JP2000254519A - Production of thin film of two-layer structure titanium oxide photocatalyst - Google Patents

Production of thin film of two-layer structure titanium oxide photocatalyst

Info

Publication number
JP2000254519A
JP2000254519A JP11065635A JP6563599A JP2000254519A JP 2000254519 A JP2000254519 A JP 2000254519A JP 11065635 A JP11065635 A JP 11065635A JP 6563599 A JP6563599 A JP 6563599A JP 2000254519 A JP2000254519 A JP 2000254519A
Authority
JP
Japan
Prior art keywords
titanium oxide
type titanium
rutile
anatase
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11065635A
Other languages
Japanese (ja)
Inventor
Masanori Nagata
正典 永田
Yukio Honda
悠紀雄 本田
Ryuji Miyagawa
隆二 宮川
Hiroshi Kubota
弘 久保田
Yasushi Sumita
泰史 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto University NUC
Kumamoto Prefecture
Original Assignee
Kumamoto University NUC
Kumamoto Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University NUC, Kumamoto Prefecture filed Critical Kumamoto University NUC
Priority to JP11065635A priority Critical patent/JP2000254519A/en
Publication of JP2000254519A publication Critical patent/JP2000254519A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form extremely thin rutile even on the surface of thick anatase in various forms by a method in which after ions of Ar and others are emitted to the surface of anatase-type titanium oxide with the use of ion beams, rutile- type titanium oxide is formed on the surface of anatase-type titanium oxide by annealing. SOLUTION: An anatase-type titanium oxide thin film 1 to be a substrate is formed on a silicon wafer by RF(radio frequency) sputtering. Next, the surface of the film 1 is irradiated with ions of Ar. He, Ne or the like by using ion beams to form an ion-irradiated layer 2, a modified layer. After the irradiation, the layer 2 is annealed at 500-700 deg.C to form rutile-type titanium oxide 3, when an anatase-type titanium oxide layer is irradiated with Ar ion beams, Ti3+ and Ti2+ are formed in an irradiated part in the film by the impact of Ar ions to form rutile preferentially on the surface of the film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アナターゼ型酸化
チタン表面に所望の厚さの極薄ルチル型酸化チタン層を
形成する方法に関する。
The present invention relates to a method for forming an ultrathin rutile type titanium oxide layer having a desired thickness on the surface of anatase type titanium oxide.

【0002】[0002]

【従来の技術】自動車の排気ガスによる大気汚染、生活
排水や産業排水による水質汚染、あるいは細菌などによ
る健康被害など、ありとあらゆる環境汚染が広がり社会
問題となっている。そこで環境浄化の切り札として、太
陽光を利用して有害物質を分解する酸化チタン光触媒が
注目されている。
2. Description of the Related Art All kinds of environmental pollution, such as air pollution caused by automobile exhaust gas, water pollution caused by domestic wastewater and industrial wastewater, and health damage caused by bacteria and the like, have spread and become social problems. Therefore, a titanium oxide photocatalyst that decomposes harmful substances using sunlight has attracted attention as a trump card for environmental purification.

【0003】酸化チタン(TiO2)の光触媒は、一般
にアナターゼ型酸化チタンが使われており、紫外線によ
って光化学反応を起こし、水や酸素を分解して活性酸素
を作り出し、この活性酸素は強い酸化力を有し、表面に
接する多くの有機物質、アンモニア、NOX等を酸化分
解する光触媒機能を持っている。また、大腸菌、黄色ブ
ドウ球菌などの細菌を殺菌する作用も持っており、抗菌
性を発現することが可能である。
[0003] An anatase type titanium oxide is generally used as a photocatalyst of titanium oxide (TiO 2 ), which causes a photochemical reaction by ultraviolet rays to decompose water and oxygen to produce active oxygen, which has a strong oxidizing power. the a, many organic materials in contact with the surface, ammonia, has an oxidation decomposing photocatalytic function NO X, and the like. In addition, it has an action of killing bacteria such as Escherichia coli and Staphylococcus aureus, and can exhibit antibacterial properties.

【0004】しかし、太陽光の大部分は可視光線である
ため、紫外線を必要とする酸化チタン光触媒は、十分な
分解効率が得られないという難点があり、高効率な光触
媒を形成する方法が望まれている。
[0004] However, since most of sunlight is visible light, titanium oxide photocatalysts that require ultraviolet rays have a disadvantage that sufficient decomposition efficiency cannot be obtained, and a method for forming a highly efficient photocatalyst is desired. It is rare.

【0005】光触媒を形成する方法として、アナターゼ
型酸化チタン表面にルチル型酸化チタン層を形成すれ
ば、電子と正孔の寿命が長くなり、触媒効率を高くでき
るという報告がある(A Structural In
vestigation ofTitanium Di
oxide Photocatalysts,JOUR
NAL OF SOLID STATE CHEMIS
TRY,Vol−92,p178−190 199
1)。そして、表面がルチル型酸化チタン層で覆われた
アナターゼ型酸化チタンを効果的に機能させるために
は、表面のルチル型酸化チタン層は極めて薄いことが好
ましく、そのためには、一般にはドライプロセス{(ス
パッタ、電子ビーム蒸着、IBS(Ion−Beam
Sputtering)、IAD(Ion Assis
t Deposition)等}による堆積法が考えら
れる。
As a method for forming a photocatalyst, there is a report that if a rutile-type titanium oxide layer is formed on the surface of anatase-type titanium oxide, the lifetime of electrons and holes can be prolonged and the catalytic efficiency can be increased (A Structural Indium).
vestigation ofTitanium Di
Oxide Photocatalysts, JOUR
NAL OF SOLID STATE CHEMIS
TRY, Vol-92, p178-190 199
1). In order to effectively function the anatase-type titanium oxide whose surface is covered with the rutile-type titanium oxide layer, the rutile-type titanium oxide layer on the surface is preferably extremely thin. (Sputtering, electron beam evaporation, IBS (Ion-Beam
Sputtering), IAD (Ion Assist)
t Deposition) or the like.

【0006】[0006]

【発明が解決しようとする課題】しかし、ドライプロセ
スによる堆積法では、高温相であるルチル型酸化チタン
層を成長させるためにプロセス温度を高くする必要があ
り、低温相であるアナターゼ型酸化チタン層の上にルチ
ル型酸化チタン膜を成長させることは極めて難しく実現
されていない、というのは、ルチル型酸化チタン膜を作
製するためにプロセス温度を上げると、ルチル型酸化チ
タンの生成温度がアナターゼ型酸化チタンの生成温度に
比べて非常に高いことから、アナターゼ型酸化チタンが
ルチル型酸化チタンに構造転移するためである。
However, in the deposition method by the dry process, it is necessary to increase the process temperature in order to grow the rutile type titanium oxide layer which is a high temperature phase, and the anatase type titanium oxide layer which is a low temperature phase is required. It is extremely difficult to grow a rutile-type titanium oxide film on top of this, because if the process temperature is increased to produce a rutile-type titanium oxide film, the formation temperature of the rutile-type titanium oxide film becomes anatase-type. This is because the anatase-type titanium oxide undergoes a structural transition to rutile-type titanium oxide, which is extremely higher than the temperature at which titanium oxide is formed.

【0007】そこで、本発明は、アナターゼ型酸化チタ
ンからルチル型酸化チタンへの構造転移温度を低くする
ことによりアナターゼ型酸化チタン層の上にルチル型酸
化チタン層を形成させる方法を提供するものである。
Accordingly, the present invention provides a method for forming a rutile type titanium oxide layer on an anatase type titanium oxide layer by lowering the structural transition temperature from anatase type titanium oxide to rutile type titanium oxide. is there.

【0008】[0008]

【課題を解決するための手段】本発明の2層構造酸化チ
タン光触媒薄膜の製造方法は、アナターゼ型酸化チタン
の表面にイオンビームを用いてAr、HeあるいはNe
等のイオンを照射した後、アニールしてアナターゼ型酸
化チタンの表面にルチル型酸化チタンを形成させること
を特徴とする。アニールの温度は、500〜700℃の
範囲が好ましい。
According to the present invention, there is provided a method for producing a titanium oxide photocatalytic thin film having a two-layer structure, comprising the steps of: using an ion beam on the surface of anatase type titanium oxide;
After irradiating with such ions, annealing is performed to form rutile-type titanium oxide on the surface of anatase-type titanium oxide. The annealing temperature is preferably in the range of 500 to 700C.

【0009】[0009]

【発明の実施の形態】図1は本発明の製造方法のプロセ
スを示す説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view showing a process of a manufacturing method according to the present invention.

【0010】基板となるアナターゼ型酸化チタン薄膜1
をシリコンウエハにRF(Radio Frequen
cy)スパッタリングにより4000Å形成した。RF
スパッタリングの条件は、次のとおりである。
Anatase type titanium oxide thin film 1 serving as substrate
RF (Radio Frequency) on silicon wafer
cy) Formed 4000 ° by sputtering. RF
The sputtering conditions are as follows.

【0011】O2:100%,スパッタガス圧:6.0
×10-3Torr,スパッタリングパワー:350W,
スパッタリング時間:180分。
O 2 : 100%, sputtering gas pressure: 6.0
× 10 −3 Torr, sputtering power: 350 W,
Sputtering time: 180 minutes.

【0012】次いで、このアナターゼ型酸化チタン薄膜
の表面にイオンビームを用いてArイオンを照射し、イ
オン照射層2を形成した。Arイオンの照射は、3ke
Vのイオンビームを入射角度45度で照射した。この照
射により約50Åの変質層が形成される。
Next, the surface of the anatase type titanium oxide thin film was irradiated with Ar ions using an ion beam to form an ion irradiation layer 2. Ir ion irradiation is 3 ke
A V ion beam was irradiated at an incident angle of 45 degrees. By this irradiation, an altered layer of about 50 ° is formed.

【0013】照射後、500〜700℃で5時間ほど加
熱保持してアニールし、ルチル型酸化チタン3を形成し
た。
After the irradiation, the film was annealed by heating and holding at 500 to 700 ° C. for about 5 hours to form rutile type titanium oxide 3.

【0014】ルチル型酸化チタンの形成を確認するため
に、イオン照射前後の試料を各温度でアニールを行いX
線測定{XRD(X−ray Diffraction
)測定)}で得られるルチル型酸化チタン(110)
とアナターゼ型酸化チタン(101)とのピークの比か
ら膜内に占めるルチル型酸化チタンの形成比を調べた。
In order to confirm the formation of rutile type titanium oxide, the sample before and after the ion irradiation was annealed at each temperature and X
XRD (X-ray Diffraction)
) Measurement) Rutile type titanium oxide (110) obtained in ①
The formation ratio of rutile titanium oxide occupying in the film was examined from the ratio of the peaks of the titanium oxide and the anatase titanium oxide (101).

【0015】図2は試験結果を示すグラフである。イオ
ン照射前の試料は、600℃付近からルチル型酸化チタ
ンの成長が始まり、980℃でアニールするとほぼ完全
にアナターゼ型酸化チタンもルチル型酸化チタンに転移
している。しかし、本発明によるAr照射を行った試料
では、このルチル型酸化チタンの形成がより低温側で促
進されている。このルチル型酸化チタン形成が促進され
た温度領域は通常アナターゼ型酸化チタンの成長が著し
い領域である。これは、アナターゼ型酸化チタン層にA
rイオンビームを照射すると、Arイオンの衝撃により
膜内部に被照射部にTi3+,Ti2+が形成され、これら
が膜の表面に優先的にルチルを形成させたものと思われ
る。通常の構造転移温度約900℃より低温の約500
℃〜700℃でアナターゼ型酸化チタンからルチル型酸
化チタンに構造転移させることができる。
FIG. 2 is a graph showing test results. In the sample before the ion irradiation, the growth of rutile titanium oxide starts around 600 ° C., and when the sample is annealed at 980 ° C., the anatase titanium oxide is almost completely transferred to the rutile titanium oxide. However, in the sample irradiated with Ar according to the present invention, the formation of this rutile type titanium oxide is promoted at a lower temperature. The temperature region where the formation of rutile type titanium oxide is promoted is a region where the growth of anatase type titanium oxide is usually remarkable. This is because A in the anatase type titanium oxide layer
When the r ion beam is irradiated, Ti 3+ and Ti 2+ are formed in the irradiated portion inside the film due to the bombardment of Ar ions, and it is considered that these formed rutile preferentially on the surface of the film. Approximately 500 lower than the normal structural transition temperature of approximately 900 ° C
The structure can be changed from anatase-type titanium oxide to rutile-type titanium oxide at a temperature of from 700C to 700C.

【0016】また、別のルチル型酸化チタン形成確認方
法として、イオン照射前後の試料を500℃でアニール
を行い、両試料の屈折率を測定した。一般にルチルの屈
折率はアナターゼの屈折率より高いことがこれまでの研
究で確認されている。
As another method for confirming the formation of rutile type titanium oxide, a sample before and after ion irradiation was annealed at 500 ° C., and the refractive indexes of both samples were measured. Previous studies have confirmed that the refractive index of rutile is generally higher than that of anatase.

【0017】図3はルチル型酸化チタンの形成を確認す
るための測定結果を示すグラフで、イオン照射した試料
は照射していない試料より全波長において屈折率が上昇
した。最表面のイオン照射領域がルチルに転移したた
め、膜全体の屈折率が上昇したものと思われる。
FIG. 3 is a graph showing the measurement results for confirming the formation of rutile type titanium oxide. The sample irradiated with ions has a higher refractive index at all wavelengths than the sample not irradiated. It is considered that the refractive index of the entire film increased because the ion irradiation region on the outermost surface was changed to rutile.

【0018】なお、本発明においては、Arイオンビー
ム照射による被照射部の深さは、イオンビームの加速電
圧で制御できるので、アナターゼ型酸化チタン層の表面
を極薄ルチル型酸化チタン層に変化させることが可能で
ある。
In the present invention, since the depth of the portion to be irradiated by Ar ion beam irradiation can be controlled by the acceleration voltage of the ion beam, the surface of the anatase type titanium oxide layer is changed to an ultrathin rutile type titanium oxide layer. It is possible to do.

【0019】[0019]

【発明の効果】本発明により、アナターゼ型酸化チタン
層と極薄ルチル型酸化チタン層の構造のみならず、通常
の堆積法と組み合わせて処方することにより、アナター
ゼ型酸化チタン層とルチル型酸化チタン層を交互に積層
させた多層膜も製造可能である。
According to the present invention, not only the structures of the anatase-type titanium oxide layer and the ultrathin rutile-type titanium oxide layer but also the anatase-type titanium oxide layer and the rutile-type titanium oxide can be formulated in combination with a normal deposition method. A multilayer film in which layers are alternately stacked can also be manufactured.

【0020】また、イオンを照射して、アニールする方
法なので、多様な形態(多結晶,結晶,アモルファス)
の厚いアナターゼの表面にも極薄ルチルを形成できる。
In addition, since it is a method of annealing by irradiating ions, various forms (polycrystal, crystal, amorphous)
Ultra-thin rutile can be formed on the surface of thick anatase.

【0021】本発明は、イオンビーム照射と熱処理とい
う単純で制御しやすく分離されたプロセスであるため、
他のプロセスと組み合わせて使うことが容易で、産業上
利用しやすいという副次的利点も有している。
Since the present invention is a simple, easily controlled and separated process of ion beam irradiation and heat treatment,
It has the secondary advantage of being easy to use in combination with other processes and industrially easy to use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造方法のプロセスを示す説明図で
ある。
FIG. 1 is an explanatory view showing a process of a manufacturing method of the present invention.

【図2】 ルチル型酸化チタンの形成を確認するための
試験結果を示すグラフである。
FIG. 2 is a graph showing test results for confirming the formation of rutile-type titanium oxide.

【図3】 ルチル型酸化チタンの形成を確認するための
屈折率の測定結果を示すグラフである。
FIG. 3 is a graph showing a measurement result of a refractive index for confirming formation of rutile type titanium oxide.

【符号の説明】[Explanation of symbols]

1 アナターゼ 2 イオン照射層 3 ルチ
1 anatase 2 ion irradiation layer 3 rutile

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本田 悠紀雄 熊本県熊本市東町3−11−38 熊本県工業 技術センター内 (72)発明者 宮川 隆二 熊本県熊本市東町3−11−38 熊本県工業 技術センター内 (72)発明者 久保田 弘 熊本県熊本市黒髪2−39−1 熊本大学内 (72)発明者 住田 泰史 熊本県熊本市黒髪2−39−1 熊本大学内 Fターム(参考) 4G047 CA02 CB04 CB08 CC03 CD02 CD07 4G069 AA02 AA08 BA04A BA04B BA48A BB01B BD05B CA01 CA07 CA10 CA11 CA13 CA17 EA08 EB15Y EC22X EC28 FA01 FA03 FB02 FB30 FB58 FC07  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yukio Honda 3-11-38 Higashicho, Kumamoto City, Kumamoto Prefecture Inside the Kumamoto Industrial Technology Center (72) Inventor Ryuji Miyagawa 3-11-38 Higashicho, Kumamoto City, Kumamoto Prefecture Kumamoto Industry Inside the Technology Center (72) Inventor Hiroshi Kubota 2-39-1 Kuromoto, Kumamoto City, Kumamoto Prefecture Inside Kumamoto University (72) Inventor Yasufumi Sumita 2-39-1, Kurogami, Kumamoto City, Kumamoto Prefecture F-term in Kumamoto University 4G047 CA02 CB04 CB08 CC03 CD02 CD07 4G069 AA02 AA08 BA04A BA04B BA48A BB01B BD05B CA01 CA07 CA10 CA11 CA13 CA17 EA08 EB15Y EC22X EC28 FA01 FA03 FB02 FB30 FB58 FC07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アナターゼ型酸化チタンの表面にイオン
を照射した後、アニールしてアナターゼ型酸化チタンの
表面にルチル型酸化チタンを形成させることを特徴とす
る2層構造酸化チタン光触媒薄膜の製造方法。
1. A method for producing a titanium oxide photocatalytic thin film having a two-layer structure, comprising irradiating ions to the surface of anatase-type titanium oxide and then annealing to form rutile-type titanium oxide on the surface of anatase-type titanium oxide. .
【請求項2】 前記アニールの温度が500〜700℃
であることを特徴とする請求項1記載の2層構造酸化チ
タン光触媒薄膜の製造方法。
2. The annealing temperature is 500 to 700 ° C.
2. The method for producing a titanium oxide photocatalytic thin film having a two-layer structure according to claim 1, wherein:
JP11065635A 1999-03-11 1999-03-11 Production of thin film of two-layer structure titanium oxide photocatalyst Pending JP2000254519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11065635A JP2000254519A (en) 1999-03-11 1999-03-11 Production of thin film of two-layer structure titanium oxide photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11065635A JP2000254519A (en) 1999-03-11 1999-03-11 Production of thin film of two-layer structure titanium oxide photocatalyst

Publications (1)

Publication Number Publication Date
JP2000254519A true JP2000254519A (en) 2000-09-19

Family

ID=13292693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11065635A Pending JP2000254519A (en) 1999-03-11 1999-03-11 Production of thin film of two-layer structure titanium oxide photocatalyst

Country Status (1)

Country Link
JP (1) JP2000254519A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054954A1 (en) * 2004-11-22 2006-05-26 Water And Environmental Technologies Pte. Ltd Fabrication of a densely packed nano-structured photocatalyst for environmental applications
JP2009067648A (en) * 2007-09-14 2009-04-02 Kyushu Univ Method of forming titanium oxide film and titanium oxide film
JP2009283850A (en) * 2008-05-26 2009-12-03 Elpida Memory Inc Capacitor insulating film and method for forming the same, and capacitor and semiconductor device
US8198168B2 (en) 2009-04-01 2012-06-12 Elpida Memory, Inc. Method of manufacturing capacitive insulating film for capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054954A1 (en) * 2004-11-22 2006-05-26 Water And Environmental Technologies Pte. Ltd Fabrication of a densely packed nano-structured photocatalyst for environmental applications
JP2009067648A (en) * 2007-09-14 2009-04-02 Kyushu Univ Method of forming titanium oxide film and titanium oxide film
JP2009283850A (en) * 2008-05-26 2009-12-03 Elpida Memory Inc Capacitor insulating film and method for forming the same, and capacitor and semiconductor device
US8198168B2 (en) 2009-04-01 2012-06-12 Elpida Memory, Inc. Method of manufacturing capacitive insulating film for capacitor

Similar Documents

Publication Publication Date Title
JP4823321B2 (en) Photocatalyst body manufacturing equipment
Oh et al. Comparison of optical and photocatalytic properties of TiO2 thin films prepared by electron-beam evaporation and sol–gel dip-coating
KR101804327B1 (en) Hybrid photocatalyst film using titanium dioxide and method for maunfacturing thereof
KR100852496B1 (en) Method of preparation for titania photo-catalyst by oxygen plasma and rapid thermal annealing
JP2000254519A (en) Production of thin film of two-layer structure titanium oxide photocatalyst
Wren et al. Titanium–vanadium oxide nanocomposite thin films: synthesis, characterization and antibacterial activity
JPWO2005089942A1 (en) GaN photocatalyst
JP2000312830A (en) Photocatalyst composite material and production thereof
US7763113B2 (en) Photocatalyst material and method for preparation thereof
JPH10180118A (en) Fixed photocatalyst, preparation thereof, and method for decomposition-removing harmful substance
JP2002370027A (en) Columnar titanium oxide crystal photocatalyst material and applied article thereof
JP3799822B2 (en) Manufacturing method of complex oxide thin film
Tang et al. Photocatalytic activity and mechanical performance of o and n co-doped tio2 thin films
JP2001278625A (en) Method of producing titanium oxide
KR20040077862A (en) Method for the production of locally functional photocatalytic areas and objects obtained therewith
JP2004195439A (en) Photocatalyst and its production method
JP3867036B2 (en) Method for producing composite material with photocatalytic coating
JP2003321782A (en) Method of manufacturing composite material having photocatalytic coating film
JP2000107599A (en) Titanium dioxide based photocatalyst
JPH08252461A (en) Preparation of photocatalyst
JP2004097868A (en) Photocatalyst and manufacturing method of composite material having photocatalyst film formed thereon
JP2003080066A (en) Method for forming titanium oxide photocatalyst thin film on base material, and laminated body
JP4899231B2 (en) Fabrication method of visible light responsive titania photocatalyst using sol-gel method and ultraviolet irradiation method
JP2001342022A (en) Method of preparing anatase-type tio2 single crystal thin film
JP2005126314A (en) Method of manufacturing titanium oxide solution, titanium oxide solution and photocatalytic coating material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040623

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040728

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081003