JP2000275236A - Quantitative method for chlorine in silver resin paste - Google Patents

Quantitative method for chlorine in silver resin paste

Info

Publication number
JP2000275236A
JP2000275236A JP11081591A JP8159199A JP2000275236A JP 2000275236 A JP2000275236 A JP 2000275236A JP 11081591 A JP11081591 A JP 11081591A JP 8159199 A JP8159199 A JP 8159199A JP 2000275236 A JP2000275236 A JP 2000275236A
Authority
JP
Japan
Prior art keywords
chlorine
solution
resin paste
silver
alkaline solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11081591A
Other languages
Japanese (ja)
Inventor
Tomomichi Nihei
二瓶知倫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11081591A priority Critical patent/JP2000275236A/en
Publication of JP2000275236A publication Critical patent/JP2000275236A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a quantitative method for chlorine in a silver resin paste accurately and precisely. SOLUTION: In this chlorine quantitative method, a silver resin paste weighed on a sample dish is baked in a sealed container of the high-pressure oxygen atmosphere added with an alkaline solution, generated hydrogen chloride is absorbed by the alkaline solution, the combustion remainder left on the sample dish after combustion is put in the alkaline solution, the chlorine concentration of the processed solution is measured, and the chlorine in the silver resin paste is quantified based on this value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銀樹脂ペースト中
の塩素の定量方法に関する。
The present invention relates to a method for determining chlorine in a silver resin paste.

【0002】[0002]

【従来の技術】銀樹脂ペーストは、金属銀およびエポキ
シ樹脂などの高分子有機化合物から構成されるもので、
電子部品の接続材料として用いられる。銀樹脂ペースト
に用いられるビスフェノールA型エポキシ樹脂は、ビス
フェノールAとエピクロルヒドリンをアルカリ存在下で
反応させ製造される。この製造過程の途中で、副成され
る塩化アルカリは、製造過程において、事実上、問題な
いレベルまで除去されるが、同じく副成される有機塩素
化合物は、製造過程における除去が困難であり、エポキ
シ樹脂中に残存し、銀樹脂ペーストに、そのまま含有さ
れることとなる。この銀樹脂ペースト中に残存、含有さ
れている有機塩素化合物は、高温・高湿下において樹脂
中に侵入してきた水によって加水分解され、電子部品の
接着部分の金属を腐食させる因子となることがある。こ
のため、銀樹脂ペースト製造メーカーは、この塩素分を
確認するために、銀樹脂ペースト中の塩素濃度を検査項
目として規定し、管理している。この銀樹脂ペースト中
の塩素濃度の定量方法としては、JIS K2541原油及び石
油製品−硫黄分試験方法のボンベ式質量法にも適用され
ているボンブ法という、試料皿に秤取った試料を、アル
カリ性溶液を加えた高圧酸素雰囲気の密閉容器内で燃焼
させ、発生した塩化水素を該アルカリ性溶液に吸収し
て、その溶液の塩素濃度を測定する方法が、主に行われ
ており、銀樹脂ペーストユーザーもその分析値で評価を
しているのが現状である。しかし、ボンブ法では、全塩
素の定量値が、含有する量より低値を示し、特に塩素含
有量が少ない低塩素化されたペーストについては、正確
な評価ができないという重要な問題があるが、代替する
精度の良い新規な方法が見出されていないため、依然と
して用いられている。
2. Description of the Related Art Silver resin paste is composed of high-molecular organic compounds such as metallic silver and epoxy resin.
Used as a connection material for electronic components. The bisphenol A type epoxy resin used for the silver resin paste is produced by reacting bisphenol A with epichlorohydrin in the presence of an alkali. In the course of this production process, by-product alkali chloride is removed to a practically no problem level in the production process, but the by-product organochlorine compound is also difficult to remove in the production process, It remains in the epoxy resin and is contained in the silver resin paste as it is. The organic chlorine compound remaining and contained in the silver resin paste is hydrolyzed by water that has entered the resin under high temperature and high humidity, and may become a factor that corrodes the metal of the bonding portion of the electronic component. is there. For this reason, the silver resin paste manufacturer defines and controls the chlorine concentration in the silver resin paste as an inspection item in order to check the chlorine content. As a method for determining the chlorine concentration in this silver resin paste, a sample weighed in a sample dish called a bomb method, which is also applied to the bomb mass method of the JIS K2541 crude oil and petroleum products-sulfur content test method, is alkalinized. A method of measuring the chlorine concentration of a solution by burning it in a closed vessel in a high-pressure oxygen atmosphere containing a solution and absorbing the generated hydrogen chloride into the alkaline solution is mainly used. At present, evaluations are based on the analysis values. However, in the bomb method, the quantitative value of total chlorine shows a lower value than the contained amount, and in particular, for a low-chlorinated paste having a small chlorine content, there is an important problem that accurate evaluation cannot be performed. It is still used because no new accurate alternative has been found.

【0003】[0003]

【発明が解決しようとする課題】本発明は、定量すべき
塩素を損失することなく、正確でかつ精度良く銀樹脂ペ
ースト中の塩素を定量する方法を提供することを目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for accurately and accurately quantifying chlorine in a silver resin paste without losing chlorine to be quantified.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明が提供する銀樹脂ペースト中の塩素の定量方
法は、次のとおりである。試料皿に秤取った銀樹脂ペー
ストを、アルカリ性溶液を加えた高圧酸素雰囲気の密閉
容器内で燃焼させ、発生した塩化水素を該アルカリ性溶
液に吸収させる。燃焼後に試料皿に残留した燃焼残留物
を該アルカリ性溶液に投入し、硝酸、硝酸銀溶液、およ
び臭化物もしくは沃化物を加える。該アルカリ性溶液を
ろ別し、得られた沈殿物を、還元処理あるいは溶解処理
する。こうして得られた溶液の塩素濃度を測定し、その
値から銀樹脂ペースト中の塩素を定量することを特徴と
する方法である。この溶液の塩素濃度測定方法として
は、特に塩素濃度が測定できれば、その手法にはこだわ
らないが、イオンクロマトグラフで測定することが好ま
しい。
Means for Solving the Problems To solve the above problems, the method of the present invention for determining chlorine in a silver resin paste is as follows. The silver resin paste weighed in the sample dish is burned in a closed container in a high-pressure oxygen atmosphere to which an alkaline solution has been added, and the generated hydrogen chloride is absorbed by the alkaline solution. The combustion residue remaining in the sample dish after combustion is poured into the alkaline solution, and nitric acid, silver nitrate solution, and bromide or iodide are added. The alkaline solution is filtered off, and the obtained precipitate is subjected to a reduction treatment or a dissolution treatment. This is a method characterized by measuring the chlorine concentration of the solution thus obtained, and quantifying the chlorine in the silver resin paste from the measured value. The method for measuring the chlorine concentration of this solution is not particularly limited as long as the chlorine concentration can be measured, but it is preferable to measure the solution by ion chromatography.

【0005】[0005]

【発明の実施の形態】本発明による銀樹脂ペースト中の
塩素の定量方法は、次のとおりである。銀樹脂ペースト
を試料皿に秤取し、塩化水素の吸収液となるアルカリ性
溶液を加え、密閉式の耐圧性に優れた容器を用いて、高
圧酸素雰囲気下で燃焼する。この容器の一例としては、
JIS K2541原油及び石油製品−硫黄分試験方法のボンベ
式質量法で用いられるステンレス鋼製の耐圧容器があげ
られる。アルカリ性溶液は、塩素を含まない高純度のも
のが好ましく、例えば、高純度の水酸化ナトリウムある
いは炭酸ナトリウムをイオン交換水で溶解したものを用
いる。吸収液をアルカリ性とするのは、燃焼によって発
生する塩化水素を効率よく吸収するためであり、そのア
ルカリ度は弱アリカリ程度で支障はない。燃焼に際して
は、助燃剤を用いると、少ない回数の燃焼で、完全に秤
取した銀樹脂ペーストを燃やすことができる。ここまで
は、従来の方法であるボンブ法に準拠しており、これ以
降が、本発明の特徴的な部分である。燃焼後に、アルカ
リ性溶液を、一度、清浄な容器に移し入れ、そこに、試
料皿と、皿内の残留物をいっしょに静かに投入し、硝
酸、硝酸銀溶液、および臭化物もしくは沃化物を加え
る。この硝酸は、塩化銀の生成は2規定以上の酸濃度で
速やかに進行することが明らかであるため、アルカリ性
溶液を2規定以上の酸性にするためのものである。臭化
物もしくは沃化物は、アルカリ性溶液中の塩素イオンを
共沈効果によって完全に沈殿させるため加えるものであ
り、例えば、水溶性の臭化カリウムや沃化カリウムが好
ましい。硝酸銀溶液は、アルカリ性溶液に吸収された塩
化水素を塩化銀とし、さらに上述の共沈剤としてとして
加えた臭化物もしくは沃化物の銀化合物を生成させ、沈
殿させるために添加する。また、燃焼後の残留物は試料
皿にこびりついているので、剥がし取るために、超音波
処理を行うとよい。この段階で、アルカリ性溶液中に吸
収された塩化水素は、塩化銀としてアルカリ性溶液中に
沈殿する。このアルカリ性溶液を、ろ過し、沈殿物等を
回収する。このフィルター上に残り回収された沈殿物等
を、良く洗浄した後、フィルターとともに清浄な容器に
移し入れる。そこに、還元剤あるいは溶解剤を加え、定
容後、還元反応等を行う。フィルター上の沈殿がはがれ
にくくなっているので、超音波処理を行うとよい。還元
剤としては、水素化ホウ素ナトリウム溶液が好ましく、
塩化銀は速やかに還元され、塩素イオンを遊離する。溶
解剤としては、チオ尿素がある。これは、水素化ホウ素
ナトリウムのような還元性はないものの、銀と錯形成し
て塩素イオンを遊離する。いずれにせよ、ここで加える
還元剤または溶解剤は、塩素を含まないものが好まし
い。還元あるいは溶解反応後の溶液には、還元剤によっ
て析出した金属銀やすすなどの不溶解物を含んでいるた
め、さらにろ過を行う。このろ液を測定溶液として、ろ
液中の塩素濃度を測定し、銀樹脂ペースト中の塩素の定
量を行う。ろ液中の塩素濃度の測定方法としては、塩素
以外のハロゲンが妨害成分となる硝酸銀滴定法やチオシ
アン酸水銀法は好ましくなく、陰イオン交換カラムで試
料溶液に含まれる陰イオンを分離し、電気伝導度などの
検出器で試料溶液中の塩素イオンを検出するイオンクロ
マトグラフ法が好ましい。イオンクロマトグラフ法にて
測定する場合には、先の過程で加える還元剤または溶解
剤は、イオンクロマトグラフで測定した際の塩素イオン
のピークに影響を与えないものが好ましい。なお、この
測定操作中に塩素混入の可能性がある場合には、全体の
手順に渡って空試験を行い、周囲の環境からの塩素の混
入量を把握して、測定値を補正することが望ましい。な
お、本発明は、一般に塩化水素は、酸素雰囲気下で高温
の金属銀と接触させると塩化銀を生成することから、金
属銀を主成分として含む銀樹脂ペーストを、酸素雰囲気
下で燃焼すれば、生じた塩化水素が、必ずしもすべてア
ルカリ性溶液に吸収されるのではなく、一部が銀樹脂ペ
ースト中の金属銀と反応し塩化銀を生成し、試料皿内に
残留する可能性があることに着目したものであり、この
方法によると、ボンブ法では測定されない塩化銀となっ
て燃焼残留物中に残存する分の塩素濃度も測定でき、従
来の技術であるボンブ法が有する、真の濃度に比較して
低値を示し、かつ精度も十分でないという問題を解消す
ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for determining chlorine in a silver resin paste according to the present invention is as follows. The silver resin paste is weighed into a sample dish, an alkaline solution serving as an absorbing solution of hydrogen chloride is added, and the mixture is burned in a high-pressure oxygen atmosphere using a closed container having excellent pressure resistance. As an example of this container,
JIS K2541 Crude oil and petroleum products-a stainless steel pressure vessel used in the cylinder mass method of the sulfur content test method. The alkaline solution preferably has high purity and does not contain chlorine. For example, a solution obtained by dissolving high-purity sodium hydroxide or sodium carbonate in ion-exchanged water is used. The reason why the absorbing solution is made alkaline is to efficiently absorb hydrogen chloride generated by combustion, and its alkalinity is weak alkalinity. At the time of combustion, if the auxiliary agent is used, the completely weighed silver resin paste can be burned with a small number of combustions. Up to this point, the method conforms to the conventional method, the Bomb method, and the rest is the characteristic part of the present invention. After burning, the alkaline solution is once transferred to a clean container, into which the sample dish and the residue in the dish are gently poured together, and the nitric acid, silver nitrate solution and bromide or iodide are added. This nitric acid is used to make the alkaline solution more acidic than 2N because it is clear that the production of silver chloride proceeds rapidly at an acid concentration of 2N or more. The bromide or iodide is added to completely precipitate chloride ions in the alkaline solution by a coprecipitation effect. For example, water-soluble potassium bromide or potassium iodide is preferable. The silver nitrate solution is added to convert the hydrogen chloride absorbed in the alkaline solution into silver chloride, and to form and precipitate a bromide or iodide silver compound added as the above-mentioned coprecipitant. In addition, since the residue after combustion is stuck to the sample dish, it is preferable to perform ultrasonic treatment to remove the residue. At this stage, the hydrogen chloride absorbed in the alkaline solution precipitates as silver chloride in the alkaline solution. The alkaline solution is filtered to collect a precipitate and the like. The precipitate and the like remaining on the filter and collected are thoroughly washed, and then transferred to a clean container together with the filter. Thereto, a reducing agent or a solubilizer is added, and after a constant volume, a reduction reaction or the like is performed. Since the precipitate on the filter is hard to peel off, it is preferable to perform ultrasonic treatment. As the reducing agent, a sodium borohydride solution is preferable,
Silver chloride is rapidly reduced to liberate chloride ions. As a solubilizer, there is thiourea. Although it is not as reductive as sodium borohydride, it forms a complex with silver to release chloride ions. In any case, the reducing agent or the solubilizing agent added here preferably does not contain chlorine. Since the solution after the reduction or dissolution reaction contains insolubles such as metallic silver and soot precipitated by the reducing agent, the solution is further filtered. Using this filtrate as a measurement solution, the chlorine concentration in the filtrate is measured, and the amount of chlorine in the silver resin paste is determined. As a method for measuring the chlorine concentration in the filtrate, a silver nitrate titration method and a mercury thiocyanate method, in which halogens other than chlorine are obstructive components, are not preferable. An ion chromatography method in which chloride ions in a sample solution are detected by a detector such as a conductivity is preferable. When the measurement is performed by ion chromatography, it is preferable that the reducing agent or the solubilizing agent added in the previous step does not affect the peak of chloride ion when measured by ion chromatography. If there is a possibility of chlorine contamination during this measurement operation, a blank test should be performed throughout the entire procedure to determine the amount of chlorine contamination from the surrounding environment and correct the measured value. desirable. Note that, in the present invention, hydrogen chloride generally generates silver chloride when brought into contact with high-temperature metallic silver in an oxygen atmosphere, so that a silver resin paste containing metallic silver as a main component can be burned under an oxygen atmosphere. However, the generated hydrogen chloride is not always absorbed by the alkaline solution, but a part of it reacts with the metallic silver in the silver resin paste to generate silver chloride, which may remain in the sample dish. According to this method, the chlorine concentration of silver chloride, which cannot be measured by the bomb method and remains in the combustion residue, can also be measured. It is possible to solve the problem that the value is relatively low and the accuracy is not sufficient.

【0006】[0006]

【実施例】次に本発明の実施例について述べる。検量線
を作成するために、塩素濃度が異なる塩化ナトリウムの
水溶液を用意し、検量線用の標準液1〜4とした。これ
らの標準溶液1〜4を用いてイオンクロマトグラフによ
って塩素濃度を測定した。このイオンクロマトグラフ本
体には、横河アナリティカルシステム株式会社製IC4
000を、陰イオン交換カラムにはICS−A23を、
検出器には電気伝導度検出器を使用した。また、溶離液
は、炭酸ナトリウム水溶液と炭酸水素ナトリウム水溶液
の混合溶液を、除去液には硫酸水溶液を用いた。こうし
て得られた塩素濃度とイオンクロマトグラム上の塩素の
ピーク面積を次に示す。
Next, an embodiment of the present invention will be described. In order to prepare a calibration curve, aqueous solutions of sodium chloride having different chlorine concentrations were prepared and used as standard solutions 1 to 4 for the calibration curve. Using these standard solutions 1 to 4, the chlorine concentration was measured by ion chromatography. The main body of this ion chromatograph is IC4 manufactured by Yokogawa Analytical Systems Co., Ltd.
, ICS-A23 for the anion exchange column,
An electric conductivity detector was used as the detector. Further, a mixed solution of an aqueous solution of sodium carbonate and an aqueous solution of sodium hydrogen carbonate was used as an eluent, and an aqueous solution of sulfuric acid was used as a removing solution. The chlorine concentration thus obtained and the peak area of chlorine on the ion chromatogram are shown below.

【0007】 標準液 塩素濃度(mg/l) ピーク面積(μS/cm・s) 1 0 0 2 1 31 3 10 320 4 20 650 この値から図1に示す検量線を求めた。次に、試料とし
て、同一組成の銀樹脂ペーストA〜Cを石英製の試料皿
に各0.1g秤量して採取する。この試料に、助燃剤と
してアセトン5mlを加えた後、0.1%炭酸ナトリウ
ム水溶液20mlを、JIS K2541原油及び石油製品−硫
黄分試験方法のボンベ式質量法にて用いられる燃焼用ボ
ンベに入れた。ボンベのふたを完全に締め、ボンベ内に
圧力30kg/cm2で酸素を充填し、点火線に電圧を
印加して試料皿内の試料を燃焼させた。燃焼後、ボンベ
本体を、純水で、約20分間冷却後、ボンベ内のアルカ
リ性溶液と試料皿を清浄なポリプロピレン容器に移し入
れ、硝酸10ml、20%硝酸銀水溶液0.25ml、およ
び0.15%臭化カリウム水溶液0.5mlをそれに加
え、超音波処理を5分間行った。当該溶液を暗所に30
分間放置した後、孔径0.45μmのテフロン製フィル
ターを用いて吸引ろ過を行った。回収した沈殿物等を超
純水で良く洗浄した後に、テフロン製フィルターととも
に、再び清浄なポリプロピレン容器に移し入れ、0.5
%水素化ホウ素ナトリウム溶液10mlを加えた。それに
超音波処理を2分間施した後、孔径0.45μmのテフ
ロン製フィルターで再度ろ過した。このろ液を測定溶液
として、イオンクロマトグラフによって塩素濃度の測定
を行った。なお、イオンクロマトグラフの使用機器など
は、検量線作成時と同様とした。この試料A〜Cの各試
料溶液について、ピーク面積を求め、このピーク面積を
用いて検量線から試料溶液中の塩素濃度を求め、さらに
銀樹脂ペースト中の塩素を定量した。これらの結果を次
に示す。
Standard solution Chlorine concentration (mg / l) Peak area (μS / cm · s) 100 2 1 31 3 10 320 4 20 650 From this value, the calibration curve shown in FIG. 1 was obtained. Next, as a sample, 0.1 g of silver resin pastes A to C having the same composition are weighed and collected in a quartz sample dish. After adding 5 ml of acetone as a combustion aid to this sample, 20 ml of a 0.1% aqueous sodium carbonate solution was placed in a combustion cylinder used in a cylinder type mass method of JIS K2541 crude oil and petroleum products-sulfur content test method. . The cylinder was completely closed, the cylinder was filled with oxygen at a pressure of 30 kg / cm 2 , and a voltage was applied to the ignition wire to burn the sample in the sample dish. After burning, cool the cylinder body with pure water for about 20 minutes, transfer the alkaline solution in the cylinder and the sample dish to a clean polypropylene container, and add 10 ml of nitric acid, 0.25 ml of a 20% silver nitrate aqueous solution, and 0.15% 0.5 ml of an aqueous potassium bromide solution was added thereto, and sonication was performed for 5 minutes. Place the solution in the dark for 30 minutes.
After standing for minutes, suction filtration was performed using a Teflon filter having a pore size of 0.45 μm. After the collected precipitates and the like are thoroughly washed with ultrapure water, they are transferred again to a clean polypropylene container together with a Teflon filter, and the
10 ml of a% sodium borohydride solution were added. After sonication for 2 minutes, the mixture was filtered again with a Teflon filter having a pore size of 0.45 μm. Using this filtrate as a measurement solution, the chlorine concentration was measured by ion chromatography. The equipment used for the ion chromatograph was the same as when the calibration curve was created. For each of the sample solutions A to C, the peak area was determined, the peak area was used to determine the chlorine concentration in the sample solution from the calibration curve, and the chlorine in the silver resin paste was quantified. The results are shown below.

【0008】 試料 ピーク面積 試料溶液中塩素濃度 銀樹脂ペースト中の塩素 (μS/cm・s) (mg/l) (mg/g) A 356 11 1,100 B 160 5 500 C 73 2.3 230 次に本発明の効果を確認するためにボンブ法で行った比
較例を示す。まず、検量線を実施例と同様の方法で作成
した。次に、同じ銀樹脂ペーストA〜Cを実施例と同様
の方法で燃焼させ、ボンベを冷却後、ボンベ内のアルカ
リ性溶液のみを清浄なポリプロピレン容器に移し入れ、
超純水を加え50mlに定容した。この溶液を測定溶液と
して、実施例と同様にイオンクロマトグラフの方法で塩
素濃度を求め、さらに銀樹脂ペースト中の塩素を定量し
た。これらの結果を次に示す。
Sample Peak Area Chlorine Concentration in Sample Solution Chlorine in Silver Resin Paste (μS / cm · s) (mg / l) (mg / g) A 356 11 1,100 B 1605 500 C 73 2.3 230 Next, a comparative example performed by the bomb method to confirm the effect of the present invention will be described. First, a calibration curve was created in the same manner as in the example. Next, the same silver resin pastes A to C were burned in the same manner as in the example, and after cooling the cylinder, only the alkaline solution in the cylinder was transferred to a clean polypropylene container.
Ultrapure water was added to adjust the volume to 50 ml. Using this solution as a measurement solution, the chlorine concentration was determined by ion chromatography in the same manner as in the examples, and the chlorine in the silver resin paste was quantified. The results are shown below.

【0009】 試料 ピーク面積 試料溶液中塩素濃度 銀樹脂ペースト中の塩素 (μS/cm・s) (mg/l) (mg/g) A 57 1.8 900 B 21 0.7 350 C 4.8 0.2 100 比較例で得られた塩素の定量値は、実施例で得られた定
量値に比較して低値を示しただけでなく、その値の差も
一定でなく、従来測定できなかった分に差があり、従来
法での測定値がこの点でも不十分であることが判明し
た。
Sample Peak Area Chlorine Concentration in Sample Solution Chlorine in Silver Resin Paste (μS / cm · s) (mg / l) (mg / g) A 57 1.8 900 B 21 0.7 350 C 4.8 0.2 100 The quantitative value of chlorine obtained in the comparative example was not only a low value compared to the quantitative value obtained in the example, but the difference between the values was not constant and could not be measured conventionally. Therefore, it was found that the values measured by the conventional method were insufficient in this respect.

【0010】[0010]

【発明の効果】本発明によれば、銀樹脂ペースト中の全
塩素を、塩素の損失なく簡易に精度良く定量することが
でき、銀樹脂ペーストメーカーおよび銀樹脂ペーストユ
ーザーに、精度の良い銀樹脂ペースト中の塩素の定量値
を提供できる。これにより、銀樹脂ペーストにおける品
質悪化要因である塩素の含有が少ない銀樹脂ペーストの
区分が可能となる。
According to the present invention, the total amount of chlorine in the silver resin paste can be easily and accurately determined without loss of chlorine. It can provide a quantitative value of chlorine in the paste. This makes it possible to classify the silver resin paste containing less chlorine, which is a factor of quality deterioration in the silver resin paste.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例、比較例において、アルカリ性溶液中の
塩素濃度とイオンクロマトグラフ上の塩素のピーク面積
との関係を示す検量線である。
FIG. 1 is a calibration curve showing a relationship between a chlorine concentration in an alkaline solution and a peak area of chlorine on an ion chromatograph in Examples and Comparative Examples.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 銀樹脂ペーストを、アルカリ性溶液を加
えた高圧酸素雰囲気の密閉容器内で燃焼させ、発生した
塩化水素を該アルカリ性溶液に吸収してその塩素濃度を
測定し、銀樹脂ペースト中の塩素を定量する方法におい
て、燃焼後に該試料皿に残留した燃焼残留物を該アルカ
リ性溶液に入れ、硝酸、硝酸銀溶液、および臭化物もし
くは沃化物を加え、該アルカリ性溶液中の沈殿物をろ別
し、その沈殿物を還元処理あるいは溶解処理して得られ
た溶液中の塩素濃度を測定することを特徴とする銀樹脂
ペースト中の塩素定量方法
Claims 1. A silver resin paste is burned in a closed vessel in a high-pressure oxygen atmosphere to which an alkaline solution has been added, and the generated hydrogen chloride is absorbed in the alkaline solution, and its chlorine concentration is measured. In the method for determining chlorine, the combustion residue remaining in the sample dish after combustion is put into the alkaline solution, nitric acid, silver nitrate solution, and bromide or iodide are added, and the precipitate in the alkaline solution is filtered off, A method for determining chlorine in a silver resin paste, comprising measuring a chlorine concentration in a solution obtained by subjecting the precipitate to a reduction treatment or a dissolution treatment.
JP11081591A 1999-03-25 1999-03-25 Quantitative method for chlorine in silver resin paste Pending JP2000275236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11081591A JP2000275236A (en) 1999-03-25 1999-03-25 Quantitative method for chlorine in silver resin paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11081591A JP2000275236A (en) 1999-03-25 1999-03-25 Quantitative method for chlorine in silver resin paste

Publications (1)

Publication Number Publication Date
JP2000275236A true JP2000275236A (en) 2000-10-06

Family

ID=13750570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11081591A Pending JP2000275236A (en) 1999-03-25 1999-03-25 Quantitative method for chlorine in silver resin paste

Country Status (1)

Country Link
JP (1) JP2000275236A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101334365B (en) * 2007-06-29 2010-11-17 上海宝钢工业检测公司 Determination method for chloride ion content of temper rolling liquor for steel plate rolling
CN103454356A (en) * 2013-09-11 2013-12-18 神华集团有限责任公司 Method for determining total chlorine content in direct coal liquefaction product
JP5908148B1 (en) * 2015-06-24 2016-04-26 株式会社キャタラー Method for analyzing chlorine content of carbon material and method for producing carbon material from which chlorine has been removed
JP2018021905A (en) * 2016-07-25 2018-02-08 住友金属鉱山株式会社 Quantitative analysis method of total chlorine concentration, chloride ion concentration and hypochlorite concentration in liquid containing metal ion
CN110431414A (en) * 2017-08-18 2019-11-08 株式会社Lg化学 The quantitative analysis method of Cl is remained in zinc ferrite
JP7512832B2 (en) 2020-10-15 2024-07-09 住友金属鉱山株式会社 Method for Analyzing Metal Powders Containing Organic Compounds

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101334365B (en) * 2007-06-29 2010-11-17 上海宝钢工业检测公司 Determination method for chloride ion content of temper rolling liquor for steel plate rolling
CN103454356A (en) * 2013-09-11 2013-12-18 神华集团有限责任公司 Method for determining total chlorine content in direct coal liquefaction product
JP5908148B1 (en) * 2015-06-24 2016-04-26 株式会社キャタラー Method for analyzing chlorine content of carbon material and method for producing carbon material from which chlorine has been removed
JP2018021905A (en) * 2016-07-25 2018-02-08 住友金属鉱山株式会社 Quantitative analysis method of total chlorine concentration, chloride ion concentration and hypochlorite concentration in liquid containing metal ion
JP7056022B2 (en) 2016-07-25 2022-04-19 住友金属鉱山株式会社 Quantitative analysis method of chlorine concentration, chloride ion concentration and hypochlorous acid concentration in a mixture of sodium hypochlorite and chloride ion in a liquid containing metal ions
CN110431414A (en) * 2017-08-18 2019-11-08 株式会社Lg化学 The quantitative analysis method of Cl is remained in zinc ferrite
US11249060B2 (en) 2017-08-18 2022-02-15 Lg Chem, Ltd. Method for quantitatively analyzing residual Cl in zinc ferrite
CN110431414B (en) * 2017-08-18 2022-03-11 株式会社Lg化学 Quantitative analysis method for residual Cl in zinc ferrite
JP7512832B2 (en) 2020-10-15 2024-07-09 住友金属鉱山株式会社 Method for Analyzing Metal Powders Containing Organic Compounds

Similar Documents

Publication Publication Date Title
CN103364426B (en) Method for determining content of zinc in zinc concentrate through energy-dispersive X-ray fluorescence spectrometry
JP2000275236A (en) Quantitative method for chlorine in silver resin paste
CN111220607A (en) Copper color developing solution and preparation method and application thereof
Garbos et al. Preconcentration of inorganic species of antimony by sorption on Polyorgs 31 followed by atomic absorption spectrometry detection
Savory et al. Gas chromatographic determination of chromium in serum
CN112557142B (en) Sample pretreatment method, halogen content detection method and application
Opoka et al. Applicability of the silver amalgam electrode in voltammetric determination of zinc and copper in gastric juice and gastric mucosa of rats
JPH02162257A (en) Method and apparatus for measuring concentrations of components of fluorine-containing gas
JP6919360B2 (en) How to quantify the amount of silicon in metallic materials
KR101048558B1 (en) Fluorine distillation apparatus and determination method of sodium monofluorophosphate in toothpaste
Weaver et al. Polarographic Determination of Sodium or Potassium in Various Materials
JP4424831B2 (en) Sample concentration method for measuring trace metals in liquids
Buldini et al. Differential pulse polarographic determination of traces of arsenic in semiconductor silicon
JPS622259B2 (en)
Pinkston et al. Determination of Lead in Lead Drosses and Lead-Base Alloys
Calokerinos et al. Indirect potentiometric determination of sulphide with a cadmium ion-selective electrode
Watson Colour reactions in the micro-chemical determination of minerals
JP3212263B2 (en) Method for analyzing phosphorus in silicon material
Maienthal Analysis of botanical standard reference materials by cathode ray polarography
Ogorevc et al. A novel approach to decomposition of foodstuffs for stripping voltammetric determination of lead, cadmium and copper
Letonoff et al. INORGANIC 433
JPH1090185A (en) Method for analyzing carbon material
Wilson A scheme for the quantitative analysis of a phosphate rock including the use of a benzoate separation
JP2005291969A (en) Quantitative analyzing method of fluorine
JPH1164318A (en) Method for determining element contained in liquid chemical

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20101213

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20101213

LAPS Cancellation because of no payment of annual fees