JP2000236081A - Photoelectric conversion element and photoelectric conversion device - Google Patents

Photoelectric conversion element and photoelectric conversion device

Info

Publication number
JP2000236081A
JP2000236081A JP11035796A JP3579699A JP2000236081A JP 2000236081 A JP2000236081 A JP 2000236081A JP 11035796 A JP11035796 A JP 11035796A JP 3579699 A JP3579699 A JP 3579699A JP 2000236081 A JP2000236081 A JP 2000236081A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
light receiving
charge
unit
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11035796A
Other languages
Japanese (ja)
Other versions
JP4258875B2 (en
Inventor
Atsushi Kamashita
敦 釜下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP03579699A priority Critical patent/JP4258875B2/en
Publication of JP2000236081A publication Critical patent/JP2000236081A/en
Application granted granted Critical
Publication of JP4258875B2 publication Critical patent/JP4258875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric converting element and a photoelectric converting device which can be operated at high speed. SOLUTION: This photoelectric conversion device is provided with a light- receiving part and a transfer part, which transfers the charge stored in the light-receiving part to a read-out part, and the light-receiving part has the impurity concentration gradient so that potential becomes lower as it approaches the transfer part. It is desirable that the light-receiving part be an embedded photodiode 101. As a result, the signal charge can be completely transferred from a light-receiving part to a read-out part in a short time, and the photoelectric conversion device using the element can be operated at a high speed, and a residual image is not generated even if the size of the light-receiving part is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光電変換素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion device.

【0002】[0002]

【従来の技術】近年、固体撮像素子やラインセンサな
ど、入射する光を光電変換して映像化したり或いはセン
シングする光電変換装置が実用化されている。これらの
光電変換装置には、受光部として埋め込みフォトダイオ
ード(以下BPDとする)を有する光電変換素子を構成
として使用するものが盛んに用いられている。
2. Description of the Related Art In recent years, photoelectric conversion devices, such as a solid-state imaging device and a line sensor, for photoelectrically converting incident light into an image or sensing have been put to practical use. As these photoelectric conversion devices, devices that use a photoelectric conversion element having a buried photodiode (hereinafter, referred to as a BPD) as a light receiving unit as a configuration are actively used.

【0003】BPDは、半導体表面に配置された空乏化
防止層の下に、光電変換した電荷を蓄積するための拡散
層(以下電荷蓄積層とする)を半導体内部に有してい
る。このため、電荷蓄積層が完全空乏化しても半導体表
面は空乏化しないので界面順位に起因した暗電流が少な
い。また、PN接合が電荷蓄積層を取り囲んでいるため
接合容量が大きく、より多くの電荷を蓄積できる等の利
点がある。
[0003] A BPD has a diffusion layer (hereinafter referred to as a charge storage layer) for storing photoelectrically converted charges under a depletion preventing layer disposed on a semiconductor surface. For this reason, even if the charge storage layer is completely depleted, the semiconductor surface is not depleted, and the dark current due to the interface order is small. Further, since the PN junction surrounds the charge storage layer, there is an advantage that the junction capacitance is large and more charges can be stored.

【0004】固体撮像素子を例にとって、従来のBPD
を説明する。図8は、従来の固体撮像素子の単位画素を
示す図面であり、(a)は平面図、(b)はD1−D
1’に沿った断面図、(c)はD3−D3’に沿った断
面図、(d)は(b)のD2−D2’に沿ったポテンシ
ャル図である。なお、固体撮像素子は、光電変換素子で
ある単位画素を複数配置させた光電変換装置である。
[0004] A conventional BPD will be described using a solid-state image sensor as an example.
Will be described. FIGS. 8A and 8B are diagrams showing a unit pixel of a conventional solid-state imaging device, where FIG. 8A is a plan view, and FIG.
FIG. 1C is a cross-sectional view along D ′, FIG. 2C is a cross-sectional view along D3-D3 ′, and FIG. 2D is a potential diagram along D2-D2 ′ in FIG. Note that the solid-state imaging device is a photoelectric conversion device in which a plurality of unit pixels that are photoelectric conversion elements are arranged.

【0005】この固体撮像素子は、入射光に応じて電荷
を生成し蓄積するBPD101と、このBPDから受け
取った電荷に対応する信号を出力する接合型電界効果ト
ランジスタ(以下JFETとする)102と、信号出力
後に不要となった電荷をJFET102の制御領域(ゲ
ート領域203、204)から排出するためのリセット
ドレイン(以下RSDとする)を有する。なお、この図
ではJFET102のソースとRSDに接続されるアル
ミ配線は省略している。
The solid-state image pickup device includes a BPD 101 that generates and accumulates electric charge according to incident light, a junction field effect transistor (hereinafter, referred to as JFET) 102 that outputs a signal corresponding to the electric charge received from the BPD, It has a reset drain (hereinafter referred to as RSD) for discharging unnecessary charges from the control region (gate regions 203 and 204) of JFET 102 after signal output. In this figure, the aluminum wiring connected to the source of the JFET 102 and the RSD is omitted.

【0006】BPD101は、半導体基板表面から裏面
に向かって順に空乏化防止層(表面のN型層)205、
P型電荷蓄積層206、N型Si基板201となってい
る。JFET102は、N+型ソース領域207、N型
ドレイン領域208、表面P型ゲート領域203、深い
P型ゲート領域204、N型チャネル領域209より構
成されており、P型ゲート領域203、204がN型チ
ャネル209を上下から挟む構造になっている。
The BPD 101 includes a depletion preventing layer (an N-type layer on the front surface) 205 in order from the front surface to the rear surface of the semiconductor substrate.
A P-type charge storage layer 206 and an N-type Si substrate 201 are provided. The JFET 102 includes an N + type source region 207, an N type drain region 208, a surface P type gate region 203, a deep P type gate region 204, and an N type channel region 209, and the P type gate regions 203 and 204 are N type. The channel 209 is sandwiched from above and below.

【0007】転送電極(以下TGとする)103は、B
PD101からJFET102のゲート領域203、2
04に電荷を転送するためのものであり、BPD101
のP型領域206とJFET102のゲートP型領域2
03とがソース・ドレインとなるPチャネルMOSFE
Tを構成している。リセットゲート(以下RSGとす
る)105は、JFET102のゲート領域203、2
04からRSD104に電荷を転送するものであり、R
SD104のP領域202とJFET102のP型ゲー
ト領域203とがソース・ドレインとなるPチャネルM
OSFETを構成している。RSG105にパルス電圧
が印可されると、RSD104とJFET102のゲー
ト領域203、204とは電気的に接続され、ゲート領
域203、204はRSD104の電圧に初期化され
る。
The transfer electrode (hereinafter referred to as TG) 103
From the PD 101 to the gate regions 203 and 2 of the JFET 102
04 to transfer the charge to the BPD 101
P-type region 206 and gate P-type region 2 of JFET 102
03 is a source / drain P channel MOSFE
T. The reset gate (hereinafter referred to as RSG) 105 is connected to the gate region 203 of the JFET 102,
04 to the RSD 104.
P channel M in which P region 202 of SD 104 and P type gate region 203 of JFET 102 are the source / drain
It constitutes an OSFET. When a pulse voltage is applied to RSG 105, RSD 104 is electrically connected to gate regions 203 and 204 of JFET 102, and gate regions 203 and 204 are initialized to the voltage of RSD 104.

【0008】このような固体撮像素子は、各画素にBP
Dと増幅素子を有しているので、低ノイズ高感度とな
る。なお、ここでは光電変換装置の受光部をBPDにて
説明した。しかし、受光部に半導体基板と受光部拡散層
からなるフォトダイオードを配置したものも周知であ
る。
[0008] Such a solid-state image sensor has a BP for each pixel.
Since it has D and an amplifying element, it has low noise and high sensitivity. Here, the light receiving section of the photoelectric conversion device has been described as a BPD. However, an arrangement in which a photodiode including a semiconductor substrate and a light-receiving part diffusion layer is arranged in a light-receiving part is also known.

【0009】[0009]

【発明が解決しようとする課題】ところで近年、高感度
の素子が様々な分野で求められており、高感度化のため
に受光部面積を大型化することが提案されている。しか
し、受光部面積を大型化するに従って、受光部から読み
出し部への電荷転送速度は低下する。そして、さらに大
型化させると、規定の読み出し期間内に完全に転送する
ことが出来なくなり、残留した電荷が残像として観測さ
れる。
In recent years, high-sensitivity elements have been demanded in various fields, and it has been proposed to increase the area of a light-receiving portion in order to increase the sensitivity. However, as the area of the light receiving section increases, the speed of charge transfer from the light receiving section to the reading section decreases. When the size is further increased, transfer cannot be completed completely within a prescribed readout period, and the remaining charge is observed as an afterimage.

【0010】ここで、残像の現象を説明する。図23
(d)は、図23(b)のD2−D2’に沿ったポテン
シャル図である。ここでは、JFET102のゲート領
域203、204を基準電圧にリセットし、TG103
をオンしたとき(ローレベルに設定したとき)のポテン
シャルを示す。この図から分かるように、BPD101
の、トランスファーゲート側及びその反対側においては
BPDは、ポテンシャル勾配を有している。信号電荷
は、ポテンシャルの低い方にドリフトによって移動す
る。従って、ポテンシャルの勾配があれば、信号電荷は
容易に(即ち高速に)ポテンシャルの低い方に移動する
ことが可能となる。
Here, the phenomenon of the afterimage will be described. FIG.
(D) is a potential diagram along D2-D2 'in (b) of FIG. Here, the gate regions 203 and 204 of the JFET 102 are reset to the reference voltage, and the TG 103
Shows the potential when is turned on (when set to a low level). As can be seen from this figure, BPD101
On the transfer gate side and the opposite side, the BPD has a potential gradient. The signal charge moves to a lower potential by drift. Therefore, if there is a potential gradient, the signal charges can easily (ie, rapidly) move to the lower potential.

【0011】しかし、BPD101の中央部付近ではポ
テンシャル勾配が無く平らである。よって、この部分に
蓄積された信号電荷は、電界によるドリフト成分が無く
トランスファーゲート103を通ってJFET102の
制御領域に達するのに比較的に長い時間を要する。従っ
て、規定読み出し期間内に完全転送することが出来ず、
BPD101に信号電荷が残留してしまう。さらに受光
部面積が増大すると、読み出し期間を無限に長くしても
完全転送ができなくなる。
However, there is no potential gradient near the center of the BPD 101 and the BPD 101 is flat. Therefore, it takes a relatively long time for the signal charge accumulated in this portion to reach the control region of the JFET 102 through the transfer gate 103 without drift component due to the electric field. Therefore, complete transfer cannot be performed within the specified readout period,
Signal charges remain on the BPD 101. If the light receiving area is further increased, complete transfer cannot be performed even if the readout period is lengthened indefinitely.

【0012】上記のように、従来の光電変換装置は、画
素面積の増大には限界があり、電荷転送の高速度化が望
まれていた。本発明は、このような問題点に鑑みてなさ
れたものであり、大面積受光部でも完全転送が可能とな
る光電変換素子及び光電変換装置を提供する。
As described above, in the conventional photoelectric conversion device, there is a limit to an increase in the pixel area, and it has been desired to increase the speed of charge transfer. The present invention has been made in view of such a problem, and provides a photoelectric conversion element and a photoelectric conversion device that enable complete transfer even with a large-area light receiving unit.

【0013】[0013]

【課題を解決するための手段】請求項1に記載された発
明は、半導体基板上に配置され入射光に応じた電荷を発
生し蓄積する受光部と、該受光部に蓄積された電荷を読
み出し部に転送する転送部と、前記転送部から送られて
きた電荷に応じた信号を発生する前記読み出し部とを有
する光電変換素子において、前記受光部は、不純物の濃
度勾配を有し、前記転送部に近づくに従ってポテンシャ
ルが低いことを特徴とする。
According to a first aspect of the present invention, there is provided a light receiving unit disposed on a semiconductor substrate for generating and accumulating electric charges according to incident light, and reading out the electric charges stored in the light receiving units. Wherein the light receiving unit has an impurity concentration gradient, wherein the transfer unit transfers the transfer signal to the transfer unit, and the read unit generates a signal corresponding to the charge transmitted from the transfer unit. It is characterized in that the potential decreases as approaching the part.

【0014】一般に、ポテンシャル勾配が有る場合、そ
こに置かれた電荷は、電界ドリフトによって高速にポテ
ンシャルの低い方に移動する。請求項1の構成によれば
電荷読み出し時に受光部の端から転送電極に向かって単
調減少するポテンシャル勾配が形成されているため、高
速かつ完全に電荷を転送することができる。請求項2に
記載された発明は、第1導電型の半導体基板上に配置さ
れ、入射光に応じた電荷を発生し蓄積する受光部と、該
受光部に蓄積された電荷を読み出し部に転送する転送部
と、前記転送部から送られてきた電荷に応じた信号を発
生する前記読み出し部とを有する光電変換素子におい
て、前記受光部は、第1導電型の空乏化防止層、及び、
前記空乏化防止層に接触して且つ前記空乏化防止層の下
部に設けられた第2導電型の電荷蓄積層とから構成され
た埋め込みフォトダイオードであり、前記空乏化防止層
は、不純物の濃度勾配を有し、第1導電型の不純物濃度
が前記転送部から離れるに従って高濃度となることを特
徴とする。
In general, when there is a potential gradient, the electric charge placed there moves at a high speed to a lower potential due to electric field drift. According to the configuration of the first aspect, the potential gradient that monotonously decreases from the end of the light receiving portion toward the transfer electrode is formed at the time of reading the charge, so that the charge can be completely and rapidly transferred. According to a second aspect of the present invention, a light receiving unit is provided on a semiconductor substrate of a first conductivity type and generates and accumulates charges according to incident light, and transfers the charges accumulated in the light receiving unit to a readout unit. A photoelectric conversion element comprising: a transfer unit that performs a transfer operation; and a readout unit that generates a signal corresponding to the charge transmitted from the transfer unit, wherein the light receiving unit includes a first conductivity type depletion prevention layer, and
A second conductivity type charge storage layer provided in contact with the depletion prevention layer and below the depletion prevention layer, wherein the depletion prevention layer has an impurity concentration It has a gradient, and the impurity concentration of the first conductivity type becomes higher as the distance from the transfer section increases.

【0015】また、請求項3に記載された発明は、第1
導電型の半導体基板上に配置され、入射光に応じた電荷
を発生し蓄積する受光部と、該受光部に蓄積された電荷
を読み出し部に転送する転送部と、前記転送部から送ら
れてきた電荷に応じた信号を発生する前記読み出し部と
を有する光電変換素子において、前記受光部は、第1導
電型の空乏化防止層、及び、前記空乏化防止層に接触し
て且つ前記空乏化防止層の下部に設けられた第2導電型
の電荷蓄積層とから構成された埋め込みフォトダイオー
ドであり、前記電荷蓄積層は、不純物の濃度勾配を有
し、第2導電型の不純物濃度が前記転送部から離れるに
従って低濃度となることを特徴とする。
[0015] The invention described in claim 3 is the first invention.
A light-receiving unit that is arranged on a conductive semiconductor substrate and generates and accumulates charges according to incident light; a transfer unit that transfers the charge accumulated in the light-receiving unit to a readout unit; The readout unit that generates a signal in accordance with the charged charge, wherein the light receiving unit is a first conductivity type depletion preventing layer, and the depletion preventing layer is in contact with the depletion preventing layer. A buried photodiode comprising a second conductivity type charge storage layer provided below the prevention layer, wherein the charge storage layer has an impurity concentration gradient, and the second conductivity type impurity concentration is It is characterized in that the density decreases as the distance from the transfer unit increases.

【0016】また、請求項4に記載された発明は、第1
導電型の半導体基板上に配置され、入射光に応じた電荷
を発生し蓄積する受光部と、該受光部に蓄積された電荷
を読み出し部に転送する転送部と、前記転送部から送ら
れてきた電荷に応じた信号を発生する前記読み出し部と
を有する光電変換素子において、前記受光部は、第1導
電型の空乏化防止層、及び、前記空乏化防止層に接触し
て且つ前記空乏化防止層の下部に設けられた第2導電型
の電荷蓄積層とから構成された埋め込みフォトダイオー
ドであり、前記埋め込みフォトダイオードの下部におけ
る前記半導体基板の不純物濃度は、濃度勾配を有し、前
記転送部に隣接した部分で低濃度であり、前記転送部か
ら離れるに従って高濃度となることを特徴とする。
The invention described in claim 4 is the first invention.
A light-receiving unit that is arranged on a conductive semiconductor substrate and generates and accumulates charges according to incident light; a transfer unit that transfers the charge accumulated in the light-receiving unit to a readout unit; The readout unit that generates a signal in accordance with the charged charge, wherein the light receiving unit is a first conductivity type depletion preventing layer, and the depletion preventing layer is in contact with the depletion preventing layer. A buried photodiode comprising a second conductivity type charge storage layer provided below the prevention layer, wherein the impurity concentration of the semiconductor substrate below the buried photodiode has a concentration gradient, and The density is low at a portion adjacent to the transfer portion, and becomes high as the distance from the transfer portion increases.

【0017】請求項2から請求項4に記載れさた発明
は、受光部に埋め込みフォトダイオードを配置させ、こ
の埋め込みフォトダイオードに請求項1と同様なポテン
シャルの傾斜を持たせたものである。埋め込みフォトダ
イオードは、空乏化防止層、電荷蓄積層、半導体基板の
各半導体領域からなる。転送部側のポテンシャルを低く
するためには、これらの半導体領域の何れかの領域に不
純物濃度の勾配を持たせればよい。勿論、埋め込みフォ
トダイオードの複数の半導体領域の不純物濃度に濃度勾
配を持たせても良い。
According to the second to fourth aspects of the present invention, a buried photodiode is arranged in the light receiving portion, and the buried photodiode has the same potential gradient as in the first aspect. The buried photodiode includes a depletion prevention layer, a charge storage layer, and semiconductor regions of a semiconductor substrate. In order to lower the potential on the transfer portion side, any one of these semiconductor regions may have an impurity concentration gradient. Of course, the impurity concentration of the plurality of semiconductor regions of the buried photodiode may have a concentration gradient.

【0018】この構成により、電荷読み出し時に受光部
の端から転送電極に向かって単調減少するポテンシャル
勾配が形成されるため、受光部内の電荷は電界ドリフト
によって高速かつ完全に転送される。さらに、受光部は
埋め込みフォトダイオードを用いているので、暗電流が
小さく蓄積用量が大きい。請求項5に記載された発明
は、請求項1から4のいずれかに記載された光電変換素
子において、前記濃度勾配は、段階的に変化することを
特徴とする。このようにすれば、受光部の濃度勾配が容
易に得られる。
According to this configuration, a potential gradient that monotonically decreases from the end of the light receiving section toward the transfer electrode is formed at the time of charge reading, so that the charges in the light receiving section are completely and rapidly transferred by the electric field drift. Further, since the light receiving section uses an embedded photodiode, the dark current is small and the accumulated dose is large. According to a fifth aspect of the present invention, in the photoelectric conversion element according to any one of the first to fourth aspects, the concentration gradient changes stepwise. In this case, the concentration gradient of the light receiving section can be easily obtained.

【0019】請求項6に記載された発明は、請求項1か
ら請求項5に記載された光電変換素子において、前記読
み出し部は、前記電荷を増幅するトランジスタを有する
ことを特徴とする。この構成により、高速動作が可能と
なるばかりではなく、読み出し部に増幅トランジスタを
配置させるので、低ノイズ高感度の光電変換素子を提供
することが可能となる。
According to a sixth aspect of the present invention, in the photoelectric conversion element according to any one of the first to fifth aspects, the read section has a transistor for amplifying the charge. With this configuration, not only high-speed operation can be performed, but also an amplifying transistor is provided in the reading unit, so that a low-noise and high-sensitivity photoelectric conversion element can be provided.

【0020】請求項7に記載された発明は、請求項6に
記載された光電変換素子において、前記トランジスタは
接合型電界効果トランジスタであることを特徴とする。
接合型電界効果トランジスタは、ゲートを半導体で設け
るため埋め込みフォトダイオードとの整合性が良い。こ
のため、請求項7の構成ならば製造が容易であり、それ
に伴い歩留まりが向上する。
According to a seventh aspect of the present invention, in the photoelectric conversion element according to the sixth aspect, the transistor is a junction field effect transistor.
The junction field effect transistor has good matching with the buried photodiode because the gate is provided by a semiconductor. For this reason, according to the structure of claim 7, the manufacture is easy, and the yield is accordingly improved.

【0021】また、請求項8に記載された光電変換装置
は、請求項1から請求項7のいずれかに記載された光電
変換素子を単位画素としてマトリクスに配置し、X−Y
アドレス走査回路によって各画素から信号を出力するこ
とを特徴とする。上記の光電変換素子をマトリクス状に
配置させると、画像信号を生成するイメージセンサなど
が得られる。
According to another aspect of the present invention, there is provided a photoelectric conversion device in which the photoelectric conversion elements according to any one of the first to seventh aspects are arranged in a matrix as unit pixels, and are arranged in an XY manner.
A signal is output from each pixel by an address scanning circuit. When the photoelectric conversion elements are arranged in a matrix, an image sensor or the like that generates an image signal can be obtained.

【0022】[0022]

【発明の実施の形態】(第1の実施形態)図1は、本発
明の第1の実施形態に係る光電変換装置の単位画素(光
電変換素子)を示す図面であり、(a)は平面図、
(b)はA1−A1’に沿った断面図、(c)はA2−
A2’に沿った断面図、(d)は(b)のA3−A3’
に沿ったポテンシャル図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 is a drawing showing a unit pixel (photoelectric conversion element) of a photoelectric conversion device according to a first embodiment of the present invention. Figure,
(B) is a sectional view along A1-A1 ', (c) is A2-
A sectional view along A2 ', (d) is A3-A3' of (b)
FIG.

【0023】この単位画素は、入射光に応じて電荷を生
成し蓄積する埋め込みフォトダイオード(BPD)10
1と、BPD101から受け取った電荷に対応する信号
を出力する接合型電界効果トランジスタ(以下JFET
とする)102と、信号出力後に不要となった電荷をJ
FET102の制御領域(ゲート領域203、204)
から排出するためのリセットドレイン(以下RSDとす
る)を有する。なお、この図ではJFET102のソー
スコンタクト部106とRSD104のコンタクト部1
07に接続されるアルミ配線は省略している。
The unit pixel includes a buried photodiode (BPD) 10 that generates and accumulates electric charge according to incident light.
1 and a junction field-effect transistor (hereinafter referred to as JFET) that outputs a signal corresponding to the charge received from the BPD 101.
102), and the unnecessary charge after signal output is J
Control region of FET 102 (gate regions 203 and 204)
And a reset drain (hereinafter referred to as RSD) for discharging from the memory. In this figure, the source contact portion 106 of the JFET 102 and the contact portion 1 of the RSD 104
The aluminum wiring connected to 07 is omitted.

【0024】転送電極(以下TGとする)103は、B
PD101に蓄積された電荷をJFET102のゲート
領域203、204に転送するためのものであり、BP
D101のP型領域206とJFET102のゲートP
型領域203とがソース・ドレインとなるPチャネルM
OSFETを構成している。JFET102は、送られ
てきた電荷に応じて信号を出力する読み出し部である。
不純物濃度5×1020cm-3のN+型ソース領域20
7、不純物濃度5×1018cm-3のN型ドレイン領域2
08、不純物濃度5×1017cm-3の表面P型ゲート領
域203、不純物濃度5×1017cm-3の深いP型ゲー
ト領域204、不純物濃度1×1017cm−3のN型チ
ャネル領域209より構成されており、電気的に接続さ
れた表面P型ゲート領域203と深いP型ゲート領域2
04がN型チャネル209を上下から挟む構造になって
いる。そして、このゲート領域の電荷に応じて増幅させ
た信号をN+型ソース領域207から出力する。
The transfer electrode (hereinafter referred to as TG) 103
This is for transferring the charge accumulated in the PD 101 to the gate regions 203 and 204 of the JFET 102,
P-type region 206 of D101 and gate P of JFET 102
P-channel M in which the mold region 203 becomes the source / drain
It constitutes an OSFET. The JFET 102 is a reading unit that outputs a signal according to the transmitted charge.
N + type source region 20 having an impurity concentration of 5 × 10 20 cm −3
7. N-type drain region 2 having an impurity concentration of 5 × 10 18 cm −3
08, an impurity concentration of 5 × 10 17 cm surface P-type gate region 203 of -3, an impurity concentration of 5 × 10 17 cm -3 deep P-type gate region 204, N-type channel region having an impurity concentration 1 × 10 17 cm-3 209, the surface P-type gate region 203 and the deep P-type gate region 2 which are electrically connected.
04 has a structure sandwiching the N-type channel 209 from above and below. Then, a signal amplified according to the charge in the gate region is output from the N + type source region 207.

【0025】リセットゲート(以下RSGとする)10
5は、JFET102のゲート領域203、204から
RSD104に電荷を転送するものであり、RSD10
4のP領域202(不純物濃度5×1017cm-3)とJ
FET102のP型ゲート領域203とがソース・ドレ
インとなるPチャネルMOSFETを構成している。R
SG105にパルス電圧が印可されると、RSD104
とJFET102のゲート領域203、204とは電気
的に接続され、ゲート領域203、204はRSD10
4の電圧に初期化される。
Reset gate (hereinafter referred to as RSG) 10
5 transfers charges from the gate regions 203 and 204 of the JFET 102 to the RSD 104;
4 P region 202 (impurity concentration 5 × 10 17 cm −3 ) and J
The P-type gate region 203 of the FET 102 constitutes a P-channel MOSFET serving as a source / drain. R
When a pulse voltage is applied to the SG 105, the RSD 104
And the gate regions 203 and 204 of the JFET 102 are electrically connected.
4 is initialized.

【0026】BPD101は、半導体基板表面から裏面
に向かって順に空乏化防止層(表面のN型層)205、
不純物濃度3×1016cm-3のP型電荷蓄積層206、
不純物濃度1×1015cm-3のN型基板201となって
いる。空乏化防止層は、基板201と電気的に接続され
ている。また、不純物濃度が1×1017cm-3、2×1
17cm-3、3×1017cm-3の3つの領域205a,
205b,205cに分かれている。このようにN型不
純物濃度は205a<205b<205cの順番に段階
的濃くなっている。このため、後述するようにTG10
3の方が低くなるようなP型電荷蓄積層206のポテン
シャル勾配が形成されている。このような構造は、イオ
ン注入法に従って同一加速エネルギーで注入量を変える
ことによって形成される。この時、不純物濃度が濃いほ
ど拡散が深くなる。
The BPD 101 includes a depletion preventing layer (an N-type layer on the front surface) 205 in order from the front surface to the rear surface of the semiconductor substrate.
A P-type charge storage layer 206 having an impurity concentration of 3 × 10 16 cm −3 ,
The N-type substrate 201 has an impurity concentration of 1 × 10 15 cm −3 . The depletion prevention layer is electrically connected to the substrate 201. Further, the impurity concentration is 1 × 10 17 cm −3 , 2 × 1
0 17 cm −3 , 3 × 10 17 cm −3 three regions 205a,
205b and 205c. As described above, the N-type impurity concentration gradually increases in the order of 205a <205b <205c. Therefore, as described later, the TG10
A potential gradient of the P-type charge storage layer 206 is formed such that the third is lower. Such a structure is formed by changing the implantation amount at the same acceleration energy according to the ion implantation method. At this time, the higher the impurity concentration, the deeper the diffusion.

【0027】図1(d)は、図1(b)のA3−A3’
に沿ったポテンシャル図である。ここでは、JFET1
02のゲート領域203、204を基準電圧にリセット
し、TG103をオンしたとき(ローレベルに設定した
とき)のポテンシャルを示す。BPD101の領域c
(図1(a)参照)では空乏化防止層205cの濃度が濃
いため、b領域に比べてP型電荷蓄積層206は空乏化
し易い。つまり、空乏化電圧が小さい。領域bと領域a
の関係も同様である。そして、空乏化防止層205a,
205b,205cは基板電位に固定されているので、
BPD101が完全空乏化した状態ではP型電荷蓄積層
206の領域cの電位(ポテンシャル)は領域bよりも
高くなる。同様にして領域bは領域aよりも電位(ポテ
ンシャル)が高くなる。換言すれば、受光部の不純物の
濃度勾配により、受光部にポテンシャルの勾配を作るの
である。
FIG. 1D is a view showing A3-A3 'of FIG. 1B.
FIG. Here, JFET1
02 shows the potential when the gate regions 203 and 204 are reset to the reference voltage and the TG 103 is turned on (set to a low level). Area c of BPD101
In FIG. 1A, since the concentration of the depletion preventing layer 205c is high, the P-type charge storage layer 206 is more likely to be depleted than in the region b. That is, the depletion voltage is small. Region b and region a
Is the same. Then, the depletion prevention layers 205a,
Since 205b and 205c are fixed at the substrate potential,
When the BPD 101 is completely depleted, the potential (potential) of the region c of the P-type charge storage layer 206 becomes higher than that of the region b. Similarly, the region b has a higher potential (potential) than the region a. In other words, a potential gradient is created in the light receiving unit by the impurity concentration gradient in the light receiving unit.

【0028】従来の光電変換素子の受光部は、受光部端
のフリンジ電界が届かない範囲では均一のポテンシャル
を有していた。しかし、本実施形態の光電変換素子は、
3つの領域に分けそれぞれの領域でポテンシャルが異な
る。このポテンシャルは、転送電極に近づくに従って低
くなる。よって、BPD101が完全空乏化したときで
も、それぞれの領域内に電位勾配が生ずるのでBPD1
01内の電荷がJFET102の表面P型ゲート領域2
03,深いP型ゲート領域204に高速に転送される。
The light receiving portion of the conventional photoelectric conversion element has a uniform potential in a range where the fringe electric field at the end of the light receiving portion does not reach. However, the photoelectric conversion element of this embodiment is
The potential is different in each of the three regions. This potential decreases as approaching the transfer electrode. Therefore, even when the BPD 101 is completely depleted, a potential gradient is generated in each region, so that the BPD 101
01 is the surface P-type gate region 2 of the JFET 102
03, transferred to the deep P-type gate region 204 at high speed.

【0029】本実施形態では、BPD101を3個の領
域に分割しているが、P型電荷蓄積層206内に電位勾
配が形成されるように、任意の数に分割出来ることは言
うまでもない。また、ここでは受光部にBPDを用いた
が、これをフォトダイオードとし、表面の拡散領域の濃
度を本実施形態におけるP型電荷蓄積層と同様に濃度勾
配を設けても良い。
In this embodiment, the BPD 101 is divided into three regions. However, it goes without saying that the BPD 101 can be divided into an arbitrary number so that a potential gradient is formed in the P-type charge storage layer 206. Although the BPD is used for the light receiving portion here, this may be used as a photodiode, and the concentration of the diffusion region on the surface may be provided with a concentration gradient similarly to the P-type charge storage layer in the present embodiment.

【0030】光電変換装置においては、この単位画素を
マトリクス状に配置し、X−Yアドレス走査回路によっ
て各画素から信号を出力させる。光電変換素子をマトリ
クスに配置した光電変換装置の駆動走査は、特開平8−
293591に記載された通りである。次に図面を参照
して本発明に係る光電変換素子の製造方法を説明する。
図2は、第1の実施形態に係る光電変換素子の各製造工
程での受光部断面図である。まず、周知のフォトリソグ
ラフィー法とイオン注入法に従い、不純物濃度が1×1
15cm-3であるN型Si基板301にJFETのドレ
インとして用いるN型拡散領域302を形成する。
In the photoelectric conversion device, the unit pixels are arranged in a matrix, and a signal is output from each pixel by an XY address scanning circuit. Driving scanning of a photoelectric conversion device in which photoelectric conversion elements are arranged in a matrix is disclosed in
293591. Next, a method for manufacturing a photoelectric conversion element according to the present invention will be described with reference to the drawings.
FIG. 2 is a cross-sectional view of a light receiving unit in each manufacturing process of the photoelectric conversion element according to the first embodiment. First, according to the well-known photolithography method and the ion implantation method, the impurity concentration is 1 × 1.
An N-type diffusion region 302 used as a drain of a JFET is formed on an N-type Si substrate 301 of 0 15 cm -3 .

【0031】次に、N型Si基板301表面にSi02
膜303と、TGとして用いるポリシリコン電極304
を形成する。そして、少なくともBPDの形成予定領域
を開口するようにフォトリソグラフィー法に従ってレジ
スト305によるマスクを形成し、11+をイオン注入
してP型電荷蓄積層306を形成する。このとき、ポリ
シリコン電極304はイオン注入のマスクの一部として
作用する。同一のマスクで31+をイオン注入し、BP
D101の領域a(図1(a)参照)に相当する不純物濃
度の空乏化防止層307を形成する。11+及び31+
加速エネルギーは、空乏化防止層307が基板301表
面に形成され、その下にP型電荷蓄積層306が形成さ
れるように、11+31+の加速エネルギーを調整す
る。この状態を示したのが図2(a)である。
Next, an SiO 2 substrate 301 is formed on the surface of the N-type Si substrate 301.
Film 303 and polysilicon electrode 304 used as TG
To form Then, a mask made of a resist 305 is formed by photolithography so as to open at least a region where a BPD is to be formed, and 11 B + ions are implanted to form a P-type charge storage layer 306. At this time, the polysilicon electrode 304 functions as a part of a mask for ion implantation. 31 P + ions are implanted with the same mask and BP
An anti-depletion layer 307 having an impurity concentration corresponding to the region a of D101 (see FIG. 1A) is formed. 11 B + and 31 P + acceleration energy of, depletion prevention layer 307 is formed on the substrate 301 surface, so P-type charge accumulation layer 306 is formed thereunder, 11 B + and 31 P + acceleration Regulate energy. FIG. 2A shows this state.

【0032】次にレジスト305を剥離し、BPD10
1の領域b,cに相当する部分(図1(a)参照)を開口
するようにレジスト308を形成し、これをマスクとし
31+をイオン注入し、空乏化防止層307bを形成
する。このとき、領域aにはイオンが注入されず、領域
aは空乏化防止層307aのままとなる。この状態を示
したのが図2(b)である。
Next, the resist 305 is peeled off, and the BPD 10
A resist 308 is formed so as to open portions (see FIG. 1A) corresponding to the regions b and c, and 31 P + is ion-implanted using the resist 308 as a mask to form a depletion preventing layer 307b. At this time, no ions are implanted into the region a, and the region a remains as the depletion prevention layer 307a. FIG. 2B shows this state.

【0033】次にレジスト308を剥離してBPD10
1の領域cに相当する部分を開口するようにレジスト3
09を形成し、これをマスクとして31+をイオン注入
し、BPD101の領域cに相当する不純物濃度の空乏
化防止層307cを形成する。このとき、領域a,bに
はイオンが注入されず、それぞれの領域は、空乏化防止
層307a,307bのままとなる。この状態を示した
のが図2(c)である。
Next, the resist 308 is peeled off and the BPD 10
Resist 3 so as to open a portion corresponding to region c of FIG.
09 is formed, and using this as a mask, 31 P + is ion-implanted to form a depletion preventing layer 307 c having an impurity concentration corresponding to the region c of the BPD 101. At this time, no ions are implanted into the regions a and b, and the respective regions remain as the depletion preventing layers 307a and 307b. FIG. 2C shows this state.

【0034】次にレジスト309を剥離し、注入した不
純物を電気的に活性化するためのアニールを行い、従来
の方法に従ってBPD以外の部分を形成することによ
り、光電変換素子が得られる。図7は、第1の実施形態
の光電変換素子と従来の光電変換素子の残像特性を表し
たグラフである。
Next, the resist 309 is peeled off, annealing for electrically activating the implanted impurities is performed, and a portion other than the BPD is formed according to a conventional method, whereby a photoelectric conversion element is obtained. FIG. 7 is a graph showing the afterimage characteristics of the photoelectric conversion element of the first embodiment and the conventional photoelectric conversion element.

【0035】横軸は正方形の受光部(BPD)の1辺の
長さ、縦軸は、光が当たっているときの出力を1として
規格化した残像の度合いを示している。尚、残像は、信
号電荷が受光部から完全には転送されず残留することに
よって生ずる。従来構造のBPDを採用した光電変換素
子は15μm□から残像が認められるのに対して、BP
Dに3段ポテンシャル段差を付けた本発明の光電変換素
子は30μm□でも残像は測定限界以下であった。
The horizontal axis represents the length of one side of the square light receiving portion (BPD), and the vertical axis represents the degree of afterimage normalized by setting the output when light is applied to 1. Note that the afterimage is caused by a signal charge remaining from the light receiving unit without being completely transferred. In the case of a photoelectric conversion element employing a conventional BPD, an afterimage is observed from 15 μm square, whereas the BP
In the photoelectric conversion device of the present invention in which D was provided with a three-step potential difference, the afterimage was below the measurement limit even at 30 μm square.

【0036】このように受光部に電位勾配が形成される
と、BPD101内の電荷が速やかにJFET102に
転送される。従って、高速動作も可能となる。 (第2の実施形態)図3は、本発明の第2の実施形態に
係る光電変換装置の単位画素(光電変換素子)を示す図
面であり、(a)は平面図、(b)はB1−B1’に沿
った断面図、(c)はB2−B2’に沿った断面図、
(d)は(b)のB3−B3’に沿ったポテンシャル図
である。
When a potential gradient is formed in the light receiving section as described above, the charges in the BPD 101 are quickly transferred to the JFET 102. Therefore, high-speed operation is also possible. (Second Embodiment) FIGS. 3A and 3B are drawings showing a unit pixel (photoelectric conversion element) of a photoelectric conversion device according to a second embodiment of the present invention, wherein FIG. 3A is a plan view and FIG. (C) is a cross-sectional view along B2-B2 ',
(D) is a potential diagram along B3-B3 'of (b).

【0037】第1の実施形態と異なる点は、BPD10
1において濃度勾配の形成される部分が異なる点にあ
る。その他は第1の実施形態と同じなので説明を省略す
る。BPD101は、半導体基板表面から裏面に向かっ
て順に、不純物濃度が1×1017cm-3の空乏化防止層
(表面のN型層)205、不純物濃度が3×1016cm
-3のP型電荷蓄積層206、N型基板201となってい
る。空乏化防止層は、基板201と電気的に接続されて
いる。
The difference from the first embodiment is that the BPD 10
1 is that the portion where the concentration gradient is formed is different. The other parts are the same as those of the first embodiment, and the description is omitted. The BPD 101 has a depletion preventing layer (N-type layer on the surface) 205 with an impurity concentration of 1 × 10 17 cm −3 and a impurity concentration of 3 × 10 16 cm 3 in order from the front surface to the back surface of the semiconductor substrate.
-3 P-type charge storage layer 206 and N-type substrate 201. The depletion prevention layer is electrically connected to the substrate 201.

【0038】また、P型電荷蓄積層206下のN型基板
の濃度は、不純物濃度が1×1015cm-3、2×1015
cm-3、6×1015cm-3である3つの領域201a,
201b,201cに分かれている。このように、N型
不純物濃度は201a<201b<201cの順番に段
階的濃くなっている。このため、TG103の方が低く
なるようなポテンシャル勾配が形成されている。
The impurity concentration of the N-type substrate under the P-type charge storage layer 206 is 1 × 10 15 cm −3 and 2 × 10 15
cm -3 , 6 × 10 15 cm -3
201b and 201c. As described above, the N-type impurity concentration gradually increases in the order of 201a <201b <201c. For this reason, a potential gradient is formed such that the TG 103 becomes lower.

【0039】図3(d)は、図3(b)のB3−B3’
に沿ったポテンシャル図である。ここでは、JFET1
02のゲート領域203、204を基準電圧にリセット
し、TG103をオンしたとき(ローレベルに設定した
とき)のポテンシャルを示す。P型電荷蓄積層206下
の領域c(図3(a)参照)では、不純物濃度が濃いため
領域bに比べてP型電荷蓄積層206は空乏化し易い。
つまり、空乏化電圧が小さい。領域bと領域aの関係も
同様である。そして、空乏化防止層205は基板電位に
固定されているので、BPD101が完全空乏化した状
態ではP型電荷蓄積層206の領域cの電位(ポテンシ
ャル)は領域bよりも高くなる。同様にして領域bは領
域aよりも電位(ポテンシャル)が高くなる。換言すれ
ば、受光部の不純物の濃度勾配により、受光部にはポテ
ンシャルの勾配が作られるのである。よって、BPD1
01が完全空乏化したときに、それぞれの領域内に電位
勾配が生ずるのでBPD101内の電荷がJFET10
2の表面P型ゲート領域203,深いP型ゲート領域2
04に高速に転送される。
FIG. 3D is a sectional view taken along line B3-B3 'of FIG.
FIG. Here, JFET1
02 shows the potential when the gate regions 203 and 204 are reset to the reference voltage and the TG 103 is turned on (set to a low level). In the region c (see FIG. 3A) below the P-type charge storage layer 206, the P-type charge storage layer 206 is more likely to be depleted than in the region b because the impurity concentration is high.
That is, the depletion voltage is small. The same applies to the relationship between the region b and the region a. Since the depletion preventing layer 205 is fixed at the substrate potential, the potential (potential) of the region c of the P-type charge storage layer 206 becomes higher than that of the region b when the BPD 101 is completely depleted. Similarly, the region b has a higher potential (potential) than the region a. In other words, a potential gradient is created in the light receiving unit due to the impurity concentration gradient in the light receiving unit. Therefore, BPD1
When 01 is completely depleted, a potential gradient occurs in each region, so that the charge in the BPD 101 is reduced to JFET 10
2 surface P-type gate region 203, deep P-type gate region 2
04 is transferred at high speed.

【0040】次に図面を参照して本光電変換素子の製造
方法を説明する。図4は、第2の実施形態に係る光電変
換素子の各製造工程での受光部断面図である。まず、周
知のフォトリソグラフィー法とイオン注入法に従い、N
型Si基板301にJFETのドレインとして用いるN
型拡散領域302を形成する。次に、N型Si基板30
1表面にSi02膜303と、TGとして用いるポリシ
リコン電極304を形成する。そして、少なくともBP
Dの形成予定領域を開口するようにフォトリソグラフィ
ー法に従ってレジスト305によるマスクを形成し、11
+をイオン注入してP型電荷蓄積層306を形成す
る。このとき、ポリシリコン電極304はイオン注入の
マスクの一部として作用する。次いで、同一のマスクで
31+をイオン注入し、空乏化防止層307を形成す
る。11+及び 31P+の加速エネルギーは、空乏化防止
層307が基板301表面に形成され、その下にP型電
荷蓄積層306が形成されるように、11+31+の加
速エネルギーを調整する。この状態を示したのが図4
(a)である。
Next, referring to the drawings, manufacture of the photoelectric conversion element will be described.
The method will be described. FIG. 4 shows a photoelectric conversion device according to the second embodiment.
It is sectional drawing of the light-receiving part in each manufacturing process of a replacement element. First, Zhou
According to the well-known photolithography method and ion implantation method, N
Used as a drain of a JFET on a silicon substrate 301
A mold diffusion region 302 is formed. Next, the N-type Si substrate 30
Si0 on one surfaceTwoThe film 303 and the policy used as the TG
A recon electrode 304 is formed. And at least BP
Photolithography so as to open the area where D is to be formed
Forming a mask with the resist 305 according to the method11
B+To form a P-type charge storage layer 306
You. At this time, the polysilicon electrode 304 is
Acts as part of a mask. Then, with the same mask
31P+To form a depletion preventing layer 307
You.11B+as well as 31P + acceleration energy prevents depletion
A layer 307 is formed on the surface of the substrate 301, and a P-type
As the load accumulation layer 306 is formed,11B+When31P+Addition
Adjust the speed energy. FIG. 4 shows this state.
(A).

【0041】次にレジスト305を剥離し、BPD10
1の領域b,cに相当する部分(図3(a)参照)を開口
するようにレジスト308を形成し、これをマスクとし
31+をイオン注入する。そして、BPD101の領
域bに相当する基板301bのN型不純物濃度がaの領
域より高くなるように調整する。このとき、領域aには
イオンが注入されず、301aの領域は、元々の基板3
01の濃度のままとなる。この状態を示したのが図4
(b)である。
Next, the resist 305 is peeled off, and the BPD 10
A resist 308 is formed so as to open portions (see FIG. 3A) corresponding to the first regions b and c, and 31 P + is ion-implanted using the resist 308 as a mask. Then, adjustment is performed so that the N-type impurity concentration of the substrate 301b corresponding to the region b of the BPD 101 is higher than that of the region a. At this time, no ions are implanted into the region a, and the region 301a is
The density remains at 01. FIG. 4 shows this state.
(B).

【0042】次にレジスト308を剥離してBPD10
1の領域cに相当する部分を開口するようにレジスト3
09を形成し、これをマスクとして31+をイオン注入
する。そして、BPD101の領域cに相当する基板3
01cのN型不純物濃度がbの領域より高くなるように
調整する。このとき、領域a,bにはイオンが注入され
ず、301a,301bの領域の濃度は変化が無い。こ
の状態を示したのが図4(c)である。
Next, the resist 308 is peeled off and the BPD 10
Resist 3 so as to open a portion corresponding to region c of FIG.
09 is formed, and using this as a mask, 31 P + is ion-implanted. Then, the substrate 3 corresponding to the region c of the BPD 101
The N-type impurity concentration of 01c is adjusted to be higher than the region of b. At this time, no ions are implanted into the regions a and b, and the concentrations of the regions 301a and 301b do not change. FIG. 4C shows this state.

【0043】次にレジスト309を剥離し、注入した不
純物を電気的に活性化するためのアニールを行い、従来
の方法に従ってBPD以外の部分を形成することによ
り、本実施形態の光電変換素子が得られる。 (第3の実施形態)図5は、本発明による第3の実施形
態に係る光電変換装置の単位画素(光電変換素子)を示
す図面であり、(a)は平面図、(b)はC1−C1’
に沿った断面図、(c)はC2−C2’に沿った断面
図、(d)は(b)のC3−C3’に沿ったポテンシャ
ル図である。第1、第2の実施形態と異なる点は、BP
D101において濃度勾配の形成される部分が異なる点
にある。
Next, the resist 309 is peeled off, annealing for electrically activating the implanted impurities is performed, and a portion other than the BPD is formed according to a conventional method, whereby the photoelectric conversion element of this embodiment is obtained. Can be (Third Embodiment) FIGS. 5A and 5B are diagrams showing a unit pixel (photoelectric conversion element) of a photoelectric conversion device according to a third embodiment of the present invention, wherein FIG. 5A is a plan view and FIG. -C1 '
(C) is a cross-sectional view along C2-C2 ', and (d) is a potential diagram along C3-C3' in (b). The difference from the first and second embodiments is that the BP
The point where the concentration gradient is formed in D101 is different.

【0044】BPD101は、半導体基板表面から裏面
に向かって順に、不純物濃度1×1017cm-3の空乏化
防止層(表面のN型層)205、P型電荷蓄積層20
6、不純物濃度1×1015cm-3のN型基板201とな
っている。空乏化防止層は、基板201と電気的に接続
されている。また、P型電荷蓄積層206は、不純物濃
度が3×1016cm-3、2×1016cm-3、1×1016
cm-3の3つの領域206a,206b,206cに分
かれている。このようにP型不純物濃度は206a>2
06b>206cの順番に段階的濃くなっている。この
ため、TG103の方が低くなるようなポテンシャル勾
配が形成されている。
The BPD 101 has a depletion preventing layer (N-type layer on the surface) 205 having an impurity concentration of 1 × 10 17 cm −3 and a P-type charge storage layer 20 in order from the front surface to the back surface of the semiconductor substrate.
6. The N-type substrate 201 has an impurity concentration of 1 × 10 15 cm −3 . The depletion prevention layer is electrically connected to the substrate 201. The P-type charge storage layer 206 has an impurity concentration of 3 × 10 16 cm −3 , 2 × 10 16 cm −3 , 1 × 10 16 cm −3 .
It is divided into three regions 206a, 206b, and 206c of cm -3 . Thus, the P-type impurity concentration is 206a> 2.
06b> 206c. For this reason, a potential gradient is formed such that the TG 103 becomes lower.

【0045】図5(d)は、図5(b)のC3−C3’
に沿ったポテンシャル図である。ここでも、JFET1
02のゲート領域203、204を基準電圧にリセット
し、TG103をオンしたときのポテンシャルを示す。
BPD101の領域c(図5(a)参照)では、不純物濃
度が濃いため領域bに比べてP型電荷蓄積層206は空
乏化し易い。つまり、空乏化電圧が小さい。領域bと領
域aの関係も同様である。そして、空乏化防止層205
は基板電位に固定されているので、BPD101が完全
空乏化した状態ではP型電荷蓄積層206の領域cの電
位(ポテンシャル)は領域bよりも高くなる。同様にし
て領域bは領域aよりも電位(ポテンシャル)が高くな
る。換言すれば、受光部の不純物の濃度勾配により、受
光部にはポテンシャルの勾配が作られるのである。よっ
て、BPD101が完全空乏化したときに、それぞれの
領域内に電位勾配が生ずるのでBPD101内の電荷が
JFET102の表面P型ゲート領域203,深いP型
ゲート領域204に高速に転送される。
FIG. 5D is a view showing a line C3-C3 'in FIG. 5B.
FIG. Again, JFET1
02 shows the potential when the gate regions 203 and 204 are reset to the reference voltage and the TG 103 is turned on.
In the region c of the BPD 101 (see FIG. 5A), the P-type charge storage layer 206 is more likely to be depleted than in the region b because the impurity concentration is high. That is, the depletion voltage is small. The same applies to the relationship between the region b and the region a. Then, the depletion prevention layer 205
Is fixed to the substrate potential, so that the potential (potential) of the region c of the P-type charge storage layer 206 becomes higher than that of the region b when the BPD 101 is completely depleted. Similarly, the region b has a higher potential (potential) than the region a. In other words, a potential gradient is created in the light receiving unit due to the impurity concentration gradient in the light receiving unit. Therefore, when the BPD 101 is completely depleted, potential gradients are generated in the respective regions, so that charges in the BPD 101 are transferred to the surface P-type gate region 203 and the deep P-type gate region 204 of the JFET 102 at high speed.

【0046】次に図面を参照して本光電変換素子の製造
方法を説明する。図6は、第3の実施形態に係る光電変
換素子の各製造工程での受光部断面図である。まず、周
知のフォトリソグラフィー法とイオン注入法に従い、N
型Si基板301にJFETのドレインとして用いるN
型拡散領域302を形成する。次に、N型Si基板30
1表面にSi02膜303と、TGとして用いるポリシ
リコン電極304を形成する。そして、少なくともBP
Dの形成予定領域を開口するようにフォトリソグラフィ
ー法に従ってレジスト305によるマスクを形成し、11
+をイオン注入してP型電荷蓄積層306を形成す
る。このとき、ポリシリコン電極304はイオン注入の
マスクの一部として作用する。次いで、同一のマスクで
31+をイオン注入し、空乏化防止層307を形成す
る。11+及び 31+の加速エネルギーは、空乏化防止層
307が基板301表面に形成され、その下にP型電荷
蓄積層306が形成されるように、11+31+の加速
エネルギーを調整する。この状態を示したのが図6
(a)である。
Next, referring to the drawings, manufacture of the photoelectric conversion element will be described.
The method will be described. FIG. 6 shows a photoelectric conversion device according to the third embodiment.
It is sectional drawing of the light-receiving part in each manufacturing process of a replacement element. First, Zhou
According to the well-known photolithography method and ion implantation method, N
Used as a drain of a JFET on a silicon substrate 301
A mold diffusion region 302 is formed. Next, the N-type Si substrate 30
Si0 on one surfaceTwoThe film 303 and the policy used as the TG
A recon electrode 304 is formed. And at least BP
Photolithography so as to open the area where D is to be formed
Forming a mask with the resist 305 according to the method11
B+To form a P-type charge storage layer 306
You. At this time, the polysilicon electrode 304 is
Acts as part of a mask. Then, with the same mask
31P+To form a depletion preventing layer 307
You.11B+as well as 31P+The acceleration energy of the depletion prevention layer
307 is formed on the surface of the substrate 301, and a P-type
As the accumulation layer 306 is formed,11B+When31P+Acceleration
Regulate energy. FIG. 6 shows this state.
(A).

【0047】次にレジスト305を剥離し、BPD10
1の領域a,bに相当する部分(図5(a)参照)を開口
するようにレジスト310を形成し、これをマスクとし
て11B+をイオン注入し、P型電荷蓄積層306bを
形成する。このとき、領域cにはイオンが注入されず、
領域cはP型電荷蓄積層306cのままとなる。この状
態を示したのが図6(b)である。
Next, the resist 305 is peeled off, and the BPD 10
A resist 310 is formed so as to open portions (see FIG. 5A) corresponding to the first regions a and b, and 11B + is ion-implanted using the resist 310 as a mask to form a P-type charge storage layer 306b. At this time, no ions are implanted into the region c,
Region c remains P-type charge storage layer 306c. FIG. 6B shows this state.

【0048】次にレジスト310を剥離してBPD10
1の領域cに相当する部分を開口するようにレジスト3
11を形成し、これをマスクとして11+をイオン注入
し、BPD101の領域aに相当する不純物濃度のP型
電荷蓄積層306aを形成する。このとき、領域b、c
にはイオンが注入されず、それぞれの領域は、P型電荷
蓄積層306b,306cのままとなる。この状態を示
したのが図6(c)である。
Next, the resist 310 is peeled off and the BPD 10
Resist 3 so as to open a portion corresponding to region c of FIG.
11 is formed, and using this as a mask, 11 B + ions are implanted to form a P-type charge storage layer 306 a having an impurity concentration corresponding to the region a of the BPD 101. At this time, the areas b and c
Are not implanted into the first region, and the respective regions remain as P-type charge storage layers 306b and 306c. FIG. 6C shows this state.

【0049】次にレジスト311を剥離し、注入した不
純物を電気的に活性化するためのアニールを行い、従来
の方法に従ってBPD以外の部分を形成することによ
り、本実施形態の光電変換素子が得られる。
Next, the resist 311 is peeled off, annealing for electrically activating the implanted impurities is performed, and a portion other than the BPD is formed according to a conventional method, thereby obtaining the photoelectric conversion element of the present embodiment. Can be

【0050】[0050]

【発明の効果】以上、詳述したように、本発明の光電変
換素子は、転送部の方が低くなるように受光部にポテン
シャルの勾配を配置させたので、受光部から読み出し部
への信号電荷が短時間で完全に転送される。よって、本
発明の光電変換素子及びこれを用いた光電変換装置は、
高速動作が可能であり、また、受光部サイズを大きくし
ても残像が発生しないという効果がある。
As described above in detail, in the photoelectric conversion element of the present invention, since the potential gradient is arranged in the light receiving portion so that the transfer portion is lower, the signal from the light receiving portion to the readout portion is provided. The charge is completely transferred in a short time. Therefore, the photoelectric conversion element of the present invention and a photoelectric conversion device using the same,
High-speed operation is possible, and there is an effect that an afterimage does not occur even if the size of the light receiving unit is increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る光電変換装置の
単位画素(光電変換素子)を示す図面であり、(a)は
平面図、(b)はA1−A1’に沿った断面図、(c)
はA2−A2’に沿った断面図、(d)は(b)のA3
−A3’に沿ったポテンシャル図である。
FIG. 1 is a drawing showing a unit pixel (photoelectric conversion element) of a photoelectric conversion device according to a first embodiment of the present invention, where (a) is a plan view and (b) is a cross section along A1-A1 ′. Figure, (c)
Is a sectional view along A2-A2 ', and (d) is A3 in (b).
It is a potential diagram along -A3 '.

【図2】第1の実施形態に係る光電変換素子の各製造工
程での受光部断面図である。
FIG. 2 is a cross-sectional view of a light receiving unit in each manufacturing process of the photoelectric conversion element according to the first embodiment.

【図3】本発明の第2の実施形態に係る光電変換装置の
単位画素(光電変換素子)を示す図面であり、(a)は
平面図、(b)はB1−B1’に沿った断面図、(c)
はB2−B2’に沿った断面図、(d)は(b)のB3
−B3’に沿ったポテンシャル図である。
3A and 3B are diagrams illustrating a unit pixel (photoelectric conversion element) of a photoelectric conversion device according to a second embodiment of the present invention, where FIG. 3A is a plan view and FIG. 3B is a cross-section along B1-B1 ′. Figure, (c)
Is a sectional view along B2-B2 ', and (d) is B3 in (b).
It is a potential diagram along -B3 '.

【図4】第2の実施形態に係る光電変換素子の各製造工
程での受光部断面図である。
FIG. 4 is a cross-sectional view of a light receiving unit in each manufacturing process of the photoelectric conversion element according to the second embodiment.

【図5】本発明による第3の実施形態に係る光電変換装
置の単位画素(光電変換素子)を示す図面であり、
(a)は平面図、(b)はC1−C1’に沿った断面
図、(c)はC2−C2’に沿った断面図、(d)は
(b)のC3−C3’に沿ったポテンシャル図である。
FIG. 5 is a drawing showing a unit pixel (photoelectric conversion element) of a photoelectric conversion device according to a third embodiment of the present invention,
(A) is a plan view, (b) is a cross-sectional view along C1-C1 ', (c) is a cross-sectional view along C2-C2', and (d) is a cross-sectional view along C3-C3 'in (b). It is a potential diagram.

【図6】第3の実施形態に係る光電変換素子の各製造工
程での受光部断面図である。
FIG. 6 is a cross-sectional view of a light receiving unit in each manufacturing process of the photoelectric conversion element according to the third embodiment.

【図7】第1の実施形態の光電変換素子と従来の光電変
換素子の残像特性を表したグラフである。
FIG. 7 is a graph showing the afterimage characteristics of the photoelectric conversion element of the first embodiment and a conventional photoelectric conversion element.

【図8】従来の固体撮像素子の単位画素を示す図面であ
り、(a)は平面図、(b)はD1−D1’に沿った断
面図、(c)はD3−D3’に沿った断面図、(d)は
(b)のD2−D2’に沿ったポテンシャル図である。
8A and 8B are diagrams showing a unit pixel of a conventional solid-state imaging device, where FIG. 8A is a plan view, FIG. 8B is a cross-sectional view along D1-D1 ′, and FIG. 8C is a view along D3-D3 ′. (D) is a potential diagram along D2-D2 'of (b).

【符号の説明】[Explanation of symbols]

101・・・埋め込みフォトダイオード 102・・・JFET 103・・・転送電極 104・・・リセットドレイン 105・・・リセットゲート 106,107・・・コンタクト部 201,301・・・N型Si基板 203、204・・・ゲート領域 205,307・・・空乏化防止層 206,306・・・P型電荷蓄積層 207・・・N+型ソース領域 208,302・・・N型ドレイン領域 209・・・N型チャネル 303・・・シリコン酸化膜 304・・・ポリシリコン電極 305,308,309,310,311・・・フォト
レジスト
101: embedded photodiode 102: JFET 103: transfer electrode 104: reset drain 105: reset gate 106, 107: contact portion 201, 301: N-type Si substrate 203; 204 gate region 205, 307 depletion prevention layer 206, 306 P-type charge storage layer 207 N + type source region 208, 302 N-type drain region 209 N Mold channel 303: silicon oxide film 304: polysilicon electrode 305, 308, 309, 310, 311: photoresist

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に配置され入射光に応じた
電荷を発生し蓄積する受光部と、該受光部に蓄積された
電荷を読み出し部に転送する転送部と、前記転送部から
送られてきた電荷に応じた信号を発生する前記読み出し
部とを有する光電変換素子において、 前記受光部は、不純物の濃度勾配を有し、前記転送部に
近づくに従ってポテンシャルが低いことを特徴とする光
電変換素子。
1. A light receiving unit which is arranged on a semiconductor substrate and generates and accumulates an electric charge according to incident light, a transfer unit which transfers the electric charge accumulated in the light receiving unit to a reading unit, and a transfer unit which receives the electric charge from the transfer unit. A photoelectric conversion element having the readout unit that generates a signal corresponding to the received electric charge, wherein the light receiving unit has a concentration gradient of an impurity, and the potential decreases as approaching the transfer unit. element.
【請求項2】 第1導電型の半導体基板上に配置され、
入射光に応じた電荷を発生し蓄積する受光部と、該受光
部に蓄積された電荷を読み出し部に転送する転送部と、
前記転送部から送られてきた電荷に応じた信号を発生す
る前記読み出し部とを有する光電変換素子において、 前記受光部は、第1導電型の空乏化防止層、及び、前記
空乏化防止層に接触して且つ前記空乏化防止層の下部に
設けられた第2導電型の電荷蓄積層とから構成された埋
め込みフォトダイオードであり、 前記空乏化防止層は、不純物の濃度勾配を有し、第1導
電型の不純物濃度が前記転送部から離れるに従って高濃
度となることを特徴とする光電変換素子。
2. A semiconductor device comprising: a first conductive type semiconductor substrate;
A light receiving unit that generates and accumulates a charge corresponding to the incident light, and a transfer unit that transfers the charge accumulated in the light receiving unit to a reading unit;
A photoelectric conversion element having a read section that generates a signal corresponding to the charge transmitted from the transfer section, wherein the light receiving section includes a first conductivity type depletion prevention layer, and a depletion prevention layer. A buried photodiode that is in contact with and has a second conductivity type charge storage layer provided below the depletion prevention layer, wherein the depletion prevention layer has an impurity concentration gradient; A photoelectric conversion element, wherein an impurity concentration of one conductivity type becomes higher as the distance from the transfer section increases.
【請求項3】 第1導電型の半導体基板上に配置され、
入射光に応じた電荷を発生し蓄積する受光部と、該受光
部に蓄積された電荷を読み出し部に転送する転送部と、
前記転送部から送られてきた電荷に応じた信号を発生す
る前記読み出し部とを有する光電変換素子において、 前記受光部は、第1導電型の空乏化防止層、及び、前記
空乏化防止層に接触して且つ前記空乏化防止層の下部に
設けられた第2導電型の電荷蓄積層とから構成された埋
め込みフォトダイオードであり、 前記電荷蓄積層は、不純物の濃度勾配を有し、第2導電
型の不純物濃度が前記転送部から離れるに従って低濃度
となることを特徴とする光電変換素子。
3. The semiconductor device according to claim 1, wherein the semiconductor substrate is disposed on a semiconductor substrate of a first conductivity type.
A light receiving unit that generates and accumulates a charge corresponding to the incident light, and a transfer unit that transfers the charge accumulated in the light receiving unit to a reading unit;
A photoelectric conversion element having a read section that generates a signal corresponding to the charge transmitted from the transfer section, wherein the light receiving section includes a first conductivity type depletion prevention layer, and a depletion prevention layer. A buried photodiode that is in contact with and has a second conductivity type charge storage layer provided below the depletion prevention layer, wherein the charge storage layer has an impurity concentration gradient; A photoelectric conversion element, wherein the conductivity type impurity concentration decreases as the distance from the transfer section increases.
【請求項4】 第1導電型の半導体基板上に配置され、
入射光に応じた電荷を発生し蓄積する受光部と、該受光
部に蓄積された電荷を読み出し部に転送する転送部と、
前記転送部から送られてきた電荷に応じた信号を発生す
る前記読み出し部とを有する光電変換素子において、 前記受光部は、第1導電型の空乏化防止層、及び、前記
空乏化防止層に接触して且つ前記空乏化防止層の下部に
設けられた第2導電型の電荷蓄積層とから構成された埋
め込みフォトダイオードであり、 前記埋め込みフォトダイオードの下部における前記半導
体基板の不純物濃度は、濃度勾配を有し、前記転送部に
隣接した部分で低濃度であり、前記転送部から離れるに
従って高濃度となることを特徴とする光電変換素子。
4. A semiconductor device comprising: a first conductive type semiconductor substrate;
A light receiving unit that generates and accumulates a charge corresponding to the incident light, and a transfer unit that transfers the charge accumulated in the light receiving unit to a reading unit;
A photoelectric conversion element having a read section that generates a signal corresponding to the charge transmitted from the transfer section, wherein the light receiving section includes a first conductivity type depletion prevention layer, and a depletion prevention layer. And a second conductivity type charge storage layer provided in contact with and below the depletion preventing layer. The semiconductor substrate under the buried photodiode has an impurity concentration of: A photoelectric conversion element having a gradient, wherein the density is low at a portion adjacent to the transfer section, and becomes higher as the distance from the transfer section increases.
【請求項5】 前記濃度勾配は、段階的に変化すること
を特徴とする請求項1から4のいずれかに記載された光
電変換素子。
5. The photoelectric conversion device according to claim 1, wherein the concentration gradient changes stepwise.
【請求項6】請求項1から請求項5に記載された光電変
換素子において、前記読み出し部は、前記電荷を増幅す
るトランジスタを有することを特徴とする光電変換素
子。
6. The photoelectric conversion element according to claim 1, wherein said read section has a transistor for amplifying said electric charge.
【請求項7】請求項6に記載された光電変換素子におい
て、前記トランジスタは接合型電界効果トランジスタで
あることを特徴とする光電変換素子。
7. The photoelectric conversion device according to claim 6, wherein said transistor is a junction type field effect transistor.
【請求項8】請求項1から請求項7のいずれかに記載さ
れた光電変換素子を単位画素としてマトリクスに配置
し、X−Yアドレス走査回路によって各画素から信号を
出力することを特徴とする光電変換装置。
8. The pixel according to claim 1, wherein the photoelectric conversion elements are arranged in a matrix as unit pixels, and a signal is output from each pixel by an XY address scanning circuit. Photoelectric conversion device.
JP03579699A 1999-02-15 1999-02-15 Photoelectric conversion element and photoelectric conversion device Expired - Lifetime JP4258875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03579699A JP4258875B2 (en) 1999-02-15 1999-02-15 Photoelectric conversion element and photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03579699A JP4258875B2 (en) 1999-02-15 1999-02-15 Photoelectric conversion element and photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2000236081A true JP2000236081A (en) 2000-08-29
JP4258875B2 JP4258875B2 (en) 2009-04-30

Family

ID=12451896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03579699A Expired - Lifetime JP4258875B2 (en) 1999-02-15 1999-02-15 Photoelectric conversion element and photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP4258875B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231926A (en) * 2001-02-01 2002-08-16 Fuji Photo Film Co Ltd Line sensor and ological image information reader using the same
FR2824665A1 (en) * 2001-05-09 2002-11-15 St Microelectronics Sa CMOS TYPE PHOTODETECTOR
US6677656B2 (en) 2001-02-12 2004-01-13 Stmicroelectronics S.A. High-capacitance photodiode
US6781169B2 (en) 2001-02-12 2004-08-24 Stmicroelectronics S.A. Photodetector with three transistors
US6960799B2 (en) 1998-07-28 2005-11-01 Stmicroelectronics A.A. Image sensor with a photodiode array
JP2006041541A (en) * 2004-07-29 2006-02-09 Magnachip Semiconductor Ltd Image sensor with enhanced charge transmission efficiency, and manufacturing method therefor
JP2006041538A (en) * 2004-07-29 2006-02-09 Magnachip Semiconductor Ltd Image sensor having enhanced charge transmission efficiency and its fabrication process
JP2006108590A (en) * 2004-10-08 2006-04-20 Matsushita Electric Ind Co Ltd Solid state image pickup device
JP2007258423A (en) * 2006-03-23 2007-10-04 Seiko Epson Corp Manufacturing method of solid-state imaging device, and solid-state imaging device
JP2009277738A (en) * 2008-05-12 2009-11-26 Brainvision Inc Pixel structure of solid-state imaging device
WO2010013811A1 (en) * 2008-07-31 2010-02-04 国立大学法人静岡大学 High-speed charge transfer photodiode, lock-in pixel, and solid-state imaging device
WO2010074252A1 (en) * 2008-12-25 2010-07-01 国立大学法人静岡大学 Semiconductor device and solid-state imaging device
WO2010092929A1 (en) 2009-02-13 2010-08-19 浜松ホトニクス株式会社 Image sensor
JP2010219355A (en) * 2009-03-17 2010-09-30 Sharp Corp Solid-state imaging element, and electronic information device
JP2011035382A (en) * 2009-07-10 2011-02-17 Shimadzu Corp Solid-state imaging element
CN102222679A (en) * 2011-07-05 2011-10-19 上海宏力半导体制造有限公司 CMOS (complementary metal-oxide-semiconductor transistor) image sensor and manufacturing method thereof
US8259207B2 (en) 2009-08-31 2012-09-04 Renesas Electronics Corporation CCD image sensor
WO2013125631A1 (en) 2012-02-23 2013-08-29 シャープ株式会社 Solid-state imaging element and method of manufacturing solid-state imaging element
CN103413816A (en) * 2013-08-14 2013-11-27 昆山锐芯微电子有限公司 Pixel structure of CMOS image senor and forming method thereof
US8907386B2 (en) 2009-02-13 2014-12-09 Hamamatsu Photonics K.K. Linear image sensor
US8921900B2 (en) 2012-06-20 2014-12-30 Canon Kabushiki Kaisha Solid-state imaging device and camera
CN109979955A (en) * 2019-04-03 2019-07-05 上海华力微电子有限公司 A kind of semiconductor structure and its manufacturing method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960799B2 (en) 1998-07-28 2005-11-01 Stmicroelectronics A.A. Image sensor with a photodiode array
JP2002231926A (en) * 2001-02-01 2002-08-16 Fuji Photo Film Co Ltd Line sensor and ological image information reader using the same
US6677656B2 (en) 2001-02-12 2004-01-13 Stmicroelectronics S.A. High-capacitance photodiode
US6781169B2 (en) 2001-02-12 2004-08-24 Stmicroelectronics S.A. Photodetector with three transistors
FR2824665A1 (en) * 2001-05-09 2002-11-15 St Microelectronics Sa CMOS TYPE PHOTODETECTOR
US6984817B2 (en) 2001-05-09 2006-01-10 Stmicroelectronic S.A. CMOS-type photodetector for improved charge transfer from the photodetector to a MOS transistor
JP2006041541A (en) * 2004-07-29 2006-02-09 Magnachip Semiconductor Ltd Image sensor with enhanced charge transmission efficiency, and manufacturing method therefor
JP2006041538A (en) * 2004-07-29 2006-02-09 Magnachip Semiconductor Ltd Image sensor having enhanced charge transmission efficiency and its fabrication process
JP2006108590A (en) * 2004-10-08 2006-04-20 Matsushita Electric Ind Co Ltd Solid state image pickup device
JP2007258423A (en) * 2006-03-23 2007-10-04 Seiko Epson Corp Manufacturing method of solid-state imaging device, and solid-state imaging device
JP2009277738A (en) * 2008-05-12 2009-11-26 Brainvision Inc Pixel structure of solid-state imaging device
WO2010013811A1 (en) * 2008-07-31 2010-02-04 国立大学法人静岡大学 High-speed charge transfer photodiode, lock-in pixel, and solid-state imaging device
JP2010040594A (en) * 2008-07-31 2010-02-18 National Univ Corp Shizuoka Univ High-speed charge transfer photodiode, lock-in pixel, and solid-state imaging device
US8587709B2 (en) 2008-07-31 2013-11-19 National University Corporation Shizuoka University High-speed charge-transfer photodiode, a lock-in pixel, and a solid-state imaging device
WO2010074252A1 (en) * 2008-12-25 2010-07-01 国立大学法人静岡大学 Semiconductor device and solid-state imaging device
US8338248B2 (en) 2008-12-25 2012-12-25 National University Corporation Shizuoka University Semiconductor element and solid-state imaging device
WO2010092929A1 (en) 2009-02-13 2010-08-19 浜松ホトニクス株式会社 Image sensor
KR20110113728A (en) 2009-02-13 2011-10-18 하마마츠 포토닉스 가부시키가이샤 Image sensor
US8901628B2 (en) 2009-02-13 2014-12-02 Hamamatsu Photonics K.K. Image sensor in which embedded photodiodes are arrayed
US8907386B2 (en) 2009-02-13 2014-12-09 Hamamatsu Photonics K.K. Linear image sensor
JP2010219355A (en) * 2009-03-17 2010-09-30 Sharp Corp Solid-state imaging element, and electronic information device
JP2011035382A (en) * 2009-07-10 2011-02-17 Shimadzu Corp Solid-state imaging element
US8259207B2 (en) 2009-08-31 2012-09-04 Renesas Electronics Corporation CCD image sensor
CN102222679A (en) * 2011-07-05 2011-10-19 上海宏力半导体制造有限公司 CMOS (complementary metal-oxide-semiconductor transistor) image sensor and manufacturing method thereof
WO2013125631A1 (en) 2012-02-23 2013-08-29 シャープ株式会社 Solid-state imaging element and method of manufacturing solid-state imaging element
US10186547B2 (en) 2012-02-23 2019-01-22 Sharp Kabushiki Kaisha Solid-state imaging element and method of manufacturing the same
US8921900B2 (en) 2012-06-20 2014-12-30 Canon Kabushiki Kaisha Solid-state imaging device and camera
CN103413816A (en) * 2013-08-14 2013-11-27 昆山锐芯微电子有限公司 Pixel structure of CMOS image senor and forming method thereof
CN109979955A (en) * 2019-04-03 2019-07-05 上海华力微电子有限公司 A kind of semiconductor structure and its manufacturing method
CN109979955B (en) * 2019-04-03 2021-06-18 上海华力微电子有限公司 Semiconductor structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP4258875B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4258875B2 (en) Photoelectric conversion element and photoelectric conversion device
US6051857A (en) Solid-state imaging device and method of detecting optical signals using the same
JP2878137B2 (en) Amplification type photoelectric conversion element, amplification type solid-state imaging device using the same, and method of manufacturing amplification type photoelectric conversion element
JP3467858B2 (en) Photoelectric conversion element
US6982183B2 (en) Method and system for manufacturing a pixel image sensor
JP3125303B2 (en) Solid-state imaging device
JPH11195778A (en) Solid-state image-pickup device and detection of light signal therefrom
US20080296476A1 (en) Pixel sensor cell for collecting elections and holes
US7678643B2 (en) Method for manufacturing a CMOS image sensor
US6762441B1 (en) Imager cell with pinned transfer gate
JP4053651B2 (en) Electromagnetic radiation detector, high-sensitivity pixel structure using the detector, and method of manufacturing the detector
JP2004253670A (en) Solid state imaging device
JPH077147A (en) Charge coupled device image sensor
US6278102B1 (en) Method of detecting electromagnetic radiation with bandgap engineered active pixel cell design
JPH0730086A (en) Amplified solid-state image sensing element
US6403994B1 (en) Solid-state imaging device and method of fabricating the same
KR100261349B1 (en) Active type solid-state imaging device and method for fabricating the same
US7554170B2 (en) Variably responsive photosensor
JP3621273B2 (en) Solid-state imaging device and manufacturing method thereof
JPH01502634A (en) Image sensor output circuit
US20220254822A1 (en) Uttb photodetector pixel unit, array and method
CN110581190B (en) UTBB photoelectric detector, array and method suitable for submicron pixels
JP2982206B2 (en) Solid-state imaging device
US6232589B1 (en) Single polysilicon CMOS pixel with extended dynamic range
JP2001237407A (en) Electromagnetic radiation sensor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term