so that the solder body 172 can maintain the solder connection described above. Solder pillar 19 in FIG.
The curvature of the zero tapered edge 191 is less susceptible to thermal and mechanical stress than for a straight edge tapered surface. The curvature of the tapered edge 191 of the solder post 190 is caused by surface tension at the edge 191 that pulls the molten solder at the edge 191 in a radially inward direction 198. The details of the curvature of the edge 191 include the dependence on the surface tension characteristics of the specific material used for the solder post 190, the height (H) of the solder post, and the pad 1
16, including the lateral extension of the solder pillars (D pad ) at 16 and the lateral extension of the solder pillars at the solderable surface 181 of the pin 180 (D pin ). . The tapered shape of the edge 191 in FIG. 18 is a result of D pin / D pad ≪1. In contrast, the edges of FIG. 21 described below show an hourglass-shaped edge 193 as a result of a relationship similar to D pin ≒ D pad . If D pad and D pin are constant, edge 19
The radius of curvature of 1 increases as H increases.
Therefore, when H becomes large enough, the edge 191
Approaches a straight edge similar to the surface 120 of FIG.
The attainable maximum value of H is limited by the amount of material in the solder body 172 of FIG. The ratio of D pin / D pad is a positive number whose upper limit is at least one. Similarly, the ratio (R) of the area of the solderable surface 181 to the area of the pad 116 is a positive number whose upper limit is at least one. The upper limit of D pin / D pad and the aforementioned upper limits of R and H are determined by the spacing between adjacent pads 116 on substrate 112. This is because the solder bodies 172 on adjacent pads 116 must remain isolated to be insulated. Otherwise, the electronic structures on adjacent pads 116 may be electrically shorted.

【0040】はんだ柱190が形成された後、任意の適
切な方法ではんだ柱190の冷却を行う。はんだ柱19
0の冷却方法としては、はんだ体構造を炉から、室温環
境などの冷却環境に移す方法がある。はんだ柱190の
他の冷却方法には、炉を「オフ」にするなどして加熱源
から取り出し、はんだ柱190を実質的に動かさずに冷
ます方法がある。
After the solder pillars 190 are formed, the cooling of the solder pillars 190 is performed by any appropriate method. Solder pillar 19
As a cooling method of 0, there is a method of transferring the solder body structure from a furnace to a cooling environment such as a room temperature environment. Another method of cooling the solder pillars 190 is to remove the solder pillars 190 from the heating source, such as by turning the furnace "off," and cool the solder pillars 190 without substantially moving them.

【0041】最終ステップは、はんだ柱190が固化し
た後で引き込み可能物174をはんだ柱190から引き
離すことである。引き離しステップは、温度がはんだ柱
190の溶融温度よりもわずかに下がったときに(たと
えばはんだ柱190の溶融温度よりわずか約15℃下回
るとき)、引き込み可能物174をはんだ柱190から
機械的に引っ張ることによって行うことができる。その
結果のはんだ柱構造220を図19に示す。
The final step is to pull the retractable 174 away from the solder post 190 after the solder post 190 has solidified. The detaching step mechanically pulls the retractable 174 from the solder post 190 when the temperature drops slightly below the melting temperature of the solder post 190 (eg, only about 15 ° C. below the melting temperature of the solder post 190). Can be done by The resulting solder pillar structure 220 is shown in FIG.

【0042】図20から図22に、はんだ体構造210
の第3の好ましい実施形態のプロセスを示す。図20か
ら図22は、はんだ体構造200のプロセスに関する前
述の図17から図19に類似している。主な構成上の相
違は、図17のピン180を含む引き込み可能物174
が、図20ではプレート186を含む引き込み可能物1
76に置き換えられている点である。プレート186
は、図17のピン180のはんだ付け可能面181に類
似したはんだ付け可能面185と、はんだ付け不能面1
84とを含む。プレート186の上記の表面構成は、銅
板を光撮像可能材料で被覆し、(はんだ付け可能面18
5の各箇所を保護するマスクを介して)プレート186
表面を紫外線に選択的に露光し、露光されない光撮像可
能材料を現像除去してはんだ付け可能面185における
銅の被覆を除去し、それによって露光された表面がはん
だ付け不能面184を構成するようにするなど、標準の
方法で形成することができる。プレート186を形成す
る他の方法は、融点の高いはんだ付け不能材料でできた
プレート上にはんだ付け可能材料を付着させる方法であ
る。アルミニウムやクロムなど、多くの材料がはんだ付
け不能材料のプレートの材料として適合する。はんだ付
け可能金属には、たとえば銅などが含まれるはんだ付け
不能プレート上のはんだ付け可能面185の場所に、ス
パッタリングなどの周知のプロセスによってはんだ付け
可能金属を付着させることができる。プレート186の
融点は、はんだ体172の溶融温度より高くなければな
らない。
FIGS. 20 to 22 show the solder body structure 210.
3 shows a process of a third preferred embodiment of the present invention. 20 to 22 are similar to FIGS. 17 to 19 described above for the process of the solder body structure 200. The main structural difference is the retractable object 174 including the pin 180 of FIG.
However, in FIG. 20, the retractable object 1 including the plate 186 is shown.
76. Plate 186
Is a solderable surface 185 similar to the solderable surface 181 of the pin 180 of FIG.
84. The above surface configuration of the plate 186 covers the copper plate with the optically imageable material and (the solderable surface 18
Plate 186) (via a mask that protects each part of 5)
The surface is selectively exposed to ultraviolet light, and the unexposed photoimageable material is developed away to remove the copper coating on solderable surface 185 such that the exposed surface constitutes non-solderable surface 184. And can be formed by a standard method. Another method of forming plate 186 is to deposit a solderable material on a plate made of a high melting point non-soldering material. Many materials, such as aluminum and chrome, are suitable for the plate of non-soldering material. The solderable metal may have the solderable metal deposited by a well-known process, such as sputtering, at the location of the solderable surface 185 on a non-solderable plate including, for example, copper. The melting point of the plate 186 must be higher than the melting temperature of the solder body 172.

【0043】プレート186に関する差異的特徴は、対
応する複数のパッド116を有する基板のために、複数
のはんだ付け可能面185を有する単一のプレート18
6を使用することができることである。それに対して、
図17では、対応する複数のパッド116を有する基板
のために複数のピン180が必要になる。
A distinctive feature of plate 186 is that, for a substrate having a corresponding plurality of pads 116, a single plate 18 having a plurality of solderable surfaces 185.
6 can be used. On the other hand,
In FIG. 17, a plurality of pins 180 are required for a substrate having a corresponding plurality of pads 116.

【0044】図20のはんだ体構造210を加熱するス
テップは、図17のはんだ体構造200を加熱するステ
ップと類似している。図17のはんだ付け不能スリーブ
182の場合と同様に、はんだ付け不能面184は、は
んだ体172の溶融したはんだとはんだ接続されず、そ
れによって、溶融したはんだがはんだ体172から離れ
るのが防止される。はんだ体172の溶融したはんだに
よって、はんだ体172がはんだ付け可能面185でプ
レート186とはんだ接続される。
The step of heating the solder body structure 210 of FIG. 20 is similar to the step of heating the solder body structure 200 of FIG. As with the non-solderable sleeve 182 of FIG. You. The molten solder of the solder body 172 causes the solder body 172 to be soldered to the plate 186 at the solderable surface 185.

【0045】加熱ステップの後に行うステップは、はん
だ体172からはんだ柱が形成されるまで、はんだ体1
72がパッド116とはんだ付け可能面185の両方に
はんだ接続された状態のままにしながら引き込み可能物
176を方向188のパッド116から引き離すことで
ある。その結果のはんだ柱192を図21に示す。引き
込み可能物176の速度と加速度は、はんだ体172が
上述のはんだ接続を維持することができるように制御し
なければならない。はんだ柱192の砂時計形エッジ1
93の湾曲は、ストレート・エッジ・テーパ形面の場合
よりも熱応力と機械応力を受けにくい。はんだ柱192
の砂時計形エッジ193の湾曲は、溶融したはんだをエ
ッジ193部分で半径方向に内側の方向199に引っ張
る、エッジ193における表面張力によって生じるもの
である。エッジ193の湾曲の詳細には、はんだ柱19
2に使用されている特定の材料の表面張力特性への依存
と、図18に関する対応する幾何形状因子の説明で前述
した機械形状因子の相対値への依存が含まれる。具体的
には、Dplate≒Dpadの幾何学的関係が満たされるため
(DplateおよびDpadの定義については図21を参
照)、エッジ193はテーパ形状ではなく砂時計形状を
有する。図18のエッジ191と図21のエッジ193
は、それぞれ、前述のように図18のHとDpadとDpin
との関係、および図21のHとDpadとDplateとの関係
に従った、テーパ形状(曲線または直線)または砂時計
形状を有することができることに留意されたい。D
plate/Dpadの比は、図18に関するDpin/Dpadの上
限の類似の説明に従って、上限が少なくとも1の正数で
ある。同様に、はんだ付け可能面185の面積とパッド
116の面積の比(R1)は、上限が少なくとも1の正
数である。R1と、図21のはんだ柱の高さHの制約
は、図18に関してそれぞれRおよびHについて前述し
たのと同じである。
The step performed after the heating step is to remove the solder body 1 from the solder body 172 until a solder pillar is formed.
72 is to pull the retractable object 176 away from the pad 116 in the direction 188 while leaving a solder connection to both the pad 116 and the solderable surface 185. The resulting solder pillar 192 is shown in FIG. The speed and acceleration of the retractable 176 must be controlled so that the solder body 172 can maintain the solder connection described above. Hourglass-shaped edge 1 of solder pillar 192
The curvature of 93 is less susceptible to thermal and mechanical stresses than a straight edge tapered surface. Solder pillar 192
Of the hourglass edge 193 is caused by surface tension at the edge 193 that pulls the molten solder radially inwardly 199 at the edge 193 portion. The details of the curvature of the edge 193 include the solder pillar 19
2 include a dependence on the surface tension properties of the particular material used and a dependence on the relative values of the mechanical form factors described above in the description of the corresponding geometric factors with respect to FIG. Specifically, since the geometric relationship of D plate ≒ D pad is satisfied (see FIG. 21 for definitions of D plate and D pad ), the edge 193 has an hourglass shape instead of a tapered shape. The edge 191 in FIG. 18 and the edge 193 in FIG.
Respectively correspond to H, D pad and D pin in FIG.
Note that it can have a tapered shape (curved or straight) or an hourglass shape according to the relationship between H and D pad and D plate in FIG. D
The plate / D pad ratio is a positive number with an upper limit of at least 1 according to the analogous description of the upper limit of D pin / D pad with respect to FIG. Similarly, the ratio (R 1 ) of the area of the solderable surface 185 to the area of the pad 116 is a positive number having an upper limit of at least one. The constraints on R 1 and the height H of the solder pillars in FIG. 21 are the same as described above for R and H, respectively, with respect to FIG.

【0046】はんだ柱192が形成された後、図18の
冷却ステップについて前述した方法などの任意の適切な
方法ではんだ柱192の冷却を行う。
After the solder pillars 192 have been formed, the cooling of the solder pillars 192 is performed by any suitable method, such as the method described above for the cooling step of FIG.

【0047】はんだ柱192が固化した後で、引き込み
可能物176をはんだ柱192から引き離す最終ステッ
プを行う。この引き離しステップは、はんだ付け可能面
185を含む金属プレート186のいずれかの部分を化
学的に除去し、それによってはんだ柱192と金属プレ
ート186との間の接合をなくすことによって行うこと
ができる。化学的除去後の金属プレート186の残りの
量は、機械的に除去することができる。その結果のはん
だ柱構造230を図22に示す。
After the solder pillars 192 have solidified, a final step is taken to separate the retractable 176 from the solder pillars 192. This detaching step can be performed by chemically removing any portion of the metal plate 186, including the solderable surface 185, thereby eliminating the bond between the solder post 192 and the metal plate 186. The remaining amount of metal plate 186 after chemical removal can be removed mechanically. The resulting solder column structure 230 is shown in FIG.

【0048】まとめとして、本発明の構成に関して以下
の事項を開示する。
In summary, the following matters are disclosed regarding the configuration of the present invention.

【0049】(1)第1の基板と、前記第1の基板に機
械的および電気的に結合された第1の導電体と、前記第
1の導電体の被覆されない表面が残るように前記第1の
導電体の表面の一部がはんだ付け不能な非導電性の材料
によって被覆された、はんだ付け不能な非導電性の被覆
材料と、前記第1の導電体の前記被覆されていない表面
における表面接着によって前記第1の導電体に機械的お
よび電気的に結合され、前記第1の導電体の融点より融
点が低い第2の導電体と、前記第2の導電体に機械的お
よび電気的に結合された第2の基板とを含む電気構造。 (2)前記第1の導電体がはんだバンプを含む、上記
(1)に記載の電気構造。 (3)前記第2の導電体の高さが前記はんだバンプの高
さの少なくとも約50%である、上記(2)に記載の電
気構造。 (4)前記第1の導電体の被覆された前記表面の面積が
前記第1の導電体の前記被覆されていない表面の面積の
少なくとも約10倍である、上記(2)に記載の電気構
造。 (5)前記第1の導電体がはんだ柱を含む、上記(1)
に記載の電気構造。 (6)前記はんだ柱の高さが少なくとも約1.3mm
(約50ミル)であり、前記はんだ柱が少なくとも約
2.5の高さ/直径比を有する、上記(5)に記載の電
気構造。 (7)前記第2の導電体が前記はんだ柱の外表面の約1
0%未満を被う、上記(5)に記載の電気構造。 (8)前記はんだ柱がテーパ形である、上記(5)に記
載の電気構造。 (9)前記はんだ柱が曲線状のエッジを有するテーパ形
である、上記(5)に記載の電気構造。 (10)前記はんだ柱が砂時計形である、上記(5)に
記載の電気構造。 (11)前記第2の基板が有機材料を含む、上記(1)
に記載の電気構造。 (12)前記第2の基板がセラミック材料を含む、上記
(1)に記載の電気構造。 (13)第2のはんだ付け不能な非導電性被覆材料をさ
らに含み、前記第2の導電体の表面の一部が前記第2の
はんだ付け不能な非導電性被覆材料によって被覆され、
前記第2の導電体の残りの被覆されていない表面が前記
第1の導電体の前記被覆されていない表面と機械的に接
着し、電気的に接触した上記(1)に記載の電気構造。 (14)前記第2のはんだ付け不能な非導電性被覆材料
がポリイミドを含む、上記(13)に記載の電気構造。 (15)前記第2のはんだ付け不能な非導電性材料が硬
化感光性樹脂を含む、上記(13)に記載の電気構造。 (16)第1の基板と、前記第1の基板に機械的および
電気的に結合された第1の導電体と、前記第1の導電体
の表面の一部がはんだ付け不能な非導電性被覆材料によ
って被覆され、前記第1の導電体の被覆されていない表
面が残った、はんだ付け不能な非導電性被覆材料と、第
2の導電体と、前記第1の導電体の前記被覆されていな
い表面における表面接着によって前記第2の導電体を前
記第1の導電体に機械的および電気的に結合する手段で
あって、前記第1の導電体と前記第2の導電体とに前記
第1の導電体の融点より低く、前記第2の導電体の融点
よりは低くない温度を加える手段と、前記第2の導電体
に機械的および電気的に結合された基板とを含む電気構
造。 (17)第1の導電体の被覆されていない表面が残るよ
うに第1の導電体の表面の一部がはんだ付け不能な非導
電性材料の被覆によって被覆された、第1の基板と、前
記第1の基板に機械的および電気的に結合された第1の
導電体と、はんだ付け不能な非導電性材料の被覆とを含
む第1の構造を設けるステップと、第2の基板と前記第
2の基板に機械的および電気的に結合された導電性バン
プとを含む第2の構造を設けるステップと、前記導電性
バンプが前記第1の導電体の前記被覆されていない表面
と接触するように、前記第2の構造を前記第1の構造に
接触させて配置するステップと、前記第1の導電体のい
ずれの部分も溶融させずに前記導電性バンプをリフロー
して、前記第1の導電体の前記被覆されていない表面を
被う第2の導電体を形成するステップと、前記第1の構
造と前記第2の構造を冷却し、前記第2の導電体を固化
させ、前記第1の導電体の前記被覆されていない表面に
おける表面接着によって前記第2の導電体を前記第1の
導電体に機械的および電気的に結合するステップとを含
む、電気構造を形成する方法。 (18)前記第1の導電体がはんだバンプを含む、上記
(17)に記載の方法。 (19)前記リフロー・ステップで形成された前記第2
の導電体が少なくとも約0.05mm(約2ミル)の高
さを有する、上記(18)に記載の方法。 (20)前記第1の基板と前記第2の基板との間の空間
にカプセル封止材料を充填するステップをさらに含み、
前記カプセル封止材料が前記第1の導電体と前記第2の
導電体とをカプセル封止する、上記(18)に記載の方
法。 (21)前記第1の導電体がはんだ柱を含む、上記(1
7)に記載の方法。 (22)前記第1の構造に前記第2の構造を接触させて
配置する前記ステップの前に、前記第1の導電体からは
んだ付け不能な非導電性材料の被覆の一部を除去して前
記第1の導電体の露出表面を形成するステップをさらに
含み、前記配置ステップにおける前記被覆されていない
表面が前記露出表面を含む、上記(17)に記載の方
法。 (23)前記除去ステップが、前記第1の導電体から被
覆材料の一部をレーザ融除するステップを含む、上記
(22)に記載の方法。 (24)はんだ付け不能な非導電性材料の前記被覆がポ
リイミドを含む、上記(17)に記載の方法。 (25)はんだ付け不能な非導電性材料の前記被覆が硬
化感光性樹脂を含む、上記(17)に記載の方法。 (26)前記はんだ付け不能な非導電性被覆材料が前記
リフロー・ステップ中に溶融しない、上記(17)に記
載の電気構造。 (27)前記第1の基板がチップを含み、前記第2の基
板が電子キャリヤを含む、上記(17)に記載の方法。 (28)前記第1の基板がモジュールを含み、前記第2
の基板が回路カードを含む、上記(17)に記載の方
法。 (29)はんだ柱構造を形成する方法であって、装着さ
れたパッドを有する基板と、前記パッドに接触したはん
だ体と、前記はんだ体と接触したはんだ付け可能表面を
有する引き込み可能物とを含むはんだ体構造を設けるス
テップと、前記はんだ体の融点より高く、前記引き込み
可能物の融点より低い温度まで前記はんだ体を加熱する
ステップと、前記はんだ体が前記パッドと前記はんだ付
け可能表面の両方にはんだ接続されている間に、前記は
んだ体からはんだ柱が形成されるまで前記パッドから前
記引き込み可能物を離すステップと、前記はんだ柱を冷
却するステップと、前記はんだ柱が固化した後に前記は
んだ柱から前記引き込み可能物を分離するステップとを
含む方法。 (30)前記引き込み可能物がはんだ付け不能スリーブ
内のピンを含み、前記ピンが前記はんだ付け可能表面を
含む、上記(29)に記載の方法。 (31)前記引き込み可能物が前記はんだ付け可能表面
を有するプレートを含む、上記(29)に記載の方法。 (32)前記はんだ付け可能表面の面積が前記パッドの
表面積の0%より大きく、約5%より小さい、上記(2
9)に記載の方法。 (33)前記はんだ付け可能表面の面積が前記パッドの
表面積の約95%と約100%との間である、上記(2
9)に記載の方法。
(1) A first substrate, a first conductor mechanically and electrically coupled to the first substrate, and the first conductor so that an uncoated surface of the first conductor remains. A non-soldering non-conductive coating material, wherein a portion of the surface of the first conductor is coated with a non-soldering non-conductive material; A second conductor that is mechanically and electrically coupled to the first conductor by surface bonding and has a melting point lower than the melting point of the first conductor; and a mechanical and electrical connection to the second conductor. A second substrate coupled to the electrical structure. (2) The electric structure according to (1), wherein the first conductor includes a solder bump. (3) The electrical structure according to (2), wherein the height of the second conductor is at least about 50% of the height of the solder bump. (4) The electrical structure of (2), wherein the area of the coated surface of the first conductor is at least about 10 times the area of the uncoated surface of the first conductor. . (5) The above (1), wherein the first conductor includes a solder pillar.
An electrical structure according to claim 1. (6) The height of the solder pillar is at least about 1.3 mm.
The electrical structure of claim 5, wherein the solder pillars have a height / diameter ratio of at least about 2.5. (7) The second conductor is approximately 1% of the outer surface of the solder pillar.
The electrical structure according to (5), wherein the electrical structure covers less than 0%. (8) The electric structure according to (5), wherein the solder pillar is tapered. (9) The electric structure according to the above (5), wherein the solder pillar has a tapered shape having a curved edge. (10) The electric structure according to the above (5), wherein the solder pillar has an hourglass shape. (11) The above (1), wherein the second substrate contains an organic material.
An electrical structure according to claim 1. (12) The electrical structure according to (1), wherein the second substrate includes a ceramic material. (13) further comprising a second non-soldering non-conductive coating material, wherein a part of the surface of the second conductor is coated with the second non-soldering non-conductive coating material;
The electrical structure of (1) above, wherein the remaining uncoated surface of the second conductor is mechanically bonded to and in electrical contact with the uncoated surface of the first conductor. (14) The electrical structure according to (13), wherein the second non-soldering non-conductive coating material comprises polyimide. (15) The electric structure according to (13), wherein the second non-soldering non-conductive material includes a cured photosensitive resin. (16) a first substrate, a first conductor mechanically and electrically coupled to the first substrate, and a non-conductive non-solderable part of the surface of the first conductor. A non-soldering non-conductive coating material coated with a coating material, leaving an uncoated surface of the first electrical conductor, a second electrical conductor, and the coating of the first electrical conductor; Means for mechanically and electrically coupling said second conductor to said first conductor by surface bonding on a surface that is not in contact with said first conductor and said second conductor. An electrical structure including means for applying a temperature lower than the melting point of the first conductor and not lower than the melting point of the second conductor; and a substrate mechanically and electrically coupled to the second conductor. . (17) a first substrate, wherein a part of the surface of the first conductor is coated with a coating of a non-soldering non-conductive material so that an uncoated surface of the first conductor remains; Providing a first structure including a first conductor mechanically and electrically coupled to the first substrate, and a coating of a non-soldering, non-conductive material; Providing a second structure including a conductive bump mechanically and electrically coupled to a second substrate, wherein the conductive bump contacts the uncovered surface of the first conductor. Arranging the second structure in contact with the first structure, and reflowing the conductive bump without melting any part of the first conductor; Second conductor covering the uncoated surface of the conductor of Forming, cooling the first and second structures, solidifying the second conductor, and bonding the second conductor by surface bonding at the uncoated surface of the first conductor. Mechanically and electrically coupling said conductor to said first conductor. (18) The method according to (17), wherein the first conductor includes a solder bump. (19) The second layer formed in the reflow step
The method of claim 18, wherein the conductor has a height of at least about 2 mils. (20) further comprising a step of filling a space between the first substrate and the second substrate with an encapsulating material;
The method according to (18), wherein the encapsulating material encapsulates the first conductor and the second conductor. (21) The method according to (1), wherein the first conductor includes a solder pillar.
The method according to 7). (22) prior to the step of placing the second structure in contact with the first structure, removing a portion of the non-soldering non-conductive material coating from the first conductor; The method of claim 17, further comprising forming an exposed surface of the first conductor, wherein the uncoated surface in the placing step comprises the exposed surface. (23) The method according to (22), wherein the removing step includes a step of laser ablating a portion of the coating material from the first conductor. (24) The method according to (17), wherein the coating of the non-soldering non-conductive material comprises polyimide. (25) The method according to (17), wherein the coating of the non-soldering non-conductive material comprises a cured photosensitive resin. (26) The electrical structure of (17), wherein the non-solderable non-conductive coating material does not melt during the reflow step. (27) The method according to (17), wherein the first substrate includes a chip, and the second substrate includes an electronic carrier. (28) The first substrate includes a module, and the second substrate includes a module.
The method according to (17), wherein the substrate includes a circuit card. (29) A method for forming a solder pillar structure, comprising: a substrate having a mounted pad; a solder body in contact with the pad; and a retractable object having a solderable surface in contact with the solder body. Providing a solder body structure; heating the solder body to a temperature above the melting point of the solder body and below the melting point of the retractable object; and providing the solder body to both the pad and the solderable surface. Separating the retractable object from the pad until a solder pillar is formed from the solder body while being soldered; cooling the solder pillar; and after the solder pillar has solidified, the solder pillar Separating the retractable material from the material. (30) The method of (29) above, wherein the retractable object includes a pin in a non-solderable sleeve, and the pin includes the solderable surface. (31) The method according to (29), wherein the retractable object includes a plate having the solderable surface. (32) The above (2), wherein the area of the solderable surface is larger than 0% and smaller than about 5% of the surface area of the pad.
The method according to 9). (33) The method according to (2), wherein the area of the solderable surface is between about 95% and about 100% of the surface area of the pad.
The method according to 9).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の好ましい実施形態による第1の
構造を示す正面断面図である。
FIG. 1 is a front sectional view showing a first structure according to a first preferred embodiment of the present invention.

【図2】第1の構造の材料の被覆の一部をレーザ融除に
よって除去した後の図1の構造を示す図である。
FIG. 2 shows the structure of FIG. 1 after a portion of the coating of the material of the first structure has been removed by laser ablation.

【図3】第1の構造の材料の被覆の一部を研削によって
除去した後の図1の構造を示す図である。
FIG. 3 shows the structure of FIG. 1 after a portion of the coating of the material of the first structure has been removed by grinding.

【図4】第1の構造の材料の感光性被覆の一部を除去し
た後の図1の構造を示す図である。
FIG. 4 shows the structure of FIG. 1 after removing a portion of the photosensitive coating of the material of the first structure.

【図5】本発明の第1の好ましい実施形態による第2の
構造の正面断面図である。
FIG. 5 is a front sectional view of a second structure according to the first preferred embodiment of the present invention;

【図6】第2の構造の導電性バンプ上に材料の被覆があ
る、図5の構造を示す図である。
6 shows the structure of FIG. 5 with a coating of material on the conductive bumps of the second structure.

【図7】本発明の第1の好ましい実施形態による、第2
の構造上に第1の構造が配置された様子を示す正面断面
図である。
FIG. 7 shows a second embodiment according to the first preferred embodiment of the present invention.
FIG. 4 is a front sectional view showing a state where the first structure is arranged on the structure of FIG.

【図8】第2の構造の導電性バンプをリフローした後の
図7の構造を示す図である。
FIG. 8 is a diagram showing the structure of FIG. 7 after reflowing the conductive bump of the second structure.

【図9】本発明の第2の好ましい実施形態による第1の
構造を示す正面断面図である。
FIG. 9 is a front sectional view showing a first structure according to a second preferred embodiment of the present invention.

【図10】第1の構造の材料の被覆の一部を除去した後
の図9の構造を示す図である。
FIG. 10 shows the structure of FIG. 9 after removing a portion of the coating of the material of the first structure.

【図11】本発明の第2の好ましい実施形態による第2
の構造を示す正面断面図である。
FIG. 11 shows a second embodiment according to the second preferred embodiment of the present invention.
It is a front sectional view showing the structure of.

【図12】第2の構造の導電性バンプ上に材料の被覆が
ある、図11の構造を示す図である。
FIG. 12 shows the structure of FIG. 11 with a coating of material on the conductive bumps of the second structure.

【図13】本発明の第2の好ましい実施形態による、第
2の構造上に第1の構造が配置された様子を示す正面断
面図である。
FIG. 13 is a front sectional view showing a state where a first structure is disposed on a second structure according to a second preferred embodiment of the present invention;

【図14】材料の被覆を加えた図13の構造を示す図で
ある。
FIG. 14 shows the structure of FIG. 13 with a coating of material.

【図15】第2の構造の導電性バンプをリフローした後
の図13の構造を示す図である。
FIG. 15 is a view showing the structure of FIG. 13 after reflowing the conductive bump of the second structure.

【図16】第1の導電体に代わるテーパ形の第1の導電
体を有する図15の構造を示す図である。
FIG. 16 is a diagram showing the structure of FIG. 15 having a tapered first conductor in place of the first conductor.

【図17】本発明の第3の好ましい実施形態による、ピ
ンを備えたはんだ体構造を示す上面図である。
FIG. 17 is a top view illustrating a solder body structure with pins according to a third preferred embodiment of the present invention.

【図18】はんだ体構造を加熱し、ピンを引き込んだ後
の図17の構造を示す図である。
FIG. 18 is a view showing the structure of FIG. 17 after the solder structure is heated and the pins are drawn.

【図19】ピンを引き離した後の図18の構造を示す図
である。
FIG. 19 shows the structure of FIG. 18 after the pins have been separated.

【図20】ピンをプレートに置き換えた図17の構造を
示す図である。
FIG. 20 is a diagram showing the structure of FIG. 17 in which pins are replaced with plates.

【図21】はんだ体構造を加熱し、プレートを引き込ん
だ後の図20の構造を示す図である。
21 shows the structure of FIG. 20 after the solder body structure has been heated and the plate has been drawn.

【図22】プレートを引き離して除去した後の図21の
構造を示す図である。
FIG. 22 shows the structure of FIG. 21 after the plate has been separated and removed.

【符号の説明】[Explanation of symbols]

10 第1の構造 12 第1の基板 14 導電体 16 パッド 18 被覆材料 42 第2の基板 44 導電性バンプ 46 導電性パッド 48 被覆材料 52 第2の導電体 54 カプセル封止材料 60 電気構造 110 第1の構造 112 第1の基板 114 第1の導電体 115 第1の導電体 116 パッド 118 被覆材料 140 第2の構造 142 第2の基板 144 導電性バンプ 146 パッド 148 被覆材料 160 電気構造 174 引き込み可能物 176 引き込み可能物 180 ピン 182 スリーブ 186 プレート 192 はんだ柱 Reference Signs List 10 first structure 12 first substrate 14 conductor 16 pad 18 coating material 42 second substrate 44 conductive bump 46 conductive pad 48 coating material 52 second conductor 54 encapsulation material 60 electrical structure 110 1 structure 112 1st substrate 114 1st conductor 115 1st conductor 116 pad 118 covering material 140 2nd structure 142 2nd substrate 144 conductive bump 146 pad 148 covering material 160 electrical structure 174 Retractable Object 176 Retractable object 180 Pin 182 Sleeve 186 Plate 192 Solder post

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ミゲル・アンゲル・ヒマレス アメリカ合衆国13811 ニューヨーク州ニ ューアーク・バレー サウス・メイン・ス トリート119 (72)発明者 シンシア・スーザン・ミルコヴィッチ アメリカ合衆国13850 ニューヨーク州ヴ ェスタル キャスルマン・ロード520 (72)発明者 マーク・ビンセント・ピアソン アメリカ合衆国13901 ニューヨーク州ビ ンガムトン ホスピタル・ヒル・ロード65 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Miguel Angel Himales United States 13811 Newark Valley, NY South Main Street 119 (72) Inventor Cynthia Susan Milkovich United States 13850 Vestal Castleman, NY Road 520 (72) Inventor Mark Vincent Pearson 13901 Binghamton, NY Hospital Hill Road 65

Claims (33)

【特許請求の範囲】[Claims] 【請求項1】第1の基板と、 前記第1の基板に機械的および電気的に結合された第1
の導電体と、 前記第1の導電体の被覆されない表面が残るように前記
第1の導電体の表面の一部がはんだ付け不能な非導電性
の材料によって被覆された、はんだ付け不能な非導電性
の被覆材料と、 前記第1の導電体の前記被覆されていない表面における
表面接着によって前記第1の導電体に機械的および電気
的に結合され、前記第1の導電体の融点より融点が低い
第2の導電体と、 前記第2の導電体に機械的および電気的に結合された第
2の基板とを含む電気構造。
A first substrate; a first substrate mechanically and electrically coupled to the first substrate;
And a part of the surface of the first conductor is coated with a non-soldering non-conductive material so that an uncoated surface of the first conductor remains. A conductive coating material, and mechanically and electrically coupled to the first conductor by surface bonding at the uncoated surface of the first conductor, the melting point being greater than the melting point of the first conductor; An electrical structure comprising: a second conductor having a low resistance; and a second substrate mechanically and electrically coupled to the second conductor.
【請求項2】前記第1の導電体がはんだバンプを含む、
請求項1に記載の電気構造。
2. The method according to claim 1, wherein the first conductor includes a solder bump.
The electrical structure according to claim 1.
【請求項3】前記第2の導電体の高さが前記はんだバン
プの高さの少なくとも約50%である、請求項2に記載
の電気構造。
3. The electrical structure of claim 2, wherein the height of the second conductor is at least about 50% of the height of the solder bump.
【請求項4】前記第1の導電体の被覆された前記表面の
面積が前記第1の導電体の前記被覆されていない表面の
面積の少なくとも約10倍である、請求項2に記載の電
気構造。
4. The electricity of claim 2, wherein the area of the coated surface of the first conductor is at least about 10 times the area of the uncoated surface of the first conductor. Construction.
【請求項5】前記第1の導電体がはんだ柱を含む、請求
項1に記載の電気構造。
5. The electrical structure according to claim 1, wherein said first conductor comprises a solder post.
【請求項6】前記はんだ柱の高さが少なくとも約1.3
mm(約50ミル)であり、前記はんだ柱が少なくとも
約2.5の高さ/直径比を有する、請求項5に記載の電
気構造。
6. The method of claim 1, wherein the height of the solder pillar is at least about 1.3.
The electrical structure of claim 5, wherein the solder pillar has a height / diameter ratio of at least about 2.5 mm.
【請求項7】前記第2の導電体が前記はんだ柱の外表面
の約10%未満を被う、請求項5に記載の電気構造。
7. The electrical structure of claim 5, wherein said second conductor covers less than about 10% of an outer surface of said solder pillar.
【請求項8】前記はんだ柱がテーパ形である、請求項5
に記載の電気構造。
8. The method according to claim 5, wherein said solder pillar is tapered.
An electrical structure according to claim 1.
【請求項9】前記はんだ柱が曲線状のエッジを有するテ
ーパ形である、請求項5に記載の電気構造。
9. The electrical structure of claim 5, wherein said solder pillar is tapered with curved edges.
【請求項10】前記はんだ柱が砂時計形である、請求項
5に記載の電気構造。
10. The electrical structure according to claim 5, wherein said solder posts are hourglass-shaped.
【請求項11】前記第2の基板が有機材料を含む、請求
項1に記載の電気構造。
11. The electrical structure according to claim 1, wherein said second substrate comprises an organic material.
【請求項12】前記第2の基板がセラミック材料を含
む、請求項1に記載の電気構造。
12. The electrical structure according to claim 1, wherein said second substrate comprises a ceramic material.
【請求項13】第2のはんだ付け不能な非導電性被覆材
料をさらに含み、前記第2の導電体の表面の一部が前記
第2のはんだ付け不能な非導電性被覆材料によって被覆
され、前記第2の導電体の残りの被覆されていない表面
が前記第1の導電体の前記被覆されていない表面と機械
的に接着し、電気的に接触した請求項1に記載の電気構
造。
13. A second non-soldering non-conductive coating material further comprising a second non-solderable non-conductive coating material, wherein a portion of the surface of the second conductor is coated with the second non-solderable non-conductive coating material. The electrical structure of claim 1, wherein the remaining uncoated surface of the second conductor is mechanically bonded and in electrical contact with the uncoated surface of the first conductor.
【請求項14】前記第2のはんだ付け不能な非導電性被
覆材料がポリイミドを含む、請求項13に記載の電気構
造。
14. The electrical structure according to claim 13, wherein said second non-solderable non-conductive coating material comprises polyimide.
【請求項15】前記第2のはんだ付け不能な非導電性材
料が硬化感光性樹脂を含む、請求項13に記載の電気構
造。
15. The electrical structure of claim 13, wherein said second non-solderable non-conductive material comprises a cured photosensitive resin.
【請求項16】第1の基板と、 前記第1の基板に機械的および電気的に結合された第1
の導電体と、 前記第1の導電体の表面の一部がはんだ付け不能な非導
電性被覆材料によって被覆され、前記第1の導電体の被
覆されていない表面が残った、はんだ付け不能な非導電
性被覆材料と、 第2の導電体と、 前記第1の導電体の前記被覆されていない表面における
表面接着によって前記第2の導電体を前記第1の導電体
に機械的および電気的に結合する手段であって、 前記第1の導電体と前記第2の導電体とに前記第1の導
電体の融点より低く、前記第2の導電体の融点よりは低
くない温度を加える手段と、 前記第2の導電体に機械的および電気的に結合された基
板とを含む電気構造。
16. A first substrate, and a first substrate mechanically and electrically coupled to the first substrate.
A portion of the surface of the first conductor is coated with a non-soldering non-conductive coating material, and the uncoated surface of the first conductor remains. A non-conductive coating material; a second conductor; and mechanically and electrically connecting the second conductor to the first conductor by surface bonding at the uncoated surface of the first conductor. Means for applying a temperature lower than the melting point of the first conductor and not lower than the melting point of the second conductor to the first conductor and the second conductor. An electrical structure comprising: a substrate mechanically and electrically coupled to the second conductor.
【請求項17】第1の導電体の被覆されていない表面が
残るように第1の導電体の表面の一部がはんだ付け不能
な非導電性材料の被覆によって被覆された、第1の基板
と、前記第1の基板に機械的および電気的に結合された
第1の導電体と、はんだ付け不能な非導電性材料の被覆
とを含む第1の構造を設けるステップと、 第2の基板と前記第2の基板に機械的および電気的に結
合された導電性バンプとを含む第2の構造を設けるステ
ップと、 前記導電性バンプが前記第1の導電体の前記被覆されて
いない表面と接触するように、前記第2の構造を前記第
1の構造に接触させて配置するステップと、 前記第1の導電体のいずれの部分も溶融させずに前記導
電性バンプをリフローして、前記第1の導電体の前記被
覆されていない表面を被う第2の導電体を形成するステ
ップと、 前記第1の構造と前記第2の構造を冷却し、前記第2の
導電体を固化させ、前記第1の導電体の前記被覆されて
いない表面における表面接着によって前記第2の導電体
を前記第1の導電体に機械的および電気的に結合するス
テップとを含む、電気構造を形成する方法。
17. A first substrate, wherein a portion of the surface of the first conductor is coated with a coating of a non-soldering non-conductive material such that an uncoated surface of the first conductor remains. Providing a first structure comprising: a first conductor mechanically and electrically coupled to the first substrate; and a coating of a non-soldering non-conductive material; and a second substrate. Providing a second structure comprising: a conductive bump mechanically and electrically coupled to the second substrate; and the uncovered surface of the first conductor comprising: Disposing the second structure in contact with the first structure so as to make contact, and reflowing the conductive bump without melting any part of the first conductor; A second covering the uncoated surface of the first conductor; Forming a conductor; cooling the first structure and the second structure, solidifying the second conductor, and bonding the first conductor to the uncoated surface of the first conductor by surface bonding. Mechanically and electrically coupling said second conductor to said first conductor.
【請求項18】前記第1の導電体がはんだバンプを含
む、請求項17に記載の方法。
18. The method of claim 17, wherein said first conductor comprises a solder bump.
【請求項19】前記リフロー・ステップで形成された前
記第2の導電体が少なくとも約0.05mm(約2ミ
ル)の高さを有する、請求項18に記載の方法。
19. The method of claim 18, wherein said second conductor formed in said reflow step has a height of at least about 2 mils.
【請求項20】前記第1の基板と前記第2の基板との間
の空間にカプセル封止材料を充填するステップをさらに
含み、前記カプセル封止材料が前記第1の導電体と前記
第2の導電体とをカプセル封止する、請求項18に記載
の方法。
20. The method according to claim 20, further comprising the step of: filling a space between the first substrate and the second substrate with an encapsulation material, wherein the encapsulation material is provided between the first conductor and the second 19. The method of claim 18, wherein said conductor is encapsulated.
【請求項21】前記第1の導電体がはんだ柱を含む、請
求項17に記載の方法。
21. The method of claim 17, wherein said first conductor comprises a solder post.
【請求項22】前記第1の構造に前記第2の構造を接触
させて配置する前記ステップの前に、前記第1の導電体
からはんだ付け不能な非導電性材料の被覆の一部を除去
して前記第1の導電体の露出表面を形成するステップを
さらに含み、前記配置ステップにおける前記被覆されて
いない表面が前記露出表面を含む、請求項17に記載の
方法。
22. Removing a portion of the non-soldering non-conductive material coating from the first conductor prior to the step of placing the second structure in contact with the first structure. 18. The method of claim 17, further comprising: forming an exposed surface of the first conductor, wherein the uncoated surface in the placing step comprises the exposed surface.
【請求項23】前記除去ステップが、前記第1の導電体
から被覆材料の一部をレーザ融除するステップを含む、
請求項22に記載の方法。
23. The removing step includes laser ablating a portion of a coating material from the first conductor.
23. The method according to claim 22.
【請求項24】はんだ付け不能な非導電性材料の前記被
覆がポリイミドを含む、請求項17に記載の方法。
24. The method of claim 17, wherein said coating of a non-solderable non-conductive material comprises polyimide.
【請求項25】はんだ付け不能な非導電性材料の前記被
覆が硬化感光性樹脂を含む、請求項17に記載の方法。
25. The method of claim 17, wherein said coating of a non-soldering non-conductive material comprises a cured photosensitive resin.
【請求項26】前記はんだ付け不能な非導電性被覆材料
が前記リフロー・ステップ中に溶融しない、請求項17
に記載の電気構造。
26. The non-soldering non-conductive coating material does not melt during the reflow step.
An electrical structure according to claim 1.
【請求項27】前記第1の基板がチップを含み、前記第
2の基板が電子キャリヤを含む、請求項17に記載の方
法。
27. The method of claim 17, wherein said first substrate comprises a chip and said second substrate comprises an electronic carrier.
【請求項28】前記第1の基板がモジュールを含み、前
記第2の基板が回路カードを含む、請求項17に記載の
方法。
28. The method according to claim 17, wherein said first substrate comprises a module and said second substrate comprises a circuit card.
【請求項29】はんだ柱構造を形成する方法であって、 装着されたパッドを有する基板と、 前記パッドに接触したはんだ体と、 前記はんだ体と接触したはんだ付け可能表面を有する引
き込み可能物とを含むはんだ体構造を設けるステップ
と、 前記はんだ体の融点より高く、前記引き込み可能物の融
点より低い温度まで前記はんだ体を加熱するステップ
と、 前記はんだ体が前記パッドと前記はんだ付け可能表面の
両方にはんだ接続されている間に、前記はんだ体からは
んだ柱が形成されるまで前記パッドから前記引き込み可
能物を離すステップと、 前記はんだ柱を冷却するステップと、 前記はんだ柱が固化した後に前記はんだ柱から前記引き
込み可能物を分離するステップとを含む方法。
29. A method of forming a solder pillar structure, comprising: a substrate having a mounted pad; a solder body in contact with the pad; and a retractable object having a solderable surface in contact with the solder body. Providing a solder body structure comprising: a step of heating the solder body to a temperature higher than the melting point of the solder body and lower than the melting point of the retractable object; and Removing the retractable object from the pad until a solder pillar is formed from the solder body while being soldered to both; cooling the solder pillar; and after the solder pillar has solidified, Separating said retractable material from the solder pillars.
【請求項30】前記引き込み可能物がはんだ付け不能ス
リーブ内のピンを含み、前記ピンが前記はんだ付け可能
表面を含む、請求項29に記載の方法。
30. The method of claim 29, wherein said retractable includes a pin in a non-soldable sleeve, said pin including said solderable surface.
【請求項31】前記引き込み可能物が前記はんだ付け可
能表面を有するプレートを含む、請求項29に記載の方
法。
31. The method according to claim 29, wherein said retractable object comprises a plate having said solderable surface.
【請求項32】前記はんだ付け可能表面の面積が前記パ
ッドの表面積の0%より大きく、約5%より小さい、請
求項29に記載の方法。
32. The method of claim 29, wherein the area of the solderable surface is greater than 0% and less than about 5% of the surface area of the pad.
【請求項33】前記はんだ付け可能表面の面積が前記パ
ッドの表面積の約95%と約100%との間である、請
求項29に記載の方法。
33. The method of claim 29, wherein the area of the solderable surface is between about 95% and about 100% of the surface area of the pad.
JP2000131843A 1999-05-10 2000-04-28 Electric structure, method of forming the same, and method of forming solder pillar Expired - Fee Related JP3418972B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/309405 1999-05-10
US09/309,405 US6225206B1 (en) 1999-05-10 1999-05-10 Flip chip C4 extension structure and process

Publications (2)

Publication Number Publication Date
JP2000357853A true JP2000357853A (en) 2000-12-26
JP3418972B2 JP3418972B2 (en) 2003-06-23

Family

ID=23198102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000131843A Expired - Fee Related JP3418972B2 (en) 1999-05-10 2000-04-28 Electric structure, method of forming the same, and method of forming solder pillar

Country Status (3)

Country Link
US (4) US6225206B1 (en)
JP (1) JP3418972B2 (en)
TW (1) TW445498B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131159A (en) * 2006-11-17 2008-06-05 Fujitsu Media Device Kk Elastic wave device
JP2010034601A (en) * 2009-11-16 2010-02-12 Fujitsu Microelectronics Ltd Method of manufacturing semiconductor device
JP2013030760A (en) * 2011-07-27 2013-02-07 Samsung Electro-Mechanics Co Ltd Surface treatment method of printed circuit board and printed circuit board
JP2017163059A (en) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 Electrode junction method
KR101831831B1 (en) * 2010-06-02 2018-02-26 스태츠 칩팩 피티이. 엘티디. Integrated circuit packaging system with rounded interconnect and method of manufacture thereof
WO2018094965A1 (en) * 2016-11-23 2018-05-31 京信通信技术(广州)有限公司 Microwave device welding base body and microwave device

Families Citing this family (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3681542B2 (en) * 1998-07-01 2005-08-10 富士通株式会社 Printed circuit boards and relay boards for multistage bumps
JP3407275B2 (en) * 1998-10-28 2003-05-19 インターナショナル・ビジネス・マシーンズ・コーポレーション Bump and method of forming the same
US7236271B2 (en) 1998-11-09 2007-06-26 Silverbrook Research Pty Ltd Mobile telecommunication device with printhead and media drive
US6816274B1 (en) * 1999-05-25 2004-11-09 Silverbrook Research Pty Ltd Method and system for composition and delivery of electronic mail
AUPQ439299A0 (en) * 1999-12-01 1999-12-23 Silverbrook Research Pty Ltd Interface system
KR20020011440A (en) * 1999-06-17 2002-02-08 마이클 골위저, 호레스트 쉐퍼 Electronic component with flexible contact structures and method for the production of said component
US6281466B1 (en) * 1999-06-28 2001-08-28 Newcor, Inc. Projection welding of an aluminum sheet
US7792298B2 (en) * 1999-06-30 2010-09-07 Silverbrook Research Pty Ltd Method of using a mobile device to authenticate a printed token and output an image associated with the token
US20050212830A1 (en) * 1999-09-17 2005-09-29 Silverbrook Research Pty Ltd Method of accessing a connection address using a mobile device with a sensing means
US20010018800A1 (en) * 1999-09-17 2001-09-06 George Tzanavaras Method for forming interconnects
US6428942B1 (en) * 1999-10-28 2002-08-06 Fujitsu Limited Multilayer circuit structure build up method
US6656765B1 (en) * 2000-02-02 2003-12-02 Amkor Technology, Inc. Fabricating very thin chip size semiconductor packages
US10388626B2 (en) * 2000-03-10 2019-08-20 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming flipchip interconnect structure
US6642613B1 (en) * 2000-05-09 2003-11-04 National Semiconductor Corporation Techniques for joining an opto-electronic module to a semiconductor package
US7431449B2 (en) 2000-10-20 2008-10-07 Silverbrook Research Pty Ltd Mobile telecommunications device with interactive paper sensor
US7456994B2 (en) 2000-10-20 2008-11-25 Silverbrook Research Pty Ltd Mobile telecommunications device with stylus having printhead tip
TW490823B (en) * 2001-01-20 2002-06-11 Advanced Semiconductor Eng Bump manufacture process of chip scale package
WO2002063683A2 (en) * 2001-02-09 2002-08-15 Koninklijke Philips Electronics N.V. Method of manufacturing a semiconductor device and a semiconductor device obtained by means of said method
US6737295B2 (en) * 2001-02-27 2004-05-18 Chippac, Inc. Chip scale package with flip chip interconnect
DE10111389A1 (en) * 2001-03-09 2002-09-12 Heidenhain Gmbh Dr Johannes Soldered connection between tracks on e.g. flexible- and glass substrates, to make position measurement sensor, involves using solder pads of specified shape on each substrate
US20020151164A1 (en) * 2001-04-12 2002-10-17 Jiang Hunt Hang Structure and method for depositing solder bumps on a wafer
JP4663165B2 (en) * 2001-06-27 2011-03-30 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US20030006062A1 (en) * 2001-07-06 2003-01-09 Stone William M. Interconnect system and method of fabrication
US6482680B1 (en) * 2001-07-20 2002-11-19 Carsem Semiconductor Sdn, Bhd. Flip-chip on lead frame
US20030116860A1 (en) * 2001-12-21 2003-06-26 Biju Chandran Semiconductor package with low resistance package-to-die interconnect scheme for reduced die stresses
US7235886B1 (en) * 2001-12-21 2007-06-26 Intel Corporation Chip-join process to reduce elongation mismatch between the adherents and semiconductor package made thereby
US20050136640A1 (en) * 2002-01-07 2005-06-23 Chuan Hu Die exhibiting an effective coefficient of thermal expansion equivalent to a substrate mounted thereon, and processes of making same
US6841413B2 (en) * 2002-01-07 2005-01-11 Intel Corporation Thinned die integrated circuit package
US6661102B1 (en) * 2002-01-18 2003-12-09 Advance Micro Devices, Inc. Semiconductor packaging apparatus for controlling die attach fillet height to reduce die shear stress
KR100455387B1 (en) * 2002-05-17 2004-11-06 삼성전자주식회사 Method for forming a bump on semiconductor chip and COG package including the bump
US6892925B2 (en) * 2002-09-18 2005-05-17 International Business Machines Corporation Solder hierarchy for lead free solder joint
JP4363029B2 (en) * 2002-11-06 2009-11-11 ソニー株式会社 Manufacturing method of split wave plate filter
US7223633B2 (en) 2002-11-27 2007-05-29 Intel Corporation Method for solder crack deflection
US20060115927A1 (en) * 2002-11-29 2006-06-01 Infineon Technologies Ag Attachment of flip chips to substrates
US6854636B2 (en) * 2002-12-06 2005-02-15 International Business Machines Corporation Structure and method for lead free solder electronic package interconnections
US20050161814A1 (en) * 2002-12-27 2005-07-28 Fujitsu Limited Method for forming bumps, semiconductor device and method for manufacturing same, substrate processing apparatus, and semiconductor manufacturing apparatus
US6917113B2 (en) * 2003-04-24 2005-07-12 International Business Machines Corporatiion Lead-free alloys for column/ball grid arrays, organic interposers and passive component assembly
US20050045697A1 (en) 2003-08-26 2005-03-03 Lacap Efren M. Wafer-level chip scale package
US20050082670A1 (en) * 2003-09-11 2005-04-21 Nordson Corporation Method for preapplying a viscous material to strengthen solder connections in microelectronic packaging and microelectronic packages formed thereby
US7495179B2 (en) 2003-10-06 2009-02-24 Tessera, Inc. Components with posts and pads
US6933171B2 (en) * 2003-10-21 2005-08-23 Intel Corporation Large bumps for optical flip chips
US9029196B2 (en) 2003-11-10 2015-05-12 Stats Chippac, Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
JP4928945B2 (en) 2003-11-10 2012-05-09 スタッツ・チップパック・インコーポレイテッド Bump-on-lead flip chip interconnect
US8026128B2 (en) 2004-11-10 2011-09-27 Stats Chippac, Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US8574959B2 (en) 2003-11-10 2013-11-05 Stats Chippac, Ltd. Semiconductor device and method of forming bump-on-lead interconnection
USRE47600E1 (en) 2003-11-10 2019-09-10 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming electrical interconnect with stress relief void
US7121806B2 (en) 2003-12-19 2006-10-17 Dresser-Rand Company Welding method and an assembly formed thereby
JP4151846B2 (en) * 2004-03-03 2008-09-17 Tdk株式会社 Multilayer ceramic electronic component, circuit board, etc., and method for producing ceramic green sheet for use in production of the component, substrate, etc.
TWI273664B (en) * 2004-03-26 2007-02-11 Advanced Semiconductor Eng Bumping process, bump structure, packaging process and package structure
TWI240399B (en) * 2004-04-06 2005-09-21 Advanced Semiconductor Eng Chip package structure and process for fabricating the same
US7253089B2 (en) * 2004-06-14 2007-08-07 Micron Technology, Inc. Microfeature devices and methods for manufacturing microfeature devices
US7205177B2 (en) * 2004-07-01 2007-04-17 Interuniversitair Microelektronica Centrum (Imec) Methods of bonding two semiconductor devices
US7378297B2 (en) * 2004-07-01 2008-05-27 Interuniversitair Microelektronica Centrum (Imec) Methods of bonding two semiconductor devices
DE102004037817B4 (en) * 2004-08-04 2014-08-07 Epcos Ag Electrical component in flip-chip design
US7332821B2 (en) * 2004-08-20 2008-02-19 International Business Machines Corporation Compressible films surrounding solder connectors
US6977213B1 (en) * 2004-08-27 2005-12-20 Taiwan Semiconductor Manufacturing Company, Ltd. IC chip solder bump structure and method of manufacturing same
JP2006156943A (en) * 2004-09-28 2006-06-15 Seiko Epson Corp Wiring pattern forming method, wiring pattern, and electronic equipment
WO2006098268A1 (en) * 2005-03-16 2006-09-21 Matsushita Electric Industrial Co., Ltd. Method of bump forming and method of flip chip mounting using conductive grain
KR20070107154A (en) 2005-03-25 2007-11-06 스태츠 칩팩, 엘티디. Flip chip interconnection having narrow interconnection sites on the substrate
EP1873819A4 (en) * 2005-04-06 2012-07-11 Panasonic Corp Flip chip mounting method and bump forming method
US7566182B2 (en) * 2005-05-09 2009-07-28 Silverbrook Research Pty Ltd Printhead that uses data track for print registration on print medium
US7360880B2 (en) 2005-05-09 2008-04-22 Silverbrook Research Pty Ltd Ink cartridge having porous insert for use in a mobile device
US7780288B2 (en) 2005-05-09 2010-08-24 Silverbrook Research Pty Ltd Ducting between ink outlets of sectioned ink reservoir
US7841713B2 (en) * 2005-05-09 2010-11-30 Silverbrook Research Pty Ltd Mobile device for printing schedule data
US20060250486A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd. Mobile device that reads entire of first coded data before commencing printing
US7558962B2 (en) * 2005-05-09 2009-07-07 Silverbrook Research Pty Ltd Method of authenticating a print medium online
US20060250477A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Cartridge with capping mechanism for use in a mobile device
US7726764B2 (en) 2005-05-09 2010-06-01 Silverbrook Research Pty Ltd Method of using a mobile device to determine a position of a print medium configured to be printed on by the mobile device
US7697159B2 (en) * 2005-05-09 2010-04-13 Silverbrook Research Pty Ltd Method of using a mobile device to determine movement of a print medium relative to the mobile device
US7392950B2 (en) * 2005-05-09 2008-07-01 Silverbrook Research Pty Ltd Print medium with coded data in two formats, information in one format being indicative of information in the other format
US7770995B2 (en) 2005-05-09 2010-08-10 Silverbrook Research Pty Ltd Mobile telecommunications device with media edge detection
US7735993B2 (en) 2005-05-09 2010-06-15 Silverbrook Research Pty Ltd Print medium having coded data and an orientation indicator
US20060250484A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Print cartridge with single drive shaft and opposing media guide
US7607774B2 (en) * 2005-05-09 2009-10-27 Silverbrook Research Pty Ltd Mobile telecommunication device with a printhead and single media feed roller
US7680512B2 (en) * 2005-05-09 2010-03-16 Silverbrook Research Pty Ltd Method of using a mobile device to print onto a print medium taking into account an orientation of a print medium
US8104889B2 (en) 2005-05-09 2012-01-31 Silverbrook Research Pty Ltd Print medium with lateral data track used in lateral registration
US7753517B2 (en) 2005-05-09 2010-07-13 Silverbrook Research Pty Ltd Printhead with an optical sensor for receiving print data
US7874659B2 (en) * 2005-05-09 2011-01-25 Silverbrook Research Pty Ltd Cartridge with printhead and media feed mechanism for mobile device
US7595904B2 (en) 2005-05-09 2009-09-29 Silverbrook Research Pty Ltd Method of using a mobile device to determine a first rotational orientation of coded data on a print medium
US7661813B2 (en) 2005-05-09 2010-02-16 Silverbrook Research Pty Ltd Mobile device with a printer and a stylus having a printhead tip
US8061793B2 (en) * 2005-05-09 2011-11-22 Silverbrook Research Pty Ltd Mobile device that commences printing before reading all of the first coded data on a print medium
US20060250641A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Method of using a mobile device with sensing means to interact with printed schedule information
US7466993B2 (en) * 2005-05-09 2008-12-16 Silverbrook Research Pty Ltd Mobile telecommunications device dual media coding detectors
CN100501957C (en) * 2005-05-24 2009-06-17 松下电器产业株式会社 Method of forming solder bump and method of mounting semiconductor device
US7560813B2 (en) 2005-06-14 2009-07-14 John Trezza Chip-based thermo-stack
US7534722B2 (en) * 2005-06-14 2009-05-19 John Trezza Back-to-front via process
US7838997B2 (en) 2005-06-14 2010-11-23 John Trezza Remote chip attachment
US7215032B2 (en) 2005-06-14 2007-05-08 Cubic Wafer, Inc. Triaxial through-chip connection
US7521806B2 (en) * 2005-06-14 2009-04-21 John Trezza Chip spanning connection
US7781886B2 (en) 2005-06-14 2010-08-24 John Trezza Electronic chip contact structure
US7786592B2 (en) 2005-06-14 2010-08-31 John Trezza Chip capacitive coupling
US8456015B2 (en) 2005-06-14 2013-06-04 Cufer Asset Ltd. L.L.C. Triaxial through-chip connection
US20060278966A1 (en) 2005-06-14 2006-12-14 John Trezza Contact-based encapsulation
US7851348B2 (en) 2005-06-14 2010-12-14 Abhay Misra Routingless chip architecture
US7687400B2 (en) 2005-06-14 2010-03-30 John Trezza Side stacking apparatus and method
DE102005030946B4 (en) * 2005-06-30 2007-09-27 Infineon Technologies Ag Semiconductor device with wiring substrate and solder balls as a connecting element and method for producing the semiconductor device
US7312529B2 (en) 2005-07-05 2007-12-25 International Business Machines Corporation Structure and method for producing multiple size interconnections
TWI284949B (en) * 2005-09-09 2007-08-01 Chipmos Technologies Inc Bumped structure and its forming method
JP4184371B2 (en) * 2005-10-03 2008-11-19 日本テキサス・インスツルメンツ株式会社 Semiconductor chip, semiconductor device and manufacturing method thereof
DE102005055488A1 (en) * 2005-11-18 2007-01-04 Infineon Technologies Ag Electronic structure and production process use lead-free solder columns comprising two materials for interconnections with the core material having the lower melting temperature
US7534715B2 (en) * 2005-12-29 2009-05-19 Intel Corporation Methods including fluxless chip attach processes
DE102006006561B4 (en) * 2006-02-13 2009-03-05 Htc Beteiligungs Gmbh Flip-chip module and method for exchanging a semiconductor chip of a flip-chip module
WO2007120418A2 (en) * 2006-03-13 2007-10-25 Nextwire Systems, Inc. Electronic multilingual numeric and language learning tool
JP4294722B2 (en) * 2006-04-27 2009-07-15 パナソニック株式会社 Connection structure and manufacturing method thereof
US7687397B2 (en) 2006-06-06 2010-03-30 John Trezza Front-end processed wafer having through-chip connections
DE102006028719B4 (en) * 2006-06-20 2008-05-08 Infineon Technologies Ag Semiconductor device with semiconductor chip stack and connecting elements and method for producing the semiconductor device
US7626269B2 (en) * 2006-07-06 2009-12-01 Micron Technology, Inc. Semiconductor constructions and assemblies, and electronic systems
KR100809698B1 (en) * 2006-08-21 2008-03-06 삼성전자주식회사 Mounting structure of semiconductor device having soldering flux and under fill resin layer and method of mounting method of semiconductor device
US8133808B2 (en) 2006-09-18 2012-03-13 Tessera, Inc. Wafer level chip package and a method of fabricating thereof
US7700475B1 (en) 2006-10-05 2010-04-20 Marvell International Ltd. Pillar structure on bump pad
US9761435B1 (en) 2006-12-14 2017-09-12 Utac Thai Limited Flip chip cavity package
US9711343B1 (en) 2006-12-14 2017-07-18 Utac Thai Limited Molded leadframe substrate semiconductor package
US8749065B2 (en) * 2007-01-25 2014-06-10 Tera Probe, Inc. Semiconductor device comprising electromigration prevention film and manufacturing method thereof
US20080197493A1 (en) * 2007-02-16 2008-08-21 Stefan Geyer Integrated circuit including conductive bumps
US7670874B2 (en) 2007-02-16 2010-03-02 John Trezza Plated pillar package formation
JP5016975B2 (en) * 2007-03-05 2012-09-05 株式会社東芝 Manufacturing method of semiconductor device
US8558379B2 (en) 2007-09-28 2013-10-15 Tessera, Inc. Flip chip interconnection with double post
KR100886720B1 (en) * 2007-10-30 2009-03-04 주식회사 하이닉스반도체 Stacked semiconductor package and method of manufacturing the same
JP5159273B2 (en) 2007-11-28 2013-03-06 ルネサスエレクトロニクス株式会社 Manufacturing method of electronic device
KR100969441B1 (en) * 2008-06-05 2010-07-14 삼성전기주식회사 A printed circuit board comprising a semiconductor chip and a method for manufacturing the same
US9947605B2 (en) 2008-09-04 2018-04-17 UTAC Headquarters Pte. Ltd. Flip chip cavity package
US9524945B2 (en) * 2010-05-18 2016-12-20 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with L-shaped non-metal sidewall protection structure
US8618676B2 (en) * 2008-10-30 2013-12-31 Stmicroelectronics (Malta) Ltd. Method of assembly of a semiconductor package for the improvement of the electrical testing yield on the packages so obtained
KR20100095268A (en) * 2009-02-20 2010-08-30 삼성전자주식회사 Semiconductor package and method for manufacturing the same
US20100300743A1 (en) * 2009-06-02 2010-12-02 Qualcomm Incorporated Modified Pillar Design for Improved Flip Chip Packaging
CN101924569B (en) * 2009-06-10 2013-05-22 财团法人交大思源基金会 Double-frequency blended coupler unit as well as double-frequency blended coupler and receiver thereof
US9449900B2 (en) * 2009-07-23 2016-09-20 UTAC Headquarters Pte. Ltd. Leadframe feature to minimize flip-chip semiconductor die collapse during flip-chip reflow
US8841766B2 (en) 2009-07-30 2014-09-23 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with non-metal sidewall protection structure
CN101670503A (en) * 2009-10-12 2010-03-17 东莞市焊宏爱法电子科技有限公司 Halogen-free water-based and wash-free welding fluid
US9355940B1 (en) 2009-12-04 2016-05-31 Utac Thai Limited Auxiliary leadframe member for stabilizing the bond wire process
US20110186989A1 (en) 2010-02-04 2011-08-04 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor Device and Bump Formation Process
US8304863B2 (en) 2010-02-09 2012-11-06 International Business Machines Corporation Electromigration immune through-substrate vias
US20120002386A1 (en) * 2010-07-01 2012-01-05 Nokia Corporation Method and Apparatus for Improving the Reliability of Solder Joints
US8330272B2 (en) * 2010-07-08 2012-12-11 Tessera, Inc. Microelectronic packages with dual or multiple-etched flip-chip connectors
US9048135B2 (en) 2010-07-26 2015-06-02 Taiwan Semiconductor Manufacturing Company, Ltd. Copper pillar bump with cobalt-containing sidewall protection
US8580607B2 (en) 2010-07-27 2013-11-12 Tessera, Inc. Microelectronic packages with nanoparticle joining
US8697492B2 (en) * 2010-11-02 2014-04-15 Tessera, Inc. No flow underfill
US8853558B2 (en) 2010-12-10 2014-10-07 Tessera, Inc. Interconnect structure
US8912649B2 (en) 2011-08-17 2014-12-16 Taiwan Semiconductor Manufacturing Company, Ltd. Dummy flip chip bumps for reducing stress
US9368398B2 (en) 2012-01-12 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structure and method of fabricating same
US9257333B2 (en) 2013-03-11 2016-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures and methods of forming same
US9437564B2 (en) 2013-07-09 2016-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structure and method of fabricating same
US9401308B2 (en) * 2013-03-12 2016-07-26 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging devices, methods of manufacture thereof, and packaging methods
US10015888B2 (en) 2013-02-15 2018-07-03 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect joint protective layer apparatus and method
US9263839B2 (en) 2012-12-28 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for an improved fine pitch joint
US9607921B2 (en) 2012-01-12 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Package on package interconnect structure
US9589862B2 (en) 2013-03-11 2017-03-07 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures and methods of forming same
US9202714B2 (en) * 2012-04-24 2015-12-01 Micron Technology, Inc. Methods for forming semiconductor device packages
US8970034B2 (en) 2012-05-09 2015-03-03 Micron Technology, Inc. Semiconductor assemblies and structures
US9449905B2 (en) 2012-05-10 2016-09-20 Utac Thai Limited Plated terminals with routing interconnections semiconductor device
US9006034B1 (en) 2012-06-11 2015-04-14 Utac Thai Limited Post-mold for semiconductor package having exposed traces
US9082776B2 (en) 2012-08-24 2015-07-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package having protective layer with curved surface and method of manufacturing same
US9136236B2 (en) 2012-09-28 2015-09-15 Intel Corporation Localized high density substrate routing
US9190380B2 (en) 2012-12-06 2015-11-17 Intel Corporation High density substrate routing in BBUL package
JP6197319B2 (en) * 2013-03-21 2017-09-20 富士通株式会社 Mounting method of semiconductor element
US9355980B2 (en) * 2013-09-03 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Three-dimensional chip stack and method of forming the same
US9349703B2 (en) 2013-09-25 2016-05-24 Intel Corporation Method for making high density substrate interconnect using inkjet printing
US9159690B2 (en) * 2013-09-25 2015-10-13 Intel Corporation Tall solders for through-mold interconnect
US20170309584A1 (en) * 2014-10-23 2017-10-26 Agency For Science, Technology And Research Method of bonding a first substrate and a second substrate
US10886250B2 (en) 2015-07-10 2021-01-05 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
US9633971B2 (en) 2015-07-10 2017-04-25 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
US9917038B1 (en) 2015-11-10 2018-03-13 Utac Headquarters Pte Ltd Semiconductor package with multiple molding routing layers and a method of manufacturing the same
US9892962B2 (en) 2015-11-30 2018-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer level chip scale package interconnects and methods of manufacture thereof
KR20170098462A (en) * 2016-02-22 2017-08-30 삼성전기주식회사 Package module and manufaturing method of the same
US10276477B1 (en) 2016-05-20 2019-04-30 UTAC Headquarters Pte. Ltd. Semiconductor package with multiple stacked leadframes and a method of manufacturing the same
US10157821B1 (en) * 2017-05-30 2018-12-18 Advanced Semiconductor Engineering, Inc. Semiconductor packages
US10276481B2 (en) * 2017-06-26 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Package structure having a plurality of conductive balls having narrow width for the ball waist
US10403591B2 (en) * 2017-10-31 2019-09-03 Xilinx, Inc. Chip package assembly with enhanced interconnects and method for fabricating the same
US11240918B2 (en) * 2018-08-28 2022-02-01 Research And Business Foundation Sungkyunkwan University Method for flip-chip bonding using anisotropic adhesive polymer

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376505A (en) 1981-01-05 1983-03-15 Western Electric Co., Inc. Methods for applying solder to an article
US5656862A (en) 1990-03-14 1997-08-12 International Business Machines Corporation Solder interconnection structure
US4999699A (en) 1990-03-14 1991-03-12 International Business Machines Corporation Solder interconnection structure and process for making
US5147084A (en) 1990-07-18 1992-09-15 International Business Machines Corporation Interconnection structure and test method
US5060844A (en) 1990-07-18 1991-10-29 International Business Machines Corporation Interconnection structure and test method
US5616520A (en) 1992-03-30 1997-04-01 Hitachi, Ltd. Semiconductor integrated circuit device and fabrication method thereof
US5334804A (en) 1992-11-17 1994-08-02 Fujitsu Limited Wire interconnect structures for connecting an integrated circuit to a substrate
JPH06177205A (en) 1992-12-03 1994-06-24 Matsushita Electric Ind Co Ltd Mounting method for electronic component with bump
JP2716336B2 (en) * 1993-03-10 1998-02-18 日本電気株式会社 Integrated circuit device
JP3428070B2 (en) 1993-06-07 2003-07-22 株式会社東芝 Manufacturing method of printed wiring board
US5371328A (en) * 1993-08-20 1994-12-06 International Business Machines Corporation Component rework
JPH0817860A (en) 1994-06-30 1996-01-19 Oki Electric Ind Co Ltd Manufacture of electronic part
JP3348528B2 (en) * 1994-07-20 2002-11-20 富士通株式会社 Method for manufacturing semiconductor device, method for manufacturing semiconductor device and electronic circuit device, and electronic circuit device
US5497938A (en) 1994-09-01 1996-03-12 Intel Corporation Tape with solder forms and methods for transferring solder to chip assemblies
US5542601A (en) * 1995-02-24 1996-08-06 International Business Machines Corporation Rework process for semiconductor chips mounted in a flip chip configuration on an organic substrate
US5655703A (en) * 1995-05-25 1997-08-12 International Business Machines Corporation Solder hierarchy for chip attachment to substrates
US5796591A (en) * 1995-06-07 1998-08-18 International Business Machines Corporation Direct chip attach circuit card
US6008071A (en) * 1995-09-20 1999-12-28 Fujitsu Limited Method of forming solder bumps onto an integrated circuit device
JPH09134934A (en) * 1995-11-07 1997-05-20 Sumitomo Metal Ind Ltd Semiconductor package and semiconductor device
US5730607A (en) * 1996-01-23 1998-03-24 Mcdonnell Douglas Corp. Stacked printed circuit board connector
US5639696A (en) * 1996-01-31 1997-06-17 Lsi Logic Corporation Microelectronic integrated circuit mounted on circuit board with solder column grid array interconnection, and method of fabricating the solder column grid array
US5903058A (en) * 1996-07-17 1999-05-11 Micron Technology, Inc. Conductive bumps on die for flip chip application
US5790377A (en) * 1996-09-12 1998-08-04 Packard Hughes Interconnect Company Integral copper column with solder bump flip chip
JP2861965B2 (en) 1996-09-20 1999-02-24 日本電気株式会社 Method of forming bump electrodes
JPH10107081A (en) 1996-10-02 1998-04-24 Fuji Xerox Co Ltd Method for connecting semiconductor chip
US5953623A (en) * 1997-04-10 1999-09-14 International Business Machines Corporation Ball limiting metal mask and tin enrichment of high melting point solder for low temperature interconnection
US5797591A (en) 1997-04-25 1998-08-25 Energy Absorption Systems, Inc. Guardrail with improved ground anchor assembly
JPH10303245A (en) 1997-04-28 1998-11-13 Oki Electric Ind Co Ltd Semiconductor chip, manufacture of semiconductor device and semiconductor device
JP3070514B2 (en) * 1997-04-28 2000-07-31 日本電気株式会社 Semiconductor device having protruding electrode, method of mounting semiconductor device, and mounting structure thereof
US5968670A (en) * 1997-08-12 1999-10-19 International Business Machines Corporation Enhanced ceramic ball grid array using in-situ solder stretch with spring
US5975409A (en) * 1997-08-12 1999-11-02 International Business Machines Corporation Ceramic ball grid array using in-situ solder stretch
US5964396A (en) * 1997-08-12 1999-10-12 International Business Machines Corporation Enhanced ceramic ball grid array using in-situ solder stretch with clip
DE19750073A1 (en) * 1997-11-12 1999-05-20 Bosch Gmbh Robert Circuit board
JPH11168116A (en) 1997-12-04 1999-06-22 Mitsui High Tec Inc Electrode bump for semiconductor chip
US6059173A (en) * 1998-03-05 2000-05-09 International Business Machines Corporation Micro grid array solder interconnection structure for second level packaging joining a module and printed circuit board
US6158644A (en) 1998-04-30 2000-12-12 International Business Machines Corporation Method for enhancing fatigue life of ball grid arrays
JPH11345837A (en) * 1998-05-06 1999-12-14 Texas Instr Inc <Ti> Method for reducing strain of flip chip electronic device with underfiling

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131159A (en) * 2006-11-17 2008-06-05 Fujitsu Media Device Kk Elastic wave device
JP2010034601A (en) * 2009-11-16 2010-02-12 Fujitsu Microelectronics Ltd Method of manufacturing semiconductor device
KR101831831B1 (en) * 2010-06-02 2018-02-26 스태츠 칩팩 피티이. 엘티디. Integrated circuit packaging system with rounded interconnect and method of manufacture thereof
JP2013030760A (en) * 2011-07-27 2013-02-07 Samsung Electro-Mechanics Co Ltd Surface treatment method of printed circuit board and printed circuit board
US8915419B2 (en) 2011-07-27 2014-12-23 Samsung Electro-Mechanics Co., Ltd. Method for surface-treating printed circuit board and printed circuit board
JP2017163059A (en) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 Electrode junction method
WO2018094965A1 (en) * 2016-11-23 2018-05-31 京信通信技术(广州)有限公司 Microwave device welding base body and microwave device

Also Published As

Publication number Publication date
US6664637B2 (en) 2003-12-16
TW445498B (en) 2001-07-11
US6955982B2 (en) 2005-10-18
JP3418972B2 (en) 2003-06-23
US6225206B1 (en) 2001-05-01
US20010005047A1 (en) 2001-06-28
US6756680B2 (en) 2004-06-29
US20010018230A1 (en) 2001-08-30
US20040094842A1 (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP3418972B2 (en) Electric structure, method of forming the same, and method of forming solder pillar
JP3554695B2 (en) Method of manufacturing solder interconnect in a semiconductor integrated circuit and method of manufacturing a semiconductor integrated circuit
KR100344929B1 (en) A method of making semiconductor device
JP5664392B2 (en) Semiconductor device, method for manufacturing semiconductor device, and method for manufacturing wiring board
US5869904A (en) Semiconductor device having a projecting electrode
JP3500032B2 (en) Wiring board and method of manufacturing the same
JP4137112B2 (en) Manufacturing method of electronic parts
KR100475324B1 (en) Selectively filled adhesive film containing a fluxing agent
JP4729963B2 (en) PROJECT ELECTRODE FOR CONNECTING ELECTRONIC COMPONENT, ELECTRONIC COMPONENT MOUNTING BODY USING SAME, AND METHOD FOR PRODUCING THEM
KR20090103886A (en) Electrical interconnect structure and method of forming the same
JPH04273453A (en) Method for direct chip mounting
WO2006112384A1 (en) Protruding electrode for connecting electronic component, electronic component mounted body using such electrode and methods for manufacturing such electrode and electronic component mounted body
JP5508802B2 (en) Manufacturing method of semiconductor device
TW201227893A (en) Lead-free structures in a semiconductor device
US6413849B1 (en) Integrated circuit package with surface mounted pins on an organic substrate and method of fabrication therefor
JP2002270732A (en) Electronic component with underfill material
KR20130037204A (en) Circuit board with anchored underfill
JP7196936B2 (en) Method for manufacturing wiring board for semiconductor device, and wiring board for semiconductor device
US20230276575A1 (en) Embedded printed circuit board
JP2010177254A (en) Semiconductor device, semiconductor element, and method of manufacturing the semiconductor device
JP5589734B2 (en) Electronic component and manufacturing method thereof
JP2004247358A (en) Semiconductor device, its manufacturing method, and solder ball used in it
JP2000216179A (en) Apparatus and method of manufacturing semiconductor integrated circuit device, and mold for use therein
JPH1022413A (en) Wiring board, manufacture of semiconductor device using it and mounting method thereof
JP2007096025A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees