JP2000343415A - Polishing device - Google Patents

Polishing device

Info

Publication number
JP2000343415A
JP2000343415A JP15135399A JP15135399A JP2000343415A JP 2000343415 A JP2000343415 A JP 2000343415A JP 15135399 A JP15135399 A JP 15135399A JP 15135399 A JP15135399 A JP 15135399A JP 2000343415 A JP2000343415 A JP 2000343415A
Authority
JP
Japan
Prior art keywords
sample
liquid
polishing
cooling
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15135399A
Other languages
Japanese (ja)
Inventor
Masahira Tasaka
誠均 田坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15135399A priority Critical patent/JP2000343415A/en
Publication of JP2000343415A publication Critical patent/JP2000343415A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To keep the temperature of a sample uniform by providing a sample holding table with nozzles for supplying a cooling gas-liquid mist to the back face of a plate-like sample. SOLUTION: A plurality of cooling nozzles 109 for cooling a sample from the back face are arranged on the sample back face side of a sample holding table 106. The cooling nozzles 109 are connected to a passage 110 provided inside the sample holding table 106. The passage 110 is connected to an air tube 111 and a liquid tube 112, and compressed air and liquid are respectively supplied from the air tube 111 and liquid tube 112. A mixture of air and liquid is made into an air-liquid mist with liquid in a fine mist state by the action of the nozzles 109, and the back face of the sample 107 is cooled by this mist flow. The mist flow exhibits large cooling capacity by covering the cooled face with a thin liquid film and further increases the cooling effect by taking away latent heat while evaporating from the back face of the sample 107.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、研磨液を供給しな
がら平板状試料の研磨を行う研磨装置に関し、特に、シ
リコンウエハ、石英基板、セラミックス基板、金属基
板、LSI作成工程途中のウエハ等を研磨する研磨装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing apparatus for polishing a flat sample while supplying a polishing liquid, and particularly to a silicon wafer, a quartz substrate, a ceramic substrate, a metal substrate, and a wafer in the course of an LSI manufacturing process. The present invention relates to a polishing apparatus for polishing.

【0002】[0002]

【従来の技術】図4は、半導体基板を研磨する従来の研
磨装置の概要を示す側面図である。同図の符号101a
は平面視が円形の研磨定盤であり、研磨定盤回転軸11
によって水平方向に回転する。この研磨定盤101aの
上には、ポリウレタン系の研磨布101bが貼り付けて
あり、これら研磨定盤101aと研磨布101bとによ
りポリッシャ101を構成する。このポリッシャ101
の上方にはポリッシャ101の半径より小さい試料保持
部102が複数配設されており、この試料保持部102
のポリッシャ101側には平板状の試料107が保持さ
れている。そしてこの試料保持部102は研磨定盤10
1aとは独立に試料保持部回転軸12によって水平方向
に回転する。さらに試料保持部102には試料107を
加圧可能な構造(図示せず)が組み込まれており、試料
107へ適当な研磨圧を加えることができる。ポリッシ
ャ101の上方中心部には研磨液供給ノズル121が設
けてあり、この研磨液供給ノズル121からポリッシャ
101へ研磨液10を供給しながらポリッシャ101を
回転させ、試料保持部102もポリッシャ101とは独
立に回転させると、研磨液10が試料107と研磨布1
01bとの間に侵入して研磨が進行する。
2. Description of the Related Art FIG. 4 is a side view showing an outline of a conventional polishing apparatus for polishing a semiconductor substrate. Reference numeral 101a in FIG.
Is a polishing surface plate having a circular shape in plan view, and a polishing surface
To rotate horizontally. A polyurethane-based polishing cloth 101b is adhered on the polishing platen 101a, and the polisher 101 is constituted by the polishing platen 101a and the polishing cloth 101b. This polisher 101
A plurality of sample holders 102 smaller than the radius of the polisher 101 are disposed above the polisher 101.
A plate-like sample 107 is held on the polisher 101 side. The sample holder 102 is provided on the polishing table 10.
Independently from 1a, it is rotated in the horizontal direction by the sample holder rotating shaft 12. Further, a structure (not shown) capable of pressing the sample 107 is incorporated in the sample holding unit 102, so that an appropriate polishing pressure can be applied to the sample 107. A polishing liquid supply nozzle 121 is provided at an upper central portion of the polisher 101. The polishing liquid 101 is rotated while supplying the polishing liquid 10 from the polishing liquid supply nozzle 121 to the polisher 101, and the sample holding part 102 is also separated from the polisher 101. When the polishing liquid 10 is rotated independently, the polishing liquid 10
01b and polishing proceeds.

【0003】この研磨液は、例えば試料被研磨部に対し
て化学的に活性な液体中に遊離砥粒を含んだスラリー状
のものが代表的で、試料は研磨液との化学反応および試
料と遊離砥粒との機械的研削により研磨される。
[0003] The polishing liquid is typically in the form of a slurry containing free abrasive grains in a liquid which is chemically active with respect to the portion to be polished. Polished by mechanical grinding with loose abrasives.

【0004】被研磨試料を研磨布に均一に押し付ける構
造として例えば、特開平9−19863号公報には試料
保持部をベローズチャンバーで保持し、ベローズに空気
圧を加えることによって、均一荷重を得る装置が開示さ
れている。
As a structure for uniformly pressing a sample to be polished against a polishing cloth, for example, Japanese Patent Application Laid-Open No. 9-198163 discloses an apparatus for obtaining a uniform load by holding a sample holder in a bellows chamber and applying air pressure to the bellows. It has been disclosed.

【0005】図5は同公報に開示された試料保持部の要
部を示す縦断面図である。同図において、図4と同一要
素は同一符号で示す。試料保持部102は試料保持部回
転軸12と一体のハウジングプレート103と、これに
取り付けられたベローズチャンバ104と試料保持リン
グ部105、ベローズチャンバ104に取り付けられた
試料保持台106を有する。ベローズチャンバ104内
を第2空気管113を通して加圧することにより試料1
07の全体がポリッシャ101に押しつけられる。同時
に、試料保持台106と試料107により形成されるバ
ックプレッシャーチャンバ108を第1空気管111を
通して加圧することにより、試料107の被研磨面各部
に均一な加重が与えられる構造となっている。
FIG. 5 is a longitudinal sectional view showing a main part of a sample holding section disclosed in the publication. 4, the same elements as those in FIG. 4 are denoted by the same reference numerals. The sample holding unit 102 has a housing plate 103 integrated with the sample holding unit rotation shaft 12, a bellows chamber 104 and a sample holding ring unit 105 attached thereto, and a sample holding table 106 attached to the bellows chamber 104. By pressing the inside of the bellows chamber 104 through the second air pipe 113, the sample 1
07 is pressed against the polisher 101. At the same time, a pressure is applied to the back pressure chamber 108 formed by the sample holding table 106 and the sample 107 through the first air pipe 111 so that a uniform load is applied to each portion of the polished surface of the sample 107.

【0006】一般に、研磨液を供給しながら研磨を行う
研磨装置において、試料107は研磨時の摩擦熱、機械
加工熱、化学反応熱等のいわゆる研磨熱により研磨面か
ら加熱されるが、従来の研磨装置においては、研磨面か
ら試料107へ進入する熱は試料107の裏面から試料
保持部102へ熱伝導によって放熱される。しかし試料
保持部の内、試料と直接接する試料保持台106の熱伝
導率は、特開平9−19863号公報に開示された図5
の構造から明らかなように、空気の熱伝導率に近く、試
料107は入熱量が増加すると共に高温となり、この温
度が試料表面の信頼性保証温度(例えば、試料表面に集
積回路パターンが形成されている場合、この信頼性保証
温度は100〜120℃に設定されることが多い)を超
えてしまうという問題がある。また、温度上昇により生
じる熱応力によって試料107が変形し、被研磨面の平
坦度が保てず、試料表面が均一に研磨できないなどの問
題が発生する。
Generally, in a polishing apparatus that performs polishing while supplying a polishing liquid, the sample 107 is heated from the polishing surface by so-called polishing heat such as frictional heat during polishing, mechanical processing heat, and chemical reaction heat. In the polishing apparatus, heat entering the sample 107 from the polishing surface is radiated from the back surface of the sample 107 to the sample holding unit 102 by heat conduction. However, among the sample holders, the thermal conductivity of the sample holder 106 which is in direct contact with the sample is determined by the heat conductivity shown in FIG.
As is clear from the structure, the sample 107 is close to the thermal conductivity of air, and the temperature of the sample 107 increases as the amount of heat input increases. This temperature is the temperature at which the reliability of the sample surface is guaranteed (for example, an integrated circuit pattern is formed on the sample surface). In this case, the reliability assurance temperature is often set to 100 to 120 ° C.). In addition, the sample 107 is deformed by the thermal stress generated by the temperature rise, and the flatness of the surface to be polished cannot be maintained, which causes a problem that the sample surface cannot be polished uniformly.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、従来
の研磨装置において被研磨試料の温度を信頼性保証温度
以下に維持し、あるいは熱応力起因の変形により被研磨
面の平坦度が損なわれないように、試料の温度を均一に
保つことが可能な研磨装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to maintain the temperature of a sample to be polished below a reliability assurance temperature in a conventional polishing apparatus, or to impair the flatness of a polished surface due to deformation caused by thermal stress. It is an object of the present invention to provide a polishing apparatus capable of keeping the temperature of a sample uniform so as not to cause a problem.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するため、試料を効率的に冷却できる研磨装置
を開発すべく種々実験検討を行った結果、下記の知見を
得た。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors conducted various experiments and studies to develop a polishing apparatus capable of efficiently cooling a sample, and as a result, obtained the following findings. .

【0009】(a) 試料の裏面(研磨されない面)へ冷却
気体を適宜供給することにより、試料の冷却は静止した
気体層による冷却より大幅に促進される。さらに、冷却
気体中に微細な液滴を分散させた気体−液体ミストを供
給すれば、より冷却効果が大きい。すなわち、試料裏面
が液膜で覆われ液体の高い熱伝導率と熱容量により、冷
却効果が高まる。さらに、研磨面から試料へ流入する熱
量が大きい場合、試料裏面を覆った液膜が気化し、蒸発
潜熱を奪うため試料の効率的な冷却が行われる。
(A) By appropriately supplying a cooling gas to the back surface (the surface that is not polished) of the sample, the cooling of the sample is greatly accelerated compared to the cooling by the stationary gas layer. Furthermore, if a gas-liquid mist in which fine droplets are dispersed in a cooling gas is supplied, the cooling effect is greater. That is, the back surface of the sample is covered with the liquid film, and the cooling effect is enhanced by the high thermal conductivity and heat capacity of the liquid. Furthermore, when the amount of heat flowing into the sample from the polished surface is large, the liquid film covering the back surface of the sample is vaporized, and the sample is efficiently cooled to take away latent heat of evaporation.

【0010】このための構造として、研磨装置の試料保
持台に試料の裏面へ気体−液体ミストを供給するための
ノズルを設け、その配置および気体−液体ミスト供給量
を適切にすることにより、研磨される試料が効率的に冷
却できる研磨装置が得られる。
As a structure for this purpose, a nozzle for supplying gas-liquid mist to the back surface of the sample is provided on the sample holder of the polishing apparatus, and the arrangement and the supply amount of gas-liquid mist are appropriately adjusted. A polishing apparatus capable of efficiently cooling the sample to be obtained is obtained.

【0011】(b) さらに、試料裏面の温度分布が試験研
磨時の測温、研磨液の供給状態あるいは試料の初期形状
等により把握できれば、試料の高温部(発熱部)へ前記
冷却用気体−液体ミストを選択的に供給することによ
り、試料温度分布はより均一化され冷却性能をより一層
改善することができる。
(B) Further, if the temperature distribution on the back surface of the sample can be grasped from the temperature measurement during test polishing, the supply state of the polishing liquid, the initial shape of the sample, and the like, the cooling gas is transferred to the high temperature portion (heating portion) of the sample. By selectively supplying the liquid mist, the sample temperature distribution can be made more uniform, and the cooling performance can be further improved.

【0012】本発明は、このような知見に基づきなされ
たもので、その要旨は、下記の(1)および(2) にある。
The present invention has been made based on such findings, and the gist lies in the following (1) and (2).

【0013】(1) 回転する試料保持台に保持された平板
状試料と、該平板状試料と平行に対向配設され回転する
研磨定盤に研磨材が被着されてなるポリッシャとの間
に、研磨液を供給しながら平板状試料を研磨する研磨装
置であって、前記試料保持台に平板状試料の裏面に冷却
用の気体−液体ミストを供給するためのノズルが設けら
れていることを特徴とする研磨装置。
(1) Between a plate-like sample held by a rotating sample holding table and a polisher having a polishing material attached to a rotating polishing plate, which is disposed in parallel with the plate-like sample and is opposed to the rotating platen. A polishing apparatus for polishing a flat sample while supplying a polishing liquid, wherein the sample holding table is provided with a nozzle for supplying a gas-liquid mist for cooling to the back surface of the flat sample. Characteristic polishing equipment.

【0014】(2) 冷却用の気体−液体ミストのノズルの
系列を複数有し、各系列への気体−液体ミストの供給量
配分を変更して平板状試料の裏面の冷却量分布を調整可
能な調整弁を有することを特徴とすることを特徴とする
前記(1) 項に記載の研磨装置。
(2) A plurality of nozzles of gas-liquid mist for cooling are provided, and the distribution of gas-liquid mist supply to each line can be changed to adjust the cooling amount distribution on the back surface of the flat sample. The polishing apparatus according to the above (1), characterized by having a simple adjustment valve.

【0015】[0015]

【発明の実施の形態】以下、研磨装置の例を用いて本発
明の研磨装置の構成及び作用を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction and operation of a polishing apparatus according to the present invention will be described below using an example of a polishing apparatus.

【0016】図1は本発明の研磨装置の試料保持部の一
例を示す概要図であり、同図(a) は縦断面図、同図(b)
は同図(a) のA−A断面図である。
FIG. 1 is a schematic view showing an example of a sample holder of a polishing apparatus according to the present invention. FIG. 1 (a) is a longitudinal sectional view, and FIG.
FIG. 2 is a sectional view taken along line AA of FIG.

【0017】同図では図4、図5と同一要素は同一符号
で示す。以下では冷却用の気体を空気として説明する。
In FIG. 3, the same elements as those in FIGS. 4 and 5 are denoted by the same reference numerals. In the following, the cooling gas will be described as air.

【0018】試料保持台106の試料裏面側には試料を
裏面から冷却するための冷却用ノズル109が複数個配
設されている。冷却用ノズル109は試料保持台106
の内部に設けられた流路110に接続されている。流路
110は空気分岐管115を介して第1空気管111
と、および液体分岐管116を介して液管112とそれ
ぞれ接続されており、それら各々から圧縮空気および液
体が供給される。
A plurality of cooling nozzles 109 for cooling the sample from the back side are provided on the sample back side of the sample holding table 106. The cooling nozzle 109 is connected to the sample holder 106.
Is connected to a flow path 110 provided inside. The flow path 110 is connected to the first air pipe 111 through the air branch pipe 115.
, And the liquid pipe 112 via the liquid branch pipe 116, and compressed air and liquid are supplied from each of them.

【0019】同図では外周流路110aおよび内周流露
110bの2系列が同心円状に設けられた例である。空
気分岐管115および液体分岐管116は円周方向に最
小1個所接続されていればよいが、流路110に均一に
空気または液体が均一に配分されるようにするために
は、円周方向に複数箇所設けるのがよい。
FIG. 1 shows an example in which two lines of an outer peripheral channel 110a and an inner peripheral dew 110b are provided concentrically. The air branch pipe 115 and the liquid branch pipe 116 may be connected at least at one point in the circumferential direction. However, in order to uniformly distribute air or liquid to the flow path 110, the air branch pipe 115 and the liquid branch pipe 116 may be connected in the circumferential direction. It is good to provide a plurality of places in the.

【0020】第1空気管の圧縮空気はバックプレッシャ
ーチャンバ108の加圧も同時に行っており、この圧縮
空気による試料保持台106を押し上げる力がベローズ
チャンバ104の押しつけ力を周期的に上回るように制
御される。
The compressed air in the first air tube also pressurizes the back pressure chamber 108 at the same time, and the force for pushing up the sample holder 106 by the compressed air is periodically controlled so as to exceed the pressing force for the bellows chamber 104. Is done.

【0021】試料保持台の押し上げ力がベローズチャン
バの押付け力を超えた瞬間、試料保持台106と試料1
07は離れ、Oリング114によって保持されていたバ
ックプレッシャーチャンバ108の気密が破られるた
め、ノズル109より空気と液体の混合気が試料107
に向かって噴射される。この混合気はノズル109の働
きにより液体が細かい霧状となった空気−液体ミストと
なり、試料107の裏面はこの空気−液体ミスト流によ
り冷却される。ミスト流は被冷却面を薄い液膜で覆うこ
とにより大きな冷却能力を示すと共に、試料107の裏
面からの発熱量が増加すると蒸発しながら潜熱を奪うた
め冷却効果は一層大きなものとなる。
At the moment when the pushing force of the sample holder exceeds the pressing force of the bellows chamber, the sample holder 106 and the sample 1
07 is separated and the air-tightness of the back pressure chamber 108 held by the O-ring 114 is broken.
Injected toward. This air-fuel mixture becomes an air-liquid mist in which the liquid becomes fine mist by the function of the nozzle 109, and the back surface of the sample 107 is cooled by this air-liquid mist flow. The mist flow exhibits a large cooling capacity by covering the surface to be cooled with a thin liquid film, and further increases the amount of heat generated from the back surface of the sample 107 to remove latent heat while evaporating, so that the cooling effect is further enhanced.

【0022】バックプレッシャーチャンバ108へ供給
する第1空気の供給圧力は、研磨中、ミスト噴霧タイミ
ング以外ではベローズチャンバ104へ供給する空気圧
力よりわずかに小さく、ミスト噴霧タイミングのみベロ
ーズチャンバ104へ供給する空気圧力よりわずかに大
きくなることが望ましい。
During polishing, the supply pressure of the first air supplied to the back pressure chamber 108 is slightly smaller than the air pressure supplied to the bellows chamber 104 except for the mist spray timing, and the air supplied to the bellows chamber 104 only at the mist spray timing. It is desirable to be slightly greater than the pressure.

【0023】ミスト噴霧タイミングはバックプレッシャ
ーチャンバ108へ供給する空気圧力を時間的に制御す
ることにより任意の設定が可能である。
The mist spray timing can be arbitrarily set by temporally controlling the air pressure supplied to the back pressure chamber 108.

【0024】同様に、ミスト噴霧時間もバックプレッシ
ャーチャンバ108へ供給する空気圧力を時間的に制御
することにより任意の設定が可能である。
Similarly, the mist spraying time can be arbitrarily set by temporally controlling the air pressure supplied to the back pressure chamber 108.

【0025】第1空気の圧力を周期的に高くして試料保
持台106を押し上げる代わりに、バックプレッシャー
チャンバ108に定圧リリーフ弁(図示せず)を設けミ
スト噴霧時にはベローズチャンバ104の押圧よりは低
く、リリーフ弁よりは高い圧力をかけ冷却時のみ、液体
を加圧する方法も可能である。その際、バックプレッシ
ャーチャンバ108から定圧リリーフ弁を経由して常時
空気を逃がしておく構造となる。
Instead of periodically raising the pressure of the first air to push up the sample holding table 106, a constant pressure relief valve (not shown) is provided in the back pressure chamber 108 to be lower than the pressure of the bellows chamber 104 during mist spraying. Alternatively, a method in which the liquid is pressurized only at the time of cooling by applying a higher pressure than the relief valve is also possible. At this time, the structure is such that air is always released from the back pressure chamber 108 via the constant pressure relief valve.

【0026】本発明では試料裏面にミストを噴霧するた
め、冷却用ノズル109と試料107との間隔(噴霧距
離)を適度に確保することが望ましい。噴霧容量、噴霧
圧にもよるが、通常使用されるバックプレッシャーチャ
ンバーの空気圧程度では噴霧距離を3〜50mm程度と
するのが望ましい。
In the present invention, since the mist is sprayed on the back surface of the sample, it is desirable to appropriately secure the interval (spray distance) between the cooling nozzle 109 and the sample 107. Although it depends on the spray volume and the spray pressure, the spray distance is desirably about 3 to 50 mm when the air pressure of the normally used back pressure chamber is used.

【0027】液管112により供給される液体は水が代
表的なものであるが、試料と化学的に反応したり、試料
に悪影響を及ぼさぬ限りエタノールなど水より沸点の低
い液体も好適である。
The liquid supplied through the liquid tube 112 is typically water, but a liquid having a lower boiling point than water, such as ethanol, is also preferable as long as it does not chemically react with the sample or adversely affect the sample. .

【0028】試料保持台106内部での流路110の配
置は、様々な形態をとることが可能である。
The arrangement of the flow channel 110 inside the sample holding table 106 can take various forms.

【0029】図2は試料保持台内部での流路110と冷
却用ノズル109の配置例を示す概要図であり、同図
(a) は試料保持台外周と同心円状に単列配置した場合、
同図(b) は複数列配置した場合、同図(c) は中心から放
射状に複数列の配置した場合である。
FIG. 2 is a schematic diagram showing an example of the arrangement of the flow path 110 and the cooling nozzle 109 inside the sample holding table.
(a) is a single row arranged concentrically with the outer periphery of the sample holder.
FIG. 2B shows a case where a plurality of rows are arranged, and FIG. 2C shows a case where a plurality of rows are arranged radially from the center.

【0030】研磨による発熱は、試料面全体に均一では
なく、試料の半径方向に分布をなすことが多い図3(a)
はウエハ試料の発熱状態を模式的に示す図であり、図3
(b) は図3(a) の発熱に対する流路の配置対応例を示す
概要図である。
The heat generated by polishing is not uniform over the entire surface of the sample, but is often distributed in the radial direction of the sample as shown in FIG.
FIG. 3 is a diagram schematically showing a heat generation state of a wafer sample.
(b) is a schematic diagram showing an example of the arrangement of flow paths for the heat generation of FIG. 3 (a).

【0031】図3(a) のように試験研磨時の測温、研磨
液の供給状態や試料初期形状等により試料裏面に高発熱
部が予め判っている場合、図3(b) のように試料の高発
熱部へ冷却用の空気−液体ミストがより多く供給される
ようノズル109の配置を決定すれば試料温度が均一化
され、冷却性能をより一層改善することができる。
As shown in FIG. 3A, when a high heat generation portion is known in advance on the back surface of the sample based on the temperature measurement during the test polishing, the supply state of the polishing liquid, the initial shape of the sample, and the like, as shown in FIG. If the arrangement of the nozzles 109 is determined so that more air-liquid mist for cooling is supplied to the high heat generating portion of the sample, the temperature of the sample is made uniform, and the cooling performance can be further improved.

【0032】研磨条件の変更によって試料面内の発熱分
布が変化することがある。例えば、操業改善による研磨
材、研磨液の変更、被研磨試料の種類の多様化、生産速
度の向上などがあると、発熱分布が変化する。あるい
は、一旦製作した試料保持台の冷却特性の手直しが必要
な場合がある。
The change in polishing conditions may change the heat generation distribution in the sample surface. For example, when the polishing material and polishing liquid are changed due to an improvement in operation, the types of samples to be polished are diversified, and the production speed is improved, the heat generation distribution changes. Alternatively, it may be necessary to adjust the cooling characteristics of the sample holder once manufactured.

【0033】本発明の研磨装置では、冷却用の気体−液
体ミストのノズルの系列を複数有する装置を想定し、各
系列への気体−液体ミストの供給量配分を調整する事が
可能である。
In the polishing apparatus of the present invention, assuming an apparatus having a plurality of nozzles for gas-liquid mist for cooling, it is possible to adjust the distribution of the supply amount of gas-liquid mist to each line.

【0034】図6は気体−液体ミストの供給量配分の調
整機構を示す概要図である。同図においては冷却ノズル
109は外周流路110aの系列と内周流路110bの
系列とに分かれている。外周流路110aに空気を供給
する配管には外周空気調整弁122a、液体を供給する
配管には外周液調整弁123aが設けられている。同様
に、内周流路110bに空気を供給する配管には内周空
気調整弁122b、液体を供給する配管には内周液調整
弁123bが設けられている。
FIG. 6 is a schematic diagram showing a mechanism for adjusting the distribution of the supply amount of the gas-liquid mist. In the figure, the cooling nozzle 109 is divided into a series of an outer flow path 110a and a series of an inner flow path 110b. A pipe for supplying air to the outer peripheral channel 110a is provided with an outer air regulating valve 122a, and a pipe for supplying liquid is provided with an outer liquid regulating valve 123a. Similarly, a pipe for supplying air to the inner peripheral channel 110b is provided with an inner peripheral air adjusting valve 122b, and a pipe for supplying liquid is provided with an inner peripheral liquid adjusting valve 123b.

【0035】例えば、外周の発熱が大きいことがわかっ
た場合、外周空気調整弁122aおよび外周液調整弁1
23aを開放し、内周空気調整弁122bおよび内周液
調整弁123bを半開または全閉とすればよい。
For example, when it is found that the outer periphery generates a large amount of heat, the outer periphery air regulating valve 122a and the outer periphery fluid regulating valve 1
23a may be opened and the inner peripheral air regulating valve 122b and the inner peripheral fluid regulating valve 123b may be half-opened or fully closed.

【0036】これら調整弁は、ウエハ裏面の温度を検知
する感温センサーと連動して自動的に開閉制御すること
も可能である。
These regulating valves can be automatically opened and closed in conjunction with a temperature sensor for detecting the temperature on the back surface of the wafer.

【0037】[0037]

【実施例】(実施例1)図1に示す研磨装置を製作し
た。外周流路110aの半径は85mm、内周流路11
0bの半径は45mmであり、冷却ノズル109は外周
に8個所、内周に4個所設けた。試験材は直径200.
0mm、厚さ0.725mmのシリコンウエハ上にLS
Iを模擬した回路パターンを形成したウエハである。冷
却用の液体には水を用いた。
(Embodiment 1) A polishing apparatus shown in FIG. 1 was manufactured. The radius of the outer peripheral channel 110a is 85 mm, and the inner peripheral channel 11 is
The radius of Ob is 45 mm, and eight cooling nozzles 109 are provided on the outer periphery and four cooling nozzles are provided on the inner periphery. The test material has a diameter of 200.
LS on 0mm, 0.725mm thick silicon wafer
It is a wafer on which a circuit pattern simulating I is formed. Water was used as a cooling liquid.

【0038】主な研磨条件は、ポリッシャ回転数:30
rpm、試料保持部回転数:80rpm、研磨時間:1
20秒、研磨液供給量:50cc/min、バックプレ
ッシャーチャンバ圧力:(非噴霧時)1.12atm/
(噴霧時)1.30atm、ベローズチャンバ圧力:
1.15atm、ミスト噴霧タイミング(間隔):5
秒、ミスト噴霧時間:0.5秒/回、冷却水供給量:4
00cc/min、周囲温度:20.0℃、冷却水温
度:20.0℃であった。
The main polishing conditions were a polisher rotation speed of 30.
rpm, number of rotations of sample holding unit: 80 rpm, polishing time: 1
20 seconds, polishing liquid supply amount: 50 cc / min, back pressure chamber pressure: (when not spraying) 1.12 atm /
(At the time of spraying) 1.30 atm, bellows chamber pressure:
1.15 atm, mist spray timing (interval): 5
Seconds, mist spraying time: 0.5 seconds / time, cooling water supply: 4
00 cc / min, ambient temperature: 20.0 ° C., cooling water temperature: 20.0 ° C.

【0039】シリコンウエハ裏面中心点の温度を熱電対
により測定したところ研磨中の平均温度は35.5℃、
最高温度は48.0℃であった。
When the temperature at the center of the back surface of the silicon wafer was measured with a thermocouple, the average temperature during polishing was 35.5 ° C.
The highest temperature was 48.0 ° C.

【0040】同じシリコンウエハを図5に示す従来の研
磨装置により同様の条件で研磨したところ、シリコンウ
エハ裏面中心点の温度は研磨中の平均温度は58.5
℃、最高温度は91.5℃であった。
When the same silicon wafer was polished by the conventional polishing apparatus shown in FIG. 5 under the same conditions, the temperature at the center of the rear surface of the silicon wafer was 58.5 during the polishing.
° C and the maximum temperature was 91.5 ° C.

【0041】これより本発明に係る研磨装置はシリコン
ウエハを研磨する際、従来の研磨装置に比べてシリコン
ウエハの温度上昇を約最大40℃低減できることがわか
った。
From this, it was found that the polishing apparatus according to the present invention can reduce the temperature rise of the silicon wafer by about 40 ° C. at the maximum when polishing the silicon wafer as compared with the conventional polishing apparatus.

【0042】(実施例2)実施例1と同じ研磨装置の試
料保持部106に図6に示すような、調整弁を組み込ん
だ。試験材として実施例1に使用したものと同様のシリ
コンウエハを用意した。予め全ての調整弁を全開とし、
研磨試験を行った。
(Embodiment 2) An adjustment valve as shown in FIG. 6 was incorporated in the sample holding section 106 of the same polishing apparatus as in Embodiment 1. A silicon wafer similar to that used in Example 1 was prepared as a test material. Fully open all adjustment valves in advance,
A polishing test was performed.

【0043】研磨条件は、ポリッシャ回転数:40rp
m、試料保持部回転数:100rpm、研磨時間:12
0秒、研磨液供給量:40cc/min、バックプレッ
シャーチャンバ圧力:(非噴霧時)1.12atm/
(噴霧時)1.30atm、ベローズチャンバ圧力:
1.15atm、ミスト噴霧タイミング(間隔):5
秒、ミスト噴霧時間:0.5秒/回、冷却水供給量:4
00cc/min、周囲温度:20.0℃、冷却水温
度:20.0℃であった。
The polishing conditions were as follows: polisher rotation speed: 40 rpm
m, rotation speed of sample holding unit: 100 rpm, polishing time: 12
0 second, polishing liquid supply amount: 40 cc / min, back pressure chamber pressure: (when not spraying) 1.12 atm /
(At the time of spraying) 1.30 atm, bellows chamber pressure:
1.15 atm, mist spray timing (interval): 5
Seconds, mist spraying time: 0.5 seconds / time, cooling water supply: 4
00 cc / min, ambient temperature: 20.0 ° C., cooling water temperature: 20.0 ° C.

【0044】試験材の裏面には半径方向に中心から0m
m、20mm、40mm、55mm、65mm、75m
m、80mm、85mm、90mm、95mmの位置に
合計10本の熱電対を装着してウエハ面内の温度分布を
測定した。
0 m from the center in the radial direction on the back surface of the test material
m, 20mm, 40mm, 55mm, 65mm, 75m
A total of ten thermocouples were attached at positions of m, 80 mm, 85 mm, 90 mm, and 95 mm, and the temperature distribution in the wafer surface was measured.

【0045】第1回目の研磨では、ウエハ外周部の半径
80〜95mmの範囲の平均温度は60.5℃最高温度
は78℃、中心〜半径75mmの間の平均温度は45
℃、最高温度は55℃であり、外周部での温度が著しく
高くなることが確認された。
In the first polishing, the average temperature in the range of a radius of 80 to 95 mm of the outer peripheral portion of the wafer is 60.5 ° C., the maximum temperature is 78 ° C., and the average temperature between the center and the radius of 75 mm is 45.
° C and the maximum temperature was 55 ° C, and it was confirmed that the temperature at the outer peripheral portion was extremely high.

【0046】このため内周空気調整弁122b、内周液
調整弁123bの開度(ねじ式調整弁のねじ回転数)を
1/4に絞り、外周空気調整弁122a、外周液調整弁
123aの開度は全開のままとした。
Therefore, the opening degree (the number of rotations of the screw type adjusting valve) of the inner air adjusting valve 122b and the inner liquid adjusting valve 123b is reduced to 1/4, and the outer air adjusting valve 122a and the outer liquid adjusting valve 123a are reduced. The opening was kept fully open.

【0047】第2回目の研磨では、ウエハ外周部の半径
80〜95mmの範囲の平均温度は50.5℃最高温度
は66℃、中心〜半径75mmの間の平均温度は47
℃、最高温度は63.5℃であった。
In the second polishing, the average temperature in the range of the radius of 80 to 95 mm at the outer peripheral portion of the wafer is 50.5 ° C., the maximum temperature is 66 ° C., and the average temperature between the center and the radius of 75 mm is 47.
° C and the maximum temperature was 63.5 ° C.

【0048】このように、流路を複数系列有する場合、
試料の部分別に空気−液体ミストの噴霧配分を変えるこ
とによって、試料面内の温度分布はより均一にできるこ
とがわかった。
As described above, when a plurality of channels are provided,
It was found that the temperature distribution in the plane of the sample can be made more uniform by changing the spray distribution of the air-liquid mist for each part of the sample.

【0049】[0049]

【発明の効果】本発明の研磨装置によれば、被研磨材の
温度上昇を抑制して信頼性保証温度を超えないように研
磨することが可能である。さらに、試料面内の発熱量の
分布に対応して、冷却用の気体−液体ミストの供給配分
を変えれば、高い平坦度を維持しながら研磨でき、LS
Iを初めとするエレクトロニクス製品の品質歩留の向上
が可能になる。
According to the polishing apparatus of the present invention, it is possible to suppress a rise in the temperature of the material to be polished and perform polishing so that the temperature does not exceed the reliability assurance temperature. Further, if the supply distribution of the gas-liquid mist for cooling is changed according to the distribution of the calorific value in the sample surface, polishing can be performed while maintaining high flatness, and LS
It is possible to improve the quality yield of electronic products such as I.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の研磨装置の試料保持部の一例を示す概
要図であり、同図(a) は縦断面図、同図(b) は同図(a)
のA−A断面図である。
FIG. 1 is a schematic view showing an example of a sample holder of a polishing apparatus according to the present invention, wherein FIG. 1 (a) is a longitudinal sectional view, and FIG. 1 (b) is FIG.
It is AA sectional drawing of.

【図2】試料保持台内部での流路の配置例を示す概要図
であり、同図(a) は試料保持台外周と同心円状に単列配
置した場合、同図(b) は複数列配置した場合、同図(c)
は中心から放射状に複数列の配置した場合である。
FIG. 2 is a schematic diagram showing an example of the arrangement of flow paths inside a sample holder. FIG. 2 (a) shows a case where a single line is arranged concentrically with the outer periphery of the sample holder, and FIG. When placed, the same figure (c)
Is a case where a plurality of rows are arranged radially from the center.

【図3】ウエハ試料の発熱状態を模式的に示す図であ
り、図3(b) は図3(a) の発熱に対する流路の配置対応
例を示す概要図である。
3 is a diagram schematically showing a heat generation state of a wafer sample, and FIG. 3 (b) is a schematic diagram showing an example of arrangement of flow paths for heat generation in FIG. 3 (a).

【図4】従来の半導体基板を研磨する従来の研磨装置の
概要を示す側面図である。
FIG. 4 is a side view showing an outline of a conventional polishing apparatus for polishing a conventional semiconductor substrate.

【図5】特開平9−19863号公報に開示された試料
保持部の要部を示す縦断面図である。
FIG. 5 is a longitudinal sectional view showing a main part of a sample holding unit disclosed in Japanese Patent Application Laid-Open No. 9-19863.

【図6】気体−液体ミストの供給量配分を調整機構を示
す概要図である。
FIG. 6 is a schematic view showing a mechanism for adjusting a supply distribution of a gas-liquid mist.

【符号の説明】[Explanation of symbols]

10:研磨液 11:研磨定盤回転軸 12:試料保持部回転軸 101:ポリッシャ 101a:研磨定盤 101b:研磨布 102:試料保持部 103:ハウジングプレート 104:ベローズチャンバ 105:試料保持リング部 106:試料保持台 107:試料 108:バックプレッシャーチャンバ 109:冷却用ノズル 110:流路 110a:外周流路 110b:内周流路 111:第1空気管 112:液管 113:第2空気管 114:Oリング 115:空気分岐管 116:液体分岐管 121:研磨液供給ノズル 122a:外周空気調整弁 122b:内周空気調整弁 123a:外周液調整弁 123b:内周液調整弁 10: Polishing liquid 11: Polishing platen rotating shaft 12: Sample holding unit rotating shaft 101: Polisher 101a: Polishing platen 101b: Polishing cloth 102: Sample holding unit 103: Housing plate 104: Bellows chamber 105: Sample holding ring unit 106 : Sample holder 107: sample 108: back pressure chamber 109: cooling nozzle 110: flow path 110 a: outer circumference flow path 110 b: inner circumference flow path 111: first air pipe 112: liquid pipe 113: second air pipe 114: O-ring 115: air branch pipe 116: liquid branch pipe 121: polishing liquid supply nozzle 122a: outer peripheral air regulating valve 122b: inner peripheral air regulating valve 123a: outer peripheral fluid regulating valve 123b: inner peripheral fluid regulating valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転する試料保持台に保持された平板状
試料と、該平板状試料と平行に対向配設され回転する研
磨定盤に研磨材が被着されてなるポリッシャとの間に、
研磨液を供給しながら平板状試料を研磨する研磨装置で
あって、前記試料保持台に平板状試料の裏面に冷却用の
気体−液体ミストを供給するためのノズルが設けられて
いることを特徴とする研磨装置。
1. A polishing apparatus comprising: a plate-like sample held by a rotating sample holding table; and a polisher having a polishing material attached to a rotating polishing platen disposed in parallel with the plate-like sample and rotating.
A polishing apparatus for polishing a flat sample while supplying a polishing liquid, wherein the sample holding table is provided with a nozzle for supplying a gas-liquid mist for cooling to the back surface of the flat sample. Polishing equipment.
【請求項2】 冷却用の気体−液体ミストのノズルの系
列を複数有し、各系列への気体−液体ミストの供給量配
分を変更して平板状試料の裏面の冷却量分布を調整可能
な調整弁を有することを特徴とする請求項1記載の研磨
装置。
2. A plurality of gas-liquid mist nozzle lines for cooling, and the distribution of gas-liquid mist supply to each line can be changed to adjust the cooling amount distribution on the back surface of the flat sample. The polishing apparatus according to claim 1, further comprising a regulating valve.
JP15135399A 1999-05-31 1999-05-31 Polishing device Withdrawn JP2000343415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15135399A JP2000343415A (en) 1999-05-31 1999-05-31 Polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15135399A JP2000343415A (en) 1999-05-31 1999-05-31 Polishing device

Publications (1)

Publication Number Publication Date
JP2000343415A true JP2000343415A (en) 2000-12-12

Family

ID=15516704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15135399A Withdrawn JP2000343415A (en) 1999-05-31 1999-05-31 Polishing device

Country Status (1)

Country Link
JP (1) JP2000343415A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003057406A1 (en) * 2001-12-26 2003-07-17 Lam Research Corporation Apparatus and methods for controlling wafer temperature in chemical mechanical polishing
JP2009525603A (en) * 2006-02-01 2009-07-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Pulse chemical distribution system
JP2010042459A (en) * 2008-08-11 2010-02-25 Tokyo Seimitsu Co Ltd Device and method for polishing wafer
JP2010201337A (en) * 2009-03-03 2010-09-16 Nissan Motor Co Ltd Coating film repairing method and coating film repairing device
CN116160364A (en) * 2023-04-21 2023-05-26 长鑫存储技术有限公司 Polishing liquid supply device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003057406A1 (en) * 2001-12-26 2003-07-17 Lam Research Corporation Apparatus and methods for controlling wafer temperature in chemical mechanical polishing
US6984162B2 (en) 2001-12-26 2006-01-10 Lam Research Corporation Apparatus methods for controlling wafer temperature in chemical mechanical polishing
US7029368B2 (en) 2001-12-26 2006-04-18 Lam Research Corporation Apparatus for controlling wafer temperature in chemical mechanical polishing
JP2009525603A (en) * 2006-02-01 2009-07-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Pulse chemical distribution system
US8257506B2 (en) 2006-02-01 2012-09-04 Nxp B.V. Pulsed chemical dispense system
JP2010042459A (en) * 2008-08-11 2010-02-25 Tokyo Seimitsu Co Ltd Device and method for polishing wafer
JP2010201337A (en) * 2009-03-03 2010-09-16 Nissan Motor Co Ltd Coating film repairing method and coating film repairing device
CN116160364A (en) * 2023-04-21 2023-05-26 长鑫存储技术有限公司 Polishing liquid supply device
CN116160364B (en) * 2023-04-21 2023-09-22 长鑫存储技术有限公司 Polishing liquid supply device

Similar Documents

Publication Publication Date Title
US7156720B2 (en) Substrate holding apparatus
US8292694B2 (en) Substrate holding mechanism, substrate polishing apparatus and substrate polishing method
KR101384259B1 (en) Apparatus for heating or cooling a polishing surface of a polishing apparatus
US6000997A (en) Temperature regulation in a CMP process
JP5547472B2 (en) Substrate polishing apparatus, substrate polishing method, and polishing pad surface temperature control apparatus for substrate polishing apparatus
KR840002114B1 (en) Apparatus for improving flatness of polished wafers
US6682404B2 (en) Method for controlling a temperature of a polishing pad used in planarizing substrates
TWI414627B (en) Apparatus and method for controlling the surface temperature of a substrate in a process chamber
JPH10156708A (en) Method and device for polishing
JP2022544375A (en) Apparatus and method for CMP temperature control
KR20170073292A (en) Chemical mechanical polishing apparatus and control method thereof
US20230182259A1 (en) Gas entrainment during jetting of fluid for temperature control in chemical mechanical polishing
JP2000343415A (en) Polishing device
JP2023530555A (en) Apparatus and method for CMP temperature control
TW202332534A (en) Chemical mechanical polishing system and computer program product for temperature and slurry flow rate control
JPH02199832A (en) Wafer polishing apparatus
JPH11347935A (en) Polishing device
JP2002305188A (en) Apparatus and method for processing
JP2001198801A (en) Polishing device and polishing method
JP3902715B2 (en) Polishing device
JPH02240925A (en) Polishing apparatus for wafer
RU2153209C1 (en) Method and device for cooling down semiconductor wafers
JPH07171759A (en) Method for controlling temperature of polishing level block
KR20180100741A (en) Chemical mechanical polishing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801