JP2000243395A - Negative electrode material of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery - Google Patents

Negative electrode material of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Info

Publication number
JP2000243395A
JP2000243395A JP11042873A JP4287399A JP2000243395A JP 2000243395 A JP2000243395 A JP 2000243395A JP 11042873 A JP11042873 A JP 11042873A JP 4287399 A JP4287399 A JP 4287399A JP 2000243395 A JP2000243395 A JP 2000243395A
Authority
JP
Japan
Prior art keywords
negative electrode
silicon
secondary battery
electrolyte secondary
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11042873A
Other languages
Japanese (ja)
Other versions
JP4199871B2 (en
Inventor
Arata Kunii
Kenichiro Miyahara
Hiroya Yamashita
新 国居
健一郎 宮原
博也 山下
Original Assignee
Tokuyama Corp
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp, 株式会社トクヤマ filed Critical Tokuyama Corp
Priority to JP04287399A priority Critical patent/JP4199871B2/en
Publication of JP2000243395A publication Critical patent/JP2000243395A/en
Application granted granted Critical
Publication of JP4199871B2 publication Critical patent/JP4199871B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which has a small initial irreversible capacity and a high initial efficiency and moreover a large discharge capacity, and a negative electrode material of the nonaqueous electrolyte secondary battery which uses a silicon negative electrode active material that gives such battery characteristics as mentioned above. SOLUTION: In a nonaqueous electrolyte secondary battery which houses a positive electrode, a negative electrode, a nonaqueous electrolyte and a separator in a container, the negative electrode is composed of a negative electrode material of the nonaqueous electrolyte secondary battery, which comprises a composition containing 100 pts.wt. of a silicon negative electrode active material prepared by doping an inorganic silicon compound such as a silicon simple substance or a low-grade silicon oxide with an element such as boron or phosphorus, and 100-180 pts.wt. of a conductivity giving material such as acetylene black.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明はリチウムイオン電池等の非水電解液二次電池、およびこれに用いる負極材料に関する。 The present invention is a nonaqueous electrolyte secondary battery such as a lithium ion battery BACKGROUND OF THE INVENTION, and to the negative electrode material used therefor.

【0002】 [0002]

【従来の技術】代表的な非水電解液二次電池であるリチウムイオン電池は、リチウムイオンを吸蔵・放出することが可能な正極活物質と集電体などからなる正極、リチウムイオンを吸蔵・放出することが可能な負極活物質と集電体などからなる負極、リチウム塩を非水溶媒に溶解してなる電解液、セパレータ、及び電池容器などから構成されるものであるが、高エネルギー密度という優れた特長を有するため、近年その需要が急激に高まっている。 BACKGROUND ART Lithium ion batteries, which is a typical non-aqueous electrolyte secondary battery, the positive electrode of occluding and releasing lithium ions and the like cathode active material and the current collector can be, absorbing and lithium ions anode to release the like negative electrode active material and the current collector can be an electrolytic solution obtained by dissolving lithium salt in a nonaqueous solvent, a separator, and those composed of such as a battery container, a high energy density because it has an excellent feature that, the demand is growing rapidly in recent years.

【0003】該リチウムイオン電池においては、充電時には正極活物質中から放出されたリチウムイオンは負極活物質中に吸蔵され、放電時には負極活物質中に吸蔵されたリチウムイオンが放出されて正極活物質中に吸蔵される。 [0003] In the lithium-ion battery, during charging the lithium ions released from the positive electrode active material is occluded in the negative electrode active material, at the time of discharge is released occluded a lithium ion in the negative electrode active material in the positive electrode active material It is occluded in. このため、リチウムイオン電池の重要な特性の一つである充放電容量は、使用する負極活物質の影響を強く受ける。 Thus, is one charge and discharge capacity of the important characteristics of the lithium-ion batteries is strongly influenced by the negative electrode active material to be used. 現在実用化されているリチウムイオン電池は、負極活物質としてカーボンを使用しており、その充放電容量も600mAh/gという値を示すことが報告されているが、カーボンはその比重が小さいため体積当たりの容量では充放電容量が十分ではなく、より高い充放電容量を達成するために、さらに高いリチウムイオン吸蔵能及び放出能を有する負極活物質が検討されている。 Lithium ion batteries currently in practical use is using carbon as an anode active material, have been reported to exhibit a value of the charge-discharge capacity 600 mAh / g, the volume for carbon its smaller specific gravity not sufficient charge-discharge capacity in the capacity per, in order to achieve higher charge and discharge capacity, and the negative electrode active material is considered to have a higher lithium ion storage capacity and release capability.

【0004】珪素は古くからリチウムイオンを吸蔵・放出することが知られており(Ram A.Sharma and Randoll [0004] The silicon is known to be capable of absorbing and releasing lithium ions from the old (Ram A.Sharma and Randoll
N. Seafurth, J.Electrochem. Soc. Dec. 1763-1768 1 N. Seafurth, J.Electrochem. Soc. Dec. 1763-1768 1
976年)、該性質を利用して珪素をリチウムイオン電池の電極活物質として使用することが検討されている。 976 years), it is considered to use silicon by using said properties as an electrode active material for lithium ion batteries. 珪素はカーボンに比べ比重が大きく、多量のリチウムイオンを吸蔵、放出することができる。 Silicon has a large specific gravity than the carbon, a large amount of lithium ion occlusion, can be released. よって、非水電解液二次電池の負極活物質として珪素を用いることにより、 Therefore, by using silicon as the negative electrode active material for nonaqueous electrolyte secondary batteries,
カーボンに比べ体積エネルギー密度が大幅に向上する。 Volumetric energy density compared to carbon is significantly improved.
このため、珪素は高容量のリチウムイオン電池を与える負極活物質として注目され始めている。 Thus, silicon has begun to be noticed as a negative electrode active material to provide a lithium ion battery with high capacity.

【0005】しかしながら、珪素を負極活物質として用いた場合には、初期の充電容量は大きくなるものの放電容量が小さくてその容量差が大きく、更に充放電サイクルを重ねるにつれて容量が急激に低下するという問題を残していた。 However, in the case of using silicon as the negative electrode active material, that the capacity difference initial discharge capacity of the charge capacity increases what is small is large, the capacity is rapidly reduced as further superposed charge-discharge cycle I had to leave the problem. また、珪素の単結晶を活物質として用いたものも提案されているが(特開平5−74463号公報)、前記問題を解決するには至っていない。 Further, it is also proposed that a single crystal of silicon as an active material (JP-A-5-74463), have yet to solve the above problems.

【0006】近年、負極活物質として珪素の低級酸化物を用い容量及びサイクル特性の向上を試みたものがある(特開平10−270088号公報、特開平10−50 In recent years, there is an attempt to improve the capacity and the cycle characteristics with lower oxide of silicon as a negative electrode active material (JP-A-10-270088, JP-A No. 10-50
312号公報)。 312 JP). しかし、初期の充電容量と放電容量の差(以下、不可逆容量とも呼ぶ)が大きく、放電容量が小さかった。 However, the difference between the initial charge capacity and the discharge capacity (hereinafter, also referred to as irreversible capacity) is large, the discharge capacity was small. また、珪素にホウ素やリンをドープすることにより容量を大きくすることを試みたものがあるが(特開平10−83817号公報)、放電容量は453 Although there is an attempt to increase the capacity by doping with boron or phosphorus to silicon (JP-A-10-83817), the discharge capacity is 453
mAh/gと依然として小さく、満足できるところまで至っていない。 mAh / g and still small, not yet to the point where satisfactory. また、珪素の導電性が10 -5 Scm -1以上で、導電性付与材であるアセチレンブラックの添加量が1〜30重量%のものが(特開平10−284129 Further, a conductive silicon 10 -5 Scm -1 or more, the amount of acetylene black as a conductivity-imparting material is 1 to 30 wt% (JP-A-10-284129
号公報)、非水電解液二次電池負極として優れていると提案されているが、初期効率(初期放電容量/初期充電容量×100)は平均70%と低い。 JP), are proposed to be superior as a non-aqueous electrolyte secondary battery negative electrode, the initial efficiency (initial discharge capacity / initial charge capacity × 100) is an average of 70% and less.

【0007】 [0007]

【発明が解決しようとする課題】本発明は、初期不可逆容量が小さく、初期効率が例えば80%以上となるような放電容量の大きな非水電解液二次電池、及びこの様な電池特性を与える珪素系負極活物質を用いた非水電解液二次電池負極材料を提供することを目的とする。 [0008] The present invention, initial irreversible capacity is small, a large non-aqueous electrolyte secondary battery of the discharge capacity such that the initial efficiency is, for example, 80% or more, and provide such a battery characteristics and to provide a non-aqueous electrolyte secondary battery negative electrode material with a silicon-based negative active material.

【0008】 [0008]

【課題を解決するための手段】通常、非水電解液二次電池負極においてアセチレンブラック等の導電性付与材の添加量が多くなるとその導電性付与効果が飽和するだけでなく、使用できる負極活物質量が少なくなって却って放電容量が低下するために、導電性付与材の添加量は負極活物質100重量部に対して30重量部程度が好適とされ、従来のほとんどの非水電解液二次電池負極材料における導電性付与材の添加量もこの程度である。 Means for Solving the Problems] Normally, the non-aqueous electrolyte secondary battery negative electrode increases the amount of the conductivity imparting agent such as acetylene black in the well the conductivity imparting effect is saturated, the negative electrode active usable to the contrary discharge capacity becomes small amount of material is reduced, the amount of the conductivity imparting agent is a preferably about 30 parts by weight with respect to the negative electrode active material 100 parts by weight, most conventional non-aqueous electrolyte secondary the addition amount of the conductivity imparting agent in the next cell negative electrode material also this extent.

【0009】本発明者等は、上記のような常識にとらわれずに、添加する導電性付与材の量を大きく変えて種々検討を行ったところ、偶然にも、負極活物質として珪素系材料に硼素やリンがドープされてなる負極活物質を用いた場合には、導電性付与材を負極活物質と同重量以上となるように多量添加すると負極活物質の使用量の低下に伴う容量の低下を補って余りあるほどの著しい充放電効率の向上、およびサイクル特性の向上が見られるという知見を得、さらに検討を重ねた結果、本発明を完成するに至った。 [0009] The present inventors have Without being bound by common sense as described above, was subjected to various studies greatly changed the amount of conductivity imparting agent to be added, by chance, the silicon-based material as an anode active material when the boron or phosphorus using the negative electrode active material comprising doped, a reduction in capacity with decreasing the amount of addition of a large amount to the anode active material as the conductivity imparting agent becomes a negative electrode active material and the same weight or more a remarkable improvement in charge-discharge efficiency of about outweigh, and improvement of cycle characteristics obtained a finding that is seen, a result of further extensive studies, and have completed the present invention.

【0010】即ち、本発明は、珪素単体又は無機珪素化合物に周期律表13族および15族から選ばれる少なくとも1種の元素がドープされてなる珪素系負極活物質1 [0010] Namely, the present invention is elemental silicon or inorganic silicon compound, at least one silicon based element is formed by doping of the negative electrode active material selected from the periodic group Table 13 and Group 15 to 1
00重量部、並びに導電性付与材100〜180重量部を含有する組成物からなることを特徴とする非水電解液二次電池負極材料である。 00 parts by weight, and a non-aqueous electrolyte secondary battery negative electrode material characterized by comprising a composition containing a conductivity imparting agent 100-180 parts by weight.

【0011】また、他の本発明は、正極、負極、非水電解液、及びセパレータを容器内に収納してなる非水電解液二次電池において、負極が上記の非水電解液二次電池負極材料より構成されることを特徴とする非水電解液二次電池である。 Further, another invention includes a positive electrode, a negative electrode, a nonaqueous electrolyte solution, and in the non-aqueous electrolyte secondary battery formed by housing a separator in a container, a negative electrode non-aqueous electrolyte secondary battery of the a non-aqueous electrolyte secondary battery characterized in that it is composed of a negative electrode material.

【0012】本発明により上記のような優れた効果が発現する理由は今のところ不明であるが、珪素系負極活物質の導電性はドープにより既に高められており、しかも導電性付与材の添加による導電性の向上効果は少ない添加量で飽和していると考えられることから、導電性付与材を高度に添加したときに特有の導電性以外の何らかの要因が作用しているものと考えられる。 [0012] reason for the present invention is excellent effects as described above for expression is not known so far, the conductive silicon-based negative active material has already been increased by doping, moreover the addition of the conductivity imparting agent improvement of conductivity due to the it is considered to be saturated with a small addition amount, it is considered that some kind of factors other than the conductive specific acting upon addition of conductivity imparting agent highly.

【0013】 [0013]

【発明の実施の形態】以下、本発明を具体的に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, detailed explanation of the present invention.

【0014】本発明の非水電解液二次電池負極材料においては、珪素単体又は無機珪素化合物に周期律表13族および15族から選ばれる少なくとも1種の元素がドープされた珪素系負極活物質を使用する。 [0014] Non-In-aqueous electrolyte secondary battery negative electrode material, elemental silicon or inorganic silicon compound to at least one silicon element is doped based negative active material selected from the periodic group Table 13 and Group 15 of the present invention to use.

【0015】ここで、珪素または無機珪素化合物(以下、珪素材料とも言う。)としては、単結晶珪素、多結晶珪素、アモルファス珪素等の珪素単体;一般式SiO [0015] Here, silicon or inorganic silicon compound (hereinafter, also referred to as silicon materials.) The single-crystal silicon, polycrystalline silicon, silicon simple substance such as amorphous silicon; formula SiO
x (0<X<2)で表される珪素の低級酸化物;珪素の窒化物及び炭化物;B、Al、Ga、In等の周期律表13族元素、Ge、Sn、Pb等の周期律表14族元素、P、As、Sb等の周期律表15族元素、Ti、Z x (0 <X <2) lower oxides of silicon represented by; nitrides of silicon and carbides; B, Al, Ga, Group 13 elements such as In, Ge, Sn, periodic such as Pb Table 14 group elements, P, As, periodic table group 15 element such as Sb, Ti, Z
r、Hf等の周期律表4族元素、V、Nb、Ta等の周期律表5族元素、Cr、Mo、W等の周期律表6族元素、Mn、Re等の周期律表7族元素、Fe、Ru等の周期律表8族元素、Co等の周期律表9族元素、及びC r, group 4 of the periodic table elements, V, Nb, the periodic table Group 5 elements, Cr, Mo, the periodic table Group 6 elements such as W, Mn, periodic table Group 7 such as Re, such as Ta, such as Hf elements, Fe, periodic table group 8 element such as Ru, periodic table group 9 elements such as Co, and C
u、Ag等の周期律表11族元素から選ばれる1つ以上の元素と珪素との合金等が使用できる。 u, alloys of one or more elements and silicon selected from periodic table Group 11 element such as Ag can be used.

【0016】上記の各珪素材料としては、従来公知の製造方法により製造されたものが何ら制限なく用いられる。 [0016] As the silicon material of the above, those prepared by conventionally known production methods can be used without any limitation. 例えば、珪素単体についてはケイ石を炭素還元した金属級珪素を用いても良い。 For example, for silicon alone may be used for metallurgical grade silicon that carbon reduction of quartzite. また、性能の安定性という観点からは金属系珪素を塩酸と反応させて精製したSi Further, Si from the viewpoint of stability in performance and purified the metallic silicon is reacted with hydrochloric acid
Cl 4 ,SiHCl 3 ,SiH 2 Cl 2等のシラン系ガスを熱分解又はプラズマ分解して得られる高純度多結晶珪素を用いることもできる。 Cl 4, SiHCl 3, the silane-based gas such as SiH 2 Cl 2 may be used a high-purity polycrystalline silicon obtained by pyrolysis or plasma decomposition. さらに、多結晶珪素からFZ In addition, FZ from polycrystalline silicon
法、CZ法等の公知の方法によって得られる単結晶珪素やプラズマCVD法等により得られるアモルファス珪素を用いても良い。 Law, may be used known amorphous silicon obtained by single crystal silicon, a plasma CVD method or the like obtained by the process of the CZ method, or the like. 珪素の低級酸化物については、例えば、珪素と二酸化珪素を等量混合し真空中で加熱し凝縮させた後、得られた凝集物質を10 -1 Torr以下の不活性ガス中で1000℃以上に加熱して得られたもの、 The lower oxide of silicon, e.g., silicon and silicon dioxide was allowed to heat condensed in equal amounts mixed in vacuo, the resulting agglomerated material to more than 1000 ° C. in 10 -1 Torr or less inert gas those obtained by heating,
或いは酸化珪素系混合材料を電子ビーム加熱によって真空蒸発させ蒸着させて得られたものなどが使用できる。 Alternatively such a silicon oxide-based mixed materials were obtained by depositing evaporated in vacuo by the electron beam heating can be used.

【0017】本発明で使用する珪素系負極活物質においては、初期の不可逆容量を低減させるために、珪素材料に周期律表13族および15族から選ばれる少なくとも1種の元素(以下、ドープ元素とも言う。)をドープすることが重要である。 [0017] In the silicon-based negative active material for use in the present invention, in order to reduce the initial irreversible capacity, at least one element selected from Periodic Group Table 13 and Group 15 of silicon material (hereinafter, doping elements also referred to.) it is important to be doped. その理由は、必ずしも明確ではないが、1つの理由としてこれらの元素をドープすることにより導電性を含めた物性が大きく変化するためではないかと考えられる。 The reason is not necessarily clear, it is considered that it is the order properties including conductivity is greatly changed by doping with these elements as one reason.

【0018】ドープ元素は周期律表13族、15族元素であれば特に限定されないが、ホウ素(B)、リン(P)、アンチモン(Sb)、砒素(As)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In) The doping elements of Group 13 of the Periodic Table, is not particularly limited as long as it is a Group 15 element, boron (B), phosphorus (P), antimony (Sb), arsenic (As), aluminum (Al), gallium ( Ga), indium (In)
等の3価または5価の元素をドープするのが好適である。 It is preferred to dope the trivalent or pentavalent element and the like. この中でもホウ素、リン、アンチモンはドープしやすく、ひいては導電性を制御しやすいという点で特に好ましい。 Boron Among these, phosphorus, antimony doped easily, particularly preferred in view of easy control and hence conductive.

【0019】ドープ元素のドープ量は特に限定されず、 [0019] The doping amount of doping element is not particularly limited,
ドープ元素の種類に応じて適宜決定すれば良いが、例えばホウ素、リン、及びアンチモンをそれぞれ単独でドープする場合には、活物質の体積当たりのドープ元素の原子数で表して、それぞれホウ素につて1.5×10 19原子/cm 3以上、リンについて9.0×10 18原子/c It may be suitably determined according to the type of doping elements. For example, boron, phosphorus, and in the case of antimony doped singly, expressed in number of atoms of doping elements per volume of the active material, connexion each boron 1.5 × 10 19 atoms / cm 3 or more, phosphorus for 9.0 × 10 18 atoms / c
3以上、アンチモンについて1.0×10 18原子/c m 3 or more, antimony about 1.0 × 10 18 atoms / c
3以上ドープするのが好適である。 It is preferred to m 3 or more doped. ホウ素、リン、及びアンチモンのこれらのドープ量は通常の半導体用途でのドープ量と比較してかなり大きい量であるが、このようなドープ量のものを非水電解液二次電池負極活物質として用いた場合には、不可逆容量の低減効果は特に高い。 Boron, phosphorus, and these doping amount of antimony is an amount much larger than that doping amount of a normal semiconductor applications, as a negative electrode active material non-aqueous electrolyte secondary battery ones such doping amount in the case of using the effect of reducing the irreversible capacity is particularly high.

【0020】ドープ元素を珪素材料へドープする方法は特に制限されず、拡散法、イオン打ち込み法、世代法、 [0020] The method for doping the doping element to the silicon material is not particularly limited, diffusion method, ion implantation method, generation method,
ガスドープ法等の公知の方法が何ら制限なく用いられる。 Known method gas doping method, or the like may be used without any limitation. また、珪素材料作製時に同時にドープしても良いし、作製後にドープしても良い。 In addition, it may be doped at the same time as the silicon material produced, it may be doped after manufacture.

【0021】本発明では、効果の高さや調製の容易さの観点から、単結晶や多結晶珪素等の珪素単体にホウ素、 [0021] In the present invention, in view of height and preparation of ease of effect, boron elemental silicon such as single crystal or polycrystalline silicon,
リン、又はアンチモンが、ホウ素について1.5×10 Phosphorus, or antimony, 1.5 × 10 for boron
19原子/cm 3以上、リンについて9.0×10 18原子/cm 3以上、アンチモンについて1.0×10 18原子/cm 3以上ドープされた珪素系負極活物質を用いるのが好適である。 19 atoms / cm 3 or more, 9.0 × 10 18 atoms / cm 3 or more for phosphoric, it is preferred to use a doped silicon-based negative active material 1.0 × 10 18 atoms / cm 3 or more for antimony.

【0022】本発明の非水電解液二次電池負極材料においては、前記珪素系負極活物質に導電性付与材を珪素系負極活物質100重量部に対して100〜180重量部添加する必要がある。 [0022] In the non-aqueous electrolyte secondary battery negative electrode material of the present invention, should be added 100 to 180 parts by weight of the conductivity imparting agent to silicon-based negative electrode active material 100 parts by weight of the silicon-based negative active material is there. 珪素系負極活物質100重量部に対する導電性付与材の添加量が100重量部より少ない時には、ドープ元素をドープした前記珪素系負極活物質を用いても不可逆容量の低減効果が不十分であり、導電性付与材の添加重量は珪素系負極活物質の重量より僅かでも多い方が好ましい。 When the addition amount of the conductivity imparting agent to the silicon-based negative active material 100 parts by weight is less than 100 parts by weight, even with the silicon-based negative active material doped with doping elements is insufficient effect of reducing the irreversible capacity, addition weight of the conductivity imparting agent is preferably one with a lot even slightly than the weight of the silicon-based negative active material. また、導電性付与材の添加量の上限は特に制限されないが、あまり添加量を多くすると負極中の活物質量が相対的に少なくなり放電容量が減少するため、上限としては180重量部が適当である。 The amount of the upper limit of the conductivity imparting agent is not particularly limited, so allowing a larger amount the discharge capacity active material weight is relatively small in the negative electrode is reduced, suitably 180 parts by weight as the upper limit it is.

【0023】本発明で使用する導電性付与材としては、 [0023] As the conductivity imparting agent for use in the present invention,
アセチレンブラック、天然黒鉛、鱗片状黒鉛、膨張黒鉛、粒状黒鉛、繊維状黒鉛等の炭素系導電性付与材;酸化錫繊維などの導電付与効果のある材料等が挙げられる。 Acetylene black, natural graphite, scaly graphite, expanded graphite, spheroidal graphite, carbonaceous conductivity imparting material such as fibrous graphite, materials with a conductivity-imparting effects such as tin oxide fibers.

【0024】本発明の非水電解液二次電池負極材料は、 The non-aqueous electrolyte secondary battery negative electrode material of the present invention,
それぞれ所定量の前記珪素系負極活物質と導電性付与材とを適宜混合することにより調製することができる。 Each can be prepared by properly mixing a predetermined amount of the silicon-based negative active material and the conductivity imparting agent. このとき、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどの結着剤やN−メチル−2−ピロリドンなどの溶媒を添加しても良い。 In this case, polytetrafluoroethylene, may be added to a solvent such as binder or N- methyl-2-pyrrolidone such as polyvinylidene fluoride. これら結着剤や溶媒と混練してペースト状にしたものは、取扱いが容易で非水電解液二次電池を製造するのに適している。 Those by kneading with these binder and a solvent into a paste is suitable for manufacturing an easy non-aqueous electrolyte secondary battery to handle. 結着剤及び溶媒の添加量は特に限定されないが、通常、珪素系負極活物質と導電性付与材との混合物100重量部に対して1.0 Binder and amount of the solvent is not particularly limited, usually, with respect to 100 parts by weight of a mixture of silicon-based negative active material and the conductivity imparting agent 1.0
〜50重量部程度及び0.1〜10重量部程度である。 About 50 parts by weight and about 0.1 to 10 parts by weight.

【0025】これら各材料の混合方法は特に限定されないが、混練機、混合機などを用いて、それぞれ所定量の珪素系負極活物質、導電性付与材、及び結着剤を先ず混練し、次いで所定量の溶媒を添加・混練し、ペーストを製造するのが好適である。 [0025] Without being restricted to such method of mixing the materials, especially, a kneader, by using a mixer, and first kneading respective predetermined amounts of silicon-based negative active material, conductivity-imparting agent, and a binder, then was added and kneaded a predetermined amount of the solvent, it is preferable to produce a paste.

【0026】本発明の非水電解液二次電池負極材料は、 The non-aqueous electrolyte secondary battery negative electrode material of the present invention,
正極、負極、非水電解液、及びセパレータを容器内に収容してなる一般的な非水電解液二次電池の負極材料として使用した場合に、電池の初期の充放電効率、放電容量、およびサイクル特性を改善する。 Positive electrode, a negative electrode, a nonaqueous electrolyte solution, and when used as a negative electrode material of a general non-aqueous electrolyte secondary battery formed by housing a separator vessel, the initial charge-discharge efficiency of the battery, the discharge capacity, and to improve the cycle characteristics.

【0027】本発明の非水電解液二次電池は、負極材料として前記した本発明の非水電解液二次電池負極材料を使用する以外は、従来の非水電解液二次電池と特に変わるところはない。 The non-aqueous electrolyte secondary battery of the present invention, but using a non-aqueous electrolyte secondary battery negative electrode material of the present invention described above as a negative electrode material, particularly changes the conventional non-aqueous electrolyte secondary battery there is no place.

【0028】即ち、正極、集電体、非水電解液、セパレータなどは、従来の非水電解液二次電池に用いられている材料が何ら制限なく使用される。 [0028] That is, the positive electrode current collector, a non-aqueous electrolyte solution, separator, etc., the material used in the conventional non-aqueous electrolyte secondary battery is used without any limitation.

【0029】正極活物質としては、TiS 2 、MoS 2 [0029] As the positive electrode active material, TiS 2, MoS 2,
FeS 2などの硫化物、NbSe 3などのセレン化物などのカルコゲン化合物、あるいはCr 25 、Cr 38 、V Sulfides such as FeS 2, chalcogen compounds such as selenides such as NbSe 3, or Cr 2 O 5, Cr 3 O 8, V
38 、V 25 、V 613などの遷移金属の酸化物、Li 3 O 8, oxides of transition metals such as V 2 O 5, V 6 O 13, Li
Mn 24 、LiMnO 2 、LiV 35 、LiNiO 2 、L Mn 2 O 4, LiMnO 2, LiV 3 O 5, LiNiO 2, L
iCoO 2などのリチウムと遷移金属との複合酸化物、 composite oxides of lithium and transition metal such iCoO 2,
あるいはポリアニリン、ポリアセチレン、ポリパラフェニリン、ポリフェニレンビニレン、ポリピロール、ポリチオフェンなどの共役系高分子、ジスルフィド結合を有する架橋高分子などのリチウムを吸蔵、放出することが可能な材料を使用することができる。 Or can polyaniline, polyacetylene, polyparaphenylene phosphorus, polyphenylene vinylene, polypyrrole, conjugated polymers such as polythiophene, it absorbs lithium, such as cross-linked polymer having a disulfide bond, be a material capable of emitting.

【0030】集電体としては、銅、アルミニウムなどからなる帯形状の薄板あるいはメッシュなどを用いることができる。 [0030] As the current collector, it is possible to use copper, and a thin plate or mesh band shape made of aluminum.

【0031】非水電解液としては、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、 [0031] non-aqueous electrolyte, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, .gamma.-butyrolactone,
テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリルなどの単独あるいは2種類以上の混合非水溶媒に、LiClO 4 、LiPF 6 、LiAsF 6 、LiB Tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, singly or two kinds or more mixed nonaqueous solvent such as propionitrile, LiClO 4, LiPF 6 , LiAsF 6, LiB
4 、LiB(C 654 、LiCl、LiBr、CH 3 F 4, LiB (C 6 H 5) 4, LiCl, LiBr, CH 3
SO 3 Li、CF 3 SO 3 Liなどのリチウム塩が溶解してなる非水電解液がいずれの組合せにおいても使用可能である。 SO 3 Li, CF 3 SO 3 Li nonaqueous electrolyte lithium salt is dissolved, such as can be also be used in any combination.

【0032】セパレータとしては、イオンの移動に対して低抵抗であり、かつ溶液保持性に優れたものを用いればよい。 [0032] As the separator is a low resistance to migration of ions, and may be used those excellent solution retainability. 例えば、ポリプロピレン、ポリエチレン、ポリエステル、ポリフロンなどからなる高分子ポアフィルター、ガラス繊維フィルター、不織布、あるいはガラス繊維とこれらの上記高分子からなる不織布が使用可能である。 For example, polypropylene, polyethylene, polyester, polymer pore filter made of POLYFLON, glass fiber filters, nonwovens, or nonwovens made from glass fiber and those of the polymer can be used. 更に、電池内部が高温になったとき、溶融して細孔をふさぎ、正極及び負極のショートを防ぐ材料が好ましい。 Furthermore, when the battery internal temperature becomes high, block the pores to melt, the material is preferably prevent a short circuit of the positive electrode and the negative electrode.

【0033】本発明の非水電解液二次電池の製造方法も従来の非水電解液二次電池の製造方法と特に変わるところはなく、例えば次のような方法により好適に製造することが出来る。 The non-aqueous method of manufacturing an electrolytic solution secondary battery of the present invention is not particularly where changes the conventional method of manufacturing a nonaqueous electrolyte secondary battery can be suitably produced according to the following method, for instance .

【0034】すなわち、まず、前記したような方法によりペースト状の本発明の非水電解液二次電池負極材料を調製する。 [0034] That is, first, to prepare a non-aqueous electrolyte secondary battery negative electrode material paste of the present invention by a method as described above. 次いで、調製したペーストを集電体に塗布、 Then, applying the prepared paste on the current collector,
充填あるいは含浸させ、溶媒を乾燥、除去した後、加圧、切断などを行って所望の形状に加工して負極とする。 Filling or impregnating, the solvent dried, after removal, pressure, cutting etc. performing the processing to the negative electrode into a desired shape. この様に加工した負極と、これと同様にして製造した正極をセパレータを介して帯状に重ね、円筒型非水電解液二次電池であれば円柱状に巻回し、また角型非水電解液二次電池であれば折り重ねて、電極部分を製造する。 A negative electrode was processed in this manner, superimposed on strip with a separator the positive electrode was prepared in the same manner, if the cylindrical non-aqueous electrolyte secondary battery wound into a cylindrical shape, and square type non-aqueous electrolyte folded over as long a secondary battery, the production of the electrode portion. そして、その後、この電極部分を所望の電池容器に挿入し、非水電解液を注入後、安全装置などを挿入し、 Thereafter, the electrode portion is inserted into a desired battery container, after the nonaqueous electrolyte solution is injected, and insert the safety device,
封缶することにより製造することができる。 It can be produced by sealing.

【0035】 [0035]

【実施例】以下、本発明について実施例及び比較例を挙げてより具体的に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described by way of examples and comparative examples more specifically for the present invention is not limited to these examples.

【0036】なお、各実施例及び比較例における充放電容量の測定、及び充放電サイクル試験は、次のようにして行った。 [0036] The measurement of charge and discharge capacities in each of Examples and Comparative Examples, and charge-discharge cycle test was performed as follows.

【0037】充放電容量の測定: 充放電装置(北斗電工製)を用いて、各実施例及び比較例で作成した簡易型リチウム電池の充放電サイクル試験を行い、放電時間t The charge-discharge capacity measurement: using a rechargeable device (manufactured by Hokuto Denko), subjected to the charge-discharge cycle test of the simple type lithium batteries prepared in Examples and Comparative Examples, the discharge time t
(単位;時間)を測定することにより負極活物質の第1 The first negative electrode active material by measuring the; (hours)
サイクル目の充放電容量を測定した。 To measure the charge-discharge capacity of the cycle.

【0038】充放電サイクル試験: 該試験は、各簡易型リチウム電池について、48mA/gに相当する電流値(一定)、および充放電0〜1.0Vの範囲内で充放電を10回繰り返した。 The charge-discharge cycle test: The test for each simplified type lithium battery, a current value corresponding to 48 mA / g (constant), and the charge and discharge within the discharge 0~1.0V was repeated 10 times . サイクル特性は、サイクル数増加に伴う放電容量の低下の度合い(低下が少ない方がサイクル特性が高い)で評価される。 Cycle characteristics, the degree of decrease in discharge capacity with the increase number of cycles (whichever reduction is small cycle characteristics is high) is evaluated by.

【0039】上記の測定結果に基づいて初回の充放電容量を求めた。 The obtained charging and discharging capacity of the first on the basis of the above measurement results. 充放電容量は、ペースト中に添加した活物質の単位重量当たりの量として算出した。 Charge-discharge capacity was calculated as the amount per unit weight of active material added to the paste. 即ち、導電性付与材であるアセチレンブラックの充放電容量は0と仮定して計算を行った。 That is, charge and discharge capacity of acetylene black as a conductivity-imparting material were calculated assuming zero. さらに、充放電1サイクル目の充電容量と放電容量より不可逆容量を算出し、初期効率を求めた。 Moreover, to calculate the irreversible capacity than the charge capacity and the discharge capacity of the charge and discharge the first cycle, to determine the initial efficiency.

【0040】実施例1 ホウ素(B)が1.5×10 19原子/cm 3ドープされた単結晶珪素を乳鉢で粉砕した。 [0040] Example 1, boron (B) was pulverized in a mortar 1.5 × 10 19 atoms / cm 3 doped single crystal silicon.

【0041】珪素粉末100重量部と、結着剤としてポリフッ化ビニリデン2.5重量部と、導電性付与材としてアセチレンブラック102重量部とを乳鉢で混練後、 [0041] and silicon powder 100 parts by weight of polyvinylidene fluoride 2.5 parts by weight and, after kneading in a mortar and acetylene black 102 parts by weight of the conductivity imparting agent as a binder,
溶媒としてN−メチル−2−ピロリドンを加え、さらに混練後、ペーストを得た。 N- methyl-2-pyrrolidone was added as a solvent, was further kneaded to obtain a paste. このペーストを銅箔に塗布し100℃の真空乾燥機にて24時間乾燥した後、圧延し負極とした。 After drying for 24 hours at this paste was applied to the copper foil 100 ° C. in a vacuum dryer to obtain a rolled anode. 非水電解液には、LiPF 6 (1モル/リットルの濃度)をエチレンカーボネートとジエチルカーボネートの等体積混合溶媒に溶解したものを使用し、リチウム金属を対極として、コイン型電池を作成した。 The non-aqueous electrolyte, using a solution obtained by dissolving LiPF 6 (concentration of 1 mol / liter) in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate, a lithium metal as a counter electrode to prepare a coin battery.

【0042】この様にして作製したコイン型電池について充放電容量の測定、及び充放電サイクル試験を行った。 [0042] was carried out for the coin type battery was produced in this way measurement of charge and discharge capacity, and the charge-discharge cycle test. 結果を表1及び図1に示す。 The results shown in Table 1 and FIG.

【0043】 [0043]

【表1】 [Table 1]

【0044】実施例2 11Nの多結晶珪素((株)トクヤマ製)及び高純度金属ボロンをアルゴンガス雰囲気中で黒鉛製サセプターの石英るつぼに入れて加熱溶解させて、金属ボロンのドープ量が1.6×10 19原子/cm 3である多結晶珪素を得た。 [0044] The polycrystalline silicon (KK Tokuyama) and high-purity metallic boron Example 2 11N by heating dissolved placed in a quartz crucible of graphite susceptor in an argon gas atmosphere, the doping amount of the metal boron 1 to obtain a polycrystalline silicon which is .6 × 10 19 atoms / cm 3. この多結晶珪素を粉砕して用いること以外は、実施例1と同様に行った。 Except for using by grinding the polycrystal silicon was carried out as in Example 1. 結果を表1及び図1に示す。 The results shown in Table 1 and FIG.

【0045】比較例1 ホウ素(B)がドープされていない珪素単体を負極活物質として用いた以外は実施例1と同様にしてコイン型セルを作製した。 [0045] in the same manner except that Comparative Example 1, boron (B) was used elemental silicon undoped as the negative electrode active material as in Example 1 to prepare a coin-type cell. 得られたコイン型電池について充放電容量の測定、及び充放電サイクル試験を行った。 Measurement of discharge capacity of the obtained coin-type battery, and was subjected to a charge-discharge cycle test. 結果を表1及び図1に示す。 The results shown in Table 1 and FIG. ドーピングされていない珪素単体を用いた場合には、導電性付与材の添加量を多くしても、 When using a silicon single undoped, even by increasing the amount of conductivity imparting agent,
実施例の結果と比べて効率およびサイクル特性が悪いことが分かる。 It can be seen inefficient and cycle characteristics as compared with the results of Example.

【0046】比較例2 導電性付与材であるアセチレンブラックの量を珪素粉末100重量部に対して44重量部とした以外は実施例1 [0046] except that the 44 parts by weight relative to the quantity of silicon powder 100 parts by weight of acetylene black as a comparative example 2 the conductivity imparting agent Example 1
と同様にしてコイン型セルを作製した。 To prepare a coin-type cell in the same manner as. 得られたコイン型電池について充放電容量の測定、及び充放電サイクル試験を行った。 Measurement of discharge capacity of the obtained coin-type battery, and was subjected to a charge-discharge cycle test. 結果を表1及び図1に示す。 The results shown in Table 1 and FIG. 導電性付与材の添加量が少ない場合には、ドーピングされた珪素粉末を用いても、実施例の結果と比べて効率およびサイクル特性が悪いことが分かる。 When the addition amount of the conductivity imparting agent is small, even by using the doped silicon powder, it can be seen inefficient and cycle characteristics as compared with the results of Example.

【0047】 [0047]

【発明の効果】珪素単体又は無機珪素化合物に、ホウ素、リンあるいはアンチモン等の13族あるいは15族から選ばれる少なくとも1種の第二元素をドープした珪素系負極活物質とアセチレンブラック等の導電性付与材を特定量配合した組成物からなる非水電解液二次電池負極材料を用いて作成した本発明の非水電解液二次電池は、初期の充放電効率が80%以上と高いばかりでなく、サイクル特性も良好である。 The elemental silicon or inorganic silicon compound according to the present invention, boron, conductive silicon-based, such as the negative electrode active material, acetylene black doped with at least one second element selected from Group 13 or Group 15 such as phosphorus or antimony non-aqueous electrolyte secondary battery of the present invention prepared by using a non-aqueous electrolyte secondary battery negative electrode material comprising a specific amount and composition of the applied material, only the initial charge and discharge efficiency is high and more than 80% without the cycle characteristics are also good.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 各実施例および比較例で作成したコイン型電池のサイクル特性(サイクル回数と各サイクルに於ける放電容量の関係)を示すグラフである。 1 is a graph showing the cycle characteristics (relationship in discharge capacity cycle number and each cycle) of the coin-type battery was prepared in the Examples and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA01 AA02 AA04 BA07 BB02 BB04 BB14 BD00 BD04 5H014 AA02 BB11 EE05 EE07 EE10 HH00 HH01 5H029 AJ02 AJ03 AJ05 AK02 AK03 AK05 AK16 AL01 AL02 AL11 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 BJ15 CJ15 DJ02 DJ04 DJ08 HJ00 HJ01 ────────────────────────────────────────────────── ─── front page of continued F-term (reference) 5H003 AA01 AA02 AA04 BA07 BB02 BB04 BB14 BD00 BD04 5H014 AA02 BB11 EE05 EE07 EE10 HH00 HH01 5H029 AJ02 AJ03 AJ05 AK02 AK03 AK05 AK16 AL01 AL02 AL11 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 BJ15 CJ15 DJ02 DJ04 DJ08 HJ00 HJ01

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 珪素単体又は無機珪素化合物に周期律表13族および15族から選ばれる少なくとも1種の元素がドープされてなる珪素系負極活物質100重量部、並びに導電性付与材100〜180重量部を含有する組成物からなることを特徴とする非水電解液二次電池負極材料。 1. A silicon single or at least one silicon based element is formed by doping of the negative electrode active material 100 parts by weight selected from Group 13 of the Periodic Table and Group 15 in the inorganic silicon compound, as well as the conductivity imparting agent 100-180 non-aqueous electrolyte secondary battery negative electrode material characterized by comprising a composition containing by weight.
  2. 【請求項2】 珪素単体又は無機珪素化合物にドープされる周期律表13族および15族から選ばれる少なくとも1種の元素がホウ素、リン、又はアンチモンであり、 Wherein elemental silicon or inorganic silicon at least one element is boron compound selected from the periodic group Table 13 and Group 15 to be doped, is phosphorus or antimony,
    これら元素のドープ量が珪素系負極活物質の体積当たりの原子数で表して、それぞれホウ素について1.5×1 Represents the doping amount of these elements in an atomic number per volume of the silicon-based negative active material, 1.5 for boron, respectively × 1
    19原子/cm 3以上、リンについて9.0×10 18原子/cm 3以上、アンチモンについて1.0×10 18原子/cm 3以上であることを特徴とする請求項1記載の非水電解液二次電池負極材料。 0 19 atoms / cm 3 or more, 9.0 × 10 18 atoms / cm 3 or more for phosphoric, nonaqueous of claim 1, wherein a is 1.0 × 10 18 atoms / cm 3 or more for antimony liquid secondary battery negative electrode material.
  3. 【請求項3】 正極、負極、非水電解液、及びセパレータを容器内に収納してなる非水電解液二次電池において、負極が請求項1又は請求項2に記載の非水電解液二次電池負極材料より構成されることを特徴とする非水電解液二次電池。 3. A positive electrode, a negative electrode, a nonaqueous electrolyte solution, and a non-aqueous electrolyte described in the non-aqueous electrolyte secondary battery formed by housing a separator in a container, the negative electrode according to claim 1 or claim 2 two non-aqueous electrolyte secondary battery characterized by being composed of the following cell anode material.
JP04287399A 1999-02-22 1999-02-22 Non-aqueous electrolyte secondary battery negative electrode material and the nonaqueous electrolyte secondary battery Expired - Lifetime JP4199871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04287399A JP4199871B2 (en) 1999-02-22 1999-02-22 Non-aqueous electrolyte secondary battery negative electrode material and the nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04287399A JP4199871B2 (en) 1999-02-22 1999-02-22 Non-aqueous electrolyte secondary battery negative electrode material and the nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2000243395A true JP2000243395A (en) 2000-09-08
JP4199871B2 JP4199871B2 (en) 2008-12-24

Family

ID=12648170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04287399A Expired - Lifetime JP4199871B2 (en) 1999-02-22 1999-02-22 Non-aqueous electrolyte secondary battery negative electrode material and the nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4199871B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100255A (en) * 2004-09-03 2006-04-13 Shin Etsu Chem Co Ltd Metal silicon powder for non-aqueous electrolyte secondary battery negative electrode material, and non-aqueous electrolyte secondary battery negative electrode
JP2008034352A (en) * 2006-06-30 2008-02-14 Sanyo Electric Co Ltd Lithium secondary cell and fabrication method thereof
WO2009063801A1 (en) * 2007-11-12 2009-05-22 Sanyo Electric Co., Ltd. Negative electrode material for rechargeable battery with nonaqueous electrolyte, negative electrode for rechargeable battery with nonaqueous electrolyte, rechargeable battery with nonaqueous electrolyte, and process for producing polycrystalline silicon particles for active material for negative electrode material for rechargeable battery with nonaqueous electrolyte
CN100547830C (en) * 2004-03-08 2009-10-07 三星Sdi株式会社 Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
JP2010021100A (en) * 2008-07-14 2010-01-28 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, lithium-ion secondary battery, and electrochemical capacitor
WO2010128681A1 (en) * 2009-05-08 2010-11-11 古河電気工業株式会社 Negative electrodes for secondary battery, copper foil for electrode, secondary battery, and processes for producing negative electrodes for secondary battery
JP2010282958A (en) * 2009-05-08 2010-12-16 Furukawa Battery Co Ltd:The Negative electrode for secondary battery, copper foil for electrode, secondary battery, and process for producing the negative electrode for secondary battery
JP2010282957A (en) * 2009-05-08 2010-12-16 Furukawa Battery Co Ltd:The Negative electrode for secondary battery, copper foil for electrode, secondary battery, and process for producing the negative electrode for secondary battery
JP2010282959A (en) * 2009-05-08 2010-12-16 Furukawa Battery Co Ltd:The Negative electrode for secondary battery, copper foil for electrode, secondary battery, and process for producing the negative electrode for secondary battery
US8048339B2 (en) 2006-12-19 2011-11-01 Samsung Sdi Co., Ltd. Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
CN102263233A (en) * 2010-05-28 2011-11-30 株式会社半导体能源研究所 Power storage device and manufacturing method thereof
WO2013051673A1 (en) * 2011-10-07 2013-04-11 帝人株式会社 Lithium ion secondary battery anode and lithium ion secondary battery
US8906557B2 (en) 2006-04-17 2014-12-09 Samsung Sdi Co., Ltd. Anode active material and method of preparing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634515B2 (en) 2009-06-19 2011-02-23 株式会社大阪チタニウムテクノロジーズ Negative electrode material for silicon oxide and lithium ion secondary battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012082B2 (en) 2004-03-08 2015-04-21 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US8709653B2 (en) 2004-03-08 2014-04-29 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
CN100547830C (en) * 2004-03-08 2009-10-07 三星Sdi株式会社 Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
JP2006100255A (en) * 2004-09-03 2006-04-13 Shin Etsu Chem Co Ltd Metal silicon powder for non-aqueous electrolyte secondary battery negative electrode material, and non-aqueous electrolyte secondary battery negative electrode
US8906557B2 (en) 2006-04-17 2014-12-09 Samsung Sdi Co., Ltd. Anode active material and method of preparing the same
US8771873B2 (en) 2006-06-30 2014-07-08 Sanyo Electric Co., Ltd. Lithium secondary battery and method of manufacturing the same
JP2008034352A (en) * 2006-06-30 2008-02-14 Sanyo Electric Co Ltd Lithium secondary cell and fabrication method thereof
US8048339B2 (en) 2006-12-19 2011-11-01 Samsung Sdi Co., Ltd. Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
US8562869B2 (en) 2006-12-19 2013-10-22 Samsung Sdi Co., Ltd. Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
JP5338676B2 (en) * 2007-11-12 2013-11-13 三洋電機株式会社 Non-aqueous electrolyte secondary battery negative electrode material, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
US8734991B2 (en) 2007-11-12 2014-05-27 Sanyo Electric Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery
WO2009063801A1 (en) * 2007-11-12 2009-05-22 Sanyo Electric Co., Ltd. Negative electrode material for rechargeable battery with nonaqueous electrolyte, negative electrode for rechargeable battery with nonaqueous electrolyte, rechargeable battery with nonaqueous electrolyte, and process for producing polycrystalline silicon particles for active material for negative electrode material for rechargeable battery with nonaqueous electrolyte
JP2013229347A (en) * 2007-11-12 2013-11-07 Shin Etsu Chem Co Ltd Process for producing polycrystalline silicon particle for active material in negative electrode material for nonaqueous electrolyte secondary battery
JP2010021100A (en) * 2008-07-14 2010-01-28 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, lithium-ion secondary battery, and electrochemical capacitor
CN102422465A (en) * 2009-05-08 2012-04-18 古河电气工业株式会社 Negative electrodes for secondary battery, copper foil for electrode, secondary battery, and processes for producing negative electrodes for secondary battery
JP2010282959A (en) * 2009-05-08 2010-12-16 Furukawa Battery Co Ltd:The Negative electrode for secondary battery, copper foil for electrode, secondary battery, and process for producing the negative electrode for secondary battery
JP2010282957A (en) * 2009-05-08 2010-12-16 Furukawa Battery Co Ltd:The Negative electrode for secondary battery, copper foil for electrode, secondary battery, and process for producing the negative electrode for secondary battery
JP2010282958A (en) * 2009-05-08 2010-12-16 Furukawa Battery Co Ltd:The Negative electrode for secondary battery, copper foil for electrode, secondary battery, and process for producing the negative electrode for secondary battery
WO2010128681A1 (en) * 2009-05-08 2010-11-11 古河電気工業株式会社 Negative electrodes for secondary battery, copper foil for electrode, secondary battery, and processes for producing negative electrodes for secondary battery
US8896098B2 (en) 2010-05-28 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
CN102263233A (en) * 2010-05-28 2011-11-30 株式会社半导体能源研究所 Power storage device and manufacturing method thereof
CN105591074A (en) * 2010-05-28 2016-05-18 株式会社半导体能源研究所 Power Storage Device And Method For Manufacturing The Same
WO2013051673A1 (en) * 2011-10-07 2013-04-11 帝人株式会社 Lithium ion secondary battery anode and lithium ion secondary battery

Also Published As

Publication number Publication date
JP4199871B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP5329858B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
US7892677B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery having the same
EP0582410B1 (en) Secondary battery
CN100539257C (en) Negative pole for secondary cell, secondary cell using negative pole, and negative pole manufacturing method
US8394534B2 (en) Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
CN100521359C (en) The lithium secondary battery
ES2694499T3 (en) Procedure for the production of coated carbon particles and their use in anodic materials for lithium ion batteries
US8501354B2 (en) Non-aqueous electrolyte secondary battery
JP3439085B2 (en) Non-aqueous electrolyte secondary battery
KR101612566B1 (en) Mixed metal olivine electrode materials for lithium ion batteries
JP3632686B2 (en) The positive electrode active material and a non-aqueous electrolyte secondary battery
JP3959929B2 (en) The positive electrode and a non-aqueous electrolyte battery
US8187752B2 (en) High energy lithium ion secondary batteries
JP3079343B2 (en) A nonaqueous electrolyte secondary battery and a manufacturing method thereof
EP1391959A2 (en) Non-aqueous electrolyte secondary battery
WO2010044437A1 (en) Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
JP3195175B2 (en) A non-aqueous solvent secondary battery
JP4022889B2 (en) Electrolyte and battery
US8815446B2 (en) Anode material, anode and battery, and methods of manufacturing them
JP4364501B2 (en) Electrode plate, lithium battery employing the same, and a plate manufacturing method of
JP5165258B2 (en) Nonaqueous electrolyte secondary battery
US20100233550A1 (en) Non-aqueous electrolyte secondary battery
EP1302997A2 (en) An electrolyte for lithium-sulfur batteries and lithium-sulfur batteries containing the same
JP4135074B2 (en) Method for manufacturing methods and negative cell
JP4020565B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141010

Year of fee payment: 6

EXPY Cancellation because of completion of term