JP2000350925A - Membrane separating device - Google Patents

Membrane separating device

Info

Publication number
JP2000350925A
JP2000350925A JP11162104A JP16210499A JP2000350925A JP 2000350925 A JP2000350925 A JP 2000350925A JP 11162104 A JP11162104 A JP 11162104A JP 16210499 A JP16210499 A JP 16210499A JP 2000350925 A JP2000350925 A JP 2000350925A
Authority
JP
Japan
Prior art keywords
water
membrane
treated water
treated
filtration membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11162104A
Other languages
Japanese (ja)
Inventor
Tomoaki Miyanoshita
友明 宮ノ下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP11162104A priority Critical patent/JP2000350925A/en
Publication of JP2000350925A publication Critical patent/JP2000350925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily specify a filter membrane element whose membrane is broken and facilitate the control of a water circulation volume of water to be treated and purifying water for backward washing to the filter membrane element. SOLUTION: This membrane separating device is a pressure-type large-size membrane separating device which treats water to be treated such as river water by membrane separation. In addition, the device is of the same constitution as a conventional membrane separation device excepting the constitution of treated water chambers 42 of a pressure container 40 and that of treated water pipes 44 incidental to the treated water chambers 42. The pressure container 40 of the membrane separating device is equipped with the treated water chamber 42 provided per each filter membrane element 12 above an upper container wall 41 and the individual treated water pipes 44 connected to the upper part of each of the treated water chambers 42. Each of the individual treated water pipes 44 is equipped with a manual flow rate regulating valve 46 and a water sampling pipe 50 with an ON-OFF valve connected to a high- sensitivity turbidimeter 48 branches off from each of the individual treated water pipes 44 on the upstream of the flow rate regulating valve 46.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、膜分離装置に関
し、更に詳細には、濾過膜エレメント毎に、又は所定本
数の濾過膜エレメントを纏めたグループ毎に、濾過膜エ
レメントの膜破断を検査し、かつ被処理水及び逆洗浄水
の通水量を制御できるようにした、圧力式大容量型膜分
離装置として最適な膜分離装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane separation device, and more particularly, to a membrane separation device for inspecting a membrane rupture of a filtration membrane element or a group of a predetermined number of filtration membrane elements. Also, the present invention relates to a membrane separation apparatus which is capable of controlling the flow rates of water to be treated and backwash water, and which is optimal as a pressure-type large-capacity membrane separation apparatus.

【0002】[0002]

【従来の技術】従来から、河川水などの原水を処理して
浄水や工業用水を製造する場合、或いは排水を処理する
場合等では、一連の処理プロセスの一つとして、被処理
水中の懸濁物質を分離するために、MF膜、UF膜、N
F膜等の濾過膜を使った膜分離装置が使用されている。
2. Description of the Related Art Conventionally, when raw water such as river water is treated to produce purified water or industrial water, or when wastewater is treated, as one of a series of treatment processes, suspended water in treated water is treated. MF membrane, UF membrane, N
A membrane separation device using a filtration membrane such as an F membrane is used.

【0003】ここで、図5を参照して、従来の圧力式大
型膜分離装置の構成を説明する。図5は従来の圧力式大
型膜分離装置の構成を示すフローシートである。圧力式
大型膜分離装置10は、河川水を被処理水として処理す
る装置であって、図5に示すように、圧力容器として形
成され、複数個の濾過膜エレメント12を内蔵する膜分
離塔14と、被処理水を収容する被処理水タンク16
と、被処理水タンク16から膜分離塔14に送水する被
処理水ポンプ18と、被処理水に膜分離処理を施して得
た処理水を収容する処理水タンク20と、逆洗浄水とし
て処理水を処理水タンク20から膜分離塔14に送水す
る逆洗ポンプ22とを備えている。
Here, the configuration of a conventional large-sized pressure-type membrane separation apparatus will be described with reference to FIG. FIG. 5 is a flow sheet showing the configuration of a conventional large pressure type membrane separation apparatus. The large pressure type membrane separation device 10 is a device for treating river water as water to be treated, and as shown in FIG. 5, formed as a pressure vessel and has a membrane separation tower 14 having a plurality of filtration membrane elements 12 therein. And a treated water tank 16 for storing the treated water.
A treated water pump 18 for feeding water from the treated water tank 16 to the membrane separation tower 14, a treated water tank 20 for containing treated water obtained by subjecting the treated water to membrane separation, and treating as backwash water A backwash pump 22 for sending water from the treated water tank 20 to the membrane separation tower 14 is provided.

【0004】膜分離塔14は、濾過膜エレメント12の
濾過膜及び隔壁24を境界として、図5に示すように、
下部の被処理水室26と、上部の処理水室28とに区画
されている。濾過膜エレメント12は、濾過膜として例
えば数百本の中空糸状UF膜を束にしたモジュール形式
のエレメントとして構成され、隔壁24に支持されて、
被処理水室26内に垂下している。
The membrane separation tower 14 has a boundary between the filtration membrane of the filtration membrane element 12 and the partition wall 24 as shown in FIG.
It is partitioned into a lower treated water chamber 26 and an upper treated water chamber 28. The filtration membrane element 12 is configured as a modular element in which, for example, several hundred hollow fiber UF membranes are bundled as a filtration membrane, and is supported by the partition wall 24.
It hangs down in the water chamber 26 to be treated.

【0005】被処理水は、膜分離塔14の被処理水室2
6の底部に接続された被処理水管30を介して被処理水
ポンプ18により被処理水室26に送水され、濾過膜エ
レメント12を透過して膜分離処理された後、清澄な処
理水として処理水室28に流入する。処理水は、処理水
室28に接続された処理水管32を介して処理水タンク
20に流出する。逆洗浄水は、処理水管32に接続する
逆洗浄水管34を介して、処理水タンク20から逆洗浄
水ポンプ22により処理水室28に送られ、濾過膜エレ
メント12を膜分離処理の場合とは逆に通過して濾過膜
を洗浄しつつ被処理水室26に流入し、被処理水室26
の下部から逆洗浄水排水管36を経て外部に排出され
る。また、膜分離塔14の被処理水室26の上部には、
ベント管38が設けられている。
[0005] The water to be treated is the treated water chamber 2 of the membrane separation tower 14.
The water is sent to the water chamber 26 by the water pump 18 through the water pipe 30 connected to the bottom of the filter 6 and is permeated through the filtration membrane element 12 to be subjected to membrane separation. The water flows into the water chamber 28. The treated water flows out to the treated water tank 20 via the treated water pipe 32 connected to the treated water chamber 28. The backwashing water is sent from the treated water tank 20 to the treated water chamber 28 by the backwashed water pump 22 via the backwashed water pipe 34 connected to the treated water pipe 32, and the filtration membrane element 12 is subjected to membrane separation processing. Conversely, the water passes through the treated water chamber 26 while passing through the filter membrane to wash the filtration membrane.
Is discharged to the outside through the backwash water drainage pipe 36 from the lower part of the water. In addition, in the upper part of the water chamber 26 to be treated of the membrane separation tower 14,
A vent pipe 38 is provided.

【0006】[0006]

【発明が解決しようとする課題】ところで、膜分離装置
10を長期間にわたり運転していると、濾過膜エレメン
ト12の濾過膜が損傷したり、破断したりして、被処理
水の一部が濾過膜の損傷或いは破断箇所を通過して、膜
分離処理されることなく、処理水室28に流入し、処理
水の水質を悪化させることがある。しかし、上述した従
来の膜分離装置10では、運転を停止しない限り、膜損
傷また膜破断(以下、簡単に膜破断と言う)した濾過膜
エレメントを検出することが難しいという問題があっ
た。
When the membrane separation device 10 is operated for a long period of time, the filtration membrane of the filtration membrane element 12 is damaged or broken, and a part of the water to be treated is removed. In some cases, the water passes through a damaged or broken portion of the filtration membrane and flows into the treated water chamber 28 without being subjected to the membrane separation treatment, thereby deteriorating the quality of the treated water. However, the above-described conventional membrane separation device 10 has a problem that unless the operation is stopped, it is difficult to detect a filtration membrane element in which a membrane is damaged or a membrane is broken (hereinafter, simply referred to as a membrane break).

【0007】そこで、従来は、処理水の水質が低下した
ことから、濾過膜エレメントの膜破断の疑いがあるとき
には、一旦、膜分離装置10の運転を停止し、膜分離塔
14を分解し、全ての濾過膜エレメント12を取り出し
て、1本毎に濾過膜エレメント12の膜破断検査を行わ
なければならなかった。そのために、膜分離装置12の
処理効率が低下し、所定の処理水量を得ることができな
かった。
Therefore, conventionally, when the quality of the treated water is lowered, when there is a suspicion that the membrane of the filtration membrane element is broken, the operation of the membrane separation device 10 is temporarily stopped, and the membrane separation tower 14 is disassembled. All the filtration membrane elements 12 were taken out, and the membrane breakage inspection of the filtration membrane elements 12 had to be performed for each one. For this reason, the treatment efficiency of the membrane separation device 12 was reduced, and a predetermined amount of treated water could not be obtained.

【0008】しかも、多数本、例えば100本の濾過膜
エレメントを一つの膜分離塔に装着している圧力式大容
量膜分離装置では、処理水の水質悪化により、濾過膜エ
レメントに膜破断が生じていると判断することは、実際
には難しい。すなわち、装着している濾過膜エレメント
の本数が多い場合、少数本の濾過膜エレメントの膜破断
により、被処理水が処理水に混入したときには、たとえ
高感度の濁度計や微粒子計を用いたとしても、被処理水
の処理水混入を検知することは、極めて難しい。それ
は、濾過膜エレメントの本数が多いので、処理水の水量
が膨大になり、少々の被処理水の混入は、大量の処理水
による希釈のために、検出することが難しいからであ
る。また、仮に濾過膜エレメントに膜破断が生じている
と判断できたとしても、100本の濾過膜エレメントの
うちから膜破断の濾過膜エレメントを特定するには、膜
分離塔から100本の濾過膜エレメントを取り出し、1
本1本通気テスト等を行って濾過膜の点検を行う必要が
あった。
In addition, in a large-capacity pressure-type membrane separation apparatus in which a large number, for example, 100, of filtration membrane elements are installed in one membrane separation tower, membrane breakage occurs in the filtration membrane element due to deterioration of the quality of treated water. It is actually difficult to judge. That is, when the number of the installed filtration membrane elements is large, when the water to be treated is mixed into the treated water due to the membrane breakage of a small number of the filtration membrane elements, even if a high-sensitivity turbidity meter or a fine particle meter is used. However, it is extremely difficult to detect the mixing of the treated water with the treated water. This is because the number of filtration membrane elements is large, the amount of treated water is enormous, and it is difficult to detect a small amount of water to be treated due to dilution with a large amount of treated water. Further, even if it can be determined that a membrane rupture has occurred in the filtration membrane element, in order to specify the membrane rupture membrane element out of the 100 filtration membrane elements, 100 filtration membranes are required from the membrane separation tower. Take out the element, 1
It was necessary to check the filtration membrane by carrying out a single aeration test or the like.

【0009】一方、濾過膜エレメントの膜破断を検出す
ることは、極めて重要である。それは、例えば被処理水
に同伴したバクテリヤや細菌が処理水に混入するときに
は、たとえ微量の混入であっても、処理水の安全性に問
題が生じることが多いからである。
[0009] On the other hand, it is extremely important to detect the membrane breakage of the filtration membrane element. This is because, for example, when bacteria or bacteria that accompany the water to be treated enter the treated water, even if the amount is very small, a problem often occurs in the safety of the treated water.

【0010】ところで、従来の膜分離装置では、膜分離
塔単位で、被処理水及び逆洗浄水の流量を制御すること
はできるものの、濾過膜エレメント単位で被処理水及び
逆洗浄水の流量を制御することはできない。一方、膜分
離塔内に多数本の濾過膜エレメントを装着した場合、一
般的には、濾過膜エレメントの装着箇所によって、濾過
膜単位面積当たりの被処理水及び逆洗浄水の通水量が異
なって不均一になる。その結果、例えば従来の膜分離装
置の薬品洗浄の時期決定では、濾過膜単位面積当たりの
被処理水の通水量が大きい濾過膜エレメント、又は濾過
膜単位面積当たりの逆洗浄水の通水量が小さい濾過膜エ
レメントが基準になるので、薬品洗浄の頻度が高くなる
という問題があった。
In the conventional membrane separation apparatus, the flow rates of the water to be treated and the backwash water can be controlled for each membrane separation tower, but the flow rates of the water to be treated and the backwash water can be controlled for each filtration membrane element. There is no control. On the other hand, when a large number of filtration membrane elements are installed in the membrane separation tower, generally, the flow rate of the water to be treated and the backwash water per unit area of the filtration membrane differs depending on the installation location of the filtration membrane element. Becomes uneven. As a result, for example, when determining the timing of chemical cleaning of a conventional membrane separation device, the flow rate of the water to be treated per unit area of the filtration membrane is large, or the flow rate of the backwash water per unit area of the filtration membrane is small. Since the filtration membrane element is used as a reference, there is a problem that the frequency of chemical cleaning increases.

【0011】以上の説明では、河川水等の原水を被処理
水とする膜分離装置を例にして問題を説明しているが、
水の膜分離処理に限らす、一般的な液体の膜分離処理に
ついても同じ問題がある。そこで、本発明の目的は、膜
破断した濾過膜エレメントの特定を容易にし、かつ濾過
膜エレメントに対する被処理液及び逆洗浄液の通液量の
制御を容易にする構成を備えた膜分離装置を提供するこ
とである。
In the above description, the problem is explained by taking as an example a membrane separation apparatus in which raw water such as river water is treated water.
The same problem exists with general liquid membrane separation, which is not limited to water membrane separation. Therefore, an object of the present invention is to provide a membrane separation device having a configuration that facilitates identification of a membrane element in which a membrane has been broken and that facilitates control of the flow rates of a liquid to be treated and a backwashing liquid through the membrane element. It is to be.

【0012】[0012]

【課題を解決するための手段】本発明者は、上述の課題
を解決する過程で、1個の圧力容器に1本の濾過膜エレ
メントを装着することにより、濾過膜エレメント毎に膜
破断を検出し、かつ濾過膜エレメント毎に被処理液及び
逆洗浄液の通液量を制御できるようにすることも考え
た。しかし、これでは、膜分離装置が大型化し、複雑化
して、運転も難しくなり、しかも設備コストが嵩み、か
つ設置スペースも大きくなるために、経済的に引き合わ
ない。そこで、本発明者は、濾過膜エレメント毎に処理
液室を、又は複数本の濾過膜エレメントに共通の処理液
室を設けることを着想し、実験を重ねて、本発明を完成
するに到った。
Means for Solving the Problems In the course of solving the above-mentioned problems, the present inventor has installed one filter membrane element in one pressure vessel to detect membrane breakage for each filter membrane element. In addition, it has been considered that the flow rates of the liquid to be treated and the backwashing liquid can be controlled for each filtration membrane element. However, in this case, the membrane separation device becomes large and complicated, the operation becomes difficult, and the equipment cost increases and the installation space becomes large, so that it is not economically feasible. Therefore, the inventor of the present invention conceived of providing a processing liquid chamber for each filtration membrane element or providing a common processing liquid chamber for a plurality of filtration membrane elements, repeated experiments, and completed the present invention. Was.

【0013】上記目的を達成するために、本発明に係る
膜分離装置は、圧力容器内に複数本の濾過膜エレメント
を備え、圧力容器内にそれぞれ区画された被処理液室か
ら処理液室に濾過膜エレメントを介して被処理液を透過
させる外圧缶体式の膜分離装置において、濾過膜エレメ
ント毎に設けられた、又は複数本の濾過膜エレメントに
共通して設けられた処理液室と、各処理液室にそれぞれ
接続された処理液管とを備えていることを特徴としてい
る。
[0013] To achieve the above object, a membrane separation device according to the present invention comprises a plurality of filtration membrane elements in a pressure vessel, and transfers from a treatment liquid chamber partitioned in the pressure vessel to a treatment liquid chamber. In an external pressure can type membrane separation device that allows a liquid to be treated to pass through a filtration membrane element, a treatment liquid chamber provided for each filtration membrane element, or provided in common to a plurality of filtration membrane elements, And a processing liquid pipe connected to each of the processing liquid chambers.

【0014】本発明では、濾過膜エレメントが処理液室
毎に分離、独立しているので、処理液室毎に濾過膜エレ
メントの膜破断を検査することができる。膜破断の検査
手段には制約はないが、例えば各処理液室に接続する個
別処理液管に懸濁質検出手段を設け、処理液の性状悪化
により膜破断を判定する。懸濁質検出手段としは、例え
ば濁度計又は微粒子計を使用する。本発明に係る膜分離
装置は、換言すれば、膜破断検査を行う濾過膜エレメン
トの検査グループ毎に、それぞれの検査グループに属す
る濾過膜エレメントに共通の処理液室を備えている。
In the present invention, since the filtration membrane element is separated and independent for each treatment liquid chamber, it is possible to inspect the membrane breakage of the filtration membrane element for each treatment liquid chamber. There is no limitation on the means for inspecting the film breakage. For example, a suspended matter detecting means is provided in an individual processing liquid pipe connected to each processing liquid chamber, and the film breakage is determined based on deterioration of the properties of the processing liquid. As a means for detecting a suspended solid, for example, a turbidity meter or a fine particle meter is used. In other words, the membrane separation device according to the present invention includes a common processing liquid chamber for the filtration membrane elements belonging to each inspection group for each inspection group of the filtration membrane elements for performing the membrane breakage inspection.

【0015】本発明では、処理液室に属する濾過膜エレ
メントの本数には制約はなく、濾過膜エレメントの本数
は1本でも、複数本でも、例えば10本から15本の多
数本でも良い。また、処理液室の濾過膜エレメントの本
数が、全ての処理液室にわって同じでも、また処理液室
毎に異なっていても良い。処理液室の形状にも制約はな
く、箱型でも、円筒状でも、多角筒状でも良く、また処
理液室の配置も濾過膜エレメントの配置に対応できる限
り自由であって、例えば圧力容器の容器壁上に円筒状処
理液室を碁盤目状に設けてもよく、圧力容器の中心から
同心円状に長い処理液室を連続して設けても、又は短い
処理液室を離隔して設けも良く、或いは半径方向に沿っ
て連続して又は離隔して設けも良い。本発明は、濾過膜
エレメントの形式、濾過膜の種類、被処理液の性状、ク
ロスフロー方式又はデッドエンドフロー方式(全量濾過
方式)を問わず、膜分離装置に適用できる。
In the present invention, the number of filtration membrane elements belonging to the processing liquid chamber is not limited, and the number of filtration membrane elements may be one, a plurality, or a large number of, for example, 10 to 15. Further, the number of filtration membrane elements in the processing liquid chambers may be the same for all the processing liquid chambers, or may be different for each processing liquid chamber. There is no limitation on the shape of the processing liquid chamber, and the processing liquid chamber may be box-shaped, cylindrical, or polygonal cylindrical, and the processing liquid chamber may be arranged freely as long as it can correspond to the arrangement of the filtration membrane element. A cylindrical processing liquid chamber may be provided in a grid pattern on the container wall, a long processing liquid chamber may be continuously provided concentrically from the center of the pressure vessel, or a short processing liquid chamber may be provided separately. Alternatively, they may be provided continuously or spaced apart in the radial direction. INDUSTRIAL APPLICABILITY The present invention can be applied to a membrane separation device regardless of the type of filtration membrane element, the type of filtration membrane, the properties of the liquid to be treated, the cross-flow method or the dead-end flow method (whole-filtration method).

【0016】本発明の好適な実施態様では、逆洗浄液管
との接続位置より上流の処理液管に流量調節弁を設け
る。これにより、各処理液室毎に被処理液及び逆洗浄液
の流量を制御することができる。また、濾過膜エレメン
トが膜破断しているときには、膜破断している濾過膜エ
レメントに属する処理液室からの処理液の流出を流量調
節弁の閉止により停止し、そのまま、膜分離装置の運転
を続行することができる。
In a preferred embodiment of the present invention, a flow control valve is provided in the processing liquid pipe upstream of the connection position with the backwash liquid pipe. This makes it possible to control the flow rates of the liquid to be processed and the reverse cleaning liquid for each processing liquid chamber. Further, when the filtration membrane element is broken, the outflow of the processing liquid from the processing liquid chamber belonging to the filtration membrane element whose membrane is broken is stopped by closing the flow control valve, and the operation of the membrane separation device is continued. You can continue.

【0017】[0017]

【発明の実施の形態】以下に、実施形態例を挙げ、添付
図面を参照して、本発明の実施の形態を具体的かつ詳細
に説明する。実施形態例1 本実施形態例は、本発明に係る膜分離装置の実施形態の
例であって、図1は本実施形態例の膜分離装置の要部の
構成を示すフローシート、図2は処理水室の構成を示す
処理水室の断面図である。図1及び図2に示す部品、及
び部位のうち図5と同じものには同じ符号を付して説明
を省略する。本実施形態例の膜分離装置は、河川水等の
被処理水を膜分離処理する圧力式大型膜分離装置であっ
て、膜分離塔の処理水室の構成及びそれに付随する処理
水管の構成を除いて、図5を参照して説明した従来の膜
分離装置10と同じ構成を備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Embodiment 1 The present embodiment is an example of an embodiment of a membrane separation apparatus according to the present invention. FIG. 1 is a flow sheet showing a configuration of a main part of the membrane separation apparatus of the embodiment, and FIG. It is sectional drawing of the treatment water chamber which shows the structure of a treatment water chamber. The same components as those in FIG. 5 among the components and parts shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted. The membrane separation device of the present embodiment is a large pressure type membrane separation device that performs membrane separation treatment of water to be treated such as river water, and has a configuration of a treatment water chamber of a membrane separation tower and a configuration of a treatment water pipe associated therewith. Except for the above, it has the same configuration as the conventional membrane separation device 10 described with reference to FIG.

【0018】本実施形態例の膜分離装置の膜分離塔40
は、圧力容器として形成されており、図1に示すよう
に、上容器壁41上に、濾過膜エレメント12毎に設け
られた処理水室42と、各処理水室42の上部に接続さ
れた個別処理水管44とを備えている。また、膜分離塔
40は、従来と同様に、上容器壁41で区画された下部
に被処理水室26を有し、上容器壁41から濾過膜エレ
メント12を垂下させている。被処理水室26の下部に
は被処理水管30及び逆洗浄水排水管36が、それぞれ
接続されている。
The membrane separation tower 40 of the membrane separation apparatus according to the present embodiment.
Is formed as a pressure vessel, and as shown in FIG. 1, is connected to a treated water chamber 42 provided for each filtration membrane element 12 on the upper vessel wall 41 and an upper part of each treated water chamber 42. And an individual treatment water pipe 44. Further, the membrane separation tower 40 has the water chamber 26 to be treated in the lower part defined by the upper vessel wall 41 as in the conventional case, and the filtration membrane element 12 is suspended from the upper vessel wall 41. A treated water pipe 30 and a backwash water drain pipe 36 are connected to a lower portion of the treated water chamber 26, respectively.

【0019】各個別処理水管44には、手動の流量調節
弁46が設けられている。また、高感度濁度計48に接
続された開閉弁付き採水管50が、流量調節弁46の上
流の各個別処理水管44から分岐されている。図示しな
いが、制御装置が設けてあり、各採水管50は、設定ス
ケジュールに従って、順次、開閉弁が開放され、処理水
を個別処理水管44から採水して高感度濁度計48で処
理水の濁度を測定するようになっている。各個別処理水
管44は、処理水管32に合流して、処理水タンク20
(図5参照)に接続されている。
Each of the individual treatment water pipes 44 is provided with a manual flow control valve 46. Further, a water sampling pipe 50 with an open / close valve connected to the high-sensitivity turbidity meter 48 is branched from each of the individual treatment water pipes 44 upstream of the flow control valve 46. Although not shown, a control device is provided, and each water sampling pipe 50 has an on-off valve sequentially opened in accordance with a set schedule. Turbidity is measured. Each individual treated water pipe 44 joins the treated water pipe 32 and the treated water tank 20
(See FIG. 5).

【0020】処理水室42は、図2に示すように、円筒
状の小室であって、例えば埋め込みボルト52等で上容
器壁41に固定されている。また、処理水室42内で
は、上容器壁41を貫通するエレメント孔54を通って
濾過膜エレメント12が垂下している。濾過膜エレメン
ト12は、濾過膜エレメント12の上端に設けられ、中
空糸膜の束を固定した環状板12aを埋め込みボルト5
6等で上容器壁41に固定することにより、上容器壁4
1に支持されている。尚、中空糸膜の束は、接着剤等で
相互に接合され、環状板12aの中央孔に固定されてい
る。
As shown in FIG. 2, the treated water chamber 42 is a cylindrical small chamber, and is fixed to the upper container wall 41 with, for example, embedded bolts 52 or the like. Further, in the treated water chamber 42, the filtration membrane element 12 hangs down through an element hole 54 penetrating the upper container wall 41. The filtration membrane element 12 is provided at the upper end of the filtration membrane element 12 and has an annular plate 12a to which a bundle of hollow fiber membranes is fixed, and a bolt 5 embedded therein.
6 and the like, the upper container wall 4 is fixed to the upper container wall 41.
1 supported. The bundles of hollow fiber membranes are joined to each other with an adhesive or the like, and are fixed to the central hole of the annular plate 12a.

【0021】図1及び図5を参照して、本実施形態例の
膜分離装置の運転方法を説明する。運転に際しては、先
ず、従来の膜分離装置10と同様にして、被処理水を膜
分離塔40に通水し、膜分離処理を施して、処理水を得
る。被処理水の通水の際、本実施形態例では、各個別処
理水管44に設けた手動の流量調節弁46を調節するこ
とにより、濾過膜エレメント12の配置上の差異にかか
わらず、各濾過膜エレメント12に被処理水を同じ流量
で通水することができる。被処理水を通水して膜分離処
理を数十分間から数時間行った後、処理水を用いて逆洗
浄処理を行う。
With reference to FIGS. 1 and 5, a method of operating the membrane separation apparatus of the embodiment will be described. In operation, first, in the same manner as in the conventional membrane separation apparatus 10, water to be treated is passed through the membrane separation tower 40, and a membrane separation treatment is performed to obtain treated water. In the present embodiment, when the water to be treated is passed, by adjusting the manual flow control valve 46 provided in each of the individual treated water pipes 44, regardless of the difference in the arrangement of the filtration membrane element 12, each filtration can be performed. The water to be treated can be passed through the membrane element 12 at the same flow rate. After the water to be treated is passed through and the membrane separation treatment is performed for several tens of minutes to several hours, a back washing treatment is performed using the treated water.

【0022】逆洗浄処理の際には、被処理水ポンプ18
を停止し、ベント管38の開閉弁及び逆洗浄水排水管3
6の開閉弁を開放して、膜分離塔14内の被処理水及び
濃縮された懸濁物質を排水する。次に、処理水管32の
開閉弁を閉止し、逆洗浄水ポンプ22を起動し、逆洗浄
水管34、処理水管32及び個別処理水管44を経由し
て処理水タンク20内の処理水を処理水室42に送水す
る。逆洗浄水は、濾過膜エレメント12を洗浄しつつ透
過して被処理水室26に流入し、逆洗浄水排水管36か
ら外部に流出する。
During the back washing process, the water pump 18 to be treated
Is stopped, and the opening / closing valve of the vent pipe 38 and the backwash water drain pipe 3
The on / off valve 6 is opened to drain the water to be treated and the concentrated suspended solids in the membrane separation tower 14. Next, the on / off valve of the treated water pipe 32 is closed, the backwash water pump 22 is started, and the treated water in the treated water tank 20 is passed through the backwash water pipe 34, the treated water pipe 32, and the individual treated water pipe 44. Water is supplied to the chamber 42. The backwash water permeates while washing the filtration membrane element 12, flows into the treated water chamber 26, and flows out of the backwash water drain pipe 36 to the outside.

【0023】逆洗浄時の逆洗浄水の流速は、1.0〜
5.0m/日が適当であって、逆洗浄時間は30秒〜3
00秒程度である。この時、各濾過膜エレメント12を
透過する逆洗浄水の流量は、流量調節弁46で調節する
ことにより、濾過膜エレメント12の配置上の差異にか
かわらず、等しくすることができ、従って、各濾過膜エ
レメント12を均一、一様に洗浄することができる。
The flow rate of the backwash water during the backwash is 1.0 to 1.0.
5.0 m / day is appropriate, and the backwashing time is 30 seconds to 3 seconds.
It is about 00 seconds. At this time, the flow rate of the backwash water passing through each filtration membrane element 12 can be equalized by adjusting the flow rate control valve 46 irrespective of the difference in arrangement of the filtration membrane elements 12. The filtration membrane element 12 can be washed uniformly and uniformly.

【0024】膜分離処理を数十日から数ヶ月にわたって
継続すると、通常の逆洗浄操作のみでは、被処理水の流
量を一定とした場合、濾過膜エレメント12の膜間差圧
を低下させることが難しくなり、所定の通水量を確保で
きなくなる。そこで、膜間差圧が所定の値に達したと
き、酸、アルカリ、界面活性剤等の薬品を用いて、濾過
膜エレメント12の薬品洗浄を行う。
If the membrane separation treatment is continued for several tens of days to several months, the pressure difference between the membranes of the filtration membrane element 12 may be reduced only by the ordinary backwashing operation when the flow rate of the water to be treated is constant. It becomes difficult, and it becomes impossible to secure a predetermined flow rate. Therefore, when the transmembrane pressure reaches a predetermined value, chemical cleaning of the filtration membrane element 12 is performed using a chemical such as an acid, an alkali or a surfactant.

【0025】本実施形態例では、処理水室42、個別処
理水管44、及び採水管50が各濾過膜エレメント12
毎に設けられ、各濾過膜エレメント12毎に処理水の濁
度を測定できるので、膜分離装置を運転しつつ、膜破断
した濾過膜エレメント12を速やかに特定することがで
きる。また、各個別処理水管44に手動の流量調節弁4
6が設けられ、各濾過膜エレメント12毎に被処理水及
び逆洗浄水の流量を調節することができるので、濾過膜
エレメント12全体にわたり濾過膜の目詰まり状況、及
び薬品洗浄時期を一様にすることができる。なお、流量
調節弁46としては手動のものに限らず、自動の流量調
節弁を用いることもできる。
In this embodiment, the treated water chamber 42, the individually treated water pipe 44, and the water sampling pipe 50 are
Since the turbidity of the treated water can be measured for each filtration membrane element 12, it is possible to quickly identify the membrane element 12 whose membrane has been broken while operating the membrane separation device. In addition, a manual flow control valve 4 is provided for each individual treatment water pipe 44.
6 is provided, and the flow rates of the water to be treated and the backwash water can be adjusted for each filtration membrane element 12, so that the clogging state of the filtration membrane and the chemical cleaning time can be uniformly set throughout the filtration membrane element 12. can do. Note that the flow control valve 46 is not limited to a manual flow control valve, and an automatic flow control valve can be used.

【0026】実施形態例の膜分離装置の評価試験 本実施形態例の膜分離装置を評価するために、以下の具
体例に示す膜分離装置を使って、膜破断検出の実験を行
った。膜分離装置の具体例 1)濾過膜エレメント12の仕様 膜材:内径0.8mm×外径1.2mm×長さ2000
mmで外圧タイプのUF中空糸膜(分画分子量50,0
00、PAN製) エレメント外形:直径150mm×長さ2200mm エレメント膜面積:40m2/本 被処理水のフラックス(濾過膜を透過する流速):0.
7m/日
Evaluation Test of Membrane Separation Apparatus of Embodiment Example In order to evaluate the membrane separation apparatus of this embodiment example, an experiment of detecting membrane breakage was performed using the membrane separation apparatus shown in the following specific example. Specific Example of Membrane Separator 1) Specifications of Filtration Membrane Element 12 Membrane material: inner diameter 0.8 mm x outer diameter 1.2 mm x length 2000
mm external pressure type UF hollow fiber membrane (fraction molecular weight 50,0
00, manufactured by PAN) Element outer diameter: 150 mm in diameter x 2200 mm in length Element membrane area: 40 m 2 / piece Flux of treated water (flow rate through filtration membrane): 0.
7m / day

【0027】2)膜分離塔14の仕様 寸法:直径1600mm×高さ4000mm 耐圧:5kgf/cm2 膜分離塔当たりの濾過膜エレメント数:31本 膜分離塔当たりの濾過膜エレメントの総膜面積:1,2
40m2 膜分離塔当たりの処理水量:868m3/日 3)膜分離装置の仕様 膜分離装置当たりの膜分離塔数:4個 濾過膜エレメントの総数:124本 処理水量:約3,400m3/日
2) Specifications of membrane separation tower 14 Dimensions: 1600 mm in diameter × 4000 mm in height Pressure resistance: 5 kgf / cm 2 Number of filtration membrane elements per membrane separation tower: 31 Total membrane area of filtration membrane elements per membrane separation tower: 1,2
Treatment water amount per 40 m 2 membrane separation tower: 868 m 3 / day 3) Specifications of membrane separation device Number of membrane separation towers per membrane separation device: 4 Total number of filtration membrane elements: 124 Treatment water amount: about 3,400 m 3 / day Day

【0028】4)原水(被処理水) 目開き200μmのオートストレーナーで前濾過され
た、pH7.0〜7.5、濁度5〜15度、及び水温1
5〜23℃の河川水 5)処理水 濁度:0.01度以下 6)膜分離装置の運転条件 濾過方式:定量濾過方式 運転圧力:0.3kgf/cm2 洗浄方式:LV2.5m/日の流量条件で処理水による
逆洗浄
4) Raw water (water to be treated) pH 7.0 to 7.5, turbidity 5 to 15 degrees, and water temperature 1 which were pre-filtered with an auto strainer having a mesh size of 200 μm.
River water at 5 to 23 ° C 5) Treated water Turbidity: 0.01 ° or less 6) Operating conditions of membrane separation device Filtration method: Quantitative filtration method Operating pressure: 0.3 kgf / cm 2 Washing method: LV 2.5 m / day Backwashing with treated water at different flow conditions

【0029】上述の具体例の膜分離装置に設けた1本の
濾過膜エレメント12中の数百本の中空糸膜のうちの1
本を故意に膜破断して、膜破断の検出実験を行った。本
実験で、膜破断していない濾過膜エレメントの処理水の
濁度は、平均、0.01度程度、最高で0.05度であ
った。一方、故意に膜破断させた濾過膜エレメントの処
理水の濁度は、0.2度と測定された。0.2度という
数値は、膜破断していない濾過膜エレメントの処理水の
濁度の約20倍であって、明らかに膜破断と判定できる
濁度差である。
One of the hundreds of hollow fiber membranes in one filtration membrane element 12 provided in the membrane separation apparatus of the above specific example.
The book was deliberately fractured, and a detection experiment of the fracture was performed. In this experiment, the turbidity of the treated water of the filtration membrane element which did not break was about 0.01 degree on average and 0.05 degree at the maximum. On the other hand, the turbidity of the treated water of the filtration membrane element whose membrane was intentionally broken was measured to be 0.2 degrees. The numerical value of 0.2 degrees is about 20 times the turbidity of the treated water of the filtration membrane element in which the membrane is not broken, and is a turbidity difference that can be clearly judged as a membrane break.

【0030】従って、本実施形態例では、予備の濾過膜
エレメントがあれば、膜破断と特定した濾過膜エレメン
トと交換し、直ちに通水を再開することもできる。或い
は、膜破断した濾過膜エレメント12の個別処理水管4
4の流量調節弁46を閉止して、その他の個別処理水管
44から処理水を流出させるようにして、膜分離装置の
運転を続行させることができる。
Therefore, in this embodiment, if there is a spare filtration membrane element, it can be replaced with a filtration membrane element identified as having a membrane breakage, and water can be immediately restarted. Alternatively, the individual treatment water pipe 4 of the filtration membrane element 12 whose membrane has been broken
The operation of the membrane separation apparatus can be continued by closing the flow control valve 46 of 4 and allowing the treated water to flow out from the other individual treated water pipes 44.

【0031】処理水室の構成を除いて、具体例と同じ仕
様の従来の膜分離装置10を使い、濾過膜エレメントの
1本の中空糸膜を故意に破断した後、上述の例と同様に
して、通水実験を行った。処理水を採取し、濁度を測定
したところ、処理水の濁度は、0.02度前後であっ
た。すなわち、膜破断が生じている濾過膜エレメントが
あっても、処理水の濁度は、全ての濾過膜エレメントに
膜破断が生じていないときの処理水の濁度である0.0
1度と濁度差が殆どない。従って、濾過膜エレメントに
膜破断が生じていると判定することは極めて難しい。ま
た、微粒子計を用いて処理水の微粒子数を計数したが、
濾過膜エレメントの1本の中空糸膜に膜破断が生じてい
るときの処理水の微粒子数と、全ての濾過膜エレメント
に膜破断が生じていないときの処理水の微粒子数との間
には、有意の差を見い出すことはできなかった。
Using a conventional membrane separator 10 having the same specifications as in the specific example, except for the configuration of the treated water chamber, one hollow fiber membrane of the filtration membrane element is intentionally broken, and then the same as in the above-described example. Then, a water flow experiment was performed. When treated water was sampled and the turbidity was measured, the turbidity of the treated water was around 0.02 degrees. That is, even if there is a filtration membrane element in which a membrane break has occurred, the turbidity of the treated water is the turbidity of the treated water when no membrane break has occurred in all the filter membrane elements.
There is almost no difference in turbidity from 1 degree. Therefore, it is extremely difficult to determine that a membrane break has occurred in the filtration membrane element. In addition, the number of fine particles in the treated water was counted using a fine particle meter.
There is a difference between the number of fine particles of the treated water when the membrane break occurs in one hollow fiber membrane of the filtration membrane element and the number of the fine particles of the treated water when the membrane break does not occur in all the filter membrane elements. , No significant difference could be found.

【0032】従来の膜分離装置10で、膜破断の有無に
よる差が処理水の濁度及び微粒子数にないのは、31本
の濾過膜エレメント12の処理水を一緒にした後、採水
しているために、混入した被処理水が大量の処理水に希
釈されるからである。
The difference between the turbidity of the treated water and the number of fine particles in the conventional membrane separation device 10 due to the presence or absence of membrane breakage is that the treated water of the 31 filtration membrane elements 12 is combined and then collected. This is because mixed water to be treated is diluted into a large amount of treated water.

【0033】実施形態例2 本実施形態例は、実施形態例1の改変例であって、図3
は実施形態例2の処理水室の配置を示す模式的平面図、
図4は図3の矢視I−Iの処理水室の断面図である。本
実施形態例の膜分離装置では、一つの処理水室60が、
図3及び図4に示すように、複数本の濾過膜エレメント
12(図3では、簡単に4本の濾過膜エレメントに対し
て、一つの処理水室を設けている)に対する共通の処理
水室として、膜分離塔40の上容器壁41上に設けられ
ている。また、各処理水室60にそれぞれ個別処理水管
62を設けている。本実施形態例の膜分離装置では、実
施形態例1と同様に、多数本の濾過膜エレメント12が
膜分離塔40の被処理水室26に垂下しており、これら
のことを除いて、実施形態例1の膜分離装置40と同じ
構成を備えている。
Embodiment 2 This embodiment is a modification of Embodiment 1 and is similar to that of FIG.
Is a schematic plan view showing an arrangement of a treated water chamber of Embodiment 2;
FIG. 4 is a sectional view of the treated water chamber taken along the line II in FIG. In the membrane separation device of the present embodiment, one treated water chamber 60
As shown in FIGS. 3 and 4, a common treated water chamber for a plurality of filtration membrane elements 12 (in FIG. 3, one treated water chamber is simply provided for four filtration membrane elements). Is provided on the upper container wall 41 of the membrane separation tower 40. Also, an individual treated water pipe 62 is provided in each treated water chamber 60. In the membrane separation device of the present embodiment, similarly to the first embodiment, a large number of filtration membrane elements 12 hang down in the water chamber 26 to be treated of the membrane separation tower 40. It has the same configuration as the membrane separation device 40 of the first embodiment.

【0034】本実施形態例では、共通の処理水室60に
属する4本の濾過膜エレメント12のグループについて
処理水の濁度測定を行って、膜破断の判定をグループ毎
に行う。
In this embodiment, the turbidity of the treated water is measured for the group of four filtration membrane elements 12 belonging to the common treated water chamber 60, and the judgment of membrane breakage is made for each group.

【0035】[0035]

【発明の効果】本発明によれば、1本の濾過膜エレメン
ト毎に設けられた、又は複数本の濾過膜エレメントに共
通に設けられた処理液室と、各処理液室に接続された処
理液管とを備えることにより、処理液室毎に膜破断検査
を行うことができるので、膜破断している濾過膜エレメ
ントの特定が容易である。また、逆洗浄液管との接続位
置より上流の処理液管に流量調節弁を設けることによ
り、濾過膜エレメントに対する被処理液及び逆洗浄液管
の通液量を容易に制御することができる。例えば濾過膜
エレメント単位で逆洗浄液を均等に通液することができ
るので、洗浄不良個所が少なくなり、薬品洗浄の時間的
間隔を長くして、膜分離処理時間を延長することができ
る。更には、濾過膜エレメントが膜破断しているときに
は、膜破断している濾過膜エレメントに属する処理液室
からの処理液の流出を流量調節弁の閉止により停止し、
膜分離装置の運転を続行することができる。
According to the present invention, the processing liquid chambers provided for each one of the filtration membrane elements or commonly provided for a plurality of filtration membrane elements, and the processing liquid chambers connected to the respective processing liquid chambers. With the provision of the liquid tube, the membrane rupture inspection can be performed for each treatment liquid chamber, so that it is easy to identify the filtration membrane element whose membrane has ruptured. In addition, by providing a flow control valve in the processing liquid pipe upstream of the connection position with the reverse cleaning liquid pipe, the flow rates of the liquid to be processed and the reverse cleaning liquid pipe with respect to the filtration membrane element can be easily controlled. For example, since the reverse cleaning solution can be uniformly passed through the filtration membrane element unit, the number of defective cleanings can be reduced, the time interval between chemical cleaning can be extended, and the membrane separation processing time can be extended. Furthermore, when the filtration membrane element is broken, the outflow of the processing liquid from the processing liquid chamber belonging to the filtration membrane element whose membrane is broken is stopped by closing the flow control valve,
The operation of the membrane separation device can be continued.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1の膜分離装置の要部の構成を示す
フローシートである。
FIG. 1 is a flow sheet showing a configuration of a main part of a membrane separation device of a first embodiment.

【図2】処理液室の構成を示す処理液室の断面図であ
る。
FIG. 2 is a cross-sectional view of a processing liquid chamber showing a configuration of the processing liquid chamber.

【図3】実施形態例2の処理液室の配置を示す模式的平
面図である。
FIG. 3 is a schematic plan view showing an arrangement of a processing liquid chamber according to a second embodiment.

【図4】図3の矢視I−Iの処理液室の断面図である。4 is a cross-sectional view of the processing liquid chamber taken along the line II in FIG.

【図5】図5は従来の圧力式大型膜分離装置の構成を示
すフローシートである。
FIG. 5 is a flow sheet showing a configuration of a conventional large-sized pressure type membrane separation apparatus.

【符号の説明】[Explanation of symbols]

10 従来の圧力式大型膜分離装置 12 濾過膜エレメント 14 膜分離塔 16 被処理水タンク 18 被処理水ポンプ 20 処理水タンク 22 逆洗ポンプ 24 隔壁 26 被処理水室 28 処理水室 30 被処理水管 32 処理水管 34 逆洗浄水管 36 逆洗浄水排水管 38 ベント管 40 実施形態例1の膜分離装置の膜分離塔 41 上容器壁 42 処理水室 44 個別処理水管 46 流量調節弁 48 高感度濁度計 50 開閉弁付き採水管 52 埋め込みボルト 54 エレメント孔 56 埋め込みボルト 60 実施形態例2の膜分離装置の処理水室 62 個別処理水管 DESCRIPTION OF SYMBOLS 10 Conventional large pressure type membrane separation apparatus 12 Filtration membrane element 14 Membrane separation tower 16 Treated water tank 18 Treated water pump 20 Treated water tank 22 Backwash pump 24 Partition wall 26 Treated water chamber 28 Treated water chamber 30 Treated water pipe Reference Signs List 32 treated water pipe 34 backwash water pipe 36 backwash water drain pipe 38 vent pipe 40 membrane separation tower of membrane separator of Embodiment 1 41 upper vessel wall 42 treated water chamber 44 individual treated water pipe 46 flow control valve 48 high sensitivity turbidity Total 50 Water sampling pipe with on-off valve 52 Embedded bolt 54 Element hole 56 Embedded bolt 60 Treated water chamber of membrane separation device of Embodiment 2 62 Individually treated water pipe

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA06 GA07 HA03 HA19 JA18A JA25A JA64Z JA70A KC03 KC13 KC16 KE01Q KE05P KE07P KE12P KE13P KE15P KE16P KE22Q KE23Q KE24Q KE28Q LA03 MA01 MC39X PA01 PB04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA06 GA07 HA03 HA19 JA18A JA25A JA64Z JA70A KC03 KC13 KC16 KE01Q KE05P KE07P KE12P KE13P KE15P KE16P KE22Q KE23Q KE24Q KE28Q LA03 MA01B04PA

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧力容器内に複数本の濾過膜エレメント
を備え、圧力容器内にそれぞれ区画された被処理液室か
ら処理液室に濾過膜エレメントを介して被処理液を透過
させる外圧缶体式の膜分離装置において、 濾過膜エレメント毎に設けられた、又は複数本の濾過膜
エレメントに共通して設けられた処理液室と、各処理液
室にそれぞれ接続された処理液管とを備えていることを
特徴とする膜分離装置。
1. An external pressure can body type having a plurality of filtration membrane elements in a pressure vessel and allowing a treatment liquid to permeate from the treatment liquid chamber partitioned in the pressure vessel to the treatment liquid chamber via the filtration membrane element. A processing liquid chamber provided for each filtration membrane element or provided in common to a plurality of filtration membrane elements, and a processing liquid pipe connected to each processing liquid chamber. A membrane separation device.
【請求項2】 各処理液室に接続する処理液管に懸濁質
検出手段を設けたことを特徴とする請求項1に記載の膜
分離装置。
2. The membrane separation apparatus according to claim 1, wherein a suspension detecting means is provided in a processing liquid tube connected to each processing liquid chamber.
【請求項3】 逆洗浄液を流入させる逆洗浄液管との接
続位置より上流の処理液管に流量調節弁を設けたことを
特徴とする請求項1又は2に記載の膜分離装置。
3. The membrane separation apparatus according to claim 1, wherein a flow control valve is provided in a processing liquid pipe upstream of a connection position with the reverse cleaning liquid pipe through which the reverse cleaning liquid flows.
JP11162104A 1999-06-09 1999-06-09 Membrane separating device Pending JP2000350925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11162104A JP2000350925A (en) 1999-06-09 1999-06-09 Membrane separating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11162104A JP2000350925A (en) 1999-06-09 1999-06-09 Membrane separating device

Publications (1)

Publication Number Publication Date
JP2000350925A true JP2000350925A (en) 2000-12-19

Family

ID=15748136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11162104A Pending JP2000350925A (en) 1999-06-09 1999-06-09 Membrane separating device

Country Status (1)

Country Link
JP (1) JP2000350925A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024938A (en) * 2001-07-10 2003-01-28 Japan Organo Co Ltd Membrane filter system and operation method therefor
JP2007136388A (en) * 2005-11-21 2007-06-07 Ngk Insulators Ltd Membrane separation activated sludge treatment equipment
CN104941457A (en) * 2014-12-03 2015-09-30 佛山市云米电器科技有限公司 Method and device for determining service life of filter core of water purifier
CN105013330A (en) * 2015-08-04 2015-11-04 天津华清健坤膜科技有限公司 Membrane performance testing platform with double testing functions and using method thereof
CN106964260A (en) * 2017-05-27 2017-07-21 湖南科技大学 A kind of combined modular structure instead cleans flat ceramic membrane filtration system online

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024938A (en) * 2001-07-10 2003-01-28 Japan Organo Co Ltd Membrane filter system and operation method therefor
JP2007136388A (en) * 2005-11-21 2007-06-07 Ngk Insulators Ltd Membrane separation activated sludge treatment equipment
JP4568677B2 (en) * 2005-11-21 2010-10-27 メタウォーター株式会社 Membrane separation activated sludge treatment equipment
CN104941457A (en) * 2014-12-03 2015-09-30 佛山市云米电器科技有限公司 Method and device for determining service life of filter core of water purifier
CN105013330A (en) * 2015-08-04 2015-11-04 天津华清健坤膜科技有限公司 Membrane performance testing platform with double testing functions and using method thereof
CN106964260A (en) * 2017-05-27 2017-07-21 湖南科技大学 A kind of combined modular structure instead cleans flat ceramic membrane filtration system online

Similar Documents

Publication Publication Date Title
US11779883B2 (en) Water purification systems and methods having pressurized draw stream
EP1704911B1 (en) Method for cleaning a separation membrane in a membrane bioreactor system
EP3487607B1 (en) Method of filtration and backwashing using hollow fibre membrane elements
EP2010901B1 (en) The ultra filtration system for on-line analyzer
US20190001277A1 (en) Method and apparatus for treating commercial and industrial laundry wastewater
JP6322882B2 (en) Pretreatment device for online measurement in water system, online measurement device using the pretreatment device for online measurement, pretreatment method in online measurement, and online measurement method using the pretreatment method
JP3028447B2 (en) Water purification equipment
JP3202532B2 (en) Film damage detection method and device
WO1997047375A1 (en) Membrane filter system and pressure vessel suitable for membrane filtration
NL1030142C2 (en) Device for purifying water and method for its use.
JP2000350925A (en) Membrane separating device
EP3134200B1 (en) System for reducing product losses, product dilution, chemical dilution and water consumption in a crossflow membrane separation system
JP3807552B2 (en) Membrane filtration method and apparatus for membrane damage detection
CN107376647B (en) Open circulating water side filtering device and circulating water treatment method using same
JP3616503B2 (en) Membrane filtration device
WO2021065422A1 (en) Membrane filtration apparatus
US8221617B1 (en) Hot water recovery apparatus for reclaiming process water
KR100503783B1 (en) Two-way alternate backwashing method and equipment of hollow-fiber membrane module, and drinking water treatment equipment using the same
JP3560708B2 (en) Membrane separation device, its leak detection method and its operation method
JPH0760073A (en) Membrane separation apparatus
NL1019130C2 (en) Method and device for purifying surface water.
JPH04247226A (en) Membrane filtration system having automatic self-cleaning function
CN219333813U (en) Ultrafiltration backwashing device
Van Hoof et al. Development of a new integrity testing system
JPH06182163A (en) Spiral-type membrane separation device