JP2000307155A - Light-emitting diode - Google Patents

Light-emitting diode

Info

Publication number
JP2000307155A
JP2000307155A JP11681299A JP11681299A JP2000307155A JP 2000307155 A JP2000307155 A JP 2000307155A JP 11681299 A JP11681299 A JP 11681299A JP 11681299 A JP11681299 A JP 11681299A JP 2000307155 A JP2000307155 A JP 2000307155A
Authority
JP
Japan
Prior art keywords
light
dbr
led
layer
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11681299A
Other languages
Japanese (ja)
Inventor
Naoki Kaneda
直樹 金田
Kenji Shibata
憲治 柴田
Masatomo Shibata
真佐知 柴田
Takanobu Tsukamoto
孝信 塚本
Taiichiro Konno
泰一郎 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP11681299A priority Critical patent/JP2000307155A/en
Publication of JP2000307155A publication Critical patent/JP2000307155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure, of a light-emitting diode(LED) with a high emission efficiency and with a higher output power than conventional with smaller power consumption than conventional, wherein the light omnidirectionally emitted from an active layer of the LED is sufficiently reflected for the entire spectrum. SOLUTION: In an LED where a pair of distributed Bragg reflectors(DBRs) 5 made of two kinds of materials are formed on a substrate 1 and a light- emitting part is formed on the DBRs 5, the layer thicknesses of the DBRs 5 are changed by 30 to 15% in each pair to form a DBR 6 of a multilayer structure consisting of three layers or more and, at least one layer of the constituent layers of this DBR 6 has a thickness equal to an optical length of the 1/4 wavelength of the LED. Moreover, the constituent layers of the DBR 6 are combined with each other so that the energy distribution of the reflection spectrum may be a normal distribution or a logarithmic normal distribution the center of which is the peak wavelength energy of the LED.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低消費電力で高出
力である、発光効率の高い発光ダイオード(以下、LE
D)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode (hereinafter, referred to as LE) having low power consumption and high output, and having high luminous efficiency.
D).

【0002】[0002]

【従来の技術】LEDは各種表示用光源として広く利用
され、特に屋外ディスプレイ用光源は、低消費電力で高
出力であることが求められている。しかし、LEDの発
光は自然放出光であるためにスペクトルの幅は広く、活
性層から等方向へ放出されるため、利用できる光はわず
かになり、素子の出力効率は低かった。このため、例え
ばAlGaInP系の可視光LEDにおいては、電流拡
散層を十分厚くすることで電流の広がりを大きくした
り、2層のみで形成される分布ブラッグ反射器(以下、
DBR)を用いることで、基板裏面側への発光を反射さ
せ、消費電力を抑えると共に、出力を増加させていた。
2. Description of the Related Art LEDs are widely used as light sources for various displays. In particular, light sources for outdoor displays are required to have low power consumption and high output. However, since the light emission of the LED is spontaneous emission light, the spectrum width is wide, and the light is emitted from the active layer in the same direction, so that the available light is small and the output efficiency of the device is low. For this reason, for example, in an AlGaInP-based visible light LED, the current spreading is increased by making the current diffusion layer sufficiently thick, or a distributed Bragg reflector (hereinafter, referred to as a two-layer) formed of only two layers.
By using DBR), light emission to the back side of the substrate is reflected, power consumption is suppressed, and output is increased.

【0003】また、特開平10−65264号公報に分
布ブラッグ反射器とその製造方法が開示されている。こ
こでは、In基板上に1/4波長の光学長となるように
InP層と、InPを含むGaPSb層とを交互に積層
してDBRを形成している。このGaPSb層中に1分
子層あるいは数分子層のInP層を挿入することで、下
層の格子定数に一致される基板引き込み効果が生じ、そ
の格子定数がInP層に一致され、組成の安定化が図ら
れる。これにより、中心波長の制御性が向上され、レー
ザのしきい値低減に寄与していることが示されている。
[0003] Japanese Patent Application Laid-Open No. 10-65264 discloses a distributed Bragg reflector and a method of manufacturing the same. Here, a DBR is formed by alternately stacking an InP layer and a GaPSb layer containing InP so as to have an optical length of 1 / wavelength on the In substrate. By inserting one or several molecular layers of the InP layer into the GaPSb layer, a substrate pull-in effect that matches the lattice constant of the lower layer occurs, and the lattice constant matches the InP layer, stabilizing the composition. It is planned. This indicates that the controllability of the center wavelength is improved, which contributes to the reduction of the threshold value of the laser.

【0004】[0004]

【発明が解決しようとする課題】しかし、2層のみから
なるDBRでは反射スペクトルは狭く、LEDの発光は
等方的に放出されるため、DBRに対して垂直に入射し
ない光は十分に反射されず、基板に吸収され、発光効率
が低かった。
However, in a DBR consisting of only two layers, the reflection spectrum is narrow, and the light emitted from the LED is emitted isotropically. Therefore, light that does not enter the DBR perpendicularly is sufficiently reflected. The luminous efficiency was low.

【0005】また、光通信用光源の面型発光半導体レー
ザの活性領域から放出されるコヒーレントな光を従来技
術のDBRによって高反射させることで、この光の中心
波長制御性を向上させ、レーザのしきい値を低減するこ
とはできた。しかし、表示用光源としてのLEDの活性
層から放出される等方的な光は、従来技術のDBRでは
十分に反射させることができない。
[0005] Further, the coherent light emitted from the active region of the surface-emitting semiconductor laser of the light source for optical communication is highly reflected by the conventional DBR, so that the controllability of the central wavelength of this light is improved, and the laser light is improved. The threshold could be reduced. However, isotropic light emitted from the active layer of the LED as a display light source cannot be sufficiently reflected by the conventional DBR.

【0006】本発明は、上記事情を考慮してなされたも
ので、活性層から等方的に放出されたLEDの発光を、
全発光スペクトルに対して十分反射し、従来のLEDよ
りも低消費電力で高出力である、発光効率が高いLED
の構造を提供することを目的とする。
[0006] The present invention has been made in view of the above circumstances, and emits light from an LED isotropically emitted from an active layer.
High luminous efficiency LED that reflects enough light over the entire emission spectrum, has lower power consumption and higher output than conventional LEDs
The purpose is to provide a structure.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、基板上に2種類の材料からなる1対のDB
Rを形成し、そのDBR上に発光部を形成したLEDに
おいて、そのDBRの層厚を1対ごとに3%乃至15%
変化させて少なくとも3層以上の多層構造のDBRを形
成すると共に、このDBRの構成層の少なくとも1層を
厚さが1/4波長の光学長となるように形成し、さら
に、反射スペクトルのエネルギー分布がLEDのピーク
波長エネルギーを中心に正規分布あるいは対数正規分布
となるように、DBRの構成各層を組み合わせている。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a pair of DBs made of two kinds of materials on a substrate.
In an LED in which R is formed and a light emitting portion is formed on the DBR, the layer thickness of the DBR is 3% to 15% for each pair.
A DBR having a multilayer structure of at least three layers is formed by changing the thickness, at least one of the constituent layers of the DBR is formed to have an optical length of 1 / wavelength, and the energy of the reflection spectrum is further increased. The constituent layers of the DBR are combined so that the distribution becomes a normal distribution or a logarithmic distribution centering on the peak wavelength energy of the LED.

【0008】上記構成により、本発明における多層構造
のDBRは、活性層から等方的に放出されたLEDの発
光を、DBRに対して垂直方向に入射する光だけでな
く、DBRに対して斜め方向に入射する光も高効率で反
射することができる。この結果、低消費電力で高出力で
ある、発光効率の高いLEDが実現できる。
With the above structure, the multi-layered DBR of the present invention not only emits light emitted from the LED isotropically from the active layer, but also emits light obliquely to the DBR as well as light incident perpendicularly to the DBR. Light incident in the direction can also be reflected with high efficiency. As a result, an LED with low power consumption and high output and high luminous efficiency can be realized.

【0009】[0009]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に従って説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0010】図1は、本発明の実施の形態の一つである
AlGaInP系LEDの拡大断面図を示したものであ
る。
FIG. 1 is an enlarged sectional view of an AlGaInP-based LED according to an embodiment of the present invention.

【0011】n型の導電性を有するGaAs基板1上に
順次エピタキシャル成長にて、n型の導電性を有するG
aAsからなるバッファ層2、Alx Ga1-x As(0
≦x≦1)からなるDBR構成層3、Aly Ga1-y
s(0≦y≦1,x≠y)からなるDBR構成層4を形
成させる。DBR構成層3、DBR構成層4で形成され
るDBR5は、その層厚を3%乃至15%変化させて少
なくとも3層以上の多層構造のDBR6を形成させる。
このDBR6は、構成層の少なくとも1層の厚さが1/
4波長の光学長となるように形成し、さらに、反射スペ
クトルのエネルギー分布がLEDのピーク波長エネルギ
ーを中心に正規分布あるいは対数正規分布となるよう
に、DBR6の構成各層を組み合わせている。
An n-type conductive GaAs substrate 1 is sequentially grown on a GaAs substrate 1 by epitaxial growth.
aAs buffer layer 2, Al x Ga 1 -x As (0
≦ x ≦ 1), the DBR constituent layer 3, Al y Ga 1-y A
A DBR constituent layer 4 composed of s (0 ≦ y ≦ 1, x ≠ y) is formed. The DBR 5 formed by the DBR constituent layers 3 and 4 has a layer thickness changed by 3% to 15% to form a DBR 6 having a multilayer structure of at least three layers.
In this DBR 6, the thickness of at least one of the constituent layers is 1 /
The layers are formed so as to have an optical length of four wavelengths, and the constituent layers of the DBR 6 are combined so that the energy distribution of the reflection spectrum becomes a normal distribution or a logarithmic normal distribution centering on the peak wavelength energy of the LED.

【0012】このDBR6構成各層は、例えば、下部D
BR5の層厚に対して上方に行くに従って、3%乃至1
5%厚く(あるいは薄く)なるように形成される。
Each layer of the DBR 6 is formed, for example, in the lower D
3% to 1 as going upward with respect to the layer thickness of BR5
It is formed to be 5% thick (or thin).

【0013】さらに、このDBR6上に、GaAsに格
子整合し間接遷移型のバンド構造でn型の導電性を有す
るAlGaInPからなるクラッド層7、その上にGa
Asに格子整合し直接遷移型のバンド構造を有するAl
GaInPからなる発光部である活性層8、その上にG
aAsに格子整合し間接遷移型のバンド構造でp型の導
電性を有するAlGaInP層からなるクラッド層9を
形成し、最後に、p型の導電性を有し1〔μm〕以上の
厚さを持つGaPからなる電流拡散層10を形成させ
る。
Further, on this DBR 6, a cladding layer 7 made of AlGaInP lattice-matched to GaAs and having an indirect transition type band structure and n-type conductivity is formed.
Al lattice-matched to As and having a direct transition band structure
An active layer 8 which is a light emitting part made of GaInP, and a G
A cladding layer 9 made of an AlGaInP layer lattice-matched to aAs and having p-type conductivity with an indirect transition band structure is formed. Finally, a layer having p-type conductivity and a thickness of 1 [μm] or more is formed. A current diffusion layer 10 made of GaP is formed.

【0014】AlGaInP系LEDの活性層8から放
出される光は500乃至700〔nm〕の波長を有する
等方的な光である。この光は、上記構成によるDBR6
によって、DBR6に対して垂直方向に入射する光だけ
でなく、DBR6に対して斜め方向に入射する光をも高
効率で反射させることができる。
Light emitted from the active layer 8 of the AlGaInP-based LED is isotropic light having a wavelength of 500 to 700 [nm]. This light is transmitted to the DBR 6
Accordingly, not only light incident on the DBR 6 in the vertical direction but also light incident on the DBR 6 in the oblique direction can be reflected with high efficiency.

【0015】図2は、図1に示したLEDの発光部であ
る活性層8から放出された光がDBR6において反射さ
れる際の、反射光の波長を横軸にとり、その反射光の反
射強度を縦軸にとった反射率測定図である。ここで、D
BR6に垂直に入射する光の波長に対する反射強度スペ
クトル分布a、DBR6に斜め方向に入射する光の波長
に対する反射強度スペクトル分布bを示している。
FIG. 2 shows the wavelength of the reflected light when the light emitted from the active layer 8 which is the light emitting portion of the LED shown in FIG. FIG. 4 is a reflectivity measurement diagram in which is plotted on the vertical axis. Where D
A reflection intensity spectrum distribution a with respect to a wavelength of light incident perpendicular to the BR 6 and a reflection intensity spectrum distribution b with respect to a wavelength of light obliquely incident on the DBR 6 are shown.

【0016】図2に示されているように、活性層8から
放出された光のうち、DBR6に対して斜め方向に入射
する光の反射強度スペクトル分布bが、DBR6に対し
て垂直方向に入射する光の反射強度スペクトル分布aと
同程度の強さであることがわかる。また、その反射スペ
クトルの幅も十分広くなっている。
As shown in FIG. 2, of the light emitted from the active layer 8, the reflection intensity spectrum distribution b of the light obliquely incident on the DBR 6 is perpendicularly incident on the DBR 6. It can be seen that the intensity is about the same as the reflection intensity spectrum distribution a of the light. Also, the width of the reflection spectrum is sufficiently wide.

【0017】この結果、本発明のLEDは、従来のLE
Dと厚さが同程度にもかかわらず、光の取り出し効率が
20%増加し、定電流動作時の出力も20%増加し、定
格出力時の消費電力は20%減少した。
As a result, the LED of the present invention is
Despite having the same thickness as D, the light extraction efficiency increased by 20%, the output during constant current operation increased by 20%, and the power consumption at rated output decreased by 20%.

【0018】[0018]

【発明の効果】以上説明したことから明らかなように、
本発明によれば次のごとき優れた効果を発揮する。
As is apparent from the above description,
According to the present invention, the following excellent effects are exhibited.

【0019】(1)DBRの層厚を1対ごとに変化させ
て多層構造のDBRを形成することにより、活性層から
等方的に放出されたLEDの発光を、DBRに対して垂
直方向に入射する光だけでなく、DBRに対して斜め方
向に入射する光も高効率で反射することができる。
(1) By changing the layer thickness of the DBR for each pair to form a multi-layered DBR, light emission of the LED isotropically emitted from the active layer is emitted in a direction perpendicular to the DBR. Not only the incident light but also the light obliquely incident on the DBR can be reflected with high efficiency.

【0020】(2)この結果、低消費電力で高出力であ
る、発光効率の高いLEDが実現できる。
(2) As a result, an LED with low power consumption and high output and high luminous efficiency can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す拡大断面図である。FIG. 1 is an enlarged sectional view showing one embodiment of the present invention.

【図2】図1に示した発光ダイオードの反射率測定図で
ある。
FIG. 2 is a diagram illustrating a reflectance measurement of the light emitting diode shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1 GaAs基板 2 GaAs層 3 DBR構成層 4 DBR構成層 5 DBR 6 多層構造のDBR 7 AlGaInP層 8 AlGaInP活性層(発光部) 9 AlGaInP層 10 GaP層 DESCRIPTION OF SYMBOLS 1 GaAs substrate 2 GaAs layer 3 DBR constituent layer 4 DBR constituent layer 5 DBR 6 DBR having a multilayer structure 7 AlGaInP layer 8 AlGaInP active layer (light emitting portion) 9 AlGaInP layer 10 GaP layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 真佐知 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 (72)発明者 塚本 孝信 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 (72)発明者 今野 泰一郎 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 Fターム(参考) 5F041 AA03 AA24 CA12 CA34 CA35 CA36 CA37 EE23  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Masatoshi Shibata 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture Within Hitachi Cable Advanced Research Center (72) Inventor Takanobu Tsukamoto 3550 Kida Yomachi, Tsuchiura City, Ibaraki Hitachi Cable Inside Advanced Research Center Co., Ltd. (72) Inventor Taiichiro Konno 3550 Kida Yomachi, Tsuchiura-shi, Ibaraki Hitachi Cable F-term within Advanced Research Center Co., Ltd. 5F041 AA03 AA24 CA12 CA34 CA35 CA36 CA37 EE23

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に2種類の材料からなる1対の分
布ブラッグ反射器を形成し、その分布ブラッグ反射器上
に発光部を形成した発光ダイオードにおいて、その分布
ブラッグ反射器の層厚を1対ごとに変化させて少なくと
も3層以上の多層構造の分布ブラッグ反射器を形成した
ことを特徴とする発光ダイオード。
1. A light emitting diode in which a pair of distributed Bragg reflectors made of two types of materials are formed on a substrate and a light emitting portion is formed on the distributed Bragg reflector, the thickness of the distributed Bragg reflector is reduced. A light emitting diode characterized by forming a distributed Bragg reflector having a multilayer structure of at least three or more layers by changing every pair.
【請求項2】 分布ブラッグ反射器の層厚は1対ごとに
3%乃至15%変化させる請求項1記載の発光ダイオー
ド。
2. The light emitting diode according to claim 1, wherein the layer thickness of the distributed Bragg reflector is changed by 3% to 15% for each pair.
【請求項3】 分布ブラッグ反射器の構成層の少なくと
も1層は、厚さが1/4波長の光学長である請求項1記
載の発光ダイオード。
3. The light emitting diode according to claim 1, wherein at least one of the constituent layers of the distributed Bragg reflector has an optical length of 1 / wavelength in thickness.
【請求項4】 分布ブラッグ反射器の構成層は、半導体
結晶で形成される請求項1記載の発光ダイオード。
4. The light emitting diode according to claim 1, wherein the constituent layer of the distributed Bragg reflector is formed of a semiconductor crystal.
【請求項5】 多層構造の分布ブラッグ反射器の反射ス
ペクトルのエネルギー分布が発光ダイオードのピーク波
長エネルギーを中心に、正規分布あるいは対数正規分布
となるように分布ブラッグ反射器の構成各層を組み合わ
せた発光ダイオード。
5. A light emission obtained by combining the constituent layers of the distributed Bragg reflector such that the energy distribution of the reflection spectrum of the multilayer Bragg reflector has a normal distribution or a lognormal distribution centered on the peak wavelength energy of the light emitting diode. diode.
JP11681299A 1999-04-23 1999-04-23 Light-emitting diode Pending JP2000307155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11681299A JP2000307155A (en) 1999-04-23 1999-04-23 Light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11681299A JP2000307155A (en) 1999-04-23 1999-04-23 Light-emitting diode

Publications (1)

Publication Number Publication Date
JP2000307155A true JP2000307155A (en) 2000-11-02

Family

ID=14696266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11681299A Pending JP2000307155A (en) 1999-04-23 1999-04-23 Light-emitting diode

Country Status (1)

Country Link
JP (1) JP2000307155A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963186B2 (en) 2013-02-04 2015-02-24 Fuji Xerox Co., Ltd. Semiconductor light-emitting element, light-source head, and image forming apparatus
CN105742433A (en) * 2016-04-29 2016-07-06 厦门市三安光电科技有限公司 AlGaInP light-emitting diode
CN110556463A (en) * 2018-05-30 2019-12-10 首尔伟傲世有限公司 Light-emitting diode chip with distributed Bragg reflector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963186B2 (en) 2013-02-04 2015-02-24 Fuji Xerox Co., Ltd. Semiconductor light-emitting element, light-source head, and image forming apparatus
CN105742433A (en) * 2016-04-29 2016-07-06 厦门市三安光电科技有限公司 AlGaInP light-emitting diode
CN105742433B (en) * 2016-04-29 2018-03-02 厦门市三安光电科技有限公司 A kind of AlGaInP light emitting diodes
CN110556463A (en) * 2018-05-30 2019-12-10 首尔伟傲世有限公司 Light-emitting diode chip with distributed Bragg reflector
CN110556463B (en) * 2018-05-30 2022-06-03 首尔伟傲世有限公司 Light-emitting diode chip with distributed Bragg reflector

Similar Documents

Publication Publication Date Title
US6026111A (en) Vertical cavity surface emitting laser device having an extended cavity
US6819701B2 (en) Super-luminescent folded cavity light emitting diode
JP3240097B2 (en) Semiconductor light emitting device
JP2002222989A (en) Semiconductor light-emitting device
US20080079016A1 (en) Long-wavelength resonant-cavity light-emitting diode
JP2019012744A (en) Semiconductor light-emitting element and manufacturing method thereof
US20040179566A1 (en) Multi-color stacked semiconductor lasers
JP2002111053A (en) Semiconductor light emitting element
US6617614B2 (en) Semiconductor light-emitting device
JP4077137B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2004031513A (en) Semiconductor light emitting element
JP2001203422A (en) Distributed feedback laser manufactured by lateral over growth of active region
JP3152812B2 (en) Semiconductor light emitting device
JP2007184526A (en) Super luminescent diode and method of manufacturing same
JP5381692B2 (en) Semiconductor light emitting device
JP4683972B2 (en) Semiconductor laser device and application system including the same
JP2000307155A (en) Light-emitting diode
JPH11233815A (en) Semiconductor light emitting diode
Nishida et al. Short wavelength limitation in high power AlGaInP laser diodes
US6008507A (en) Photoelectric semiconductor device having a GaAsP substrate
JPH09307190A (en) Aluminum-indium-gallium-nitrogen based semiconductor luminous element and semiconductor luminous device
JPH1146038A (en) Nitride semiconductor laser element and manufacture of the same
JP2006270073A (en) Light-emitting diode and method of manufacturing it
JP2003218386A (en) Light emitting diode
JP2002033509A (en) Light emitting diode