JP2000356519A - Magnetic direction sensor - Google Patents

Magnetic direction sensor

Info

Publication number
JP2000356519A
JP2000356519A JP11169108A JP16910899A JP2000356519A JP 2000356519 A JP2000356519 A JP 2000356519A JP 11169108 A JP11169108 A JP 11169108A JP 16910899 A JP16910899 A JP 16910899A JP 2000356519 A JP2000356519 A JP 2000356519A
Authority
JP
Japan
Prior art keywords
sensor
moving body
axis
magnetic
azimuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11169108A
Other languages
Japanese (ja)
Inventor
Yuichi Masuda
雄一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP11169108A priority Critical patent/JP2000356519A/en
Publication of JP2000356519A publication Critical patent/JP2000356519A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Navigation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic direction sensor which can detect a direction precisely even when a moving body is tilted. SOLUTION: A three-axis magnetic sensor 12 which measures respective components in three-axis directions of geomagnetism by using three geomagnetic sensors 15a to 15c arranged in three orthogonal axes is provided. A posture angle sensor 13 which measures the posture angle of a moving body is provided. A direction computing part 14 which computes a magnetic direction on the basis of the output of the three-axis magnetic sensor 12 and on the basis of the output of the posture angle sensor 13 is provided. Three axes of the three- axis magnetic sensor 12 are constituted so as to be deviated from the vertical axis in a state that the three-axis magnetic sensor 12 is installed at the moving body. In a state that the three-axis magnetic sensor 12 is installed at the moving body, all output sensitivities and all offset biases of the three geomagnetic sensors 15a to 15c can be adjusted easily.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は例えば自動車等の
移動体に搭載される磁方位センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic direction sensor mounted on a moving body such as an automobile.

【0002】[0002]

【従来の技術】従来のこの種の磁方位センサとして、3
つの地磁気センサを直交3軸に配し、それら3つの地磁
気センサで地磁気の直交3軸方向の各成分を測定し、そ
れら測定された各成分から磁方位を演算により求める構
成とされたものがあり、この磁方位センサにおいては水
平面内の直交2軸と鉛直軸との3軸に地磁気センサが配
置されるものとなっていた。
2. Description of the Related Art As a conventional magnetic azimuth sensor of this type, 3
There is a configuration in which three geomagnetic sensors are arranged on three orthogonal axes, the three geomagnetic sensors measure each component in the three orthogonal geomagnetic directions, and the magnetic azimuth is calculated from the measured components. In this magnetic azimuth sensor, the geomagnetic sensor is arranged on three axes of two orthogonal axes and a vertical axis in a horizontal plane.

【0003】この磁方位センサの補正(調整)は移動体
に設置した状態で移動体全体を水平面内で1回転させた
り、あるいは移動体上に水平面内で回転するターンテー
ブルを設け、その上に磁方位センサを載せてターンテー
ブルを1回転させたりして、方位変化に対する地磁気の
変化を測定することにより行われ、この測定に基づき、
出力感度の補正や移動体の構成材料・構造等に起因して
生じるオフセットバイアスの補正が行われていた。
In order to correct (adjust) the magnetic azimuth sensor, the whole moving body is rotated once in a horizontal plane in a state where the magnetic azimuth sensor is installed on the moving body, or a turntable which rotates in a horizontal plane is provided on the moving body. This is performed by measuring the change in geomagnetism with respect to the change in direction by rotating the turntable once with the magnetic direction sensor mounted, and based on this measurement,
The output sensitivity has been corrected and the offset bias generated due to the constituent material and structure of the moving body has been corrected.

【0004】[0004]

【発明が解決しようとする課題】上述したように、磁方
位センサを移動体に搭載した状態で回転させることによ
り、その感度とオフセットバイアスの補正を行うといっ
たことが従来行われているものの、上記のような構成を
有する従来の磁方位センサにおいては、鉛直軸に配され
た地磁気センサには回転しても方位変化は生じず、つま
り地磁気の変化が生じないため、その補正を正確に行う
ことができないものとなっており、この点で磁方位の検
出精度に問題があるものとなっていた。
As described above, it has been conventionally performed to correct the sensitivity and the offset bias by rotating the magnetic azimuth sensor while mounted on a moving body. In the conventional magnetic azimuth sensor having the configuration as described above, the azimuth sensor arranged on the vertical axis does not change its azimuth even if rotated, that is, the terrestrial magnetism does not change. In this respect, there is a problem in the detection accuracy of the magnetic azimuth.

【0005】この発明の目的はこの問題に鑑み、磁方位
を精度良く検出することができる磁方位センサを提供す
ることにある。
An object of the present invention is to provide a magnetic azimuth sensor capable of accurately detecting a magnetic azimuth in view of this problem.

【0006】[0006]

【課題を解決するための手段】この発明によれば、磁方
位センサは移動体に設置され、直交3軸に配された3つ
の地磁気センサで地磁気のそれら3軸方向の各成分を測
定する3軸磁気センサと、移動体の姿勢角を測定する姿
勢角センサと、3軸磁気センサの出力と姿勢角センサの
出力とから磁方位を演算する方位演算部とよりなり、移
動体に設置された状態で、3軸磁気センサの3軸がいず
れも鉛直軸からずれているものとされる。
According to the present invention, a magnetic azimuth sensor is installed on a moving body and measures each component of terrestrial magnetism in three axial directions by three terrestrial magnetic sensors arranged on three orthogonal axes. An axis magnetic sensor, an attitude angle sensor for measuring the attitude angle of the moving body, and an azimuth calculation unit for calculating the magnetic azimuth from the output of the three-axis magnetic sensor and the output of the attitude angle sensor are installed on the moving body. In this state, all three axes of the three-axis magnetic sensor are deviated from the vertical axis.

【0007】[0007]

【発明の実施の形態】この発明の実施の形態を図面を参
照して実施例により説明する。図1はこの発明の一実施
例の構成をブロック図で示したものであり、この例では
磁方位センサ11は3軸磁気センサ12と姿勢角センサ
13と方位演算部14とによって構成される。
Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention. In this example, a magnetic azimuth sensor 11 includes a three-axis magnetic sensor 12, an attitude angle sensor 13, and an azimuth calculation unit 14.

【0008】3軸磁気センサ12は直交3軸に配された
3つの地磁気センサ15a,15b及び15cを有して
おり、地磁気の直交3軸方向の各成分を測定することが
できるものとなっている。各地磁気センサ15a〜15
cの出力は信号処理部16に入力され、信号処理部16
は各地磁気センサ15a〜15cの検出磁束を電圧に変
換して出力する。
The three-axis magnetic sensor 12 has three geomagnetic sensors 15a, 15b, and 15c arranged on three orthogonal axes, and can measure each component of the earth magnetism in the three orthogonal axes. I have. Magnetic sensors 15a to 15
c is input to the signal processing unit 16 and the signal processing unit 16
Converts the magnetic flux detected by each of the magnetic sensors 15a to 15c into a voltage and outputs the voltage.

【0009】姿勢角センサ13は移動体の姿勢角(ピッ
チ角及びロール角)を測定して出力する。姿勢角センサ
13は例えばジャイロを使用するものとされる。ジャイ
ロを使用することにより、移動体が加速運動をしている
場合でも正確に姿勢角を検知することができる。なお、
単に傾斜計を使用するものとしてもよい。方位演算14
は3軸磁気センサ12の出力と姿勢角センサ13の出力
より磁方位を演算して出力する。方位演算部14はこの
例では図に示したように、3軸磁気センサ12及び姿勢
角センサ13からの出力信号が入力される入力インタフ
ェース(入力I/F)17、演算処理を行なうCPU1
8、演算結果を出力する出力インタフェース(出力I/
F)19及びメモリ20によって構成され、メモリ20
には演算して求めた補正値を記録しておくための不揮発
性メモリを兼ね備えておくようにしてもよい。
The attitude angle sensor 13 measures and outputs the attitude angle (pitch angle and roll angle) of the moving body. The attitude angle sensor 13 uses a gyro, for example. By using the gyro, the posture angle can be accurately detected even when the moving body is performing an acceleration movement. In addition,
A simple inclinometer may be used. Direction calculation 14
Calculates the magnetic azimuth from the output of the three-axis magnetic sensor 12 and the output of the attitude angle sensor 13 and outputs it. In this example, as shown in the figure, the azimuth calculation unit 14 has an input interface (input I / F) 17 to which output signals from the three-axis magnetic sensor 12 and the attitude angle sensor 13 are input, and the CPU 1 that performs calculation processing.
8. Output interface (output I /
F) The memory 20 is constituted by 19 and the memory 20.
May also be provided with a non-volatile memory for recording the correction value obtained by calculation.

【0010】磁方位センサ11は例えば自動車等の移動
体21に搭載され、この際、3軸磁気センサ12の設置
は以下のようにして行なわれる。即ち、図2(A)に示
したように、立方体の頂角Oに隣接する3つの線分O
A,OB,OCをそれぞれa軸,b軸,c軸とした時、
地磁気センサ15aを図中、矢印で示したようにa軸方
向、地磁気センサ15bをb軸方向、地磁気センサ15
cをc軸方向にそれぞれ配するものとし、面ABCでこ
の立方体を切断して、その切断面ABCを移動体21の
水平面に図2(B)に示したように設置固定するものと
する。この時、真上から見て移動体21の前方方向にa
軸方向(線分OA)が重なるようにしておく。
The magnetic azimuth sensor 11 is mounted on a moving body 21 such as an automobile. At this time, the three-axis magnetic sensor 12 is installed as follows. That is, as shown in FIG. 2A, three line segments O adjacent to the apex angle O of the cube
When A, OB and OC are a-axis, b-axis and c-axis respectively,
In the figure, the geomagnetic sensor 15a is in the a-axis direction, and the geomagnetic sensor 15b is in the b-axis direction.
It is assumed that c is arranged in the c-axis direction, this cube is cut at the surface ABC, and the cut surface ABC is fixed on the horizontal plane of the moving body 21 as shown in FIG. At this time, when viewed from directly above, a
The axial direction (line segment OA) is set to overlap.

【0011】つまり、この例では移動体21に設置され
た状態で、3軸磁気センサ12の検出3軸(a,b,c
軸)がいずれも鉛直軸からずれている配置とされる。次
に、上記のような配置構成とされた磁方位センサ11の
動作について説明する。まず、地磁気センサ15a〜1
5cの補正(調整)について説明する。
That is, in this example, three axes (a, b, c) detected by the three-axis magnetic
Axis) are all displaced from the vertical axis. Next, the operation of the magnetic azimuth sensor 11 configured as described above will be described. First, the geomagnetic sensors 15a-1
The correction (adjustment) of 5c will be described.

【0012】今、図3に示したように、地球上のある地
点における局地水平面を考え、この地点における地磁気
ベクトルBE の水平成分(水平方向分力)をBLmax,鉛
直成分(鉛直方向分力)をBZ とする。水平面内におい
て、磁北を基準として鉛直軸下方向に対して右回りの角
度を方位角ψとすると、水平面内における地磁気の方向
と大きさ、即ち鉛直軸回りに回転した時の地磁気の水平
成分BL (ψ)は、次式で表される。
As shown in FIG. 3, a local horizontal plane at a certain point on the earth is considered, and the horizontal component (horizontal component) of the geomagnetic vector BE at this point is represented by B Lmax and the vertical component (vertical direction). Component) is B Z. In the horizontal plane, when the azimuth angle に 対 し て is a clockwise angle with respect to the direction below the vertical axis with respect to magnetic north, the direction and magnitude of the geomagnetism in the horizontal plane, that is, the horizontal component B of the geomagnetism when rotated about the vertical axis L (ψ) is represented by the following equation.

【0013】 BL (ψ)=BLmax・ cosψ ・・・(1) 図4はこのBL (ψ)とψの関係を示したものである。
一方、地磁気ベクトルBE と水平面とのなす角(伏角)
をIとすると、地磁気の鉛直成分BZ は次式で表され
る。 BZ =BLmax・ tanI ・・・(2) ここで、検出軸が鉛直軸より角度αずれている地磁気セ
ンサを鉛直軸を回転軸として回転したとすると、この地
磁気センサに入力される地磁気BR (ψ)は、 BR (ψ)=BL (ψ)・ sinα+BZ ・ cosα ・・・(3) となる。しかしながら、実際に地磁気センサを移動体に
取り付けて鉛直軸を回転軸として回転した場合には、例
えば移動体の構造等の影響によって地磁気センサで測定
される地磁気BM (ψ)は次式で示されるものとなる。
B L (ψ) = B Lmax · cosψ (1) FIG. 4 shows the relationship between B L (ψ) and ψ.
On the other hand, the angle (dip) between the geomagnetic vector BE and the horizontal plane
Let I be I, the vertical component B Z of geomagnetism is expressed by the following equation. B Z = B Lmax · tanI (2) Here, assuming that the geomagnetic sensor whose detection axis is shifted from the vertical axis by an angle α is rotated around the vertical axis, the geomagnetism B input to this geomagnetic sensor is obtained. R ([psi) is to become B R (ψ) = B L (ψ) · sinα + B Z · cosα ··· (3). However, when the geomagnetic sensor is actually attached to the moving body and rotated about the vertical axis as a rotation axis, for example, the geomagnetism B M (ψ) measured by the geomagnetic sensor due to the structure of the moving body is expressed by the following equation. It will be.

【0014】 BM (ψ)={BR (ψ)}・SF+BIAS ・・・(4) 但し、SF:出力感度(誤差がなければ1) BIAS:出力のオフセットバイアス 従って、鉛直軸回りに回転させながら数箇所で測定し
て、この(4)式を推定することにより地磁気センサを
移動体に取り付けた時の感度とオフセットバイアスを求
めることができる。
B M (ψ) = {B R (ψ)} · SF + BIAS (4) where SF: output sensitivity (1 if there is no error) BIAS: output offset bias Therefore, rotation around the vertical axis The sensitivity and the offset bias when the geomagnetic sensor is mounted on the moving body can be obtained by estimating the equation (4) by measuring at several places while performing the measurement.

【0015】例えば、移動体を水平面で360度以上回
転させながらデータを取得して、その最大値と最小値よ
りSFを求めてもよいし、あるいは最小2乗法を使って
SFを求めてもよい。SFが求まれば、BIASは
(3)式と(4)式の関係から簡単に求めることができ
る。このようにして、a,b,cの直交3軸に配置した
3つの地磁気センサ15a〜15cのそれぞれの感度誤
差とオフセットバイアス誤差を、移動体を一回だけ水平
面内で回転させることにより求めることができる。
For example, data may be obtained while rotating the moving body 360 degrees or more in a horizontal plane, and the SF may be obtained from the maximum value and the minimum value, or the SF may be obtained using the least square method. . If SF is obtained, BIAS can be easily obtained from the relationship between Expressions (3) and (4). In this way, the sensitivity error and the offset bias error of each of the three geomagnetic sensors 15a to 15c arranged on the three axes a, b, and c are obtained by rotating the moving body only once in the horizontal plane. Can be.

【0016】次に、3つの地磁気センサ15a〜15c
で測定された値から、移動体21が傾いた、つまりピッ
チ角θ及びロール角φが存在する状態での磁方位の計算
について説明する。移動体の前方方向をX、右方向を
Y、下方向をZとし、これらX,Y,Zの直交3軸を移
動体軸と称することにする。この時、移動体に取り付け
られた3つの地磁気センサの直交3軸と移動体軸の関係
は不変であるので、3行3列の回転行列RMにより変換
する。
Next, three geomagnetic sensors 15a to 15c
The calculation of the magnetic azimuth in a state where the moving body 21 is tilted, that is, in the state where the pitch angle θ and the roll angle φ exist, will be described from the values measured in the above. The forward direction of the moving body is X, the right direction is Y, and the downward direction is Z, and three orthogonal axes of X, Y, and Z are referred to as moving body axes. At this time, since the relationship between the three orthogonal axes of the three geomagnetic sensors attached to the moving object and the axis of the moving object is invariable, conversion is performed using a rotation matrix RM of three rows and three columns.

【0017】 ここで、Ba ,Bb ,Bc は地磁気センサ15a〜15
cで測定され、かつ補正された地磁気であり、BX ,B
Y ,BZ は移動体軸に変換した地磁気(3列)を示す。
[0017] Here, B a, B b, B c geomagnetic sensor 15a~15
c x and B x , B
Y and B Z indicate geomagnetism (three rows) converted to the moving body axis.

【0018】移動体がロール角φ及びピッチ角θで傾い
ている場合、移動体軸から水平、鉛直面へ3行3列の回
転行列RA(φ,θ)により変換し、移動体前方方向
(X軸)の水平面投影成分BHXとその直交成分BHYを下
式により求める。 水平面内の地磁気方向の方位ψ(磁方位)は、これらB
HX, HYから次式により求めることができる。
When the moving body is inclined at a roll angle φ and a pitch angle θ, the moving body axis is converted into a horizontal and vertical plane by a rotation matrix RA (φ, θ) of 3 rows and 3 columns, and the moving body forward direction ( The horizontal projection component B HX of the X axis) and its orthogonal component B HY are obtained by the following equation. The orientation の (magnetic orientation) of the geomagnetic direction in the horizontal plane is
It can be obtained from HX, B HY by the following equation.

【0019】ψ= tan-1(BHX/BHY) 上述した各地磁気センサ15a〜15cの補正における
演算及び磁方位の演算は方位演算部14において行われ
る。なお、各地磁気センサ15a〜15cの補正のため
の回転操作は、従来と同様、移動体21全体を水平面内
で1回転させたり、あるいは移動体21上にターンテー
ブルを設け、その上に3軸磁気センサ12を載せてター
ンテーブルを1回転させたりすることによって行われ
る。
Ψ = tan −1 (B HX / B HY ) The azimuth calculation unit 14 performs the calculation in the correction of the magnetic sensors 15a to 15c and the calculation of the magnetic azimuth described above. The rotation operation for correcting the magnetic sensors 15a to 15c in each place is performed by rotating the whole of the moving body 21 once in a horizontal plane, or by providing a turntable on the moving body 21 and three axes on the same as in the conventional case. This is performed by mounting the magnetic sensor 12 and rotating the turntable once.

【0020】[0020]

【発明の効果】以上説明したように、この発明によれば
3軸磁気センサの直交3軸がいずれも移動体に設置され
た状態で鉛直軸からずれている構成とされるため、例え
ば移動体を水平面内で1回転させることにより、直交3
軸に配された3つの地磁気センサそれぞれの出力感度の
補正値とオフセットバイアスの補正値を求めることがで
き、つまり3つの地磁気センサ全ての出力感度とオフセ
ットバイアスの調整を行うことができる。
As described above, according to the present invention, since the three orthogonal axes of the three-axis magnetic sensor are all displaced from the vertical axis in a state where they are installed on the moving body, for example, Is rotated once in the horizontal plane,
The correction value of the output sensitivity and the correction value of the offset bias of each of the three geomagnetic sensors arranged on the axis can be obtained, that is, the output sensitivity and the offset bias of all three geomagnetic sensors can be adjusted.

【0021】従って、優れた検出精度を有する磁方位セ
ンサを得ることができ、特に移動体が傾いても正確に方
位を検出することができるものとなる。
Therefore, a magnetic azimuth sensor having excellent detection accuracy can be obtained, and in particular, the azimuth can be accurately detected even when the moving body is tilted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.

【図2】3軸磁気センサの移動体への設置方法を説明す
るための図。
FIG. 2 is a diagram for explaining a method of installing a three-axis magnetic sensor on a moving body.

【図3】地磁気成分・方向を説明するための図。FIG. 3 is a diagram for explaining geomagnetic components and directions.

【図4】地磁気の水平成分と方位角の関係を示すグラ
フ。
FIG. 4 is a graph showing a relationship between a horizontal component of terrestrial magnetism and an azimuth angle.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 移動体に設置され、直交3軸に配された
3つの地磁気センサで地磁気のそれら3軸方向の各成分
を測定する3軸磁気センサと、 上記移動体の姿勢角を測定する姿勢角センサと、 上記3軸磁気センサの出力と上記姿勢角センサの出力と
から磁方位を演算する方位演算部とからなり、 上記移動体に設置された状態で、上記3軸磁気センサの
3軸がいずれも鉛直軸からずれていることを特徴とする
磁方位センサ。
1. A three-axis magnetic sensor which is installed on a moving body and measures each component of geomagnetism in three axial directions by three geomagnetic sensors arranged on three orthogonal axes, and measures an attitude angle of the moving body. An attitude angle sensor; and an azimuth calculating unit that calculates a magnetic azimuth from the output of the three-axis magnetic sensor and the output of the attitude angle sensor. A magnetic azimuth sensor wherein all axes are shifted from a vertical axis.
JP11169108A 1999-06-16 1999-06-16 Magnetic direction sensor Withdrawn JP2000356519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11169108A JP2000356519A (en) 1999-06-16 1999-06-16 Magnetic direction sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11169108A JP2000356519A (en) 1999-06-16 1999-06-16 Magnetic direction sensor

Publications (1)

Publication Number Publication Date
JP2000356519A true JP2000356519A (en) 2000-12-26

Family

ID=15880461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11169108A Withdrawn JP2000356519A (en) 1999-06-16 1999-06-16 Magnetic direction sensor

Country Status (1)

Country Link
JP (1) JP2000356519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837472B1 (en) 2005-10-11 2008-06-12 야마하 가부시키가이샤 Magnetic sensor control device
JP2011185868A (en) * 2010-03-10 2011-09-22 Alps Electric Co Ltd Azimuth detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837472B1 (en) 2005-10-11 2008-06-12 야마하 가부시키가이샤 Magnetic sensor control device
JP2011185868A (en) * 2010-03-10 2011-09-22 Alps Electric Co Ltd Azimuth detector

Similar Documents

Publication Publication Date Title
JP4586172B2 (en) Inertial navigation system
US4698912A (en) Magnetic compass calibration
US6539639B2 (en) Monitoring accuracy of an electronic compass
JP4466705B2 (en) Navigation device
JP4252555B2 (en) Tilt sensor and azimuth measuring device using the same
US4472884A (en) Borehole azimuth determination using magnetic field sensor
JP2007500350A (en) System using 2-axis magnetic sensor for 3-axis compass solution
US20090292495A1 (en) Dynamic motion control
JP2006226810A (en) Azimuth measuring instrument
JPWO2007020702A1 (en) Sensor device
JP2005061969A (en) Azimuthal angle measuring instrument and azimuthal angle measuring method
JP2019120587A (en) Positioning system and positioning method
GB2090973A (en) A directional gyro compass
JPH11325904A (en) Earth magnetism azimuth sensor
KR100376313B1 (en) Inertial and magnetic sensors systems designed for measuring the heading angle with respect to the north terrestrial pole
KR20070049419A (en) Apparatus and method for estimation of virtual axis magnetic compass data to compensate the tilt error of biaxial magnetic compass
JP2000356519A (en) Magnetic direction sensor
JP2000249552A (en) Method and device for searching north
CN113064208B (en) High-precision ultra-shallow water target magnetic detection system
JP2001083224A (en) Method and apparatus for measuring magnetic field
JPH0949737A (en) Navigation signal outputting method
JPH1194573A (en) Position attitude measuring device for mobile body
JP4648423B2 (en) Rotation angle measurement device and rotation angle measurement method
JP6321914B2 (en) Mobile body information calculation device, mobile body information acquisition device, mobile body, mobile body information calculation method, mobile body information acquisition method, mobile body information calculation program, and mobile body information acquisition program
CN111750846A (en) Marine compass and dynamic calibration method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905