JP2000341974A - Power converter for mounting on vehicle - Google Patents

Power converter for mounting on vehicle

Info

Publication number
JP2000341974A
JP2000341974A JP11149783A JP14978399A JP2000341974A JP 2000341974 A JP2000341974 A JP 2000341974A JP 11149783 A JP11149783 A JP 11149783A JP 14978399 A JP14978399 A JP 14978399A JP 2000341974 A JP2000341974 A JP 2000341974A
Authority
JP
Japan
Prior art keywords
circuit
drive
switching
protection circuit
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11149783A
Other languages
Japanese (ja)
Inventor
Seiji Anzai
Hirotoshi Maekawa
Eiji Tsuchiya
博敏 前川
英二 土屋
清治 安西
Original Assignee
Mitsubishi Electric Corp
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, 三菱電機株式会社 filed Critical Mitsubishi Electric Corp
Priority to JP11149783A priority Critical patent/JP2000341974A/en
Publication of JP2000341974A publication Critical patent/JP2000341974A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To reduce delay in switching time, restrain the rounding of a waveform, obtain a power converter of high reliability under a severe application environment suck as vehicle mounting, and realize integration of a high voltage circuit and miniaturization of a power conversion control circuit.
SOLUTION: Drive and protecting circuit 4 of switching elements and a control operating device 12 are formed on the same substrate via an HVIC (high breakdown voltage semiconductor integrated circuit). The respective power source GNDs of the circuits 4 and the device 12, which are formed on the same substrate, are made common to the power source GNDs of the switching elements 2. Furthermore a power conversion part constituted of a substrate, the switching elements 2 and a smoothing capacitor 10 is constituted in the same module.
COPYRIGHT: (C)2000,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、半導体スイッチング素子を用いた車載用電力変換装置における電気的絶縁方法と装置の小型化及び信頼性向上に関するものである。 The present invention relates to relates to miniaturization and improved reliability of the apparatus and electrical insulation methods in-vehicle power conversion device using a semiconductor switching element.

【0002】 [0002]

【従来の技術】図4は、従来の車載用電力変換装置の電源構成を示す回路ブロック図で、三相交流負荷を駆動するスイッチング部に関しては、その一相分の回路のみを抜粋した図である。 BACKGROUND OF THE INVENTION FIG. 4, the circuit block diagram showing a power supply arrangement of a conventional vehicle power converter, for switching unit for driving the three-phase AC load, in FIG excerpt only circuit of one phase is there. なお、他二相分の回路は、上記一相分の回路と同一であるので、本図では省略する(図5の全体構成を示す回路ブロック図を参照)。 Incidentally, the circuit of the other two phases, is identical to the circuit of one phase above (see circuit block diagram showing the overall arrangement of FIG. 5) is omitted in the figure. 同図において、1は図外の交流負荷を駆動するための高電圧系の直流電源であり、電気自動車などの用途では、一般に数十Vから数百Vの電圧が使用されている。 In the figure, 1 is a DC high-voltage power supply system for driving the AC load, not shown, in applications such as electric vehicles, a voltage of a few hundred V is used generally from several tens of V. また、上記直流電源1は、安全上の理由から車体とは電気的に絶縁されている。 Further, the DC power source 1 is electrically insulated from the vehicle body for safety reasons. 2は上記直流電源1の電源間に2個直列に接続され、スイッチング部の1個のアームを構成するスイッチング素子で、一般的にIGBT(Insulated GateBip 2 is connected to two series between the power supply of the DC power source 1, a switching element which constitutes one arm of the switching unit, generally IGBT (Insulated GateBip
olar Transistor)に代表されるパワー素子が使用されており、後述するように、3組のアームが並列接続された構成のスイッチング動作により、上記直流電源1を三相交流電力に変換して出力する。 OLAR Transistor) power element typified have been used, as described below, three sets of arms by the switching operation of the parallel-connected configuration converts and outputs the DC power source 1 into three-phase AC power . 3は上記各スイッチング素子2とペアで構成され、スイッチング時の還流電流を交流負荷または直流電源1に還元するためのフライホイールダイオードである。 3 is constituted by the switching elements 2 and pairs a flywheel diode for reducing the reflux current during switching the AC load or DC power source 1. 4は上記各スイッチング素子2を駆動するとともに、上記各スイッチング素子2を過熱や短絡電流等から保護するためのスイッチング素子の駆動・保護回路で、フォトカプラ8を介して、マイクロコンピュータ(以下、マイコンと略す)5の駆動信号出力ポートとスイッチング異常信号入力のポートとに接続されている。 4 to drive the switching elements 2, with drive and protection circuit of the switching element for protecting the switching elements 2 from overheating and short-circuit current, etc., through a photo-coupler 8, a microcomputer (hereinafter, microcomputer abbreviated) 5 are connected to the driving signal output port and the port of the switching abnormality signal input. なお、10はスイッチング時のリップル電流を平滑するための平滑用コンデンサである。 Incidentally, 10 is a smoothing capacitor for smoothing the ripple current during switching. また、上記マイコン5の駆動電源は、低電圧系の直流電源6より供給され、一般的な定電圧レギュレータ回路7で作られた5Vを使用している。 The drive power source of the microcomputer 5 is supplied from the DC power supply 6 of the low-voltage system, using a 5V made with typical constant-voltage regulator circuit 7.

【0003】このように、電気自動車やハイブリッド電気自動車の場合には、一般的に2種類の直流電源構成となっている。 [0003] Thus, in the case of electric vehicles and hybrid electric vehicles has become a generally two types of DC power supply configuration. すなわち、低電圧系の直流電源6は、通常の車載用途で使用される12V電圧バッテリが流用されており、電源のGND電位は車体の電位と共通となるように、ボディアースされている。 That is, the DC power supply 6 of the low-voltage system is diverted 12V voltage battery used in conventional automotive applications, GND potential of the power source is such that the common and the body potential, are the body earth. また、高電圧系の直流電源1は、一般的に高電庄であることから、車体とは完全に電気絶縁された状態で使用される場合が多く、感電防止等の安全上の問題やスイッチング素子2の動作原理上(動作基準電位の違い)から、絶縁処理用素子を用いて、上記駆動・保護回路4と上記マイコン5との間に電気的な絶縁処理を行っている。 Further, the high-voltage DC power source 1, since it is a general high electrostatic Zhuang, often the vehicle is used in a state completely electrically insulated, safety issues and switching such as live electrical from the operating principle of the device 2 (the difference of the operating reference potential), using the insulated element, it is carried out electrically insulated between said drive and protection circuit 4 and the microcomputer 5. 上記絶縁処理用素子としては、一般的に比較的安価で入手性のよいフォトカプラ(光半導体)8が使用される場合が多い。 The insulating The treatment element, often generally relatively inexpensive availability good photocoupler (optical semiconductor) 8 is used. なお、以下では、上記ボディアースを符号Zで示す。 In the following, the body earth by symbol Z.

【0004】次に、図5の車載用電力変換装置の全体回路ブロック図について説明する。 [0004] Next, a description will be given of the overall circuit block diagram of a vehicle power converter of FIG. なお、図4と同符号のものは、同じ機能を有する。 Incidentally, those in FIG 4 of the same symbols have the same function. 車載用電力変換装置の主回路である高電圧系を構成する電力変換装置9は、直流電源1と、平滑用コンデンサ10と、3組並列に接続された6個のスイッチング素子2と6個のフライホイールダイオード3で構成されたスイッチング部とを備え、平滑用コンデンサ10の端子間でスイッチング時のリップル電流が平滑された直流電圧を三相交流電圧に変換(逆変換)し、負荷となる交流電動機等の三相交流負荷11に可変電圧可変周波数の三相交流電力を供給する。 Power converter 9 which constitutes the high-voltage system, which is a main circuit of the vehicle power converter, a DC power source 1, a smoothing capacitor 10, three sets parallel connected six switching elements 2 and 6 and a switching portion composed of a flywheel diode 3, converts the DC voltage ripple current during switching is smoothed between terminals of the smoothing capacitor 10 to three-phase AC voltage (inverse transformation), the load AC supplying three-phase AC power of variable voltage and variable frequency to a three-phase AC load 11 such as an electric motor. 上記スイッチング素子2には、一般的にIGBTが使用される場合が多く、同図において、Gはゲート、Cはコレクタ、Eはエミッタを表す。 The aforementioned switching element 2, if the general IGBT is used a lot in the figure, G represents gate, C is the collector, E is representative of the emitter. スイッチング素子の駆動・保護回路4は、通常、上記電力変換装置9とは分離されて設けられた交流負荷制御回路である制御演算装置12からの駆動信号を電流増幅した後、上記各スイッチング素子をオン(導通)・オフ(遮断)することで、直流電源1の直流電力を可変電圧可変周波数の三相交流電力に変換するのに必要なスイッチング動作を行わせるもので、 Drive and protection circuit 4 of the switching element, usually after a drive signal from the control arithmetic unit 12 is an AC load control circuit provided is separated from the above power conversion device 9 and current amplification, the respective switching elements on (conductive) and off (cut off) doing, one to perform the switching operation required to convert the DC power of the DC power source 1 into three-phase AC power of variable voltage and variable frequency,
PWM制御に代表されるデジタル信号による駆動方法が多く使用されている。 The driving method according to a digital signal represented by a PWM control is widely used. また、上記駆動・保護回路4は、 Further, the drive and protection circuit 4,
スイッチング素子2の過熱や短絡電流等を図外のセンサで検知し、上記センサ信号に基づいて上記スイッチング素子2を保護する働きを持つ。 Detects the overheating and short-circuit current of the switching element 2, such as a sensor, not shown, it has a function to protect the switching element 2 based on the sensor signal. このため、制御演算装置12は、一般的に交流負荷制御演算を行うためのマイコン5を内蔵し、電流検出器13で検出した三相交流負荷11の各相電流や車両制御装置14からの三相交流負荷トルク制御指令信号、その他アラーム信号などを取り込み、種々の保護機能を備えた電力変換装置9を制御するようにしている。 Therefore, the control arithmetic unit 12 incorporates a microcomputer 5 for general AC load control calculation, third from the phase currents and the vehicle control device 14 of the three-phase AC load 11 detected by the current detector 13 phase AC load torque control command signals, such as the incorporation other alarm signals, so as to control the power converter 9 having a variety of protective functions.

【0005】 [0005]

【発明が解決しようとする課題】従来の車載用電力変換装置は以上のように構成されているので、安全上、または動作原理上、スイッチング素子の駆動・保護回路4と制御演算装置12との間を電気的に絶縁する必要がある。 Since INVENTION It is an object of the conventional vehicle power conversion device is configured as described above, safety, or the operation principle of the drive and protection circuit 4 of the switching elements and the control arithmetic unit 12 It must be electrically insulated between. 上記絶縁処理用素子としては、一般的に光半導体素子から成るフォトカプラ8を使用している場合が多い。 As the insulated element, often using a photocoupler 8 consisting typically optical semiconductor element.
しかしながら、このフォトカプラ8は、光半導体の性質・構造上、車載等の温度サイクルの厳しい過酷な環境下で使用すると光結合部のシール性が劣化し、一次側と二次側の結合度(増幅度)が低下する。 However, the photo-coupler 8, the optical property of semiconductor-structure, the sealing of the optical coupling portion is deteriorated when used in harsh harsh environmental temperature cycles, such as automotive, the primary side and the secondary side of the coupling degree ( amplification degree) is reduced. また、最悪の場合、一次側と二次側が結合されず、信号伝達ができなくなる等の信頼性(製品寿命)の点での問題があった。 Further, in the worst case, not coupled primary side and the secondary side, there is a problem in terms of reliability such as can not be signaled (product life). また、絶縁のための信号変換行程(電気信号→光信号→電気信号)が必要となるため、入力信号と出力信号の間に遅延時間や波形のなまりが発生し、PWM駆動に必要なスイッチング時間幅が確保されない等の制約があった。 Further, since the signal conversion process for insulation (electric signal → optical signal → an electrical signal) is needed, distortion of the delay time and the waveform is generated between the input and output signals, the switching time for the PWM drive width there is a restriction such as that are not secured.

【0006】この発明は、かかる問題点を解決するためになされたもので、スイッチング時間の遅れや波形なまりを改善し、車載等の過酷な使用環境下においても信頼性の高い電力変換装置を得るとともに、高電圧回路の集約化と電力変換制御回路の小型化を図ること目的としている。 [0006] The present invention has been made to solve the above problems, to improve the delay or waveform rounding of switching times to obtain a highly reliable power conversion apparatus even in harsh environment of vehicle such together it is intended to reduce the size of the intensification and the power conversion control circuit of the high voltage circuit.

【0007】 [0007]

【課題を解決するための手段】請求項1の発明に係わる車載用電力変換装置は、スイッチング素子の駆動・保護回路と制御演算装置とを、絶縁機能を有し、上記駆動・ Means for Solving the Problems] vehicle power conversion device according to a first aspect of the invention, the a drive and protection circuit of the switching elements and the control arithmetic unit has an insulating function, the drive and
保護回路と上記制御演算装置との間の信号伝達を行う信号伝達手段を介して同一基板上に形成するとともに、上記基板と、上記スイッチング素子と上記平滑用コンデンサとで構成される電力変換部とを同一モジュールで構成したものである。 And forming on the same substrate through a signal transmission means transmits signals between the protection circuit and the control arithmetic unit, and the substrate, and the power conversion unit composed of the above switching element and the smoothing capacitor the which is constituted by the same module.

【0008】請求項2の発明に係わる車載用電力変換装置は、上記信号伝達手段を、フォトカプラのような絶縁素子ではなく、HVIC(High Voltage Integrated [0008] vehicle power conversion device according to the invention of claim 2, said signal transmitting means, instead of the insulating element such as a photocoupler, HVIC (High Voltage Integrated
Circuit;高耐圧の半導体集積回路)により構成したものである。 The Circuit; those constructed in accordance with the high breakdown voltage of the semiconductor integrated circuit).

【0009】請求項3の発明に係わる車載用電力変換装置は、同一基板上に形成されたスイッチング素子の駆動・保護回路と制御演算装置のそれぞれの電源GNDを、 [0009] vehicle power conversion device according to the invention of claim 3, each of the power supply GND of the drive and protection circuit of a switching element formed on the same substrate as the processing device,
スイッチング素子の電源GNDと共通としたものである。 It is obtained by the power supply GND of the switching element and the common.

【0010】 [0010]

【発明の実施の形態】以下、本発明の実施の形態について、図面に基づき説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. なお、以下の説明中、従来例と共通する部分については同一符号を用いて説明する。 In the following description, it described using the same reference numerals portions common to prior art. 実施の形態1. The first embodiment. 図1は、本発明の車載用電力変換装置の電源構成を示す回路ブロック図で、三相交流負荷を駆動するスイッチング部に関しては、その一相分の回路のみを抜粋した図である。 Figure 1 is a circuit block diagram showing a power supply arrangement of a vehicle-mounted power converter of the present invention, with respect to the switching unit for driving the three-phase AC load diagrams excerpt only circuit of one phase. 図1において、1は高電圧系の直流電源、2はIGBTから成るスイッチング素子、3はフライホイールダイオード、4はスイッチング素子の駆動・保護回路、10は平滑用コンデンサ、12は交流負荷制御演算を行うためのマイコン5と低電圧系の直流電源6とを備えた制御演算装置、15は上記制御演算装置12とを絶縁する機能を有するとともに、上記駆動・保護回路4と上記制御演算装置12との間の信号伝達を行う信号伝達手段であるHVIC、16は上記マイコン5 In Figure 1, 1 denotes a DC power supply of a high voltage system, 2 is a switching element consisting of IGBT, 3 flywheel diode, drive and protection circuit of the switching element 4, the smoothing capacitor 10, 12 is an AC load control operation processing device that includes a direct current power supply 6 of the microcomputer 5 and the low-voltage system for carrying out, 15 has a function of insulating the said control arithmetic unit 12, and the drive and protection circuit 4 and the control arithmetic unit 12 a signal transmitting means for performing signal transmission between the HVIC, 16 is the microcomputer 5
に電圧を供給するための絶縁電源である。 An isolated power supply for supplying a voltage to the. 本実施の形態の車載用電力変換装置は、従来の装置に対して、スイッチング素子の駆動・保護回路4と交流負荷制御回路である制御演算装置12に内蔵されているマイコン5との絶縁処理用素子であるフォトカプラ8を廃止し、HVIC Vehicle power conversion device of this embodiment, with respect to conventional devices, for insulation treatment of the microcomputer 5 which is incorporated in the control arithmetic unit 12 is an AC load control circuit and the drive and protection circuit 4 of the switching element abolished the photo coupler 8 is an element, HVIC
(High Voltage Integrated Circuit;高耐圧の半導体集積回路)15を使用している点と、マイコン5の電源GNDを高電圧系の直流電源1のGNDと共通にするとともに、マイコン5用電源に、低電圧系の直流電源から5V電圧を得る絶縁電源16を用いることで、最小限に車体との電気絶縁を構成している点が大きく異なっている。 And that it uses a 15; (High Voltage Integrated Circuit high voltage semiconductor integrated circuit), the power supply GND of the microcomputer 5 as well as the common with GND of the high-voltage DC power source 1, the power supply microcomputer 5, low by using the isolated power 16 to obtain a 5V voltage from the DC power source voltage system, that constitutes the electrical insulation between the vehicle body to a minimum it is very different.

【0011】HVICは、一般的には、Nch MOSで低電圧系から高電圧系へ、Pch MOSで高電圧系から低電圧系へ信号レベルのシフトを行う周知の高耐圧の半導体集積回路であり、JI形、DI形と呼ばれている構造が多く用いられている。 [0011] HVIC is generally from low voltage at Nch MOS to a high voltage system, be a semiconductor integrated circuit of a known high-voltage performing shift of the signal level at the Pch MOS from the high voltage system to the low voltage system , JI-shaped, and the structure is used often called a DI type. 上記HVICは、MOSゲート相当の絶縁抵抗が確保できることから、産業・民生分野においては、絶縁機能を有する信号伝達手段として実用化されている。 The HVIC, since the insulation resistance of the MOS gate equivalent can be ensured, in the industrial and consumer applications, has been put to practical use as a signal transmission means having an insulating function. HVICは、図2の等価回路ブロック図に示すように、接続点aを介してマイコン5の出力ポートと接続される高耐圧のNch MOS(HV Nch HVIC, as shown in the equivalent circuit block diagram of FIG. 2, the high breakdown voltage of the Nch MOS (HV Nch connected to the output port of the microcomputer 5 through the connection point a
MOS)を備えたON回路15a及びOFF回路15b ON circuit 15a and the OFF circuit 15b including a MOS)
と、上記ON回路15a及びOFF回路15bからの出力に応じて作動するSR−FF(スレーブ・フリップフロップ)15cとを備え、マイコン5からの信号をスイッチング素子の駆動・保護回路4へ伝達する第1の信号伝達回路15Aと、接続点bを介して上記駆動・保護回路4の出力側と接続されるHV Pch MOSを備えたON回路15d及びOFF回路15eと、上記ON回路15d及びOFF回路15eからの出力に応じて作動するSR−FF15fとを備え、上記駆動・保護回路4からの信号をマイコン5へ伝達する第2の信号伝達回路1 When, the transmission to SR-FF and a (slave flip-flop) 15c, drive and protection circuit 4 of the signal switching device from the microcomputer 5 which operates in response to an output from the ON circuit 15a and the OFF circuit 15b a first signal transmission circuit 15A, the ON circuit 15d and OFF circuit 15e was via the node b with the HV Pch MOS connected to the output side of the drive and protection circuit 4, the ON circuit 15d and OFF circuit 15e and a SR-FF15f which operates in response to an output from the second signal transfer circuit 1 for transmitting a signal from the drive and protection circuit 4 to the microcomputer 5
5Bとから構成され、上記駆動・保護回路4とマイコン5とを絶縁する機能を有するとともに、上記駆動・保護回路4とマイコン5との間の信号伝達を行う。 Is composed of a 5B, and has a function of insulating the said drive and protection circuit 4 and the microcomputer 5 performs signal transmission between said drive and protection circuit 4 and the microcomputer 5.

【0012】すなわち、第1の信号伝達回路15Aでは、接続点aから入力された入力パルスの立ち上がりエッジでON回路15aが作動し、立ち下がりエッジでO Namely, in the first signal transfer circuit 15A, ON circuit 15a at the rising edge of the input pulse inputted from the connection point a is operated, O falling edge
FF回路15bが作動することにより2系統の信号を作り、後段のSR−FF15cを作動させる。 By FF circuit 15b is operated to make a signal of two systems, actuating the subsequent SR-FF15c. ON回路1 ON circuit 1
5aのHV Nch MOSがオンすることで、SR−F By 5a of HV Nch MOS is turned on, SR-F
F15cがセットされ、駆動・保護回路4との接続点b F15c is set, a connection point between the drive and protection circuit 4 b
の電位がHighになり、ON回路15bのHV Nch Potential becomes High, the ON circuit 15b HV Nch
MOSがオンすることで、SR−FF15cがリセットされ、上記b点の電位がLowになることにより、マイコン5からの信号がスイッチング素子の駆動・保護回路4へ伝達される。 By MOS is turned on, SR-FF15c is reset, the potential of the point b by Low, the signal from the microcomputer 5 is transmitted to drive and protection circuit 4 of the switching element. 第2の信号伝達回路15Bは、上記第1の信号伝達回路15Aにおいて、高耐圧の MOS A second signal transmission circuit 15B, in the first signal transfer circuit 15A, the high-voltage MOS
がNch MOSからPch MOSに変わっただけであり、同様の動作を行い、スイッチング素子の駆動・保護回路4からの信号をマイコン5へ伝達する。 There are only turned from Nch MOS the Pch MOS, perform the same operation, transmitting a signal from the drive and protection circuit 4 of the switching elements to the microcomputer 5.

【0013】次に、上記構成の車載用電力変換装置の動作について説明する。 [0013] Next, the operation of the in-vehicle power conversion device configured as described above. マイコン5は、制御演算装置12 Microcomputer 5, the processing device 12
に内蔵され予め定められたパターンでPWM信号を出力し、HVIC15を介してスイッチング素子駆動・保護回路4をオン(導通)・オフ(遮断)することで、スイッチング素子2を駆動して、高電圧系の直流電源1を可変電圧可変周波数の三相交流電力に変換(逆変換)する。 By outputting a PWM signal in a predetermined pattern embedded in, the switching device drive and protection circuit 4 via the HVIC15 on (conductive) and off (cut off) doing, by driving the switching element 2, high voltage converting the DC power supply 1 of the system into three-phase AC power of variable voltage and variable frequency (inverse transform). また、スイッチング素子2が過熱や短絡電流などの異常を発生した時には、スイッチング素子駆動・保護回路4内部にて、スイッチング素子2へのゲート信号を遮断するなどの処理を行い、同時に、上記異常が発生したことをHVIC15を介してマイコン5に伝達する。 Further, when the switching element 2 occurs an abnormality such as overheating and short-circuit current, at an internal switching element drive and protection circuit 4 performs processing such as cutting off the gate signal to the switching element 2, at the same time, the abnormality transmitting the generated to the microcomputer 5 through the HVIC15. このように、本実施の形態の車載用電力変換装置は、GN Thus, the in-vehicle power conversion device of this embodiment, GN
Dレベルの異なる素子間の信号伝達にHVIC15を使用しているため、フォトカプラを使用しなくても、マイコン5のGNDを高電圧系の直流電源1のGNDと共通にすることができるので、電力変換制御回路を小型化することができる。 Due to the use of HVIC15 the signal transmission between D level different elements, without using a photo-coupler, it is possible to the GND of the microcomputer 5 in common with GND of the high-voltage DC power source 1, it is possible to miniaturize the power converter control circuit.

【0014】実施の形態2. [0014] Embodiment 2. 図3は、本発明の車載用電力変換装置の全体回路ブロック図を示している。 Figure 3 shows an overall circuit block diagram of a vehicle power converter of the present invention. なお、 It should be noted that,
図3において、上記図1と同符号のものは、同様の機能を有する。 3, those FIG. 1 and the same reference numerals have similar functions. 本発明の車載用電力変換装置は、従来の装置に対して、交流負荷制御回路である制御演算装置12を電力変換装置9に内蔵し、上記制御演算装置12とスイッチング素子の駆動・保護回路4とを同一基板上に形成する構成としている。 Vehicle power converter of the present invention, the conventional device, a built-in control arithmetic unit 12 is an AC load control circuit to the power converter 9, the control arithmetic unit 12 and the drive and protection circuit 4 of the switching element It has a configuration which forms bets on the same substrate. 更に、上記実施の形態1で説明したように、マイコン5を含んだ制御演算装置12の大半の回路のGND電位が、スイッチング素子2のアームのLow側の基準電位、すなわち高電圧系の直流電源1のGND電位と共通になるようにしているので、トリプルブリッジに回路構成された6個のスイッチング素子2 Further, as described in the first embodiment, GND potential of the circuit of most control arithmetic unit 12 which includes a microprocessor 5, the reference potential of the Low-side arm of the switching element 2, i.e. the DC power supply of the high voltage system since set to be common to the first GND potential, six switching elements having a circuit configuration triple bridge 2
を、フォトカプラのような電気絶縁素子を使用しなくても、あたかも同電位コモンであるかのように信号伝達することが可能になる。 And without using an electrical insulating element such as a photocoupler, though it is possible to signal as if it were the same potential common. また、スイッチング素子2の過熱や短絡電流などの異常発生時には、スイッチング素子2 Further, when an abnormality occurs, such as overheating or a short circuit current of the switching element 2, the switching element 2
のオンチップ上に形成されたセンサの信号により、スイッチング素子の駆動・保護回路4内部にて異常処理するとともに、異常が発生したことをHVIC15を介してマイコン5に伝達するようにしている。 The ON signal of the sensor formed on the chip, so that with abnormally processed by drive and protection circuit 4 inside the switching element and transmits to the microcomputer 5 through the HVIC15 that an abnormality has occurred. したがって、通常、電力変換装置9とは分離された車両制御装置14との制御指令信号の伝達部分で一括して電気的な絶縁を行うことにより、高電圧回路の集約と電力変換制御回路の小型化を実現することができる。 Therefore, usually, by performing electrical insulation collectively by the transfer portion of the control command signal to the vehicle control device 14 which is separate from the power converter 9, the aggregation and the power conversion control circuit of the high voltage circuit size it is possible to realize a reduction.

【0015】また、従来のフォトカプラに代えて、HV [0015] In addition, in place of a conventional photo-coupler, HV
IC15を使用したことで、絶縁処理時における電気信号から光信号などの変換行程がないことから、信号伝達速度が大幅に向上し、スイッチングパルス幅を有効に利用することができ、PWM制御範囲が拡大する。 IC15 By using, since there is no conversion process such as an optical signal from the electrical signal during the insulation treatment, the signal transmission speed is greatly improved, it is possible to effectively utilize the switching pulse width, the PWM control range Expanding. 更に、 In addition,
電力変換装置9にマイコン5を含んだ制御演算装置12 Including microcomputer 5 to the power conversion device 9 control arithmetic unit 12
を配置したことでスイッチング素子2のオンチップ上に形成されたセンサの学習制御機能や上記センサ信号を用いての保護機能等を容易に付加でき、高機能な電力変換装置となっている。 It was placed at easily add a protection function or the like of using learning control function and the sensor signals of sensors formed on the on-chip switching element 2, has become a sophisticated power converter. なお、HVIC15は、完全な電気絶縁にはならないため、安全上、外部の車両制御装置1 Incidentally, HVIC15, since not a complete electrical insulation, safety, outside of the vehicle control device 1
4との間に電気絶縁素子17が必要となるが、外部の車両制御装置14との信号伝達方法を一般的なシリアル通信、またはLAN形式にすることで信号伝達の本数を減少すればよい。 Although it is necessary to electrically insulating element 17 between 4 may be reduced the number of signal transmission by the signaling method between the external of the vehicle control device 14 to the common serial communication or LAN format. このことは、車両配線の削減に寄与し、 This contributes to reduction of the vehicle wiring,
コネクタ接触不良等の確率が減少することから信頼性向上にも繋がる。 The probability of such a connector contact failure also leads to reliability because it decreases. 上記電気絶縁素子17には、例えばパルストランスのような磁気結合素子を使用すればよい。 In the electrically insulative element 17, it is sufficient to use a magnetic coupling device such as a pulse transformer.

【0016】なお、上記実施の形態1,2においては、 [0016] Note that, in Embodiments 1 and 2 above, the
スイッチング素子2として、一般的なIGBTを使用した例を示したが、バイポーラトランジスタやMOSFE As the switching element 2, an example of using a general IGBT, a bipolar transistor or MOSFE
T等のパワー素子を使用しても、同様の効果が得られることは明らかである。 Be used power devices T and the like, it is clear that the same effect can be obtained.

【発明の効果】 【Effect of the invention】

【0017】以上説明したように、請求項1に記載の発明によれば、スイッチング素子駆動・保護回路と制御演算装置とを、絶縁機能を有する信号伝達手段を介して、 [0017] As described above, according to the invention described in claim 1, and a control arithmetic unit switching element drive and protection circuit, via the signal transmitting means having an insulating function,
同一基板上に形成するとともに、上記基板と、上記スイッチング素子と上記平滑用コンデンサで構成される電力変換部とを同一モジュールで構成することにより、信号伝達距離を短くでき、回路を小容量化することができるので、車載用電力変換装置自体を小型化することができるとともに、装置のEMC特性を向上させことができる。 And forming on the same substrate, and the substrate, by forming the same module and configured power conversion unit with the switching element and the smoothing capacitor, the signal transmission distance can be shortened, and a small volume of the circuit it is possible, it is possible to reduce the size of the vehicle power conversion device itself, can improve the EMC properties of the device.

【0018】請求項2に記載の発明によれば、上記信号伝達手段を、HVICにより構成したので、車載等の過酷な環境下においても信頼性の高い電力変換装置を得ることができるとともに、スイッチング時間の遅延や波形なまりを改善することができるので、PWM制御波形のデューテイ領域を広く使用でき、制御領域を拡大することができる。 According to the invention described in claim 2, said signal transmitting means, since it is configured by HVIC, it is possible to obtain a power conversion device having high reliability even in a severe environment of vehicle or the like, switching it is possible to improve the delay and waveform rounding of time, may be widely utilized duty areas of the PWM control waveform, it is possible to enlarge the control region.

【0019】請求項3に記載の発明によれば、同一モジュール内に形成されたスイッチング素子の駆動・保護回路と制御演算装置のそれぞれの電源GNDを、スイッチング素子の電源GNDと共通としたので、高電圧回路の集約と電力変換装置自体の小型化を図ることができる。 According to the invention described in claim 3, each of the power supply GND of the drive and protection circuit and the control arithmetic unit of switching elements formed in the same module, since the common power supply GND of the switching element, aggregation and power converter miniaturization of itself the high voltage circuit can be achieved.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本実施の形態に係わる車載用電力変換装置の電源回路ブロック図である。 1 is a power supply circuit block diagram of a vehicle power conversion device according to this embodiment.

【図2】 HVICの等価回路ブロック図である。 Figure 2 is an equivalent circuit block diagram of the HVIC.

【図3】 本実施の形態に係わる車載用電力変換装置の全体回路ブロック図である。 Figure 3 is an overall circuit block diagram of a vehicle power conversion device according to this embodiment.

【図4】 従来の車載用電力変換装置の電源回路ブロック図である。 4 is a power supply circuit block diagram of a conventional vehicle power conversion device.

【図5】 従来の車載用電力変換装置の全体回路ブロック図である。 Figure 5 is an overall circuit block diagram of a conventional vehicle power conversion device.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 高電圧系の直流電源、2 スイッチング素子、3 1 DC power supply of a high voltage system, second switching element, 3
フライホイールダイオード、4 スイッチング素子の駆動・保護回路、5 マイクロコンピュータ、6 低電圧系の直流電源、9 電力変換装置、10 平滑用コンデンサ、11 三相交流負荷、12 制御演算装置、13 Flywheel diode, 4 drive and protection circuit of the switching element, 5 a microcomputer, a DC power source 6 low voltage system, 9 power conversion apparatus, 10 a smoothing capacitor, 11 a three-phase AC load, 12 processing device, 13
電流検出器、14 車両制御装置、15 HVIC、 Current detector, 14 a vehicle control device, 15 HVIC,
16 絶縁電源、17 電気絶縁素子。 16 insulating power, 17 electrically insulating element.

フロントページの続き (72)発明者 土屋 英二 東京都千代田区大手町二丁目6番2号 三 菱電機エンジニアリング株式会社内 Fターム(参考) 5H007 AA01 AA06 BB06 CA01 CB04 CB05 CC23 DB03 DB12 EA02 HA03 HA04 HA07 5H115 PA15 PG04 PI14 PU08 PV10 QN02 QN09 TO05 TO12 TR01 TR14 TU02 TU12 TZ03 5H740 BA11 BB05 BB09 BB10 JA28 KK04 PP02 PP03 PP07 Front page of the continuation (72) inventor Eiji Tsuchiya Otemachi, Chiyoda-ku, Tokyo chome No. 6 No. 2 Mitsubishi Electric Engineering Co., Ltd. in the F-term (reference) 5H007 AA01 AA06 BB06 CA01 CB04 CB05 CC23 DB03 DB12 EA02 HA03 HA04 HA07 5H115 PA15 PG04 PI14 PU08 PV10 QN02 QN09 TO05 TO12 TR01 TR14 TU02 TU12 TZ03 5H740 BA11 BB05 BB09 BB10 JA28 KK04 PP02 PP03 PP07

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 直流電源の平滑用コンデンサと、2個のスイッチング素子を直列接続したアームを、上記直流電源間に3組並列に接続して成るスイッチング部と、上記各スイッチング素子を駆動及び保護する駆動・保護回路と、交流負荷制御回路である制御演算装置と、上記駆動・保護回路と上記制御演算装置とを絶縁する機能を有するとともに、上記駆動・保護回路と上記制御演算装置との間の信号伝達を行う信号伝達手段とを備え、直流電力を交流電力に変換して出力する車載用電力変換装置において、上記スイッチング素子の駆動・保護回路と上記制御演算装置とを上記信号伝達手段を介して同一基板上に形成するとともに、上記基板と、上記スイッチング素子と上記平滑用コンデンサとで構成される電力変換部とを同一モジュールで構 1. A smoothing capacitor of the DC power source, an arm connected in series with two switching elements, a switching unit formed by connecting three sets parallel between the DC power supply, drive and protect the switching elements between the drive and protection circuit, and a control arithmetic unit is an AC load control circuit has a function of insulating the said drive and protection circuit and the control arithmetic unit, and the drive and protection circuit and the control arithmetic unit for and a signal transmission means transmits a signal, in-vehicle power conversion device for converting DC power to AC power, said signal transmitting means and a drive and protection circuit and the control arithmetic unit of the switching element and forming on the same substrate through, structure and the substrate, and a power conversion unit composed of the above switching element and the smoothing capacitor in the same module 成したことを特徴とする車載用電力変換装置。 Vehicle power conversion apparatus is characterized in that form.
  2. 【請求項2】 上記信号伝達手段を、高耐圧の半導体集積回路により構成したことを特徴とする請求項1記載の車載用電力変換装置。 Wherein said signal transmitting means, vehicle power conversion device according to claim 1, characterized by being configured by high withstand voltage of the semiconductor integrated circuit.
  3. 【請求項3】 スイッチング素子の駆動・保護回路と制御演算装置のそれぞれの電源GNDを、スイッチング素子の電源GNDと共通としたことを特徴とする請求項1 3. A process according to claim 1 in which each of the power supply GND of the drive and protection circuit and the processing device of the switching device, characterized in that a common power supply GND of the switching element
    または請求項2記載の車載用電力変換装置。 Or vehicle power converter of claim 2 wherein.
JP11149783A 1999-05-28 1999-05-28 Power converter for mounting on vehicle Pending JP2000341974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11149783A JP2000341974A (en) 1999-05-28 1999-05-28 Power converter for mounting on vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11149783A JP2000341974A (en) 1999-05-28 1999-05-28 Power converter for mounting on vehicle

Publications (1)

Publication Number Publication Date
JP2000341974A true JP2000341974A (en) 2000-12-08

Family

ID=15482631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11149783A Pending JP2000341974A (en) 1999-05-28 1999-05-28 Power converter for mounting on vehicle

Country Status (1)

Country Link
JP (1) JP2000341974A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100348A1 (en) * 2003-05-06 2004-11-18 Enecsys Limited Power supply circuits
JP2006081255A (en) * 2004-09-08 2006-03-23 Fuji Electric Device Technology Co Ltd Inverter device, integrated circuit chip and vehicle drive unit
US7126308B2 (en) 2002-11-20 2006-10-24 Hitachi, Ltd. Interface circuit with power converter with interface circuit and electric vehicle with power converter
JP2008067518A (en) * 2006-09-07 2008-03-21 Mitsubishi Heavy Ind Ltd Inverter apparatus and air conditioner
JP2008283766A (en) * 2007-05-09 2008-11-20 Denso Corp Motor driving device for vehicle
WO2008152906A1 (en) * 2007-06-14 2008-12-18 Sanden Corporation Electric compressor control device
JP2009254088A (en) * 2008-04-04 2009-10-29 Hitachi Ltd Power conversion device
US8067855B2 (en) 2003-05-06 2011-11-29 Enecsys Limited Power supply circuits
JP2012019564A (en) * 2010-07-06 2012-01-26 Daihatsu Motor Co Ltd Power converter and power supply unit
WO2014167734A1 (en) * 2013-04-12 2014-10-16 トヨタ自動車株式会社 Electronic apparatus
JP2014236530A (en) * 2013-05-30 2014-12-15 富士電機株式会社 Power conversion device
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
DE102016212656A1 (en) * 2016-07-12 2018-01-18 Hanon Systems Control device for an electric compressor
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126308B2 (en) 2002-11-20 2006-10-24 Hitachi, Ltd. Interface circuit with power converter with interface circuit and electric vehicle with power converter
US9425623B2 (en) 2003-05-06 2016-08-23 Solarcity Corporation Power supply circuits
US8067855B2 (en) 2003-05-06 2011-11-29 Enecsys Limited Power supply circuits
US8405248B2 (en) 2003-05-06 2013-03-26 Enecsys Limited Power supply circuits
US10291032B2 (en) 2003-05-06 2019-05-14 Tesla, Inc. Power supply circuits
WO2004100348A1 (en) * 2003-05-06 2004-11-18 Enecsys Limited Power supply circuits
JP4647266B2 (en) * 2004-09-08 2011-03-09 シャープ株式会社 Inverter device, integrated circuit chip, and vehicle drive device
JP2006081255A (en) * 2004-09-08 2006-03-23 Fuji Electric Device Technology Co Ltd Inverter device, integrated circuit chip and vehicle drive unit
JP2008067518A (en) * 2006-09-07 2008-03-21 Mitsubishi Heavy Ind Ltd Inverter apparatus and air conditioner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
JP2008283766A (en) * 2007-05-09 2008-11-20 Denso Corp Motor driving device for vehicle
JP4670833B2 (en) * 2007-05-09 2011-04-13 株式会社デンソー Motor drive device for vehicle
JP2008312342A (en) * 2007-06-14 2008-12-25 Sanden Corp Controller for electric compressor
WO2008152906A1 (en) * 2007-06-14 2008-12-18 Sanden Corporation Electric compressor control device
US8305027B2 (en) 2007-06-14 2012-11-06 Sanden Corporation Electric compressor control device
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
JP2009254088A (en) * 2008-04-04 2009-10-29 Hitachi Ltd Power conversion device
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
JP2012019564A (en) * 2010-07-06 2012-01-26 Daihatsu Motor Co Ltd Power converter and power supply unit
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
JP5987974B2 (en) * 2013-04-12 2016-09-07 トヨタ自動車株式会社 Electronic equipment
WO2014167734A1 (en) * 2013-04-12 2014-10-16 トヨタ自動車株式会社 Electronic apparatus
JP2014236530A (en) * 2013-05-30 2014-12-15 富士電機株式会社 Power conversion device
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
DE102016212656B4 (en) 2016-07-12 2019-05-29 Hanon Systems Control device for an electric compressor
DE102016212656A1 (en) * 2016-07-12 2018-01-18 Hanon Systems Control device for an electric compressor

Similar Documents

Publication Publication Date Title
EP1855374B1 (en) Electric circuit device, electric circuit module, and power converter
US6724169B2 (en) Controller for power device and drive controller for motor
US9088195B2 (en) Drive apparatus
JP3040342B2 (en) Control circuit for a power mos gate circuit
US8093852B2 (en) Motor control device
US6843335B2 (en) Power conversion apparatus and mobile object incorporating thereof
US7751201B2 (en) Power converter
WO2011136280A1 (en) Power conversion device
US20120153719A1 (en) Semiconductor Element Control Device and In-Vehicle Electrical System
EP0764359B1 (en) Improved emi filter topology for power inverters
CN101795054B (en) Power conversion apparatus
CN101960707B (en) Power converter
JP3351330B2 (en) Inverter system for air conditioning
JP3421020B2 (en) Power converter
JP2009500994A (en) Control method, control device and control member suitable for electric drive mechanism
US5687049A (en) Method and circuit for protecting power circuits against short circuit and over current faults
US20050286281A1 (en) Method of converting a direct current voltage from a source of direct current voltage, more specifically from a photovoltaic couse of direct current voltage, into a alternating current voltage
JP2010206909A (en) Power conversion apparatus
US5280228A (en) Inverter circuit
DE112010004321T5 (en) driving device
US6744644B2 (en) Soft-start of DC link capacitors for power electronics and drive systems
US7777370B2 (en) Integrated gate drive for use in control and protection of power modules
CN102386799B (en) Power supply circuit and power conversion device
WO1995034948A1 (en) Three phase power bridge assembly
EP0409328B1 (en) A switched bridge circuit