JP2000269503A - Semiconductor integrated circuit device and its manufacture - Google Patents

Semiconductor integrated circuit device and its manufacture

Info

Publication number
JP2000269503A
JP2000269503A JP11067997A JP6799799A JP2000269503A JP 2000269503 A JP2000269503 A JP 2000269503A JP 11067997 A JP11067997 A JP 11067997A JP 6799799 A JP6799799 A JP 6799799A JP 2000269503 A JP2000269503 A JP 2000269503A
Authority
JP
Japan
Prior art keywords
integrated circuit
circuit device
region
semiconductor integrated
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11067997A
Other languages
Japanese (ja)
Inventor
Fumio Otsuka
文雄 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11067997A priority Critical patent/JP2000269503A/en
Publication of JP2000269503A publication Critical patent/JP2000269503A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7839Field effect transistors with field effect produced by an insulated gate with Schottky drain or source contact

Abstract

PROBLEM TO BE SOLVED: To provide technique capable of realizing micronization of a partial depletion type MIS FET which has Schottky junction. SOLUTION: A resist pattern 12 is formed on an element isolating region 10 surrounding a source, without being limited by the alignment margin to the element isolating region 10. After that, a third n+-type semiconductor region 6c, whose junction is shallower than the thickness of a silicide layer, is formed in a part of an n+-type semiconductor region constituting a source, by slant ion implantation using a gate electrode 8 and the shadowing of the resist pattern 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路装
置およびその製造技術に関し、特に、SOI(Silicon
On Insulator)基板上に形成される部分空乏型MISF
ET(Metal Insulator Semiconductor Field Effect T
ransistor )に適用して有効な技術に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device and a manufacturing technique thereof, and more particularly, to an SOI (Silicon) device.
On Insulator) Partially depleted MISF formed on substrate
ET (Metal Insulator Semiconductor Field Effect T
ransistor).

【0002】[0002]

【従来の技術】部分空乏型MISFETでは、Ids
(ドレイン電流)−Vg(ゲート電圧)特性にキンクが
生じ、しきい値電圧が低下するという問題がある。これ
は、ドレイン端のチャネル領域でインパクトイオン化に
よるホールと電子対が発生し、発生した上記ホールが基
板に蓄積されるために生じる。そこで、例えばアイ・イ
ー・ディー・エム(International Electron Device Me
etings. A Compact Schottky Body Contact Technology
for SOI Transistors PP.419 〜422, 1997 )に記載さ
れているように、ショットキー接合をソース側に形成
し、ソースと同じ電圧を基板に与えることによって、基
板の浮遊現象を抑える方法が提案されている。
2. Description of the Related Art In a partially depleted MISFET, Ids
There is a problem that a kink occurs in the (drain current) -Vg (gate voltage) characteristic, and the threshold voltage decreases. This occurs because holes and electron pairs are generated by impact ionization in the channel region at the drain end, and the generated holes are accumulated in the substrate. So, for example, IED (International Electron Device Me
etings. A Compact Schottky Body Contact Technology
For SOI Transistors PP.419-422, 1997), a method has been proposed in which a Schottky junction is formed on the source side and the same voltage as the source is applied to the substrate to suppress the floating phenomenon of the substrate. ing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ソース
を構成する半導体領域を形成する際、ショットキー接合
が形成される領域をフォトレジストパターンで覆い、こ
れをマスクとして上記半導体領域を構成する不純物が半
導体基板に導入されるが、上記マスクと素子分離領域と
の合わせ余裕を充分にとる必要があり、これによってM
ISFETの微細化が制限されることが考えられた。
However, when a semiconductor region constituting a source is formed, a region where a Schottky junction is to be formed is covered with a photoresist pattern. Although it is introduced into the substrate, it is necessary to provide a sufficient margin for the alignment between the mask and the element isolation region.
It was considered that miniaturization of the ISFET was limited.

【0004】本発明の目的は、ショットキー接合を有す
る部分空乏型MISFETの微細化を実現することので
きる技術を提供することにある。
An object of the present invention is to provide a technique capable of realizing miniaturization of a partially depleted MISFET having a Schottky junction.

【0005】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
[0005] The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0006】[0006]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
次のとおりである。すなわち、 (1)本発明の半導体集積回路装置は、支持基板上に埋
め込み絶縁膜を介して薄膜シリコン層が設けられたSO
I基板上に、相対的に不純物濃度の異なる複数の半導体
領域によって構成されたソースを備えた部分空乏型MI
SFETを有し、複数の半導体領域が形成された活性領
域の表面にはシリサイド層が形成されており、複数の半
導体領域を構成する一部の半導体領域の接合の深さが、
上記シリサイド層の厚さよりも浅く、ショットキー接合
が形成されているものである。
SUMMARY OF THE INVENTION Among the inventions disclosed in the present application, the outline of a representative one will be briefly described.
It is as follows. That is, (1) In the semiconductor integrated circuit device of the present invention, the SOI in which the thin silicon layer is provided on the supporting substrate via the buried insulating film is provided.
Partially depleted MI having a source formed by a plurality of semiconductor regions having relatively different impurity concentrations on an I substrate
The semiconductor device has an SFET, a silicide layer is formed on the surface of the active region in which the plurality of semiconductor regions are formed, and the junction depth of some of the semiconductor regions constituting the plurality of semiconductor regions is
It is shallower than the silicide layer and has a Schottky junction formed.

【0007】(2)本発明の半導体集積回路装置は、前
記(1)の部分空乏型MISFETにおいて、複数の半
導体領域を構成する一部の半導体領域を、ゲート電極の
側壁と素子分離領域とが交差する近傍の活性領域に形成
された半導体領域とするものである。
(2) In the semiconductor integrated circuit device according to the present invention, in the partially depleted MISFET of the above (1), a part of the plurality of semiconductor regions constituting the plurality of semiconductor regions is formed by the side wall of the gate electrode and the element isolation region. This is a semiconductor region formed in the active region near the intersection.

【0008】(3)本発明の半導体集積回路装置は、前
記(1)の部分空乏型MISFETにおいて、シリサイ
ド層を、チタンシリサイド膜、コバルトシリサイド膜ま
たはニッケルシリサイド膜とするものである。
(3) In the semiconductor integrated circuit device of the present invention, in the partially depleted MISFET of (1), the silicide layer is a titanium silicide film, a cobalt silicide film or a nickel silicide film.

【0009】(4)本発明の半導体集積回路装置は、前
記(1)の部分空乏型MISFETにおいて、複数の半
導体領域を構成する一部の半導体領域に、この一部の半
導体領域を構成する不純物と異なる導電型の不純物が導
入されているものである。
(4) In the semiconductor integrated circuit device according to the present invention, in the partially depleted MISFET of (1), a part of the semiconductor regions constituting the plurality of semiconductor regions is replaced with an impurity constituting the part of the semiconductor regions. And impurities of a different conductivity type are introduced.

【0010】(5)本発明の半導体集積回路装置の製造
方法は、支持基板上に埋め込み絶縁膜を介して薄膜シリ
コン層が設けられたSOI基板上に、ショットキー接合
を備えた部分空乏型MISFETを形成する際、ゲート
電極の側壁と素子分離領域とが交差する点からの最短距
離が、マスクパターンの厚さ×tanθ(θ=15〜4
5度)以内となるように、ソースを囲む素子分離領域上
の一部にマスクパターンを形成する工程と、ゲート電極
の法線方向に対して45度、支持基板の法線方向に対し
て上記θの角度で、活性領域にチャネルと同じ導電型の
不純物をイオン打ち込みする工程と、活性領域の表面に
シリサイド層を形成する工程とを有するものである。
(5) A method of manufacturing a semiconductor integrated circuit device according to the present invention is characterized in that a partially depleted MISFET having a Schottky junction is provided on an SOI substrate having a thin silicon layer provided on a supporting substrate via a buried insulating film. Is formed, the shortest distance from the intersection of the side wall of the gate electrode and the element isolation region is the thickness of the mask pattern × tan θ (θ = 15 to 4
5 °), forming a mask pattern on a part of the element isolation region surrounding the source, and forming the mask pattern at 45 ° with respect to the normal direction of the gate electrode and with respect to the normal direction of the support substrate. a step of ion-implanting an impurity of the same conductivity type as the channel into the active region at an angle of θ; and a step of forming a silicide layer on the surface of the active region.

【0011】(6)本発明の半導体集積回路装置の製造
方法は、支持基板上に埋め込み絶縁膜を介して薄膜シリ
コン層が設けられたSOI基板上に、ショットキー接合
を備えた部分空乏型MISFETを形成する際、ゲート
電極の側壁と素子分離領域とが交差する点からの最短距
離が、マスクパターンの厚さ×tanθ(θ=15〜4
5度)以内となるように、ソースを囲む素子分離領域上
の一部にマスクパターンを形成する工程と、ゲート電極
の法線方向に対して45度、支持基板の法線方向に対し
て上記θの角度で、活性領域にチャネルと同じ導電型の
不純物をイオン打ち込みする工程と、活性領域にチャネ
ルと異なる導電型の不純物をイオン打ち込みする工程
と、活性領域の表面にシリサイド層を形成する工程とを
有するものである。
(6) A method of manufacturing a semiconductor integrated circuit device according to the present invention is characterized in that a partially depleted MISFET having a Schottky junction is formed on an SOI substrate having a thin silicon layer provided on a supporting substrate via a buried insulating film. Is formed, the shortest distance from the intersection of the side wall of the gate electrode and the element isolation region is the thickness of the mask pattern × tan θ (θ = 15 to 4
5 [deg.]), Forming a mask pattern on a part of the element isolation region surrounding the source so as to fall within 45 [deg.] With respect to the normal direction of the gate electrode, ion implantation of an impurity of the same conductivity type as the channel into the active region at an angle of θ, ion implantation of an impurity of a conductivity type different from the channel into the active region, and forming a silicide layer on the surface of the active region And

【0012】(7)本発明の半導体集積回路装置の製造
方法は、前記(5)または(6)の部分空乏型MISF
ETの製造方法において、マスクパターンはレジスト膜
またはゲート電極を構成する導電膜と同一層の導電膜に
よって構成されるものである。
(7) A method of manufacturing a semiconductor integrated circuit device according to the present invention, wherein the partially depleted MISF according to (5) or (6) above is used.
In the ET manufacturing method, the mask pattern is formed of a resist film or a conductive film of the same layer as the conductive film forming the gate electrode.

【0013】(8)本発明の半導体集積回路装置の製造
方法は、前記(5)または(6)の部分空乏型MISF
ETの製造方法において、イオン打ち込みを、ゲート電
極の法線方向に対して45度の角度を有する4方向から
行うものである。
(8) A method of manufacturing a semiconductor integrated circuit device according to the present invention, wherein the partially depleted MISF according to (5) or (6) is used.
In the ET manufacturing method, ion implantation is performed from four directions having an angle of 45 degrees with respect to the normal direction of the gate electrode.

【0014】上記した手段によれば、素子分離領域との
位置合わせ余裕に制限されることなく、素子分離領域上
に形成されたマスクパターンと、ゲート電極とのシャド
ウイングを利用した斜めイオン打ち込みによってソース
を構成する複数の半導体領域が形成され、その一部にシ
リサイド層の厚さよりも接合の浅い半導体領域が形成さ
れて、ショットキー接合を形成することができる。
According to the above-mentioned means, the oblique ion implantation utilizing shadowing between the mask pattern formed on the element isolation region and the gate electrode is performed without being limited by the margin for alignment with the element isolation region. A plurality of semiconductor regions constituting the source are formed, and a semiconductor region having a junction shallower than the thickness of the silicide layer is formed in a part thereof, so that a Schottky junction can be formed.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0016】なお、実施の形態を説明するための全図に
おいて同一機能を有するものは同一の符号を付し、その
繰り返しの説明は省略する。
In all the drawings for describing the embodiments, components having the same functions are denoted by the same reference numerals, and their repeated description will be omitted.

【0017】(実施の形態1)図1は、本発明の一実施
の形態である部分空乏型MISFETを示す半導体基板
の要部平面図であり、図2は、図1のII−II線における
半導体基板の要部断面図、図3は、図1のIII −III 線
における半導体基板の要部断面図である。図には、nチ
ャネルMISFETを示している。
(Embodiment 1) FIG. 1 is a plan view of a principal part of a semiconductor substrate showing a partially depleted MISFET according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line II-II of FIG. FIG. 3 is a cross-sectional view of a main part of the semiconductor substrate taken along line III-III in FIG. 1. The figure shows an n-channel MISFET.

【0018】nチャネルMISFETは、支持基板1上
に埋め込み酸化膜2を介して設けられた厚さ約0. 2〜
0. 25μm程度の薄膜シリコン層3に形成されたp型
ウエル4上に形成され、このp型ウエル4の表面には、
一対のn- 型半導体領域5および一対のn+ 型半導体領
域6によってソース、ドレインが構成されている。上記
- 型半導体領域5の薄膜シリコン層3の表面からの深
さは約0. 05μm程度である。
The n-channel MISFET has a thickness of about 0.2 to 2 provided on a supporting substrate 1 with a buried oxide film 2 interposed therebetween.
It is formed on a p-type well 4 formed on a thin silicon layer 3 of about 0.25 μm.
A pair of n type semiconductor regions 5 and a pair of n + type semiconductor regions 6 constitute a source and a drain. The depth of the n type semiconductor region 5 from the surface of the thin film silicon layer 3 is about 0.05 μm.

【0019】ドレインを構成する上記n+ 型半導体領域
6は、第1n+ 型半導体領域6a(図1では相対的に濃
い網掛けのハッチングで示す)と、この第1n+ 型半導
体領域6aの約1/2程度の不純物濃度を有する第2n
+ 型半導体領域6b(図1では相対的に薄い網掛けのハ
ッチングで示す)とによって構成されている。また、ソ
ースを構成する上記n+ 型半導体領域6は、第1n+
半導体領域6aと、この第1n+ 型半導体領域6aの約
1/2程度の不純物濃度を有する第2n+ 型半導体領域
6bと、さらに第1n+ 型半導体領域6aの約1/4程
度の不純物濃度を有する第3n+ 型半導体領域6cとに
よって構成されている。このうち第1n+ 型半導体領域
6aの薄膜シリコン層3の表面からの深さは約0. 25
μm程度であり、またソースにのみ形成された第3n+
型半導体領域6cの薄膜シリコン層3の表面からの深さ
は約0. 06μm程度である。
[0019] The n + -type semiconductor region 6 constituting the drain, the first 1n + -type semiconductor regions 6a (indicated by hatching in hanging in FIG relatively dark mesh), about the first 1n + -type semiconductor regions 6a 2n having an impurity concentration of about 1/2
And a + -type semiconductor region 6b (shown by relatively thin hatching in FIG. 1). Further, the n + -type semiconductor region 6 constituting the source, the 2n + -type semiconductor regions 6b having a first 1n + -type semiconductor regions 6a, the impurity concentration of about half of the first 1n + -type semiconductor regions 6a And a third n + -type semiconductor region 6c having an impurity concentration of about 1 / of that of the first n + -type semiconductor region 6a. The depth of the first n + -type semiconductor region 6a from the surface of the thin film silicon layer 3 is about 0.25.
μm and the third n + formed only on the source.
The depth of the type semiconductor region 6c from the surface of the thin-film silicon layer 3 is about 0.06 μm.

【0020】上記一対のn- 型半導体領域5の間のp型
ウエル4の表面には、図示はしないがしきい値電圧制御
層が形成されている。このしきい値電圧制御層の上に
は、酸化シリコン膜でゲート絶縁膜7が構成され、その
上層にはn型不純物が導入された多結晶シリコン膜でゲ
ート電極8が形成されている。
Although not shown, a threshold voltage control layer is formed on the surface of the p-type well 4 between the pair of n -type semiconductor regions 5. A gate insulating film 7 is formed of a silicon oxide film on the threshold voltage control layer, and a gate electrode 8 is formed on the gate insulating film 7 of a polycrystalline silicon film doped with an n-type impurity.

【0021】さらに、このゲート電極8の表面およびソ
ース、ドレインを構成する一対のn+ 型半導体領域6の
表面にはシリサイド層9が形成されている。シリサイド
層9は、例えばチタンシリサイド膜(TiSi2 )、コ
バルトシリサイド膜(CoSi2 )またはニッケルシリ
サイド膜(NiSi)によって構成され、その厚さは約
0. 07μm程度である。
Further, a silicide layer 9 is formed on the surface of the gate electrode 8 and the surface of the pair of n + -type semiconductor regions 6 constituting the source and the drain. The silicide layer 9 is made of, for example, a titanium silicide film (TiSi 2 ), a cobalt silicide film (CoSi 2 ), or a nickel silicide film (NiSi), and has a thickness of about 0.07 μm.

【0022】ここで、ソースの一部を構成する第3n+
型半導体領域6cの表面に形成されたシリサイド層9
は、上記第3n+ 型半導体領域6cの接合深さよりも厚
く設けられてショットキー接合が形成される。
Here, the 3n + th part of the source
Silicide layer 9 formed on the surface of type semiconductor region 6c
Is formed thicker than the junction depth of the third n + -type semiconductor region 6c to form a Schottky junction.

【0023】次に、本実施の形態である部分空乏型MI
SFETの製造方法を図4〜図8を用いて説明する。
Next, the partially depleted MI according to the present embodiment is described.
The method of manufacturing the SFET will be described with reference to FIGS.

【0024】まず、図4に示すように、支持基板1上の
埋め込み酸化膜2を介して設けられた0. 25μm程度
の厚さの薄膜シリコン層3に酸化シリコン膜によって構
成される溝型の素子分離領域10を形成する。次いで、
薄膜シリコン層3にp型ウエル4を形成した後、チャネ
ル領域へp型不純物、例えばボロン(B)を導入して、
図示はしないがしきい値電圧制御層を形成する。
First, as shown in FIG. 4, a groove-shaped silicon oxide film is formed on a thin silicon layer 3 having a thickness of about 0.25 μm provided through a buried oxide film 2 on a support substrate 1. An element isolation region 10 is formed. Then
After forming a p-type well 4 in the thin-film silicon layer 3, a p-type impurity, for example, boron (B) is introduced into the channel region,
Although not shown, a threshold voltage control layer is formed.

【0025】次に、薄膜シリコン層3の表面に酸化シリ
コン膜によって構成されるゲート絶縁膜7を約6. 5n
mの厚さで形成した後、ゲート絶縁膜7の上層にn型不
純物、例えばリン(P)を添加した多結晶シリコン膜
(図示せず)を堆積し、次いでレジストパターンをマス
クとしてこの多結晶シリコン膜をエッチングすることに
よりゲート電極8を形成する。
Next, a gate insulating film 7 made of a silicon oxide film is formed on the surface of the thin silicon layer 3 by about 6.5 n.
Then, a polycrystalline silicon film (not shown) to which an n-type impurity, for example, phosphorus (P) is added is deposited on the upper layer of the gate insulating film 7, and then the polycrystalline silicon film is formed using the resist pattern as a mask. The gate electrode 8 is formed by etching the silicon film.

【0026】次に、図5に示すように、ゲート電極8を
マスクとしてp型ウエル4にn型不純物、例えば砒素
(As)を導入し、ソース、ドレインを構成する低濃度
のn-型半導体領域5を形成する。次いで、ゲート電極
8の上層に化学的気相成長(Chemical Vapor Depositio
n :CVD)法で堆積した酸化シリコン膜(図示せず)
をRIE(Reactive Ion Etching)法でエッチングし
て、ゲート電極8の側壁にサイドウォールスペーサ11
を形成する。
Next, as shown in FIG. 5, n-type impurities into the p-type well 4 of the gate electrode 8 as a mask to introduce for example arsenic (As), a low concentration constituting a source, a drain n - -type semiconductor Region 5 is formed. Then, a chemical vapor deposition (Chemical Vapor Depositio) is formed on the upper layer of the gate electrode 8.
n: silicon oxide film deposited by CVD) method (not shown)
Is etched by RIE (Reactive Ion Etching), and sidewall spacers 11 are formed on the side walls of the gate electrode 8.
To form

【0027】次に、図6に示すように、ゲート電極8の
側壁と素子分離領域10とが交差する点からの最短距離
dがR×tanθ以内となるようにソースを囲む素子分
離領域10上の少なくとも一箇所に矩形のレジストパタ
ーン12を形成する。ここで、Rはレジストパターン1
2の厚さであり、θは支持基板1の法線方向に対する角
度であって15〜45度の範囲である。
Next, as shown in FIG. 6, on the device isolation region 10 surrounding the source, the shortest distance d from the intersection of the side wall of the gate electrode 8 and the device isolation region 10 is within R × tan θ. A rectangular resist pattern 12 is formed at least at one position. Here, R is a resist pattern 1
And θ is an angle with respect to the normal direction of the support substrate 1 and is in a range of 15 to 45 degrees.

【0028】次に、ゲート電極8およびレジストパター
ン12のシャドウイングを用いた斜めイオン打ち込みに
よってn型不純物、例えばPまたはAsをp型ウエル4
に注入し、ソース、ドレインを構成する高濃度のn+
半導体領域6を形成する。すなわち、ゲート電極8の法
線方向に対して45度の角度で、かつ支持基板1の法線
方向に対してθの角度で、n型不純物がp型ウエル4に
イオン打ち込みによって4方向から注入される。なお、
1方向からの注入量は、例えば5×1014cm-2程度で
ある。
Next, an n-type impurity, for example, P or As is added to the p-type well 4 by oblique ion implantation using shadowing of the gate electrode 8 and the resist pattern 12.
To form a high-concentration n + -type semiconductor region 6 constituting a source and a drain. That is, n-type impurities are implanted into the p-type well 4 from four directions at an angle of 45 degrees with respect to the normal direction of the gate electrode 8 and at an angle of θ with respect to the normal direction of the support substrate 1. Is done. In addition,
The injection amount from one direction is, for example, about 5 × 10 14 cm −2 .

【0029】これによって、ゲート電極8およびレジス
トパターン12によって遮蔽された領域には1方向から
のn型不純物が導入されて第3n+ 型半導体領域6cが
形成され、ゲート電極8によって遮蔽された領域または
レジストパターン12によって遮蔽された領域には2方
向からのn型不純物が導入されて第2n+ 型半導体領域
6bが形成されるが、それ以外の領域では4方向からの
n型不純物が導入されて第1n+ 型半導体領域6aが形
成される。図7に、前記図6のVII −VII 線における半
導体基板の要部断面図を示す。
As a result, an n-type impurity from one direction is introduced into a region shielded by the gate electrode 8 and the resist pattern 12 to form a third n + -type semiconductor region 6c, and the region shielded by the gate electrode 8 Alternatively, n-type impurities from two directions are introduced into a region shielded by resist pattern 12 to form second n + -type semiconductor region 6b, while n-type impurities from four directions are introduced into other regions. Thus, a first n + type semiconductor region 6a is formed. FIG. 7 is a cross-sectional view of a main part of the semiconductor substrate taken along line VII-VII in FIG.

【0030】次に、支持基板1上にチタン膜(図示せ
ず)をスパッタリング法またはCVD法によって堆積す
る。その後、窒素雰囲気中で600〜700℃の温度で
RTA(Rapid Thermal Annealing )法により熱処理
(第1アニール)を行ない、次いで未反応のチタン膜を
除去した後に、窒素雰囲気中で800〜900℃の温度
でRTA法により熱処理(第2アニール)を行うことに
より、ソース、ドレインを構成する一対のn+ 型半導体
領域6の表面およびゲート電極8の表面に、厚さ約0.
07μm程度のTiSi2 膜によって構成されるシリサ
イド層9を形成する。
Next, a titanium film (not shown) is deposited on the support substrate 1 by a sputtering method or a CVD method. Thereafter, heat treatment (first annealing) is performed by RTA (Rapid Thermal Annealing) at a temperature of 600 to 700 ° C. in a nitrogen atmosphere, and after removing an unreacted titanium film, the film is heated to 800 to 900 ° C. in a nitrogen atmosphere. By performing heat treatment (second annealing) at a temperature by the RTA method, the surface of the pair of n + -type semiconductor regions 6 constituting the source and the drain and the surface of the gate electrode 8 have a thickness of about 0.2 mm.
A silicide layer 9 composed of a TiSi 2 film of about 07 μm is formed.

【0031】ここで、前記図3に示したように、第3n
+ 型半導体領域6cの深さが約0.06μmであるの
で、シリサイド層9の厚さが第3n+ 型半導体領域6c
の深さ以上となり、第3n+ 型半導体領域6cではシリ
サイド層9がp型ウエル4に接触してショットキー接合
が形成される。
Here, as shown in FIG.
Since the depth of + -type semiconductor region 6c is approximately 0.06 .mu.m, the thickness of the silicide layer 9 is the 3n + -type semiconductor region 6c
And the silicide layer 9 contacts the p-type well 4 in the third n + -type semiconductor region 6c to form a Schottky junction.

【0032】なお、本実施の形態1では、斜めイオン打
ち込みのマスクにレジストパターン12を用いたが、斜
めイオン打ち込みのマスクにゲート電極8を構成する多
結晶シリコン膜と同一層の多結晶シリコン膜を用いても
よい。ゲート電極8の側壁と素子分離領域10とが交差
する点からの最短距離dがG×tanθ以内となるよう
にソースを囲む素子分離領域10上の少なくとも一箇所
に多結晶シリコン膜からなる矩形のパターンを形成す
る。ここで、Gは多結晶シリコン膜の膜厚であり、θは
支持基板1の法線方向に対する角度であって15〜45
度の範囲である。次いで、前述した製造方法と同様にし
て、ゲート電極8および上記パターンのシャドウイング
を用いた斜めイオン打ち込みによって、p型ウエル4に
n型不純物を導入して、第1n+ 型半導体領域6a、第
2n+ 型半導体領域6bおよび第3n+ 型半導体領域6
cを形成することができる。
In the first embodiment, the resist pattern 12 is used as a mask for the oblique ion implantation, but the polycrystalline silicon film of the same layer as the polycrystalline silicon film forming the gate electrode 8 is used for the oblique ion implantation mask. May be used. At least one portion of the element isolation region 10 surrounding the source has a rectangular shape made of a polycrystalline silicon film so that the shortest distance d from the intersection of the side wall of the gate electrode 8 and the element isolation region 10 is within G × tan θ. Form a pattern. Here, G is the thickness of the polycrystalline silicon film, θ is the angle with respect to the normal direction of the support substrate 1 and is 15 to 45.
Range of degrees. Next, in the same manner as in the above-described manufacturing method, an n-type impurity is introduced into the p-type well 4 by oblique ion implantation using shadowing of the gate electrode 8 and the pattern, thereby forming the first n + -type semiconductor region 6a, 2n + type semiconductor region 6b and third n + type semiconductor region 6
c can be formed.

【0033】また、本実施の形態1では、レジストパタ
ーン12の形状を矩形としたが、これに限定されるもの
ではなく、ゲート電極8およびレジストパターン12の
シャドウイングを用いた斜めイオン打ち込みによって、
ソースを構成するn+ 型半導体領域6の一部に、シリサ
イド層9の厚さよりも浅いn+ 型半導体領域が形成され
ればよい。
In the first embodiment, the shape of the resist pattern 12 is rectangular. However, the present invention is not limited to this. The oblique ion implantation using shadowing of the gate electrode 8 and the resist pattern 12 is performed.
Some of the n + -type semiconductor region 6 constituting the source, shallow n + -type semiconductor region than the thickness of the silicide layer 9 may be formed.

【0034】このように、本実施の形態1によれば、素
子分離領域10との位置合わせ余裕に制限されることな
く、ソースを囲む素子分離領域10上にレジストパター
ン12を形成し、ゲート電極8およびレジストパターン
12のシャドウイングを利用した斜めイオン打ち込みに
よって、ソースを構成するn+ 型半導体領域6の一部に
シリサイド層9の厚さよりも接合の浅い第3n+ 型半導
体領域6cが形成されて、ショットキー接合を形成する
ことができる。
As described above, according to the first embodiment, the resist pattern 12 is formed on the element isolation region 10 surrounding the source without being restricted by the margin for alignment with the element isolation region 10, and the gate electrode is formed. By the oblique ion implantation using shadowing of the resist pattern 8 and the resist pattern 12, a third n + -type semiconductor region 6c having a junction smaller than the thickness of the silicide layer 9 is formed in a part of the n + -type semiconductor region 6 constituting the source. Thus, a Schottky junction can be formed.

【0035】(実施の形態2)図8は、本発明の他の実
施の形態である部分空乏型MISFETを示す半導体基
板の要部断面図であって、前記図1のII−II線における
半導体基板の要部断面図である。
(Embodiment 2) FIG. 8 is a cross-sectional view of a main part of a semiconductor substrate showing a partially depleted MISFET according to another embodiment of the present invention. It is principal part sectional drawing of a board | substrate.

【0036】図8に示すように、ドレインを構成するn
+ 型半導体領域6は、第1n+ 型半導体領域6aと、こ
の第1n+ 型半導体領域6aの約1/2程度の不純物濃
度を有する第2n+ 型半導体領域6bとによって構成さ
れている。また、ソースを構成するn+ 型半導体領域6
は、第1n+ 型半導体領域6aと、この第1n+ 型半導
体領域6aの約1/2程度の不純物濃度を有する第2n
+ 型半導体領域6bとによって構成されているが、さら
に、第1n+ 型半導体領域6aの約1/4程度の不純物
濃度を有する第3n+ 型半導体領域6cと、同じく第1
+ 型半導体領域6aの約1/4程度の不純物濃度を有
するp型半導体領域13との両者が形成された領域があ
り、この領域にショットキー接合が形成されている。
As shown in FIG. 8, n forming the drain
The + type semiconductor region 6 includes a first n + type semiconductor region 6a and a second n + type semiconductor region 6b having an impurity concentration of about の of the first n + type semiconductor region 6a. The n + type semiconductor region 6 constituting the source
Is a first n + -type semiconductor region 6a and a second n + -type impurity region having an impurity concentration of about の of the first n + -type semiconductor region 6a.
And a third n + -type semiconductor region 6c having an impurity concentration of about 1/4 of the first n + -type semiconductor region 6a.
There is a region in which both the p + -type semiconductor region 13 having an impurity concentration of about 1 / of the n + -type semiconductor region 6a are formed, and a Schottky junction is formed in this region.

【0037】次に、本実施の形態2である部分空乏型M
ISFETの製造方法を簡単に説明する。
Next, the partially depleted type M according to the second embodiment will be described.
A method for manufacturing the ISFET will be briefly described.

【0038】まず、前記実施の形態1の前記図7に示し
た製造方法と同様に、ゲート電極8およびレジストパタ
ーン12のシャドウイングを利用したイオン打ち込みに
よってn型不純物をp型ウエル4に注入し、ソース、ド
レインを構成する一対のn+型半導体領域6を形成す
る。すなわち、ゲート電極8の法線方向に対して45度
の角度で、かつ支持基板1の法線方向に対してθの角度
で、n型不純物がp型ウエル4に斜めイオン打ち込みに
よって4方向から注入される。なお、1方向からの注入
量は、例えば約5×1014cm-2程度である。
First, similarly to the manufacturing method shown in FIG. 7 of the first embodiment, an n-type impurity is implanted into the p-type well 4 by ion implantation utilizing shadowing of the gate electrode 8 and the resist pattern 12. Then, a pair of n + -type semiconductor regions 6 constituting the source and the drain are formed. That is, at an angle of 45 degrees with respect to the normal direction of the gate electrode 8 and at an angle of θ with respect to the normal direction of the support substrate 1, n-type impurities are obliquely ion implanted into the p-type well 4 from four directions. Injected. The injection amount from one direction is, for example, about 5 × 10 14 cm −2 .

【0039】これによって、ゲート電極8およびレジス
トパターン12によって遮蔽された領域には1方向から
のn型不純物が導入されて第3n+ 型半導体領域6cが
形成され、ゲート電極8によって遮蔽された領域または
レジストパターン12によって遮蔽された領域には2方
向からのn型不純物が導入されて第2n+ 型半導体領域
6bが形成されるが、それ以外の領域では4方向からの
n型不純物が導入されて第1n+ 型半導体領域6aが形
成される。
As a result, an n-type impurity from one direction is introduced into a region shielded by the gate electrode 8 and the resist pattern 12 to form a third n + -type semiconductor region 6c, and the region shielded by the gate electrode 8 Alternatively, n-type impurities from two directions are introduced into a region shielded by resist pattern 12 to form second n + -type semiconductor region 6b, while n-type impurities from four directions are introduced into other regions. Thus, a first n + type semiconductor region 6a is formed.

【0040】次に、上記n+ 型半導体領域6を形成する
際の1方向からの注入量とほぼ同程度、例えば約5×1
14cm-2程度のp型不純物、例えばBをp型ウエル4
にイオン打ち込みによって注入してp型半導体領域13
を形成する。p型半導体領域13の薄膜シリコン層2の
表面からの深さは約0. 06〜0. 07μm程度でり、
これによって、上記第3n+ 型半導体領域6cを構成す
るn型不純物の濃度分布が打ち消される。
Next, when the n + type semiconductor region 6 is formed, the amount of implantation from one direction is substantially the same, for example, about 5 × 1
A p-type impurity of about 0 14 cm -2 , for example, B
Into the p-type semiconductor region 13 by ion implantation.
To form The depth of the p-type semiconductor region 13 from the surface of the thin-film silicon layer 2 is about 0.06 to 0.07 μm,
This cancels out the concentration distribution of the n-type impurity forming the third n + -type semiconductor region 6c.

【0041】次に、ソース、ドレインを構成する一対の
+ 型半導体領域6の表面およびゲート電極8の表面
に、厚さ約0. 07μm程度のTiSi2 膜によって構
成されるシリサイド層9を形成する。しかし、第3n型
半導体領域6cおよびp型半導体領域13が形成された
領域には、シリサイド層9がp型半導体領域13または
p型ウエル4に接触して形成されることによりショット
キー接合が形成される。
Next, a silicide layer 9 composed of a TiSi 2 film having a thickness of about 0.07 μm is formed on the surface of the pair of n + -type semiconductor regions 6 constituting the source and drain and the surface of the gate electrode 8. I do. However, in the region where the third n-type semiconductor region 6c and the p-type semiconductor region 13 are formed, the Schottky junction is formed by forming the silicide layer 9 in contact with the p-type semiconductor region 13 or the p-type well 4. Is done.

【0042】このように、本実施の形態2によれば、1
方向からの斜めイオン打ち込みによって形成された第3
+ 型半導体領域6cにp型不純物を導入して、n型不
純物の濃度分布を打ち消すことによって、確実にショッ
トキー接合を形成することができる。
As described above, according to the second embodiment, 1
Third formed by oblique ion implantation from the direction
By introducing a p-type impurity into the n + -type semiconductor region 6c to cancel the concentration distribution of the n-type impurity, a Schottky junction can be reliably formed.

【0043】以上、本発明者によってなされた発明を発
明の実施の形態に基づき具体的に説明したが、本発明は
前記実施の形態に限定されるものではなく、その要旨を
逸脱しない範囲で種々変更可能であることはいうまでも
ない。
Although the invention made by the inventor has been specifically described based on the embodiments of the present invention, the present invention is not limited to the above embodiments, and various modifications may be made without departing from the gist of the invention. Needless to say, it can be changed.

【0044】例えば、前記実施の形態では、nチャネル
MISFETに適用した場合について説明したが、pチ
ャネルMISFETにも適用可能であり、同様な効果が
得られる。
For example, in the above-described embodiment, a case where the present invention is applied to an n-channel MISFET has been described. However, the present invention can also be applied to a p-channel MISFET, and a similar effect can be obtained.

【0045】[0045]

【発明の効果】本願によって開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば、
以下のとおりである。
Advantageous effects obtained by typical ones of the inventions disclosed by the present application will be briefly described as follows.
It is as follows.

【0046】本発明によれば、素子分離領域との位置合
わせ余裕に制限されることなく素子分離領域上に形成さ
れたマスクパターンとゲート電極とによるシャドウイン
グを利用した斜めイオン打ち込みによって、ソースの一
部にシリサイド層の厚さよりも浅いn+ 型半導体領域が
形成されて、この領域にショットキー接合を形成するこ
とができるので、素子分離領域とマスクパターンとの位
置合わせ余裕を小さくすることが可能となり、ショット
キー接合を有する部分空乏型MISFETの微細化を実
現することができる。
According to the present invention, the oblique ion implantation utilizing the shadowing by the mask pattern and the gate electrode formed on the element isolation region without being limited by the margin for alignment with the element isolation region allows the source to be formed. Since an n + -type semiconductor region shallower than the thickness of the silicide layer is partially formed and a Schottky junction can be formed in this region, it is possible to reduce the alignment margin between the element isolation region and the mask pattern. This makes it possible to miniaturize a partially depleted MISFET having a Schottky junction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態である部分空乏型MIS
FETを示す半導体基板の要部平面図である。
FIG. 1 shows a partially depleted MIS according to an embodiment of the present invention.
FIG. 3 is a plan view of a principal part of a semiconductor substrate showing an FET.

【図2】図1のII−II線における半導体基板の要部断面
図である。
FIG. 2 is a sectional view of a principal part of the semiconductor substrate taken along line II-II of FIG. 1;

【図3】図1のIII −III 線における半導体基板の要部
断面図である。
FIG. 3 is a sectional view of a principal part of the semiconductor substrate taken along line III-III in FIG. 1;

【図4】本発明の一実施の形態である部分空乏型MIS
FETの製造方法を示す半導体基板の要部断面図であ
る。
FIG. 4 is a partially depleted MIS according to an embodiment of the present invention;
FIG. 4 is a cross-sectional view of a main part of a semiconductor substrate, illustrating a method for manufacturing an FET.

【図5】本発明の一実施の形態である部分空乏型MIS
FETの製造方法を示す半導体基板の要部断面図であ
る。
FIG. 5 is a partially depleted MIS according to an embodiment of the present invention;
FIG. 4 is a cross-sectional view of a main part of a semiconductor substrate, illustrating a method for manufacturing an FET.

【図6】本発明の一実施の形態である部分空乏型MIS
FETの製造方法を示す半導体基板の要部平面図であ
る。
FIG. 6 shows a partially depleted MIS according to an embodiment of the present invention.
FIG. 4 is a plan view of a main part of a semiconductor substrate, illustrating a method for manufacturing an FET.

【図7】図6のVII −VII 線における半導体基板の要部
断面図である。
7 is a sectional view of a principal part of the semiconductor substrate taken along line VII-VII in FIG. 6;

【図8】本発明の他の実施の形態である部分空乏型MI
SFETを示す半導体基板の要部断面図である。
FIG. 8 shows a partially depleted MI according to another embodiment of the present invention.
FIG. 3 is a cross-sectional view of a main part of a semiconductor substrate showing an SFET.

【符号の説明】[Explanation of symbols]

1 支持基板 2 埋め込み酸化膜 3 薄膜シリコン層 4 p型ウエル 5 n- 型半導体領域 6 n+ 型半導体領域 6a 第1n+ 型半導体領域 6b 第2n+ 型半導体領域 6c 第3n+ 型半導体領域 7 ゲート絶縁膜 8 ゲート電極 9 シリサイド層 10 素子分離領域 11 サイドウォールスペーサ 12 レジストパターン 13 p型半導体領域 d 距離Reference Signs List 1 support substrate 2 buried oxide film 3 thin-film silicon layer 4 p-type well 5 n - type semiconductor region 6 n + type semiconductor region 6a first n + type semiconductor region 6b second n + type semiconductor region 6c third n + type semiconductor region 7 gate Insulating film 8 gate electrode 9 silicide layer 10 element isolation region 11 sidewall spacer 12 resist pattern 13 p-type semiconductor region d distance

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F048 AA01 AA07 AC10 BA01 BA16 BB06 BB08 BC01 BC03 BC05 BC06 BD04 BE03 BE10 BF06 DA18 DA25 5F110 AA15 CC02 DD05 DD13 EE05 EE09 EE14 EE32 FF02 GG02 GG12 GG24 GG32 HJ01 HJ04 HJ14 HK05 HK40 HK42 HM02 HM12 HM15 NN62  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) HM02 HM12 HM15 NN62

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 支持基板上に埋め込み絶縁膜を介して薄
膜シリコン層が設けられたSOI基板上に、相対的に不
純物濃度の異なる複数の半導体領域によって構成された
ソースを備えた部分空乏型MISFETを有する半導体
集積回路装置であって、前記複数の半導体領域が形成さ
れた活性領域の表面にはシリサイド層が形成されてお
り、前記複数の半導体領域を構成する一部の半導体領域
の接合の深さが、前記シリサイド層の厚さよりも浅く、
ショットキー接合が形成されていることを特徴とする半
導体集積回路装置。
1. A partially depleted MISFET having a source constituted by a plurality of semiconductor regions having relatively different impurity concentrations on an SOI substrate having a thin silicon layer provided on a supporting substrate via a buried insulating film. Wherein a silicide layer is formed on a surface of the active region in which the plurality of semiconductor regions are formed, and a junction depth of a part of the plurality of semiconductor regions constituting the plurality of semiconductor regions is provided. Is shallower than the thickness of the silicide layer,
A semiconductor integrated circuit device wherein a Schottky junction is formed.
【請求項2】 請求項1記載の半導体集積回路装置にお
いて、前記複数の半導体領域を構成する一部の半導体領
域は、ゲート電極の側壁と素子分離領域とが交差する近
傍の活性領域に形成された半導体領域であることを特徴
とする半導体集積回路装置。
2. The semiconductor integrated circuit device according to claim 1, wherein a part of the plurality of semiconductor regions is formed in an active region near a crossing of a side wall of a gate electrode and an element isolation region. A semiconductor integrated circuit device, wherein the semiconductor region is a semiconductor region.
【請求項3】 請求項1記載の半導体集積回路装置にお
いて、前記複数の半導体領域を構成する一部の半導体領
域に、前記一部の半導体領域を構成する不純物と異なる
導電型の不純物が導入されていることを特徴とする半導
体集積回路装置。
3. The semiconductor integrated circuit device according to claim 1, wherein an impurity of a conductivity type different from an impurity forming said partial semiconductor region is introduced into a partial semiconductor region forming said plurality of semiconductor regions. And a semiconductor integrated circuit device.
【請求項4】 請求項1記載の半導体集積回路装置にお
いて、前記シリサイド層は、チタンシリサイド膜、コバ
ルトシリサイド膜またはニッケルシリサイド膜であるこ
とを特徴とする半導体集積回路装置。
4. The semiconductor integrated circuit device according to claim 1, wherein said silicide layer is a titanium silicide film, a cobalt silicide film, or a nickel silicide film.
【請求項5】 支持基板上に埋め込み絶縁膜を介して薄
膜シリコン層が設けられたSOI基板上に、ショットキ
ー接合を備えた部分空乏型MISFETを形成する半導
体集積回路装置の製造方法であって、(a).ゲート電極の
側壁と素子分離領域とが交差する点からの最短距離が、
マスクパターンの厚さ×tanθ(θ=15〜45度)
以内となるように、ソースを囲む素子分離領域上の一部
にマスクパターンを形成する工程と、(b).前記ゲート電
極の法線方向に対して45度、前記支持基板の法線方向
に対して前記θの角度で、活性領域にチャネルと同じ導
電型の不純物をイオン打ち込みする工程と、(c).前記活
性領域の表面にシリサイド層を形成する工程とを有する
ことを特徴とする半導体集積回路装置の製造方法。
5. A method of manufacturing a semiconductor integrated circuit device for forming a partially depleted MISFET having a Schottky junction on an SOI substrate having a thin silicon layer provided on a supporting substrate via a buried insulating film. (A) The shortest distance from the point where the side wall of the gate electrode and the element isolation region intersect is
Mask pattern thickness x tan θ (θ = 15 to 45 degrees)
Forming a mask pattern on a part of the element isolation region surrounding the source so as to be within (b) .45 ° with respect to the normal direction of the gate electrode, in the normal direction of the support substrate. A semiconductor comprising: a step of ion-implanting an impurity of the same conductivity type as the channel into the active region at an angle of θ, and (c) forming a silicide layer on the surface of the active region. A method for manufacturing an integrated circuit device.
【請求項6】 支持基板上に埋め込み絶縁膜を介して薄
膜シリコン層が設けられたSOI基板上に、ショットキ
ー接合を備えた部分空乏型MISFETを形成する半導
体集積回路装置の製造方法であって、(a).ゲート電極の
側壁と素子分離領域とが交差する点からの最短距離が、
マスクパターンの厚さ×tanθ(θ=15〜45度)
以内となるように、ソースを囲む素子分離領域上の一部
にマスクパターンを形成する工程と、(b).前記ゲート電
極の法線方向に対して45度、前記支持基板の法線方向
に対して前記θの角度で、活性領域にチャネルと同じ導
電型の不純物をイオン打ち込みする工程と、(c).前記活
性領域にチャネルと異なる導電型の不純物をイオン打ち
込みする工程と、(d).前記活性領域の表面にシリサイド
層を形成する工程とを有することを特徴とする半導体集
積回路装置の製造方法。
6. A method of manufacturing a semiconductor integrated circuit device for forming a partially depleted MISFET having a Schottky junction on an SOI substrate having a thin silicon layer provided on a supporting substrate via a buried insulating film. (A) The shortest distance from the point where the side wall of the gate electrode and the element isolation region intersect is
Mask pattern thickness x tan θ (θ = 15 to 45 degrees)
Forming a mask pattern on a part of the element isolation region surrounding the source so as to be within (b) .45 ° with respect to the normal direction of the gate electrode, in the normal direction of the support substrate. (C) ion-implanting an impurity of the same conductivity type as the channel into the active region at an angle of θ, and (c) ion-implanting an impurity of a conductivity type different from the channel into the active region; Forming a silicide layer on the surface of the active region.
【請求項7】 請求項5または6記載の半導体集積回路
装置の製造方法において、前記マスクパターンはレジス
ト膜またはゲート電極を構成する導電膜と同一層の導電
膜によって構成されることを特徴とする半導体集積回路
装置の製造方法。
7. The method for manufacturing a semiconductor integrated circuit device according to claim 5, wherein the mask pattern is formed of a resist film or a conductive film of the same layer as a conductive film forming a gate electrode. A method for manufacturing a semiconductor integrated circuit device.
【請求項8】 請求項5または6記載の半導体集積回路
装置の製造方法において、前記(b) 工程のイオン打ち込
みは、ゲート電極の法線方向に対して45度の角度を有
する4方向から行うことを特徴とする半導体集積回路装
置の製造方法。
8. The method for manufacturing a semiconductor integrated circuit device according to claim 5, wherein the ion implantation in the step (b) is performed in four directions having an angle of 45 degrees with respect to a normal direction of the gate electrode. A method for manufacturing a semiconductor integrated circuit device.
JP11067997A 1999-03-15 1999-03-15 Semiconductor integrated circuit device and its manufacture Pending JP2000269503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11067997A JP2000269503A (en) 1999-03-15 1999-03-15 Semiconductor integrated circuit device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11067997A JP2000269503A (en) 1999-03-15 1999-03-15 Semiconductor integrated circuit device and its manufacture

Publications (1)

Publication Number Publication Date
JP2000269503A true JP2000269503A (en) 2000-09-29

Family

ID=13361119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11067997A Pending JP2000269503A (en) 1999-03-15 1999-03-15 Semiconductor integrated circuit device and its manufacture

Country Status (1)

Country Link
JP (1) JP2000269503A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110107A (en) * 2001-09-28 2003-04-11 Oki Electric Ind Co Ltd Soi-type mos field effect transistor and method of manufacturing the same
JP2006148064A (en) * 2004-10-18 2006-06-08 Renesas Technology Corp Semiconductor device, manufacturing method therefor, and memory circuit
US7514747B2 (en) 2006-07-13 2009-04-07 Oki Semiconductor Co., Ltd. Silicon-on-insulator semiconductor device
JP2010219519A (en) * 2009-03-13 2010-09-30 Internatl Business Mach Corp <Ibm> Semiconductor structure and method of manufacturing the same (self-aligned schottky diode)
JP2012182478A (en) * 2004-10-18 2012-09-20 Renesas Electronics Corp Semiconductor device and manufacturing method of the same
EP3195370A4 (en) * 2014-09-19 2018-05-23 Qualcomm Switch Corp. Schottky clamped radio frequency switch

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110107A (en) * 2001-09-28 2003-04-11 Oki Electric Ind Co Ltd Soi-type mos field effect transistor and method of manufacturing the same
JP2006148064A (en) * 2004-10-18 2006-06-08 Renesas Technology Corp Semiconductor device, manufacturing method therefor, and memory circuit
JP2012182478A (en) * 2004-10-18 2012-09-20 Renesas Electronics Corp Semiconductor device and manufacturing method of the same
US7514747B2 (en) 2006-07-13 2009-04-07 Oki Semiconductor Co., Ltd. Silicon-on-insulator semiconductor device
JP2010219519A (en) * 2009-03-13 2010-09-30 Internatl Business Mach Corp <Ibm> Semiconductor structure and method of manufacturing the same (self-aligned schottky diode)
EP3195370A4 (en) * 2014-09-19 2018-05-23 Qualcomm Switch Corp. Schottky clamped radio frequency switch

Similar Documents

Publication Publication Date Title
JP2551127B2 (en) MIS semiconductor device and manufacturing method thereof
JP4825526B2 (en) Fin-type channel transistor and manufacturing method thereof
TW200950086A (en) Semiconductor device having transistor and method of manufacturing the same
KR20040028675A (en) Semiconductor device and manufacturing method thereof
US20090321823A1 (en) Semiconductor Device and Manufacturing Method Thereof
JP2007027622A (en) Semiconductor device and its manufacturing method
JP2773220B2 (en) Semiconductor device
US6171913B1 (en) Process for manufacturing a single asymmetric pocket implant
JP2000269503A (en) Semiconductor integrated circuit device and its manufacture
KR100650901B1 (en) Metal oxide semiconductor transistor having buried gate
JP2773221B2 (en) Semiconductor device
JP2005252158A (en) Bipolar transistor and manufacturing method therefor
JPH0519979B2 (en)
US8198659B2 (en) Semiconductor device and method for fabricating the same
JP2897555B2 (en) Method for manufacturing semiconductor device
JPH05198804A (en) Semiconductor device and manufacturing method thereof
JPH11330473A (en) Semiconductor integrated circuit device and its manufacture
KR100267398B1 (en) Silicide formation method and method for fabricating semiconductor device using the same
JP5630939B2 (en) Semiconductor device and manufacturing method thereof
JPH07263690A (en) Semiconductor device having salicide structure and its manufacture
KR100853982B1 (en) 3d cmos transistor and manufacturing method at the same
JP2904081B2 (en) Method for manufacturing semiconductor device
JP2010067912A (en) Semiconductor device and method of manufacturing the same
JP2796655B2 (en) Semiconductor device and manufacturing method thereof
JPH09232444A (en) Semiconductor integrated circuit device and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090727

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100727

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110727

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250