JP2000338258A - Fill dam control system by specific resistance tomography method and its control method - Google Patents

Fill dam control system by specific resistance tomography method and its control method

Info

Publication number
JP2000338258A
JP2000338258A JP15173999A JP15173999A JP2000338258A JP 2000338258 A JP2000338258 A JP 2000338258A JP 15173999 A JP15173999 A JP 15173999A JP 15173999 A JP15173999 A JP 15173999A JP 2000338258 A JP2000338258 A JP 2000338258A
Authority
JP
Japan
Prior art keywords
specific resistance
electrodes
embankment
distribution
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15173999A
Other languages
Japanese (ja)
Other versions
JP3041426B1 (en
Inventor
Hiromi Nakazato
裕臣 中里
Isamu Nagatsuka
勇 長束
Kenjiro Nakajima
賢二郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATL RES INST OF AGRICULTURAL
NATL RES INST OF AGRICULTURAL ENGINEERING
Original Assignee
NATL RES INST OF AGRICULTURAL
NATL RES INST OF AGRICULTURAL ENGINEERING
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATL RES INST OF AGRICULTURAL, NATL RES INST OF AGRICULTURAL ENGINEERING filed Critical NATL RES INST OF AGRICULTURAL
Priority to JP15173999A priority Critical patent/JP3041426B1/en
Application granted granted Critical
Publication of JP3041426B1 publication Critical patent/JP3041426B1/en
Publication of JP2000338258A publication Critical patent/JP2000338258A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To control a dam inexpensively over a long term with a simple configuration. SOLUTION: A temperature sensor 6 for detecting the temperature of a fill dam 3 and electrodes Pa1-Pan and Pb1-Pbn for detecting specific resistance are buried into the fill dam 3 in advance when the fill dam 3 (4, 3A) is to be constructed by obtaining the relationship among the specific resistance and each physical property of temperature, gap ratio, and saturation by an experiment in advance and acquiring the basic elements for analysis and abnormality judgment. After the fill dam 3 is completed, temperature data that is collected from the temperature sensor 6 being buried into the fill dam 3 and potential data that is measured by an electrical prospecting device 2 are processed by a computer 5 for creating a temperature distribution and a specific resistance distribution with time, then the created physical property distribution and specific resistance distribution are compared based on a relation expression that is obtained by an experiment in advance, it is judged whether the change in the specific resistance distribution is abnormal or normal based on the comparison, and an abnormal site is detected according to the region of the specific resistance region when it is judged to be abnormal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、比抵抗トモグラフ
ィ法によるフィルダム管理システムおよびその管理方法
に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a fill dam management system using a resistivity tomography method and a management method thereof.

【0002】[0002]

【従来の技術】フィルダム(堤体が土石材料を主要材料
として造られるダム)の管理は従来、表面変位計もしく
は層別沈下計による変形観測、土圧計による応力状態観
測、間隙水圧計もしくは観測孔水位による浸潤線観測及
び流量計による漏水量観測により行われている。
2. Description of the Related Art Conventionally, the management of a fill dam (a dam whose main body is made of a debris material) is conventionally performed by deformation observation using a surface displacement meter or a stratified subsidence meter, stress state observation using an earth pressure gauge, pore water pressure gauge or an observation hole. Observations are made by observation of infiltration lines based on water levels and water leakage by flow meters.

【0003】しかしながら、従来のフィルダム管理で
は、計器による観測はセンサの経年劣化により観測値の
長期的な信頼性に問題がある。また、観測値は点情報で
あり、二次元的に堤体の異常箇所を特定するためには、
多数の観測点数が必要となり、観測作業に手間がかかる
という問題がある。ここでいう二次元的とは、地下構造
や地形が測線方向と深度方向にのみ変化し、測線下の鉛
直断面に直交する方向(奥行き方向)には変化しないこ
とをいう。さらに、観測点数を増やしたからといって必
ずしも所望の情報が得られるとは限らない。また、観測
点は堤体内部もしくは基礎地盤内部にあるため、遮水部
の安全性に大きく関与する堤体と基礎地盤とが接する部
分に関する情報が得られなかった。このため、フィルダ
ムの異常部を特定するのに、比抵抗トモグラフィ法によ
る二次元的な非破壊探査の適用が考えられる。
[0003] However, in the conventional fill dam management, there is a problem in long-term reliability of the observed value due to aging of the sensor in observation by an instrument. In addition, the observed value is point information, and in order to specify the abnormal location of the embankment two-dimensionally,
There is a problem that a large number of observation points are required, and the observation work is troublesome. The term “two-dimensional” as used herein means that the underground structure or the topography changes only in the measurement direction and the depth direction, and does not change in the direction (depth direction) orthogonal to the vertical section under the measurement line. Further, increasing the number of observation points does not necessarily mean that desired information can be obtained. In addition, since the observation point was located inside the embankment or the foundation ground, no information was obtained on the portion where the embankment and the foundation ground, which greatly contribute to the safety of the impermeable section, were in contact. Therefore, application of two-dimensional non-destructive exploration by resistivity tomography is conceivable to identify an abnormal part of the fill dam.

【0004】比抵抗トモグラフィ法は、地表のみに電極
を設置して行う電気探査比抵抗法に対して、探査対象部
分の周囲のボーリング孔やトンネル等を利用して地下に
も電極を設置し、地下の比抵抗構造をより高精度に解析
する手法である。また、比抵抗モニタリングは、電気探
査比抵抗法や比抵抗トモグラフィ法を経時的に実施し、
得られた比抵抗の変化から地下の飽和度や間隙率の変化
を推定する手法である。
In the electrical resistivity tomography method, an electrode is installed underground using a boring hole, a tunnel, or the like around a portion to be searched, in contrast to an electrical detection method in which electrodes are installed only on the ground surface. This is a method to analyze the underground resistivity structure with higher accuracy. In addition, the resistivity monitoring is carried out over time using the electric prospecting resistivity method or resistivity tomography method,
It is a technique to estimate the change of underground saturation and porosity from the obtained change of resistivity.

【0005】[0005]

【発明が解決しようとする課題】比抵抗トモグラフィ法
をフィルダムの異常部を特定するのに用いる場合、ダム
築造後に、ボーリング孔を穿設し、電極を設置するよう
にしているので、堤体上流側の貯水池内や堤体底部に電
極を設置するのが困難であった。また、堤体下流側は遮
水部が岩石材料で覆われているため、電流の送信が困難
であった。また、一般的な比抵抗トモグラフィ法では、
探査対象部分の全周に電極を設置することは困難であ
り、電極を設置できない領域での解析精度に問題があっ
た。さらに、探査対象部分の比抵抗構造が未知であるた
め、解析結果に大きな影響を与える初期モデルを試行錯
誤を繰り返しながら求める必要があった。また、自然地
盤を対象とする一般的な比抵抗モニタリングにおいて
は、得られた比抵抗変化の主要因の特定に多くの仮定を
必要とし、特に土木分野では地層の比抵抗に与える外的
条件の影響はあまり考慮されてこなかった。
When the resistivity tomography method is used to specify an abnormal portion of a fill dam, a boring hole is formed and an electrode is provided after the dam is built. It was difficult to install electrodes in the reservoir on the upstream side and at the bottom of the embankment. In addition, it was difficult to transmit current because the water-blocking part on the downstream side of the embankment was covered with rock material. Also, in the general resistivity tomography method,
It is difficult to install electrodes all around the area to be searched, and there is a problem in the analysis accuracy in an area where electrodes cannot be installed. Furthermore, since the resistivity structure of the portion to be explored is unknown, it was necessary to find an initial model that has a large effect on the analysis result by repeating trial and error. Also, in general resistivity monitoring for natural ground, many assumptions are required to identify the main factors of the obtained resistivity change, and especially in the civil engineering field, external conditions given to the resistivity of the stratum are required. The effects have not been taken into account much.

【0006】本発明は、上記問題点を除くためになされ
たもので、簡素な構成で、容易かつ高精度にフィルダム
の異常部を把握することができ、しかも長期間に渡り低
コストで管理を行うことができる比抵抗トモグラフィ法
によるフィルダム管理システムおよびその管理方法を提
供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to eliminate the above-mentioned problems, and can easily and accurately detect an abnormal portion of a fill dam with a simple configuration, and can perform management at low cost for a long period of time. It is an object of the present invention to provide a fill dam management system using a resistivity tomography method and a management method thereof.

【0007】[0007]

【課題を解決するための手段】本発明に係る比抵抗トモ
グラフィ法によるフィルダム管理システムは、遮水部と
遮水部上下流側の外殻部とからなる堤体の築造時、予め
決められた所定の配置に基づいて遮水部の所定の断面の
ほぼ外周に沿って多数埋設された電極と、上記電極と電
気的に接続され、これら電極のうち任意の電流電極によ
り電流を送信し、上記電流電極を除く他の電位電極間の
電位差を測定し、その測定値を外部に出力する電気探査
装置と、電気探査装置と電気的に接続され、この電気探
査装置を制御するとともに、電気探査装置から入力され
た測定値に基づいて所定の断面の比抵抗構造を解析する
コンピュータとを備え、上記所定の断面の比抵抗構造か
ら第1回目の比抵抗分布を作成し、この第1回目の作成
時から所定時間経過後新たな比抵抗分布を順次作成し、
これら経時的に異なる比抵抗分布を比較して比抵抗分布
の変化を経時的にモニターし、比抵抗分布中、異常な比
抵抗変化が発見された際、異常部分に対応する堤体の異
常部位を検出するようにしたものである。
A fill dam management system using a resistivity tomography method according to the present invention is determined in advance at the time of constructing a levee body comprising a water-blocking portion and a shell portion upstream and downstream of the water-blocking portion. Based on the predetermined arrangement, a large number of electrodes buried along substantially the outer periphery of a predetermined cross section of the water shielding portion, and the electrodes are electrically connected to each other, and a current is transmitted by an arbitrary current electrode among these electrodes. An electric probe that measures a potential difference between the other potential electrodes except the current electrode, and outputs the measured value to the outside, and is electrically connected to the electric probe, controls the electric probe, and controls the electric probe. A computer for analyzing a specific resistance structure of a predetermined cross section based on a measurement value input from the device, and generating a first specific resistance distribution from the specific resistance structure of the predetermined cross section; After a specified time from creation In order to create a post-new resistivity distribution,
The changes in resistivity distribution are monitored over time by comparing these resistivity distributions that differ over time, and when an abnormal change in resistivity is found in the resistivity distribution, an abnormal portion of the embankment corresponding to the abnormal portion is detected. Is detected.

【0008】本発明に係る比抵抗トモグラフィ法による
フィルダム管理システムでは、遮水部と遮水部上下流側
の外殻部とからなる堤体の築造時、電極を予め決められ
た所定の配置に基づいて遮水部の所定の断面のほぼ外周
に沿って多数埋設し、電気探査装置を上記電極に電気的
に接続し、この電気探査装置によりこれら電極のうち任
意の電流電極により電流を送信し、上記電流電極を除く
他の電位電極間の電位差を測定し、その測定値を外部に
出力し、この電気探査装置と電気的に接続されたコンピ
ュータによりこの電気探査装置を制御するとともに、電
気探査装置から入力された測定値に基づいて所定の断面
の比抵抗構造を解析するようにし、上記所定の断面の比
抵抗構造から第1回目の比抵抗分布を作成し、この第1
回目の作成時から所定時間経過後新たな比抵抗分布を順
次作成し、これら経時的に異なる比抵抗分布を比較して
比抵抗分布の変化を経時的にモニターし、比抵抗分布
中、異常な比抵抗変化が発見された際、異常部分に対応
する堤体の異常部位を検出するようにしているので、非
破壊探査により異常部を正確に検出することができ、し
かも、計測機器が簡素化されて長期間に亘る精密な管理
が可能となる。
[0008] In the fill dam management system based on the resistivity tomography method according to the present invention, when the embankment composed of the water impermeable portion and the outer shell on the upstream and downstream sides of the water impermeable portion is constructed, the electrodes are arranged in a predetermined arrangement. A large number of the electrodes are buried along the outer periphery of a predetermined cross section of the water-blocking portion based on the above, and an electric probe is electrically connected to the electrodes, and the electric probe transmits a current through an arbitrary current electrode among these electrodes. Then, a potential difference between the other potential electrodes except the current electrode is measured, the measured value is output to the outside, and the electric probe is controlled by a computer electrically connected to the electric probe, and the electric probe is controlled. The specific resistance structure of a predetermined cross section is analyzed based on the measurement value input from the exploration device, and a first specific resistance distribution is created from the specific resistance structure of the predetermined cross section.
A new specific resistance distribution is sequentially created after a predetermined time has elapsed from the time of the creation of the second time, and a change in the specific resistance distribution is monitored over time by comparing these specific resistance distributions different over time. When a specific resistance change is detected, the abnormal part of the embankment corresponding to the abnormal part is detected, so that the non-destructive exploration can accurately detect the abnormal part and simplify the measurement equipment. Thus, precise management over a long period of time is possible.

【0009】また、 本発明に係る比抵抗トモグラフィ
法によるフィルダム管理方法は、遮水部と遮水部外側の
外殻部とからなる堤体の築造時、電極を予め決められた
所定の配置に基づいて遮水部の所定の断面のほぼ外周に
沿って多数埋設する電極埋設工程と、電気探査装置を上
記電極と電気的に接続し、これら電極のうち任意の電流
電極により電流を送信し、上記電流電極を除く他の電位
電極間の電位差を測定し、その測定値を外部に出力する
測定工程と、コンピュータを上記電気探査装置と電気的
にかつ制御可能に接続し、電気探査装置から入力された
測定値に基づいて上記所定の断面の比抵抗構造を解析
し、上記所定の断面の比抵抗構造から第1回目の比抵抗
分布を作成するとともに、この第1回目の比抵抗分布作
成時から所定時間経過後新たな比抵抗分布を順次作成す
る比抵抗分布作成工程と、これら経時的に異なる比抵抗
分布を比較して比抵抗分布の変化を経時的にモニター
し、比抵抗分布中、異常な比抵抗変化が発見された際、
異常部分に対応する堤体の異常部位を検出する検出工程
とを備えるようにしたものである。
Further, in the method for managing a fill dam according to the resistivity tomography method according to the present invention, when constructing a levee body comprising a water-blocking portion and an outer shell portion outside the water-blocking portion, the electrodes are arranged in a predetermined arrangement. An electrode embedding step of embedding a large number of the electrodes substantially along the outer periphery of a predetermined cross section of the water impervious portion, electrically connecting the electric prospecting device to the electrodes, and transmitting a current by an arbitrary current electrode among these electrodes. Measuring the potential difference between the other potential electrodes except for the current electrode, and a measuring step of outputting the measured value to the outside, and electrically and controllably connecting a computer to the electric exploration device, from the electric exploration device Analyzing the specific resistance structure of the predetermined cross section based on the input measurement values, creating a first specific resistance distribution from the specific resistance structure of the predetermined cross section, and creating the first specific resistance distribution Elapsed time from time After that, a specific resistance distribution creating step for sequentially creating a new specific resistance distribution, and comparing these specific resistance distributions different with time, change in the specific resistance distribution is monitored with time, and an abnormal specific resistance is detected in the specific resistance distribution. When a change is discovered,
And a detecting step of detecting an abnormal portion of the bank corresponding to the abnormal portion.

【0010】本発明に係る比抵抗トモグラフィ法による
フィルダム管理方法では、電極埋設工程により遮水部と
遮水部外側の外殻部とからなる堤体の築造時、電極を予
め決められた所定の配置に基づいて遮水部の所定の断面
のほぼ外周に沿って多数埋設し、測定工程により電気探
査装置を上記電極と電気的に接続し、これら電極のうち
任意の電流電極により電流を送信し、上記電流電極を除
く他の電位電極間の電位差を測定し、その測定値を外部
に出力し、比抵抗分布作成工程によりコンピュータを上
記電気探査装置と電気的にかつ制御可能に接続し、電気
探査装置から入力された測定値に基づいて上記所定の断
面の比抵抗構造を解析し、上記所定の断面の比抵抗構造
から第1回目の比抵抗分布を作成するとともに、この第
1回目の比抵抗分布作成時から所定時間経過後新たな比
抵抗分布を順次作成し、検出工程によりこれら経時的に
異なる比抵抗分布を比較して比抵抗分布の変化を経時的
にモニターし、比抵抗分布中、異常な比抵抗変化が発見
された際、異常部分に対応する堤体の異常部位を検出す
るようにしているので、堤体全体について探査不能領域
を生じることなく非破壊により精密に探査することがで
きるとともに、電極および電線が機能する限り半永久的
に堤体の管理を行うことができる。
In the method for managing a fill dam according to the specific resistance tomography method according to the present invention, when the embankment including the water-blocking portion and the outer shell portion outside the water-blocking portion is constructed in the electrode burying step, the electrodes are set to a predetermined predetermined value. Many are buried along the outer periphery of a predetermined cross section of the water-blocking part based on the arrangement of the water-impervious portion, and the electric probe is electrically connected to the above-mentioned electrodes in the measuring step, and a current is transmitted by an arbitrary one of these electrodes. Then, the potential difference between the other potential electrodes except the current electrode is measured, the measured value is output to the outside, and a computer is electrically and controllably connected to the electric prospecting device by a resistivity distribution creating step, Analyzing the specific resistance structure of the predetermined cross section based on the measurement value input from the electric prospecting apparatus, creating a first specific resistance distribution from the specific resistance structure of the predetermined cross section, Specific resistance After a predetermined time elapses from the time of creation, a new resistivity distribution is sequentially created, and the resistivity distribution different over time is compared by the detection process, and the change of the resistivity distribution is monitored over time. When an unusual change in resistivity is found, an abnormal part of the embankment corresponding to the abnormal part is detected, so that the entire embankment can be accurately probed non-destructively without generating undetectable areas In addition, as long as the electrodes and electric wires function, the bank can be managed semipermanently.

【0011】[0011]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態について説明する。図1は、本発明の一実施の
形態に係る比抵抗トモグラフィ法によるフィルダム管理
システムの概念図、図2はそのフローチャートである。
上記実施の形態に係るフィルダム管理システムは、堤体
3(図1参照)築造の計画段階で、堤体の材料試験(図
2参照)とともに、電極の配置計画が作成される(図2
のステップS1参照)。また、所定の実験場では、実験
により予め遮水部4(図1参照)の遮水材料について比
抵抗と温度との関係、比抵抗と間隙比との関係、比抵抗
と飽和度との関係等が求められる(図2のステップSp
1、図5および図6参照、)。さらに、堤体3の基礎掘
削時、基礎地盤の比抵抗測定が行われる(図2のステッ
プSp2参照)。これら実験により求められた比抵抗と
各物性(温度、間隙比、飽和度等)との関係(図5及び
図6参照)と、実地の測定により求められた基礎地盤の
比抵抗測定とに基づいて、比抵抗トモグラフィ法による
初期モデルを既知とするため、解析・異常判定の基礎諸
元を取得する(図2のステップSp3参照)。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram of a fill dam management system using a resistivity tomography method according to an embodiment of the present invention, and FIG. 2 is a flowchart thereof.
In the fill dam management system according to the above embodiment, at the planning stage of the construction of the embankment 3 (see FIG. 1), an electrode arrangement plan is created together with the material test of the embankment (see FIG. 2) (FIG. 2).
Step S1). At a predetermined experimental site, a relationship between specific resistance and temperature, a relationship between specific resistance and a gap ratio, a relationship between specific resistance and a degree of saturation for a water-blocking material of the water-blocking portion 4 (see FIG. 1) in advance by an experiment. (Step Sp in FIG. 2)
1, see FIGS. 5 and 6). Further, at the time of excavating the foundation of the embankment body 3, the specific resistance of the foundation ground is measured (see Step Sp2 in FIG. 2). Based on the relationship between the specific resistance obtained by these experiments and each physical property (temperature, gap ratio, saturation, etc.) (see FIGS. 5 and 6) and the specific resistance measurement of the foundation ground obtained by actual measurement. Then, in order to make the initial model by the specific resistance tomography method known, basic data for analysis / abnormality determination is acquired (see Step Sp3 in FIG. 2).

【0012】また、上記実施の形態に係るフィルダム管
理システムは、図1に示すように、電気探査装置2と、
堤体(フィルダム)3内に埋設され、電気探査装置2と
電気的に接続された測定用電極Pa1〜Pan、Pb1
〜Pbnと、遮水部4の所定位置に埋設される温度セン
サ6と、この温度センサ6と電気的に接続され温度セン
サ6から温度データを外部に出力する温度計7と、電気
探査装置2と温度計7とに電気的に接続され、この電気
探査装置2を制御するとともに、電気探査装置2から送
られてくる測定結果を解析処理する解析・制御用コンピ
ュータ5とを備えている。堤体3は、図1に示すよう
に、遮水部4とこの遮水部4の上下流側に岩石や土砂な
どが投入された外郭部3Aが形成される。
Further, as shown in FIG. 1, the fill dam management system according to the above-described embodiment includes an electric prospecting device 2,
Measurement electrodes Pa1 to Pan, Pb1 buried in the embankment (fill dam) 3 and electrically connected to the electric prospecting device 2
, Pbn, a temperature sensor 6 buried at a predetermined position in the water shielding section 4, a thermometer 7 electrically connected to the temperature sensor 6, and outputting temperature data from the temperature sensor 6 to the outside, and an electric probe 2 And a thermometer 7 for controlling the electric probe 2 and for analyzing and controlling the measurement results sent from the electric probe 2. As shown in FIG. 1, the embankment body 3 is formed with a water-blocking portion 4 and an outer shell 3 </ b> A into which rocks, earth and sand, etc. are charged, on the upstream and downstream sides of the water-blocking portion 4.

【0013】ところで、測定用電極Pa1〜Pan、P
b1〜Pbnは、図1に示すように、堤体3の築造時、
遮水部4の所定の方向(本実施の形態では、上下流方向
Aと堤軸方向Bとの二方向)に所定の配置で設置され、
築造後、堤体3内に埋め込まれてしまう耐腐食性金属片
により構成される。すなわち、予め決められた電極の配
置計画に基づき(図2のステップS1参照)、堤体3の
基礎掘削(図2のステップS2参照)後、図1に示すよ
うに、遮水部4の底面となる部分に所定の電極Pa1…
Pa5、Pb1…Pb5を設置し(図2のステップS3
参照)、盛立てを行いつつ(図2のステップS4参
照)、予め決められた所定の設置場所に電極Pa1〜P
an、Pb1〜Pbnおよび温度センサ6が設置されて
(図2のステップS5参照)、遮水部4を形成し堤体3
の盛立てを完了する(図2のステップS6参照)ように
なっている。そして盛り立て完了後は、図2に示すよう
に、湛水試験が行われ、供用開始となる。
The measuring electrodes Pa1 to Pan, P
b1 to Pbn, as shown in FIG.
Installed in a predetermined direction of the water shielding portion 4 (in the present embodiment, two directions of the upstream and downstream directions A and the bank axis direction B),
After construction, it is composed of a corrosion-resistant metal piece that is embedded in the bank body 3. That is, based on a predetermined electrode arrangement plan (see step S1 in FIG. 2), after the foundation excavation of the embankment body 3 (see step S2 in FIG. 2), as shown in FIG. A predetermined electrode Pa1 is provided on the portion
Pa5, Pb1... Pb5 are installed (step S3 in FIG. 2).
2), the electrodes Pa1 to P1 are placed at predetermined positions where the electrodes Pa1 to P4 are set up while performing the filling (see step S4 in FIG. 2).
An, Pb1 to Pbn and the temperature sensor 6 are installed (see step S5 in FIG. 2) to form the impermeable portion 4 and the embankment 3
(See step S6 in FIG. 2). After the completion of the filling, a flooding test is performed as shown in FIG. 2, and the operation is started.

【0014】また、堤体3の築造時(図2のステップS
3〜S6参照)、所定の場所に間隙水圧計等の埋設計器
(図示せず)を埋め込むようにしている。これら埋設計
器は、間隙水圧、応力、変形量を計測するためのもの
で、比抵抗トモグラフィ法による解析において、物性の
計測データをコンピュータ5に出力し、その時の比抵抗
分布と比較して物性データと比抵抗分布とを関連づけ、
これら比較を経時的に繰り返し、少なくとも物性と比抵
抗との関係を導くまでその機能を果たせばよい。このた
め、関係式が導かれた後は、たとえ故障しても取り換え
なくともよい。埋設計器のうち、特に間隙水圧計のデー
タから遮水部の飽和領域が推定され、その変化と比抵抗
分布の変化の対応を関連づけることになる。埋設計器そ
のものは、本願発明に特有のものではなく、従来から必
要に応じてダムの一部として設置される。しかしなが
ら、本願発明に関連するのは、特に間隙水圧計による飽
和部の分布である。すなわち、ダムに埋設された間隙水
圧計により、圧力から水柱高を求めると、浸潤線(飽和
部・不飽和部の境界)が描ける。水圧の変化は浸潤線の
変化を示し、飽和部の変化を示す。これにより飽和度に
関する比抵抗変化と関連づけられる。その他、土圧計や
沈下計で異常があった場合、その付近の比抵抗変化と関
連させて異常判断の資料とすることができる。その際、
間隙比が変化しているが直接間隙比を測定しているわけ
ではない。
When the embankment 3 is constructed (step S in FIG. 2).
3 to S6), and a buried design device (not shown) such as a pore water pressure gauge is buried in a predetermined place. These embedded devices are used to measure pore water pressure, stress and deformation. In the analysis by resistivity tomography, the measured data of physical properties are output to the computer 5 and compared with the distribution of specific resistance at that time. Associate the data with the resistivity distribution,
These comparisons are repeated with time, and the function may be performed at least until a relationship between physical properties and specific resistance is derived. For this reason, after the relational expression is derived, even if a failure occurs, it does not have to be replaced. The saturation area of the water impervious part is estimated from the data of the pore water pressure gauge, and the change is correlated with the change of the resistivity distribution. The embedded design itself is not unique to the present invention, and is conventionally installed as a part of a dam as needed. However, what is relevant to the present invention is the distribution of the saturated portion, particularly by the pore pressure gauge. In other words, when the water column height is obtained from the pressure using the pore water pressure gauge buried in the dam, the infiltration line (boundary between the saturated part and the unsaturated part) can be drawn. A change in water pressure indicates a change in the infiltration line, indicating a change in the saturated portion. This is associated with a change in resistivity with respect to saturation. In addition, if there is an abnormality in the earth pressure gauge or the subsidence gauge, it can be used as a data for determining the abnormality in relation to the change in the specific resistance in the vicinity. that time,
Although the void ratio changes, the void ratio is not directly measured.

【0015】本実施の形態では、各測定用電極系Pa1
〜Pan、Pb1〜Pbnは、図1に示すように、遮水
部4に対し上下流方向Aと堤軸方向Bとの両方向に遮水
部4のほぼ外周に沿ってそれぞれ埋設される。温度セン
サ6は、遮水部4築造時、各測定用電極系Pa1〜Pa
n、Pb1〜Pbnにより形成される平面上の所定位置
に埋設される。この温度センサ6は、得られた比抵抗変
化に対する温度の影響を除いたり、反対に比抵抗変化に
対する温度変化の寄与度を明らかにするために設けら
れ、堤体3内部のそれぞれの埋設位置の温度情報を外部
に送出するようになっている。温度センサ6について
は、電気伝導度が温度で変化し、25度C換算で示され
るように、その逆数である比抵抗も温度により変化す
る。堤体上部は温度変化するため、例えば、昼と夜、夏
と冬では比抵抗が異なる。このような日変化、年変化を
堤体異常と誤認しないため、温度センサ6が必要とな
る。
In this embodiment, each measuring electrode system Pa1
As shown in FIG. 1, Pan and Pb1 to Pbn are buried along the outer periphery of the water shield 4 in both the upstream and downstream directions A and the bank axis direction B. At the time of construction of the water shielding portion 4, the temperature sensor 6 is used for each measurement electrode system Pa1 to Pa
n, buried at a predetermined position on a plane formed by Pb1 to Pbn. The temperature sensor 6 is provided to eliminate the influence of temperature on the obtained specific resistance change, or to clarify the contribution of the temperature change to the specific resistance change. The temperature information is sent to the outside. Regarding the temperature sensor 6, the electric conductivity changes with the temperature, and the specific resistance, which is the reciprocal thereof, also changes with the temperature, as shown at 25 ° C. conversion. Since the temperature of the upper portion of the embankment changes, for example, the resistivity differs between day and night, and between summer and winter. The temperature sensor 6 is required in order not to mistake such a daily change or an annual change as a bank body abnormality.

【0016】電気探査装置2は、図3に示すように、例
えば、測定用電極P1〜Pnと、このこれら測定用電極
P1〜Pnごとに電気的に接続された多芯ケーブル21
と、この多芯ケーブルと電気的に接続された端子板22
と、この端子板22に電気的に接続され、端子に接続さ
れ各端子を移動しつつ測定を繰り返す送信器23および
受信器24とを備えて構成される。電気探査装置2は、
測定用電極P1〜Pnのうちある2点の電極(C1,C
2)を電流電極として用い、他の測定用電極を電位電極
として電位測定用の電極として用いるようになってい
る。すなわち、電気探査装置2は、例えば、図1に示す
ように、上下流方向Aに設置された電極Pa1〜Pan
のうち、ある2点の電流電極(送信電極)C1,C2
(例えばC1=Pa1、C2=Pa14)により電流を
送信し、この電流電極以外の別の2点の電位電極(測定
用電極)P1、P2間(例えば、P1=Pa2…Pan
(Pa1を除く)、P2=Pa2…Pan(Pa14を
除く)の電位差を測定し、その測定値をコンピュータ5
に送出するようになっている。測定の組み合わせは決ま
った仕様はないが、できるだけ多くの組み合わせで送受
信を行い、データ数を増やし、解析精度を向上させるこ
とが望ましいが、考え得る全ての組み合わせを測定する
のは不経済でもあるので、現場に応じて必要十分な点数
の測定にとどめることになる。
As shown in FIG. 3, the electric prospecting apparatus 2 includes, for example, measurement electrodes P1 to Pn and a multi-core cable 21 electrically connected to each of the measurement electrodes P1 to Pn.
And a terminal plate 22 electrically connected to the multi-core cable.
And a transmitter 23 and a receiver 24 which are electrically connected to the terminal plate 22, are connected to the terminals, and repeat the measurement while moving each terminal. The electric prospecting device 2
Two electrodes (C1, C2) of the measurement electrodes P1 to Pn
2) is used as a current electrode, and another measurement electrode is used as a potential electrode as a potential measurement electrode. That is, for example, as illustrated in FIG. 1, the electric prospecting device 2 includes the electrodes Pa <b> 1 to Pan installed in the upstream / downstream direction A.
Of two current electrodes (transmitting electrodes) C1 and C2
(For example, C1 = Pa1, C2 = Pa14), and a current is transmitted between two potential electrodes (measurement electrodes) P1 and P2 other than the current electrode (for example, P1 = Pa2... Pan).
(Excluding Pa1), the potential difference of P2 = Pa2... Pan (excluding Pa14) was measured, and the measured value was measured by a computer 5.
To be sent. There are no fixed specifications for the measurement combinations, but it is desirable to transmit and receive as many combinations as possible, increase the number of data, and improve the analysis accuracy, but it is uneconomical to measure all possible combinations. However, only the necessary and sufficient points can be measured according to the site.

【0017】コンピュータ5は、これら複数の組み合わ
せの測定値から、電位電極(例えば電流電極C1=Pa
1、C2=Pa14の場合、これらPa1、Pa14を
除いたPa2〜Pan)により形成される面(すなわ
ち、堤体3の断面)に対応する比抵抗構造を解析するよ
うになっている。また、コンピュータ5に温度計7を介
して温度センサ6からの温度情報が入力されると、電極
Pa1〜Panに囲まれた遮水部4断面における温度分
布がモニターできるようになっている。すなわち、コン
ピュータ5は、測定値の変化及び比抵抗構造の変化から
堤体3内の温度分布の変化及び含水状態の変化を推定す
ることができるようになっている。すなわち、入力され
たデータを比抵抗トモグラフィ法により処理し、基準と
なる最初の比抵抗構造を解析し、所定の期間または時間
経過後、同様に処理して解析された比抵抗構造を、以前
のものと比較して経時的な変化をとらえ、この比抵抗変
化により物性の変化を推定するようにしている。
The computer 5 calculates a potential electrode (for example, a current electrode C1 = Pa) from the measured values of the plurality of combinations.
1, when C2 = Pa14, the specific resistance structure corresponding to the surface formed by Pa2 and Pan excluding these Pa1 and Pa14 (that is, the cross section of the bank 3) is analyzed. Further, when temperature information from the temperature sensor 6 is input to the computer 5 via the thermometer 7, the temperature distribution in the cross section of the water shielding portion 4 surrounded by the electrodes Pa1 to Pan can be monitored. That is, the computer 5 can estimate a change in the temperature distribution in the bank body 3 and a change in the water-containing state from the change in the measured value and the change in the specific resistance structure. That is, the input data is processed by the specific resistance tomography method, the first specific resistance structure serving as a reference is analyzed, and after a predetermined period or time elapses, the specific resistance structure analyzed and processed in the same manner is The change with time is grasped in comparison with that of the above, and the change in physical properties is estimated from the change in specific resistance.

【0018】次に、本実施の形態に係る比抵抗トモグラ
フィ法によるフィルダム管理システムの作用に基づき比
抵抗トモグラフィ法によるフィルダム管理方法について
説明する。堤体3築造の計画段階で、図2に示すよう
に、電極の配置計画が作成されるとともに(図2のステ
ップS1参照)、所定の実験場では、実験により予め比
抵抗と温度との関係、比抵抗と間隙比との関係、比抵抗
と飽和度との関係等が求められる(図2のステップSp
1、図5および図6参照)。また、堤体3の基礎掘削
時、基礎地盤の比抵抗測定が行われる(図2のステップ
Sp2参照)。これら実験により求められた比抵抗と各
物性(温度、間隙比、飽和度等)との関係(図5及び図
6参照)と、実地の測定により求められた基礎地盤の比
抵抗測定とに基づいて、比抵抗トモグラフィ法による初
期モデルを既知とするため、解析・異常判定の基礎諸元
が取得される(図2のステップSp3参照)。
Next, a fill dam management method using the resistivity tomography method based on the operation of the fill dam management system using the resistivity tomography method according to the present embodiment will be described. At the planning stage of the construction of the embankment body 3, as shown in FIG. 2, an electrode arrangement plan is created (see step S1 in FIG. 2), and at a predetermined experimental site, the relationship between the specific resistance and the temperature is determined in advance by experiments. , The relationship between the specific resistance and the gap ratio, the relationship between the specific resistance and the saturation, and the like are obtained (step Sp in FIG. 2).
1, see FIGS. 5 and 6). Further, at the time of excavation of the foundation of the embankment body 3, the specific resistance of the foundation ground is measured (see Step Sp2 in FIG. 2). Based on the relationship between the specific resistance obtained by these experiments and each physical property (temperature, gap ratio, saturation, etc.) (see FIGS. 5 and 6) and the specific resistance measurement of the foundation ground obtained by actual measurement. Then, in order to make the initial model by the specific resistance tomography method known, basic data for analysis / abnormality determination is acquired (see step Sp3 in FIG. 2).

【0019】堤体3の築造時、電極Pa1〜Pan、P
b1〜Pbnが遮水部4のほぼ外周面全体(底部も含
む)に、上下流方向Aと堤軸方向Bとの二方向に所定の
配置で設置されて埋設される(埋設工程)。このため、
電気探査装置2により、これら電極Pa1〜Pan、P
b1〜Pbnのうち、ある電極系PaまたはPbのう
ち、いずれか一方の系について、選択されたある2点の
電流電極C1,C2(C1,C2とも電極Pa1〜Pa
nから任意に選択された電流電極(送信用電極)となる
もの)から電流を送信すると、これら電流電極を除く他
の2点の電位電極間の電位差を測定する。この測定は多
数の電極の組み合わせにより行われる(測定工程)。す
なわち、比抵抗トモグラフィ法に基づいて、一方の電極
系Paで囲まれる断面は、探査対象領域として小領域に
分割され、電極の組み合わせによりこれら小領域ごとの
電位差が測定されるようになっている。つまり、この電
極系Paについては、堤体3の上下流方向の断面(図7
の各領域に分割されたモデル参照)を、他の電極系Pb
については、堤体3の堤軸方向の断面をモデル化して測
定を行う。
When the embankment body 3 is constructed, the electrodes Pa1 to Pan, P
The b1 to Pbn are installed and buried in a predetermined arrangement in two directions of the upstream and downstream directions A and the bank axis direction B on substantially the entire outer peripheral surface (including the bottom part) of the water shielding portion 4 (burying step). For this reason,
The electrodes Pa1 to Pan, P
b1 to Pbn, for one of the electrode systems Pa or Pb, two selected current electrodes C1 and C2 (for both C1 and C2, the electrodes Pa1 to Pa2).
When a current is transmitted from a current electrode (a transmission electrode) arbitrarily selected from n, a potential difference between two potential electrodes other than these current electrodes is measured. This measurement is performed by a combination of a large number of electrodes (measurement step). That is, based on the specific resistance tomography method, a cross section surrounded by one electrode system Pa is divided into small regions as a search target region, and the potential difference for each of these small regions is measured by a combination of electrodes. I have. That is, regarding the electrode system Pa, a cross section in the upstream and downstream directions of the bank body 3 (FIG. 7)
(See the model divided into the respective regions) with the other electrode system Pb
Is measured by modeling the cross section of the bank body 3 in the bank axis direction.

【0020】また、この比抵抗トモグラフィ法によるフ
ィルダム管理方法では、堤体3の築造時(図2のステッ
プS3〜S6参照)、所定の場所に温度センサ6、間隙
水圧計等の埋設計器(図示せず)を埋め込むようにして
いる。これら埋設計器は、各物性の計測データを出力す
るようになっている。ところで、第1義的には、比抵抗
変化の変数として働く関数は、温度であり、堤体3内に
埋設された温度センサ6により得られる堤体3内部の温
度分布モニターにより比抵抗変化に対する温度の影響を
除くようになっている。さらに、埋設計器により計測さ
れたデータはコンピュータ5に出力され、コンピュータ
5は埋設計器により計測された、例えば、浸潤線変化
(飽和部の変化)等のデータを比抵抗変化と比較するよ
うになっている。
In the fill dam management method based on the resistivity tomography method, when the embankment body 3 is constructed (see steps S3 to S6 in FIG. 2), a buried design device such as a temperature sensor 6 and a pore water pressure gauge is provided at a predetermined place. (Not shown). These embedding devices output measurement data of various physical properties. By the way, firstly, the function acting as a variable of the specific resistance change is temperature, and the temperature distribution monitor inside the embankment 3 obtained by the temperature sensor 6 embedded in the embankment 3 controls the specific resistance change. It is designed to eliminate the effects of temperature. Further, the data measured by the implanted device is output to the computer 5, and the computer 5 compares the data measured by the implanted device, such as a change in the infiltration line (change of the saturated portion), with a change in the specific resistance. ing.

【0021】電気探査装置2により各電極の組み合わせ
ついて行われた測定値は、コンピュータ5に出力され
る。コンピュータ5は電気探査装置2により入力された
測定値に基づき、モデル(図7参照)の比抵抗ブロック
について比抵抗構造を解析し、第1回目の比抵抗分布を
作成する(図2のステップS7参照)。次に、この第1
回目の作成時から、経時的に計測を繰り返し(図2のス
テップS8参照)、経時的に異なる比抵抗分布を順次作
成する(比抵抗分布作成工程)。この経時的計測時、図
2のステップSp4に示すように、実験により予め取得
された解析・異常判定の基礎諸元(図2のステップSp
3参照)に基づいて、埋設計器から計測される物性のデ
ータと比抵抗分布とを比較し、これら経時的に異なる比
抵抗分布を比較して比抵抗分布の変化を経時的にモニタ
ーし、比抵抗分布中、異常な比抵抗変化が発見された
際、異常部分に対応する堤体の異常部位を検出する(検
出工程、図2のステップS9参照)ようになっている。
さらに、図2のステップSp4で得られた埋設計器のデ
ータに基づいて、平常値・異常判定値の更新が行われる
ようになっている(図2のステップSp5参照)。この
ため、経時的計測を繰り返すたびに正常・異常判定の精
度が向上する。
The measured values of the electric probe 2 for each electrode combination are output to the computer 5. The computer 5 analyzes the specific resistance structure of the specific resistance block of the model (see FIG. 7) based on the measurement values input by the electric prospecting apparatus 2, and creates a first specific resistance distribution (step S7 in FIG. 2). reference). Next, this first
The measurement is repeated over time (see step S8 in FIG. 2) from the time of the first creation to sequentially create different resistivity distributions over time (resistivity distribution creation step). At the time of this time-dependent measurement, as shown in step Sp4 of FIG. 2, basic specifications of the analysis and abnormality determination obtained in advance by experiment (step Sp4 of FIG. 2)
3), the physical property data measured from the embedded design device is compared with the resistivity distribution, and these resistivity distributions different over time are compared to monitor the change of the resistivity distribution over time. When an abnormal change in specific resistance is found in the resistance distribution, an abnormal portion of the embankment corresponding to the abnormal portion is detected (detection process, see step S9 in FIG. 2).
Further, the normal value / abnormality judgment value is updated based on the data of the embedded design device obtained in step Sp4 of FIG. 2 (see step Sp5 of FIG. 2). Therefore, the accuracy of the normal / abnormal judgment is improved each time the measurement over time is repeated.

【0022】上述のように、上記実施の形態にかかるフ
ィルダム管理システムおよびフィルダム管理方法では、
比抵抗と各物性(温度、飽和度等)との関係を予め実験
により求めて解析・異常判定の基礎諸元を取得し、堤体
3築造時、堤体3の間隙水圧等を測定する埋設計器及び
温度センサ6と、比抵抗を検知する電極Pa、Pbとを
堤体3に予め埋設し、堤体3完成後、堤体3に埋め込ま
れた埋設計器及び温度センサ6から収集される物性デー
タと、電気探査装置2により測定された電位データとを
コンピュータ5により処理して物性分布(温度分布、飽
和度分布等)と比抵抗分布とを経時的に作成し、しかる
後、これら作成された物性分布と比抵抗分布とを、予め
実験で求められた関係式に基づいて比較し、この比較に
基づいて、比抵抗分布の変化が異常か正常か判定し、異
常と判定された場合、比抵抗分布の領域に応じて異常部
位を検出するようになっている。さらに、この比較によ
り得られたデータを正常・異常判定の判定データとして
更新しつつ蓄積することができる。
As described above, in the fill dam management system and the fill dam management method according to the above embodiment,
The relationship between specific resistance and each physical property (temperature, saturation, etc.) is obtained in advance through experiments to obtain the basic specifications for analysis / abnormality judgment, and to measure the pore water pressure, etc., of the embankment 3 during construction of the embankment 3 The instrument and temperature sensor 6 and the electrodes Pa and Pb for detecting the specific resistance are embedded in the embankment 3 in advance, and after the embankment 3 is completed, the physical properties collected from the embedding design device and the temperature sensor 6 embedded in the embankment 3 The data and the potential data measured by the electric prospecting apparatus 2 are processed by the computer 5 to create a physical property distribution (temperature distribution, saturation distribution, etc.) and a specific resistance distribution with time, and thereafter, these created. The physical property distribution and the resistivity distribution are compared based on a relational expression obtained in advance by an experiment, and based on the comparison, it is determined whether the change in the resistivity distribution is abnormal or normal. Detection of abnormal parts according to the area of resistivity distribution Going on. Further, the data obtained by this comparison can be accumulated while being updated as normal / abnormal judgment data.

【0023】また、予め実験により求められた解析・異
常判定の基礎諸元に基づいて、初期モデルを既知とする
ことにより、この既知情報を用いて逆解析を行うと異常
を検出する精度が向上する。この場合、埋設計器から検
出される物性データの有無に関係なく比抵抗分布の変化
により異常を検出することも可能であるが、好ましく
は、比抵抗分布と埋設計器から検出される物性分布とを
比較することにより異常を検出すれば、より精度が向上
する。
Also, by making the initial model known based on the basic specifications of the analysis and abnormality determination obtained in advance by experiments, the accuracy of detecting an abnormality can be improved by performing an inverse analysis using this known information. I do. In this case, it is also possible to detect an abnormality by a change in the resistivity distribution regardless of the presence or absence of the physical property data detected from the embedded design device, but preferably, the resistivity distribution and the physical property distribution detected from the embedded design device are used. If an abnormality is detected by comparing, the accuracy is further improved.

【0024】なお、図5及び図6に示す比抵抗と各物性
(含水比、温度)との関係は、予め室内実験で求められ
るものであり、比抵抗関数の変数となりうる各物性は、
堤体内の温度、遮水材料の飽和度、遮水材料または基礎
地盤のうち少なくともいずれか一方の間隙率、間隙水の
電気伝導度等である。また、電気伝導度は温度の変数と
なっている。温度センサ6は、堤体3内の比抵抗変化か
ら温度の変化の影響を除くために、データが収集できる
限り必要となる。さらに、温度センサ6は二次元的な温
度補正用であるが、温度変化そのものからその点におけ
る異常がわかる場合もある。比抵抗によるモニターは、
堤体3の物性を直接検知する直接的なセンサ類(埋設計
器)が停止した後、利用するもので、間隙水圧計などに
よる計測が可能な間はセンサ類がモニター事項として優
先される。埋設計器の一種としての間隙水圧計について
は、一般的な埋設計器として用いられているので、図示
していない。
The relationship between the specific resistance and each physical property (moisture content, temperature) shown in FIGS. 5 and 6 is obtained in advance in a laboratory experiment, and each physical property that can be a variable of the specific resistance function is as follows.
The temperature in the embankment, the degree of saturation of the impermeable material, the porosity of at least one of the impermeable material and the foundation ground, the electrical conductivity of interstitial water, and the like. The electric conductivity is a variable of temperature. The temperature sensor 6 is required as long as data can be collected in order to remove the influence of the temperature change from the specific resistance change in the bank body 3. Furthermore, although the temperature sensor 6 is for two-dimensional temperature correction, an abnormality at that point may be known from the temperature change itself. Monitor by resistivity
It is used after the direct sensors (buried design device) for directly detecting the physical properties of the embankment body 3 are stopped, and the sensors are prioritized as monitoring items while measurement by a pore water pressure gauge or the like is possible. The pore pressure gauge as a type of the buried design device is not shown because it is used as a general buried design device.

【0025】ところで、比抵抗トモグラフィ法は、多数
の電極の組み合わせにより実測値を取得し、探査対象領
域を小領域に分割し、各小領域の比抵抗値を変化させて
比抵抗分布モデルを修正し、モデルから計算される測定
値と上記実測値とを比較し、その差の二乗和が最小とな
るモデルを求める手法である。ある2時期の解析結果を
比較し、比較抵抗変化部が認められた場合、その部分に
おいて次式(Archie,1942)に示される物性の変化が推
定される。
In the specific resistance tomography method, an actual measurement value is obtained by combining a large number of electrodes, the area to be searched is divided into small areas, and the specific resistance distribution model is changed by changing the specific resistance of each small area. This is a method in which the measured value calculated from the model is corrected and the measured value is compared with the actual measured value, and a model that minimizes the sum of squares of the difference is obtained. Comparing the analysis results for two periods, if a comparative resistance change portion is found, a change in the physical properties represented by the following equation (Archie, 1942) is estimated in that portion.

【0026】[0026]

【数1】 (Equation 1)

【0027】ここで飽和度SはWhere the saturation S is

【0028】[0028]

【数2】 (Equation 2)

【0029】と表されるので、含水比と土の比抵抗にも
指数関数の関係が成り立つ。
Thus, an exponential relationship is established between the water content and the specific resistance of the soil.

【0030】図5は、遮水材料に用いられる風化泥岩を
試料として含水比を変化させた場合の比抵抗変化を示す
図であり、予め室内での試験により得られたデータであ
る(数3参照、図2のステップSp1参照)。
FIG. 5 is a diagram showing a change in specific resistance when the moisture content is changed using weathered mudstone used as a water-blocking material as a sample, and is data obtained in advance by an indoor test (Equation 3). (See step Sp1 in FIG. 2).

【0031】[0031]

【数3】 (Equation 3)

【0032】また、間隙水の比抵抗は温度によって変化
するため、比抵抗は温度の関数となる。図6は、粘性土
を試料として温度を変化させた場合の比抵抗変化を示す
図であり、予め室内での試験により得られたデータであ
る(図2のステップSp1参照)。
Further, since the specific resistance of pore water changes with temperature, the specific resistance is a function of temperature. FIG. 6 is a diagram showing a change in specific resistance when the temperature is changed using cohesive soil as a sample, and is data obtained in advance by an indoor test (see step Sp1 in FIG. 2).

【0033】一方、フィルダムに関する異常は大きく2
つの現象としてとらえられる。1つは埋設された間隙水
圧計の計測データから示される、遮水部4内部の含水状
態変化による浸潤線の変化であり、1つは漏水量観測か
らとらえられる遮水部4内部もしくは遮水部4周辺の基
礎地盤中の漏水経路の形成である。これらの異常は、物
性的に前者は遮水材料の飽和度の変化を、後者は遮水材
料もしくは基礎地盤の間隙率の変化及び間隙水の温度や
電気伝導度の変化としてとらえられる。これらの物性
は、上述のように比抵抗関数の変数であり、築堤時に遮
水部4周辺に埋設した電極系を使用する比抵抗トモグラ
フィ法を経時的に実施し、比抵抗分布の変化をモニター
することにより、堤体3の遮水部4の異常を長期的に検
知することができる。また、同時に堤体3内部の温度分
布をモニターすることにより、比抵抗変化に対する温度
変化の寄与度を明らかにできる。比抵抗トモグラフィ法
では、電極系で囲んだ領域の外側の部分における比抵抗
分布も解析できることから、堤体に接する基礎地盤につ
いても異常を検知できる。
On the other hand, the abnormality related to the fill dam
Is a phenomenon. One is the change of the infiltration line due to the change of the water-containing state inside the water-blocking part 4, which is indicated from the measurement data of the buried pore pressure gauge. This is the formation of a water leakage path in the foundation ground around the part 4. Physically, the former is regarded as a change in the degree of saturation of the impermeable material, and the latter is regarded as a change in the porosity of the impermeable material or the foundation ground, and a change in the temperature and electric conductivity of the interstitial water. These physical properties are variables of the specific resistance function as described above, and a specific resistance tomography method using an electrode system buried in the vicinity of the impermeable portion 4 at the time of embankment is performed with time, and the change in specific resistance distribution is observed. By monitoring, it is possible to detect an abnormality of the impermeable portion 4 of the embankment body 3 in a long term. At the same time, by monitoring the temperature distribution inside the embankment body 3, the contribution of the temperature change to the specific resistance change can be clarified. In the specific resistance tomography method, since the specific resistance distribution in a portion outside the region surrounded by the electrode system can also be analyzed, an abnormality can be detected even in the foundation ground in contact with the embankment.

【0034】[0034]

【実施例】次に、上記構成に係る比抵抗トモグラフィ法
によるフィルダム管理システムを用いて実験を行った一
実施例を示す。実験は、堤体の上下流方向の断面をモデ
ル化し、遮水部に変化が生じた場合の比抵抗変化につい
て数値実験を行った。モデルはフィルダムを単純化し、
図7に示すように、中央の遮水部を30Ωmとし、下流
側のロック部材(外殻部)及び空間を999,999Ω
m、上流側の飽和したロック材及び貯水を50Ωmと
し、基礎地盤は300Ωmとした。差分法による数値モ
デリングと逆解析に使用する計算領域は、59×50メ
ッシュの範囲とし、逆解析の解析領域は2×2メッシュ
の比抵抗ブロックを単位とする20×21ブロックの範
囲とした(図7参照)。電極間隔は2メッシュとし、遮
水部の外周に64点を配置した。測定電極配置は2極法
とし、総測定点数は2016点である。
Next, an example in which an experiment was conducted using the fill dam management system based on the resistivity tomography method according to the above configuration will be described. In the experiment, we modeled the cross section in the upstream and downstream direction of the embankment, and performed a numerical experiment on the specific resistance change when the impermeable part changed. The model simplifies the fill dam,
As shown in FIG. 7, the central water-impervious portion is 30 Ωm, and the downstream lock member (outer shell) and the space are 999,999 Ω.
m, the saturated rock material and water storage on the upstream side were set to 50Ωm, and the foundation ground was set to 300Ωm. The calculation area used for the numerical modeling and the inverse analysis by the difference method was set to a range of 59 × 50 mesh, and the analysis area of the inverse analysis was set to a range of 20 × 21 blocks in units of a 2 × 2 mesh specific resistance block ( (See FIG. 7). The electrode spacing was 2 mesh, and 64 points were arranged on the outer periphery of the water-blocking portion. The measurement electrode arrangement is a two-pole method, and the total number of measurement points is 2016.

【0035】以上のモデルについて、初期モデルの比抵
抗ブロックにケースに応じた比抵抗変化を与え、それに
対して差分法による数値モデリングを行い、測定値を計
算した。この測定値に対して平滑化制約付き最小二乗法
による逆解析を行い、10回の反復計算結果を解析結果
として表示した。
With respect to the above model, a specific resistance change according to the case was given to the specific resistance block of the initial model, and numerical modeling by the difference method was performed on the specific model to calculate measured values. The measured value was subjected to an inverse analysis by the least squares method with a smoothing constraint, and the results of 10 repeated calculations were displayed as the analysis results.

【0036】図8は、図7の初期モデルから得られる計
算測定値について、比抵抗構造が未知として、ブロック
比抵抗の初期値を100Ωm均一として解析を行った結
果である。おおむね初期モデルに近い比抵抗値が解析さ
れており、さらに電極系で囲まれた範囲の外側の比抵抗
構造も求められることを示している。
FIG. 8 shows the results of analysis on the calculated and measured values obtained from the initial model of FIG. 7, with the resistivity structure unknown and the initial value of the block resistivity being 100 Ωm uniform. A resistivity value close to that of the initial model has been analyzed, indicating that a resistivity structure outside the range surrounded by the electrode system is also required.

【0037】図9は、図8と同じ計算測定値を用いて初
期モデル通りの比抵抗構造をブロック比抵抗の初期値と
して与えたものである。比抵抗構造が既知であることに
より解析精度が向上することがわかる。
FIG. 9 shows the specific resistance structure according to the initial model given as the initial value of the block specific resistance using the same measured values as those in FIG. It can be seen that the analysis accuracy is improved by knowing the specific resistance structure.

【0038】図10および図11はそれぞれ、遮水部底
面に電極が設置できない場合で、図8、図9と同様の解
析を行った結果である。この場合、電極は53点、計算
される測定値は1,378点である。図10および図1
1はいずれも電極のない底面付近の遮水部及び基礎地盤
の解析結果とモデルの差は大きく、このことから、底面
への電極設置の必要性が示されている。
FIGS. 10 and 11 show the results of the same analysis as in FIGS. 8 and 9, respectively, in the case where the electrode cannot be installed on the bottom surface of the water impervious portion. In this case, there are 53 electrodes and 1,378 calculated measurements. FIG. 10 and FIG.
No. 1 shows a large difference between the model and the results of analysis of the water impermeable portion and the foundation ground near the bottom surface without electrodes, indicating the necessity of electrode installation on the bottom surface.

【0039】図12は、堤体遮水部の一部に漏水個所が
生じ、間隙率の増大によりその部分が30Ωmから20
Ωmに変化した場合を想定し、そのモデルから得られた
計算測定値について解析を行った結果である。変化状況
がよく解析されている。
FIG. 12 shows that a water leaking part occurs in a part of the embankment of the embankment, and the part is changed from 30 Ωm to 20 Ωm due to an increase in porosity.
It is the result of analyzing the calculated measurement values obtained from the model, assuming the case of changing to Ωm. The change situation is well analyzed.

【0040】図13は堤体基礎に漏水個所が生じ、間隙
率の増大によりその部分が300Ωmから150Ωmに
変化した場合を想定し、そのモデルから得られた計算測
定値について解析を行った結果である。電極系の外側の
変化についても変化状況がよく解析されている。
FIG. 13 shows the result of analyzing the calculated measurement values obtained from the model, assuming a case where a water leakage point occurs on the embankment foundation and the portion changes from 300 Ωm to 150 Ωm due to an increase in the porosity. is there. Changes in the outside of the electrode system are well analyzed.

【0041】図14は、堤体上部で浸潤線が変化し、不
飽和部の増大によりその部分が30Ωmから50Ωmに
変化した場合を想定し、そのモデルから得られた計算測
定値について解析を行った結果である。これについても
変化状況がよく解析されている。
FIG. 14 shows the case where the infiltration line changes at the upper part of the embankment body and the part changes from 30 Ωm to 50 Ωm due to the increase of the unsaturated part, and the calculated measurement values obtained from the model are analyzed. It is a result. For this as well, the change situation is well analyzed.

【0042】以上の結果から、本実施の形態に係る比抵
抗トモグラフィ法によるフィルダム管理システムでは、
堤体3の遮水部4に生じる比抵抗変化をモニターするこ
とができ、異常の発生と、その場所が推定できる。この
システムでは、各種埋設計器の稼働中には、比抵抗変化
の原因となる物性変化の特定が可能であり、埋設計器故
障後の比抵抗変化の評価に対して事例を蓄積することが
できる。また、このフィルダム管理システムでは、ボー
リング孔内等に電極を設けることによりさらに広い範囲
のモニターを行うことが可能となる。
From the above results, in the fill dam management system using the resistivity tomography method according to the present embodiment,
It is possible to monitor the change in the specific resistance generated in the water shielding portion 4 of the embankment body 3, and it is possible to estimate the occurrence of the abnormality and its location. In this system, it is possible to identify a change in physical properties that causes a change in resistivity while various types of embedded devices are operating, and accumulate examples of evaluation of changes in specific resistance after failure of the embedded device. Further, in this fill dam management system, it is possible to monitor a wider range by providing electrodes in a borehole or the like.

【0043】なお、上記実施の形態及び実施例において
は、埋設された測定用電位電極のうち所定の2点の測定
用電位電極を電流電極として用いているが、これに限ら
れるものではなく、図4に示すように、採用する電極配
置P31−P3nに応じて送受信に遠電極C31、C3
2のいずれか一方を用い、埋設された測定用電位電極P
31−P3nのうち、送受信用に1点ずつ使用してもよ
い。符号22、23、24はそれぞれ端子板、送信器、
受信器である。また、電極は遮水部の堤軸方向と上下流
方向とに埋設するようにしているがこれに限られるもの
ではなく、堤軸方向と上下流方向とのいずれか一方であ
っても本願発明の目的を達成することができる。また、
堤体に応じて適宜配置を変更してもよいことは言うまで
もない。さらに、上記実施の形態にかかるフィルダム管
理システムおよびフィルダム管理方法では、埋設計器と
温度センサとによりデータを収集するようにしてるが、
これに限られるものではなく、たとえ、埋設計器が無い
場合でも、温度センサがあれば本願発明の目的を達成す
ることができる。
In the above embodiments and examples, two predetermined measuring potential electrodes among the buried measuring potential electrodes are used as current electrodes. However, the present invention is not limited to this. As shown in FIG. 4, far electrodes C31 and C3 are used for transmission and reception according to the electrode arrangements P31 to P3n employed.
2 and embedded potential electrode P for measurement
One of 31-P3n may be used for transmission and reception. Reference numerals 22, 23, and 24 denote terminal boards, transmitters, respectively.
It is a receiver. Further, the electrodes are buried in the bank axis direction and the upstream / downstream direction of the impermeable portion, but the present invention is not limited to this, and the electrode of the present invention may be applied in either the bank axis direction or the upstream / downstream direction. Can achieve the purpose. Also,
It goes without saying that the arrangement may be appropriately changed according to the embankment body. Furthermore, in the fill dam management system and the fill dam management method according to the above-described embodiment, data is collected by the embedded design device and the temperature sensor.
The present invention is not limited to this, and even if there is no embedded design device, the object of the present invention can be achieved with a temperature sensor.

【0044】[0044]

【発明の効果】以上説明したように本発明の比抵抗トモ
グラフィ法によるフィルダム管理システムでは、遮水部
と遮水部上下流側の外殻部とからなる堤体の築造時、予
め決められた所定の配置に基づいて遮水部の所定の断面
のほぼ外周に沿って多数埋設された電極と、上記電極と
電気的に接続され、これら電極のうち任意の電流電極に
より電流を送信し、上記電流電極を除く他の電位電極間
の電位差を測定し、その測定値を外部に出力する電気探
査装置と、電気探査装置と電気的に接続され、この電気
探査装置を制御するとともに、電気探査装置から入力さ
れた測定値に基づいて所定の断面の比抵抗構造を解析す
るコンピュータとを備え、上記所定の断面の比抵抗構造
から第1回目の比抵抗分布を作成し、この第1回目の作
成時から所定時間経過後新たな比抵抗分布を順次作成
し、これら経時的に異なる比抵抗分布を比較して比抵抗
分布の変化を経時的にモニターし、比抵抗分布中、異常
な比抵抗変化が発見された際、異常部分に対応する堤体
の異常部位を検出するようにしたので、非破壊探査によ
り異常部を正確に検出することができ、しかも、計測機
器が簡素化されて長期間に亘る精密な管理が可能となる
ので、ダム管理のコストダウンを図ることができる。ま
た、従来の埋設計器に比較してより長期間の計測が可能
となる。このため、長期的なダムの安全管理を行うこと
ができ、異常時の的確な調査計画を立てて対策を講じる
ことができる。さらに、施設の老朽化による補修や更新
時期の評価への応用も期待できる。
As described above, in the fill dam management system according to the resistivity tomography method of the present invention, when the embankment composed of the water-blocking portion and the outer shell upstream and downstream of the water-blocking portion is determined in advance, Based on the predetermined arrangement, a large number of electrodes buried along substantially the outer periphery of a predetermined cross section of the water shielding portion, and the electrodes are electrically connected to each other, and a current is transmitted by an arbitrary current electrode among these electrodes. An electric probe that measures a potential difference between the other potential electrodes except the current electrode, and outputs the measured value to the outside, and is electrically connected to the electric probe, controls the electric probe, and controls the electric probe. A computer for analyzing a specific resistance structure of a predetermined cross section based on a measurement value input from the device, and generating a first specific resistance distribution from the specific resistance structure of the predetermined cross section; Predetermined time from creation After that, a new resistivity distribution is created in sequence, and these resistivity distributions that differ over time are compared to monitor changes in the resistivity distribution over time, and when an abnormal resistivity change is found in the resistivity distribution. Detects an abnormal part of the embankment corresponding to the abnormal part, so that the abnormal part can be detected accurately by non-destructive exploration, and the measuring equipment is simplified and precise management over a long period of time Therefore, the cost of dam management can be reduced. In addition, measurement over a longer period of time can be performed as compared with a conventional embedded design device. For this reason, long-term safety management of dams can be performed, and an accurate investigation plan can be set for abnormal situations and countermeasures can be taken. Furthermore, it can be expected to be applied to the evaluation of repair and renewal time due to aging of facilities.

【0045】また、本発明の比抵抗トモグラフィ法によ
るフィルダム管理方法では、遮水部と遮水部外側の外殻
部とからなる堤体の築造時、電極を予め決められた所定
の配置に基づいて遮水部の所定の断面のほぼ外周に沿っ
て多数埋設する電極埋設工程と、電気探査装置を上記電
極と電気的に接続し、これら電極のうち任意の電流電極
により電流を送信し、上記電流電極を除く他の電位電極
間の電位差を測定し、その測定値を外部に出力する測定
工程と、コンピュータを上記電気探査装置と電気的にか
つ制御可能に接続し、電気探査装置から入力された測定
値に基づいて上記所定の断面の比抵抗構造を解析し、上
記所定の断面の比抵抗構造から第1回目の比抵抗分布を
作成するとともに、この第1回目の比抵抗分布作成時か
ら所定時間経過後新たな比抵抗分布を順次作成する比抵
抗分布作成工程と、これら経時的に異なる比抵抗分布を
比較して比抵抗分布の変化を経時的にモニターし、比抵
抗分布中、異常な比抵抗変化が発見された際、異常部分
に対応する堤体の異常部位を検出する検出工程とを備え
るようにしたので、堤体全体について探査不能領域を生
じることなく非破壊により精密に探査することができる
とともに、電極が機能する限り半永久的に堤体の管理を
行うことができるので、管理コストを低減させ、しかも
長期間にわたり管理することができる。
In the method for managing a fill dam according to the resistivity tomography method of the present invention, the electrodes are arranged in a predetermined arrangement at the time of constructing the embankment composed of the impermeable portion and the outer shell portion outside the impermeable portion. An electrode embedding step of embedding a large number along the substantially outer periphery of the predetermined cross section of the water impervious part based on, and electrically connecting the electric prospecting device to the electrodes, transmitting a current by an arbitrary current electrode among these electrodes, A measuring step of measuring a potential difference between the other potential electrodes except the current electrode and outputting the measured value to the outside, and electrically and controllably connecting a computer to the electric prospecting device, and inputting from the electric prospecting device. Analyzing the specific resistance structure of the predetermined cross section based on the measured value, creating a first specific resistance distribution from the specific resistance structure of the predetermined cross section, and creating the first specific resistance distribution. After a predetermined time from A specific resistance distribution creation step for sequentially creating a specific resistance distribution, and monitoring the change of the specific resistance distribution over time by comparing the different specific resistance distributions with time. And a detection step for detecting an abnormal portion of the embankment corresponding to the abnormal portion when the is found, so that the entire embankment can be accurately and nondestructively searched without generating an unsearchable area. At the same time, as long as the electrodes function, the bank can be managed semipermanently, so that the management cost can be reduced and the management can be performed for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る比抵抗トモグラフ
ィ法によるフィルダム管理システムを示す概念図であ
る。
FIG. 1 is a conceptual diagram showing a fill dam management system using a resistivity tomography method according to an embodiment of the present invention.

【図2】本発明の一実施の形態に係る比抵抗トモグラフ
ィ法によるフィルダム管理方法の工程を示すフローチャ
ートである。
FIG. 2 is a flowchart showing steps of a fill dam management method using a resistivity tomography method according to one embodiment of the present invention.

【図3】図1の比抵抗トモグラフィ法に用いられる電気
探査装置を模式的に示す概念図である。
FIG. 3 is a conceptual diagram schematically showing an electric prospecting apparatus used for the resistivity tomography method of FIG.

【図4】図3の電気探査装置の変形例を示す概念図であ
る。
FIG. 4 is a conceptual diagram showing a modified example of the electric prospecting apparatus of FIG. 3;

【図5】予め実験で求めた含水比と比抵抗との関係を示
すグラフである。
FIG. 5 is a graph showing a relationship between a water content ratio and a specific resistance obtained in an experiment in advance.

【図6】予め実験で求めた温度と比抵抗との関係を示す
グラフである。
FIG. 6 is a graph showing a relationship between a temperature and a specific resistance obtained in advance by an experiment.

【図7】細線の領域が計算領域59×50メッシュ、太
線の領域が解析領域20×21ブロックの計算領域、解
析領域及び初期モデルを示す説明図である。
FIG. 7 is an explanatory diagram showing a calculation region of 59 × 50 mesh in a thin line region and a calculation region of 20 × 21 blocks in an analysis region, an analysis region, and an initial model in a thick line region.

【図8】図7の初期モデルから得られる計算測定値の解
析結果を示すグラフである。
FIG. 8 is a graph showing an analysis result of a calculated measurement value obtained from the initial model of FIG. 7;

【図9】図8と同じ計算測定値を用いて初期モデル通り
の比抵抗構造をブロック比抵抗の初期値として与えた解
析結果を示すグラフである。
FIG. 9 is a graph showing an analysis result in which a specific resistance structure according to an initial model is given as an initial value of block specific resistance using the same calculated measurement values as in FIG. 8;

【図10】遮水部底面に電極が設置できない場合で、図
8と同様の解析結果を示すグラフである。
FIG. 10 is a graph showing an analysis result similar to that of FIG. 8 in a case where an electrode cannot be installed on the bottom surface of the water shielding portion.

【図11】遮水部底面に電極が設置できない場合で、図
9と同様の解析結果を示すグラフである。
FIG. 11 is a graph showing the same analysis result as that of FIG. 9 in a case where an electrode cannot be installed on the bottom surface of the water shielding portion.

【図12】堤体遮水部に漏水個所が生じた場合の、モデ
ルから得られた計算測定値についての解析結果を示すグ
ラフである。
FIG. 12 is a graph showing an analysis result of a calculated measurement value obtained from a model in a case where a water leakage point occurs in the water-impedance portion of the embankment body.

【図13】堤体基礎に漏水個所が生じた場合の、モデル
から得られた計算測定値についての解析結果を示すグラ
フである。
FIG. 13 is a graph showing an analysis result of a calculated measurement value obtained from a model in a case where a leakage point occurs in a bank body foundation.

【図14】堤体上部で浸潤線が変化し不飽和部が生じた
場合の、モデルから得られた計算測定値についての解析
結果である。
FIG. 14 is an analysis result of a calculated measurement value obtained from a model in a case where an infiltration line changes in an upper part of an embankment and an unsaturated portion is generated.

【符号の説明】[Explanation of symbols]

2 電気探査装置 3 フィルダム(堤体) 3A 外殻部 4 遮水部 5 コンピュータ Pa1〜Pan、Pb1〜Pbn 測定用電極(電極) C1、C2 送信用電極(電流電極) 2 Electric exploration device 3 Fill dam (bank body) 3A outer shell 4 Water barrier 5 Computer Pa1-Pan, Pb1-Pbn Measurement electrodes (electrodes) C1, C2 Transmission electrodes (current electrodes)

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 遮水部と遮水部上下流側の外殻部とから
なる堤体の築造時、予め決められた所定の配置に基づい
て遮水部の所定の断面のほぼ外周に沿って多数埋設され
た電極と、上記電極と電気的に接続され、これら電極の
うち任意の電流電極により電流を送信し、上記電流電極
を除く他の電位電極間の電位差を測定し、その測定値を
外部に出力する電気探査装置と、電気探査装置と電気的
に接続され、この電気探査装置を制御するとともに、電
気探査装置から入力された測定値に基づいて所定の断面
の比抵抗構造を解析するコンピュータとを備え、上記所
定の断面の比抵抗構造から第1回目の比抵抗分布を作成
し、この第1回目の作成時から所定時間経過後新たな比
抵抗分布を順次作成し、これら経時的に異なる比抵抗分
布を比較して比抵抗分布の変化を経時的にモニターし、
比抵抗分布中、異常な比抵抗変化が発見された際、異常
部分に対応する堤体の異常部位を検出することを特徴と
する比抵抗トモグラフィ法によるフィルダム管理システ
ム。
At the time of constructing a levee body composed of a water-blocking portion and an outer shell on the upstream and downstream of the water-blocking portion, the embankment extends along substantially the outer periphery of a predetermined cross section of the water-blocking portion based on a predetermined arrangement. A large number of buried electrodes and the electrodes are electrically connected to each other, a current is transmitted from any of these electrodes, and a potential difference between the potential electrodes other than the current electrodes is measured. And an electrical probe that outputs the data to the outside, and is electrically connected to the electrical probe, controls the electrical probe, and analyzes the specific resistance structure of a predetermined cross section based on the measurement values input from the electrical probe. A first specific resistance distribution is created from the specific resistance structure having the predetermined cross section, and a new specific resistance distribution is sequentially created after a lapse of a predetermined time from the time of the first generation. Specific resistance distributions Monitor changes in distribution over time,
A fill dam management system using a resistivity tomography method, which detects an abnormal portion of a bank body corresponding to an abnormal portion when an abnormal change in the specific resistance is found in the specific resistance distribution.
【請求項2】 堤体の築造時、予め決められた所定の配
置に基づいて堤体内に埋設され、物性を計測して外部に
出力する埋設計器を備え、電気探査装置の測定値により
解析された比抵抗変化と埋設計器から出力される計測デ
ータとの比較により堤体内の異常を解析することを特徴
とする請求項1に記載の比抵抗トモグラフィ法によるフ
ィルダム管理システム。
2. When the embankment is built, the embankment is buried in the embankment based on a predetermined arrangement, and has a buried design device for measuring physical properties and outputting the measured data to the outside. 2. The fill dam management system according to claim 1, wherein the abnormality in the embankment is analyzed by comparing the change in the specific resistance and the measurement data output from the embedded design device.
【請求項3】 予め遮水部の遮水材料について比抵抗と
物性との関係を導き、この比抵抗−物性関係に基づい
て、解析時の異常判定の基礎諸元を取得し、この既知情
報を用いて逆解析を行うことを特徴とする請求項1また
は2に記載の比抵抗トモグラフィ法によるフィルダム管
理システム。
3. A relationship between the specific resistance and the physical properties of the water-blocking material of the water-blocking portion is derived in advance, and based on the specific resistance-physical relationship, basic data for determining an abnormality at the time of analysis is obtained. 3. The fill dam management system based on the resistivity tomography method according to claim 1 or 2, wherein the inverse analysis is performed by using.
【請求項4】 モニター時、堤体の異常非検出時の値に
基づいて正常値を、異常検出時の値に基づいて異常判定
値をそれぞれ更新することを特徴とする請求項1ないし
3のうちいずれか1に記載の比抵抗トモグラフィ法によ
るフィルダム管理システム。
4. The monitoring system according to claim 1, wherein a normal value is updated based on a value when no abnormality is detected in the embankment, and an abnormality determination value is updated based on a value when abnormality is detected. A fill dam management system based on the resistivity tomography method according to any one of the above.
【請求項5】 電極は遮水部の堤軸方向と上下流方向と
の少なくともいずれか一方に埋設されることを特徴とす
る請求項1に記載の比抵抗トモグラフィ法によるフィル
ダム管理システム。
5. The fill dam management system according to claim 1, wherein the electrode is buried in at least one of the bank axis direction and the upstream / downstream direction of the impermeable portion.
【請求項6】 埋設計器は温度センサとこの温度センサ
に電気的に接続され堤体の所定の面の温度情報を外部に
出力する温度計とからなることを特徴とする請求項2に
記載の比抵抗トモグラフィ法によるフィルダム管理シス
テム。
6. The embedding design device according to claim 2, wherein the temperature sensor and a thermometer electrically connected to the temperature sensor and outputting temperature information of a predetermined surface of the embankment to the outside. Fill dam management system by resistivity tomography.
【請求項7】 遮水部と遮水部外側の外殻部とからなる
堤体の築造時、電極を予め決められた所定の配置に基づ
いて遮水部の所定の断面のほぼ外周に沿って多数埋設す
る電極埋設工程と、電気探査装置を上記電極と電気的に
接続し、これら電極のうち任意の電流電極により電流を
送信し、上記電流電極を除く他の電位電極間の電位差を
測定し、その測定値を外部に出力する測定工程と、コン
ピュータを上記電気探査装置と電気的にかつ制御可能に
接続し、電気探査装置から入力された測定値に基づいて
上記所定の断面の比抵抗構造を解析し、上記所定の断面
の比抵抗構造から第1回目の比抵抗分布を作成するとと
もに、この第1回目の比抵抗分布作成時から所定時間経
過後新たな比抵抗分布を順次作成する比抵抗分布作成工
程と、これら経時的に異なる比抵抗分布を比較して比抵
抗分布の変化を経時的にモニターし、比抵抗分布中、異
常な比抵抗変化が発見された際、異常部分に対応する堤
体の異常部位を検出する検出工程とを備えたことを特徴
とする比抵抗トモグラフィ法によるフィルダム管理方
法。
7. When constructing a levee body comprising a water-blocking portion and an outer shell portion outside the water-blocking portion, the electrodes are arranged along substantially the outer periphery of a predetermined cross section of the water-blocking portion based on a predetermined layout. An electrode embedding step of burying a large number of electrodes, electrically connecting an electric probe to the above electrodes, transmitting a current through any of these electrodes, and measuring a potential difference between the other potential electrodes except the above current electrodes A measuring step of outputting the measured value to the outside, and a computer electrically and controllably connected to the electric prospecting device, and based on the measured value input from the electric prospecting device, the specific resistance of the predetermined cross section. The structure is analyzed, a first specific resistance distribution is created from the specific resistance structure of the predetermined cross section, and a new specific resistance distribution is sequentially created after a lapse of a predetermined time from the creation of the first specific resistance distribution. The process of creating the resistivity distribution The change of the resistivity distribution is monitored over time by comparing the different resistivity distributions, and when an abnormal resistivity change is found in the resistivity distribution, the abnormal portion of the embankment corresponding to the abnormal portion is detected. A fill dam management method by resistivity tomography, comprising: a detection step.
【請求項8】 堤体の築造時、予め決められた所定の配
置に基づいて物性を計測して外部に出力する埋設計器を
堤体内に埋設し、電気探査装置の測定値により解析され
た比抵抗変化と埋設計器から出力される計測データとの
比較により堤体内の異常を解析することを特徴とする請
求項7に記載の比抵抗トモグラフィ法によるフィルダム
管理方法。
8. When the embankment is constructed, an embedding device that measures physical properties based on a predetermined arrangement and outputs it to the outside is buried in the embankment, and the ratio is analyzed by a measured value of an electric prospecting device. The method according to claim 7, wherein the abnormality in the embankment is analyzed by comparing the resistance change with the measurement data output from the embedded design device.
【請求項9】 予め遮水部の遮水材料について比抵抗と
物性との関係を導き、この比抵抗−物性関係に基づい
て、解析時の異常判定の基礎諸元を取得し、この既知情
報を用いて逆解析を行うことを特徴とする請求項7また
は8に記載の比抵抗トモグラフィ法によるフィルダム管
理方法。
9. A relationship between specific resistance and physical properties of a water-blocking material of a water-blocking portion is derived in advance, and based on the specific resistance-physical properties relationship, basic data for abnormality determination at the time of analysis is obtained. The method according to claim 7 or 8, wherein the inverse analysis is performed by using a method.
【請求項10】 モニター時、堤体の異常非検出時の値
に基づいて正常値を、異常検出時の値に基づいて異常判
定値をそれぞれ更新することを特徴とする請求項7ない
し9のうちいずれか1に記載の比抵抗トモグラフィ法に
よるフィルダム管理方法。
10. The monitoring device according to claim 7, wherein a normal value is updated based on a value when no abnormality is detected in the embankment, and an abnormality determination value is updated based on a value when abnormality is detected. The fill dam management method according to the specific resistance tomography method according to any one of the above.
JP15173999A 1999-05-31 1999-05-31 Fill dam management system by resistivity tomography and its management method Expired - Lifetime JP3041426B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15173999A JP3041426B1 (en) 1999-05-31 1999-05-31 Fill dam management system by resistivity tomography and its management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15173999A JP3041426B1 (en) 1999-05-31 1999-05-31 Fill dam management system by resistivity tomography and its management method

Publications (2)

Publication Number Publication Date
JP3041426B1 JP3041426B1 (en) 2000-05-15
JP2000338258A true JP2000338258A (en) 2000-12-08

Family

ID=15525237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15173999A Expired - Lifetime JP3041426B1 (en) 1999-05-31 1999-05-31 Fill dam management system by resistivity tomography and its management method

Country Status (1)

Country Link
JP (1) JP3041426B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017228A (en) * 2005-07-06 2007-01-25 Cti Science System Co Ltd Riverbed height measuring apparatus and riverbed height measuring method
JP2009074923A (en) * 2007-09-20 2009-04-09 Atlus:Kk Damage detection method for structure made of conductive material
KR101026123B1 (en) * 2008-10-29 2011-04-05 주식회사 세코지오 Real Time Automated Monitoring System of Electric Resistance Type
JP2012202924A (en) * 2011-03-28 2012-10-22 Ihi Corp Tomography apparatus and tomography measuring method
JP5636585B1 (en) * 2013-11-22 2014-12-10 独立行政法人農業・食品産業技術総合研究機構 Diagnosis method of dam body using seismometer
JP2016133439A (en) * 2015-01-21 2016-07-25 株式会社奥村組 Subsoil resistivity distribution analyzing method by resistivity tomography
JP2018063124A (en) * 2016-10-11 2018-04-19 清水建設株式会社 Geological survey device and geological survey method
JP2018521245A (en) * 2015-12-03 2018-08-02 コリア インスティチュート オブ ジオサイエンス アンド ミネラル リソースズ Rock grouting monitoring method using electrical resistivity
JP2023050207A (en) * 2021-09-16 2023-04-11 中央開発株式会社 Ground specific electrical resistance monitoring device, and slope collapse warning system
JP7385968B1 (en) 2023-05-24 2023-11-24 学校法人早稲田大学 Information processing equipment, exploration equipment and programs

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111721830A (en) * 2020-06-08 2020-09-29 重庆交通大学 Three-dimensional tomography-based channel improvement dam body internal erosion detection, monitoring and early warning method
CN113092534B (en) * 2021-04-09 2023-06-23 浙江省水利河口研究院(浙江省海洋规划设计研究院) Parallel electric method remote inspection system and method for existing dam crest hardening

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017228A (en) * 2005-07-06 2007-01-25 Cti Science System Co Ltd Riverbed height measuring apparatus and riverbed height measuring method
JP2009074923A (en) * 2007-09-20 2009-04-09 Atlus:Kk Damage detection method for structure made of conductive material
KR101026123B1 (en) * 2008-10-29 2011-04-05 주식회사 세코지오 Real Time Automated Monitoring System of Electric Resistance Type
JP2012202924A (en) * 2011-03-28 2012-10-22 Ihi Corp Tomography apparatus and tomography measuring method
JP5636585B1 (en) * 2013-11-22 2014-12-10 独立行政法人農業・食品産業技術総合研究機構 Diagnosis method of dam body using seismometer
JP2016133439A (en) * 2015-01-21 2016-07-25 株式会社奥村組 Subsoil resistivity distribution analyzing method by resistivity tomography
JP2018521245A (en) * 2015-12-03 2018-08-02 コリア インスティチュート オブ ジオサイエンス アンド ミネラル リソースズ Rock grouting monitoring method using electrical resistivity
JP2018063124A (en) * 2016-10-11 2018-04-19 清水建設株式会社 Geological survey device and geological survey method
JP2023050207A (en) * 2021-09-16 2023-04-11 中央開発株式会社 Ground specific electrical resistance monitoring device, and slope collapse warning system
JP7385968B1 (en) 2023-05-24 2023-11-24 学校法人早稲田大学 Information processing equipment, exploration equipment and programs

Also Published As

Publication number Publication date
JP3041426B1 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
CN105604066B (en) Application of the resistivity profiling in the detection of building foundation pit building enclosure percolating water
KR101269517B1 (en) Real-time resistivity measurement system
JP3041426B1 (en) Fill dam management system by resistivity tomography and its management method
Lisa et al. A hard rock tunnel case study: Characterization of the water-bearing fracture system for tunnel grouting
CN106400768B (en) Collapsible loess tunnel submerging test method
CN106401574B (en) Method for predicting formation pressure of high-temperature geothermal well before drilling
KR101031809B1 (en) Device for measuring water content of soils
CN110988999A (en) Detection method and system for analyzing pile foundation based on cross-hole resistivity method CT inversion imaging
Utili et al. Novel approach for health monitoring of earthen embankments
JP2011231568A (en) Pore water pressure measuring device, soft ground improvement method using the same, method for determining dynamic state of ground for underground installation, and method for determining dynamic state of ground for banking structure installation
CN108680490A (en) A kind of steel tower reinforced concrete foundation reinforcement corrosion degree detection device and method
KR20140121740A (en) Apparatus and method for monitoring of slope stability by measurement of matric suction in unsaturated soil slopes
KR100944096B1 (en) System for streamer electrical resistivity survey and method for analysis of underground structure below a riverbed
Abdoun et al. Asset management and safety assessment of levees and earthen dams through comprehensive real-time field monitoring
Tresoldi et al. G. RE. TA installations for real-time monitoring of irrigation dams and canals
JP6391010B2 (en) Evaluation method and evaluation system for water permeability characteristics in front of tunnel face
JP4312124B2 (en) Prediction method for steel corrosion
CN208847636U (en) A kind of steel tower reinforced concrete foundation reinforcement corrosion degree detection device
CN106777556A (en) A kind of spacial analytical method for assessing slope excavating phase stable state
US20180231431A1 (en) Subsurface monitoring
Sundell et al. Economic valuation of hydrogeological information when managing groundwater drawdown
CN109164018A (en) The continuous monitor system and monitoring method of injection recovery technique dilation angle in situ
Simeoni et al. Field measurements in river embankments: Validation and management with spatial database and webGIS
RU2678535C1 (en) Method of monitoring state of diaphragm from boron-cutting alumina-cement concrete piles in earth dam by electrical tomography
JP4900615B2 (en) Ground failure / collapse prediction method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3041426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term