JP2000235020A - Eddy-current flaw detecting device - Google Patents

Eddy-current flaw detecting device

Info

Publication number
JP2000235020A
JP2000235020A JP11034580A JP3458099A JP2000235020A JP 2000235020 A JP2000235020 A JP 2000235020A JP 11034580 A JP11034580 A JP 11034580A JP 3458099 A JP3458099 A JP 3458099A JP 2000235020 A JP2000235020 A JP 2000235020A
Authority
JP
Japan
Prior art keywords
magnetic field
current flaw
probe
eddy
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11034580A
Other languages
Japanese (ja)
Inventor
Yutaka Harada
豊 原田
Sumisato Shimone
純理 下根
Hardy Florian
ハーディ フローリアン
Samson Lock
サムソン ロック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GENSHIRYOKU ENGINEERING KK
R and D Tech Inc
Original Assignee
GENSHIRYOKU ENGINEERING KK
R and D Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GENSHIRYOKU ENGINEERING KK, R and D Tech Inc filed Critical GENSHIRYOKU ENGINEERING KK
Priority to JP11034580A priority Critical patent/JP2000235020A/en
Priority to US09/350,183 priority patent/US6344739B1/en
Priority to DE60038483T priority patent/DE60038483T2/en
Priority to KR1020017010220A priority patent/KR100756763B1/en
Priority to AU25300/00A priority patent/AU2530000A/en
Priority to EP00903465A priority patent/EP1153289B1/en
Priority to PCT/CA2000/000136 priority patent/WO2000047987A1/en
Priority to PCT/CA2000/000135 priority patent/WO2000047986A1/en
Priority to CA002372259A priority patent/CA2372259C/en
Priority to AT00903465T priority patent/ATE391292T1/en
Priority to ES00903465T priority patent/ES2306656T3/en
Priority to AU25301/00A priority patent/AU2530100A/en
Publication of JP2000235020A publication Critical patent/JP2000235020A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide an eddy-current flaw detecting device capable of obtaining difference type signals in spite of having a smaller number of coils making up magnetic field exciting/magnetic field detecting coil pairs. SOLUTION: This eddy-current flaw detecting device is equipped, as its components, with an eddy-current flaw detecting probe made up of a plurality of magnetic field exciting element/magnetic field detecting element pairs, and a control device including means A, B for time-division driving the magnetic field exciting elements and magnetic field detecting elements of the probe, means C for holding output signals of the respective element pairs over several steps of the time-division driving, and a means D for finding a difference between output signals, at least one of which is data held, from two element pairs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱交換器内部にあ
る細管等の非破壊検査に用いる渦流探傷装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current flaw detector used for nondestructive inspection of a thin tube or the like inside a heat exchanger.

【0002】[0002]

【従来の技術】複数の磁場励起素子と磁場検出素子を搭
載し、相互誘導差動型として使用される渦流探傷プロー
ブとしては、例えば特開平6−160357号記載のも
のがある。これは図4に示すように円筒形の母体111
上に3個1組のパンケーキコイル群を配置したものであ
り、1コイル群は1個の励起コイル112と差動接続さ
れた2個の検出コイル113とから構成されている。
2. Description of the Related Art An eddy current flaw detection probe having a plurality of magnetic field excitation elements and a magnetic field detection element and used as a mutual induction differential type is disclosed, for example, in JP-A-6-160357. This is shown in FIG.
A set of three pancake coils is arranged on the upper side, and one coil group includes one excitation coil 112 and two detection coils 113 differentially connected.

【0003】このプローブの特徴は、1コイル群で伝熱
管の円周方向に存在する欠陥と軸方向に存在する欠陥の
両方を検出することであり、またコイル群間での検出性
低下を防止するためコイル群を2段互い違いに配置し、
合計8コイル群を内部に備えている。
The feature of this probe is that one coil group detects both a defect existing in the circumferential direction and a defect existing in the axial direction of the heat transfer tube, and prevents a decrease in detectability between the coil groups. To arrange the coil groups alternately in two stages,
A total of eight coil groups are provided inside.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記記
載のプローブでは各素子対の2つの検出コイルは常に差
動接続されており、従って全コイル数は励起コイル数と
その2倍の検出コイルを足したものになり、結局、素子
数の3倍のコイルが必要とされる。欠陥に対する空間分
解能がそれほど要求されない場合や、欠陥に対する感度
低下領域があってもそれほど問題にならない場合、さら
には各コイルに必要な信号線の数が無制限である場合に
は上記の如き従来の技術に何ら不都合はないが、細管を
探傷する内挿型プローブなどではプローブ外径、信号線
群を内包するケーブル外径は少なくとも細管内径より細
くなくてはならず、このためプローブ外周に配置される
コイル数と信号線数には制限が存在する。
However, in the probe described above, the two detection coils of each element pair are always differentially connected, so that the total number of coils is equal to the number of excitation coils and twice the number of detection coils. As a result, three times as many coils as the number of elements are required. If the spatial resolution for the defect is not so required, or if there is no problem even if there is an area where the sensitivity to the defect is low, or if the number of signal lines required for each coil is unlimited, the conventional technique as described above is used. Although there is no inconvenience, the outer diameter of the probe and the outer diameter of the cable containing the signal line group must be at least smaller than the inner diameter of the thin tube in the case of an insertion type probe for flaw detection of a thin tube, and therefore, it is arranged on the outer periphery of the probe. There are restrictions on the number of coils and the number of signal lines.

【0005】また1素子対中の2つの検出コイルは必ず
対となって接続されているため、他の素子対中の励起コ
イルに対する検出コイルとしては使用できず、励起コイ
ルと検出コイルの組み合わせをスイッチング回路により
切り替えて使用することや、差動接続すべき検出コイル
を変更することは設計・製作時以外不可能な状況であ
る。
Further, since two detection coils in one element pair are always connected as a pair, they cannot be used as a detection coil for an excitation coil in another element pair. It is impossible to switch and use a switching circuit by a switching circuit or to change a detection coil to be differentially connected except at the time of designing and manufacturing.

【0006】本発明は上述の如き実状に対処し、特に信
号の差分手段に工夫を見いだすことにより、従来に比
し、より少数のコイルで磁場励起・磁場検出コイル対を
構成しつつも差動型信号が得られる渦流探傷装置を提供
することを目的とするものである。
SUMMARY OF THE INVENTION The present invention addresses the above-described situation, and in particular, finds a device for signal difference so as to form a magnetic field excitation / magnetic field detection coil pair with a smaller number of coils as compared with the prior art, while providing a differential. It is an object of the present invention to provide an eddy current flaw detector capable of obtaining a mold signal.

【0007】[0007]

【課題を解決するための手段】即ち、上記目的に適合
し、前記課題を解決する本発明渦流探傷装置の特徴とす
るところは、複数の磁場励起素子・磁場検出素子対から
なる渦流探傷プローブと、該プローブの磁場励起素子・
磁場検出素子対を時分割駆動する手段と、更に時分割駆
動の数ステップにわたり各素子対の出力信号を保持する
手段と、少なくとも一方は保持されていたデータである
2組の素子対からの出力信号を差分する手段を含む制御
装置を具備せしめた点にある。
That is, a feature of the eddy current flaw detector according to the present invention, which meets the above-mentioned object and solves the above-mentioned problems, is that an eddy current flaw detection probe comprising a plurality of magnetic field excitation element / magnetic field detection element pairs. , The magnetic field excitation element of the probe
Means for time-divisionally driving the pair of magnetic field detecting elements, means for holding the output signal of each element pair over several steps of the time-division driving, and at least one of the outputs from the two element pairs, which is the held data. The present invention has a control device including means for differentiating signals.

【0008】請求項2は上記構成に加え磁場励起素子・
磁場検出素子対を時分割駆動する手段の少なくとも一部
をプローブ本体または近傍に配置したことを特徴とす
る。
A second aspect of the present invention provides a magnetic field excitation element in addition to the above configuration.
At least a part of the means for time-divisionally driving the magnetic field detecting element pair is arranged at or near the probe body.

【0009】[0009]

【作用】上記本発明渦流探傷装置によれば、先ずi番目
のコイルからの信号がAD変換回路に出力されると、そ
の信号はデータバッファーと演算回路双方に入力され、
同時にタイミングが1つ前の(i−1)番目のデータが
データバッファーから出力され、演算回路に入力され
て、演算回路でi番目のデータからそれより1つ前の
(i−1)番目のデータが減算され、その結果が表示・
記録される。そして、データバッファー内の(i−1)
番目のデータは、も早、不要なのでバッファー内から消
去され、次のデータ入力に備える。このようにして各コ
イルの信号を順番に処理していくことで、隣り合うコイ
ル対の信号を差分し、差動型プローブとして動作させ
る。
According to the eddy current flaw detector of the present invention, when a signal from the i-th coil is output to the AD conversion circuit, the signal is input to both the data buffer and the arithmetic circuit.
At the same time, the (i-1) -th data whose timing is immediately before is output from the data buffer and input to the arithmetic circuit, and the arithmetic circuit detects the (i-1) -th data which is immediately before the i-th data. The data is subtracted and the result is displayed
Be recorded. Then, (i-1) in the data buffer
The second data is no longer needed, so it is deleted from the buffer and ready for the next data input. By processing the signals of the respective coils in this manner in order, the signals of the adjacent coil pairs are differentiated and operated as a differential probe.

【0010】[0010]

【発明の実施の形態】以下、更に添付図面にもとづき、
本発明の具体的な態様を説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
Specific embodiments of the present invention will be described.

【0011】図1は本発明渦流探傷装置に用いるプロー
ブの外観図であり、図において101は円筒状の母体
で、該母体101の外周にコイル群102がアレイ状に
平行配置されており、信号線を内包するシース103が
連結されている。
FIG. 1 is an external view of a probe used in the eddy current flaw detection apparatus of the present invention. In the figure, reference numeral 101 denotes a cylindrical base body, and a coil group 102 is arranged in an array parallel to the outer circumference of the base body 101 so that a signal A sheath 103 containing the wire is connected.

【0012】コイル群102は励起コイル群と検出コイ
ル群に分かれており、それぞれのコイルはプローブ母体
内部に収めた図示なきスイッチング回路に接続されてい
る。プローブはシース103によって制御装置と繋がれ
ており、制御装置内部には図2に示すように励起回路、
検出回路A、AD変換回路Bなどの主要部とともにAD
変換回路B後段にデータバッファー回路Cが設けられて
いる。そして、AD変換回路Bとデータバッファー回路
Cからの出力は演算回路Dによって減算され表示装置や
記録装置に出力・表示される。
The coil group 102 is divided into an excitation coil group and a detection coil group, and each coil is connected to a switching circuit (not shown) housed inside the probe body. The probe is connected to the control device by a sheath 103, and an excitation circuit, as shown in FIG.
AD together with main parts such as detection circuit A and AD conversion circuit B
A data buffer circuit C is provided downstream of the conversion circuit B. The outputs from the AD conversion circuit B and the data buffer circuit C are subtracted by the arithmetic circuit D and output and displayed on a display device or a recording device.

【0013】図3は上記制御装置により差動データを得
るための具体的な演算アルゴリズムを示したものであ
り、前記作用に記述したようにi番目のコイルからの信
号が位相弁別検波回路Aを通りAD変換回路Bから出力
されると、その信号がデータバッファーCと演算回路D
の双方に入力され、同時にタイミングが1つ前の(i−
1)番目のデータがデータバッファーから略同時に出力
されて演算回路Dに入力される。そして、前記AD変換
回路Bから出力されたi番目のコイルからのデータと、
バッファーCから出力された(i−1)番目のデータに
もとづいて演算が行われ、前者データから後者のデータ
が減算されて、その結果が表示され、記録される。演算
が終わると、データバッファー内の(i−1)番目のデ
ータはも早、不要なので、バッファーC内から消去さ
れ、次のデータ入力に備えて待機する。
FIG. 3 shows a specific operation algorithm for obtaining differential data by the control device. As described in the above operation, the signal from the i-th coil is supplied to the phase discrimination detection circuit A. Output from the AD conversion circuit B, the signal is converted into a data buffer C and an arithmetic circuit D.
, And at the same time the previous timing (i−
The 1) th data is output from the data buffer almost simultaneously and input to the arithmetic circuit D. And data from the i-th coil output from the AD conversion circuit B;
An operation is performed based on the (i-1) -th data output from the buffer C, the latter data is subtracted from the former data, and the result is displayed and recorded. When the calculation is completed, the (i-1) -th data in the data buffer is no longer needed, so that it is deleted from the buffer C and waits for the next data input.

【0014】以上の本発明における差分手段は、本来の
差動型プローブが同時に入力される2つの入力信号を差
分するのに対し、ほぼ同時に入力される信号の差動であ
るから、全く完全な差動型プローブとは云えず、疑似差
動型プローブとでも言うべきものである。しかしなが
ら、例えばプローブの走行速度は400mm/秒、コイ
ル対の切り替え速度はたかだか10μ秒から1m秒なの
で、その間の温度変化は無視することができ、また隣接
するコイル対が実質的に移動する距離も0.4mm以下
であるので、コイル対の有効探傷範囲約数mmに比較す
れぱ何ら問題がない。
The difference means of the present invention described above differs from two input signals which are simultaneously inputted by the original differential probe, but is substantially completely different because signals which are inputted almost simultaneously are different. It is not a differential probe but a pseudo-differential probe. However, for example, since the traveling speed of the probe is 400 mm / sec and the switching speed of the coil pair is at most 10 μsec to 1 msec, the temperature change during that time can be ignored, and the distance that the adjacent coil pair travels substantially is also small. Since it is 0.4 mm or less, there is no problem compared with the effective flaw detection range of the coil pair of about several mm.

【0015】上記の実施例ではコイル対数が8対となっ
ているが、本発明は勿論3対以上で有効であり、また検
出コイル1個についてデータバッファーを1回路設ける
などの手段でデータ保持期間の延長を図り演算対象のコ
イル対を変更することも可能である。
In the above embodiment, the number of coil pairs is eight. However, the present invention is, of course, effective with three or more pairs, and the data holding period is provided by means such as providing one data buffer for one detection coil. Can be extended to change the coil pair to be calculated.

【0016】[0016]

【発明の効果】本発明渦流探傷装置は以上のように複数
の磁場励起素子・磁場検出素子対からなる渦流探傷プロ
ーブと、該プローブの磁場励起素子・磁場検出素子対を
時分割駆動する手段を備えると共に、更に時分割駆動の
数ステップにわたり各素子対の出力信号を保持する手段
と、隣接する素子対の出力信号を差分する手段を含む制
御装置を具備せしめた差動型プローブであり、空間分解
能を向上させるためコイル対を増加させつつも、従来に
比べて少ないコイル数で差動コイル対を形成することが
できると共に、なおかつ励起コイル・検出コイル対のス
イッチングタイミングを変更することで異なる差動コイ
ル対を構成することが可能になるなど、より柔軟な運転
が可能である実用的効果を有している。
As described above, the eddy current flaw detection apparatus of the present invention comprises an eddy current flaw detection probe comprising a plurality of magnetic field excitation elements and magnetic field detection element pairs, and means for time-divisionally driving the magnetic field excitation element / magnetic field detection element pairs of the probe. A differential probe provided with a control device including means for holding output signals of each element pair over several steps of time-division driving, and means for differentiating output signals of adjacent element pairs. While increasing the number of coil pairs to improve the resolution, it is possible to form a differential coil pair with a smaller number of coils than before, and to change the difference by changing the switching timing of the excitation coil / detection coil pair. There is a practical effect that more flexible operation is possible, for example, a dynamic coil pair can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明装置に用いる渦流探傷プローブ部分の外
観概要図である。
FIG. 1 is a schematic external view of an eddy current detection probe used in the apparatus of the present invention.

【図2】本発明装置における制御装置内の系統説明図で
ある。
FIG. 2 is an explanatory diagram of a system in a control device in the device of the present invention.

【図3】本発明における制御装置により差動データを得
るための演算アルゴリズムを示す図である。
FIG. 3 is a diagram illustrating an operation algorithm for obtaining differential data by a control device according to the present invention.

【図4】従来の渦流探傷プローブ例を示す外観図であ
る。
FIG. 4 is an external view showing an example of a conventional eddy current flaw detection probe.

【符号の説明】[Explanation of symbols]

101 母体 102 コイル群 103 シース A 検波回路 B AD変換回路 C データバッファー D 演算回路 101 Maternal 102 Coil group 103 Sheath A Detection circuit B A / D conversion circuit C Data buffer D Operation circuit

───────────────────────────────────────────────────── フロントページの続き (71)出願人 599019948 4495 Wilfrid−Hamel Qu ebec,Qebec, Canada (72)発明者 原田 豊 大阪市西区土佐堀一丁目3番7号 株式会 社原子力エンジニアリング内 (72)発明者 下根 純理 大阪市西区土佐堀一丁目3番7号 株式会 社原子力エンジニアリング内 (72)発明者 フローリアン ハーディ カナダ国.ケベック州 セント−オーガス チン リュ デ ラバンディエーレ 121 (72)発明者 ロック サムソン カナダ国 ケベック州 セント−ニコラス ド ラ ショーディエル 177 Fターム(参考) 2G053 AA11 AB21 BA12 BA23 BA26 BC14 CA03 CB19 CB24 DA01 DA06 DB04 DB27 2G075 AA01 BA17 CA16 CA17 DA16 FA16 FB04 FC04 FC14 GA02 GA25  ──────────────────────────────────────────────────続 き Continuation of the front page (71) Applicant 599019948 4495 Wilfrid-Hamel Quebec, Qbec, Canada (72) Inventor Yutaka Harada 1-3-7 Tosabori, Nishi-ku, Osaka-shi Nuclear Engineering Co., Ltd. (72) Invention Person: Junri Shimone 1-3-7 Tosabori, Nishi-ku, Osaka-shi Nuclear Engineering Co., Ltd. (72) Inventor Florian Hardy Canada. St. Augustine, Quebec 121 Rue de Labandiere 121 (72) Inventor Rock Samson St. Nicholas de la Chaudier, Quebec 177 F-term (reference) 2G053 AA11 AB21 BA12 BA23 BA26 BC14 CA03 CB19 CB24 DA01 DA06 DB04 DB27 2G075 AA01 BA17 CA16 CA17 DA16 FA16 FB04 FC04 FC14 GA02 GA25

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の磁場励起素子・磁場検出素子対か
らなる渦流探傷プローブと、該プローブの磁場励起素子
・磁場検出素子対を時分割駆動する手段を備え、かつ、
さらに時分割駆動の数ステップにわたり各素子対の出力
信号を保持する手段と、隣接する素子対の出力信号を差
分する手段を含む制御装置を具備することを特徴とする
渦流探傷装置。
1. An eddy current flaw detection probe comprising a plurality of magnetic field excitation element / magnetic field detection element pairs, and means for time-divisionally driving the magnetic field excitation element / magnetic field detection element pairs of the probe, and
The eddy current flaw detection device further comprises a control device including means for holding output signals of each element pair over several steps of time division driving, and means for differentiating output signals of adjacent element pairs.
【請求項2】 磁場励起素子・磁場検出素子対を時分割
駆動する手段の少なくとも一部をプローブ本体または近
傍に配置した請求項1記載の渦流探傷装置。
2. The eddy current flaw detector according to claim 1, wherein at least a part of the means for time-divisionally driving the magnetic field excitation element / magnetic field detection element pair is arranged at or near the probe body.
JP11034580A 1999-02-12 1999-02-12 Eddy-current flaw detecting device Pending JP2000235020A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP11034580A JP2000235020A (en) 1999-02-12 1999-02-12 Eddy-current flaw detecting device
US09/350,183 US6344739B1 (en) 1999-02-12 1999-07-09 Eddy current probe with multi-use coils and compact configuration
DE60038483T DE60038483T2 (en) 1999-02-12 2000-02-14 CURRENT CURRENT CHECK WITH ROUGH-SAVING CONFIGURATION
KR1020017010220A KR100756763B1 (en) 1999-02-12 2000-02-14 Eddy current testing with compact configuration
AU25300/00A AU2530000A (en) 1999-02-12 2000-02-14 Eddy current testing with compact configuration
EP00903465A EP1153289B1 (en) 1999-02-12 2000-02-14 Eddy current testing with compact configuration
PCT/CA2000/000136 WO2000047987A1 (en) 1999-02-12 2000-02-14 Multi-element probe with multiplexed elements for non-destructive testing
PCT/CA2000/000135 WO2000047986A1 (en) 1999-02-12 2000-02-14 Eddy current testing with compact configuration
CA002372259A CA2372259C (en) 1999-02-12 2000-02-14 Eddy current testing with compact configuration
AT00903465T ATE391292T1 (en) 1999-02-12 2000-02-14 EDDY CURRENT TESTING WITH SPACE-SAVING CONFIGURATION
ES00903465T ES2306656T3 (en) 1999-02-12 2000-02-14 TRIAL THROUGH CURRENT FOUCAULT WITH A COMPACT CONFIGURATION.
AU25301/00A AU2530100A (en) 1999-02-12 2000-02-14 Multi-element probe with multiplexed elements for non-destructive testing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11034580A JP2000235020A (en) 1999-02-12 1999-02-12 Eddy-current flaw detecting device

Publications (1)

Publication Number Publication Date
JP2000235020A true JP2000235020A (en) 2000-08-29

Family

ID=12418271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11034580A Pending JP2000235020A (en) 1999-02-12 1999-02-12 Eddy-current flaw detecting device

Country Status (1)

Country Link
JP (1) JP2000235020A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025105A1 (en) * 2007-08-21 2009-02-26 Keiichi Nonogaki Eddy current flaw detection method and device
WO2009037954A1 (en) 2007-09-20 2009-03-26 Nuclear Engineering, Ltd. Eddy-current flaw detecting method, eddy-current flaw detecting device, and eddy-current flaw detecting probe
US8289016B2 (en) 2006-11-21 2012-10-16 Keiichi Nonogaki Eddy-current flaw detection method and apparatus
FR2974416A1 (en) * 2011-04-21 2012-10-26 Eads Europ Aeronautic Defence Device for non-destructive inspection of lumen for detecting e.g. creek, in slot in workpiece in aeronautical field, has projections parallel to generator, and on guiding curve, where projections are distributed over three quarters of curve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8289016B2 (en) 2006-11-21 2012-10-16 Keiichi Nonogaki Eddy-current flaw detection method and apparatus
WO2009025105A1 (en) * 2007-08-21 2009-02-26 Keiichi Nonogaki Eddy current flaw detection method and device
WO2009037954A1 (en) 2007-09-20 2009-03-26 Nuclear Engineering, Ltd. Eddy-current flaw detecting method, eddy-current flaw detecting device, and eddy-current flaw detecting probe
US8421449B2 (en) 2007-09-20 2013-04-16 Nuclear Engineering, Ltd. Eddy-current flaw detection method, eddy-current flaw detection device and eddy-current flaw detection probe
KR101450842B1 (en) 2007-09-20 2014-10-14 가부시키가이샤 겐시료쿠엔지니어링 Eddy-current flaw detecting method, eddy-current flaw detecting device, and eddy-current flaw detecting probe
FR2974416A1 (en) * 2011-04-21 2012-10-26 Eads Europ Aeronautic Defence Device for non-destructive inspection of lumen for detecting e.g. creek, in slot in workpiece in aeronautical field, has projections parallel to generator, and on guiding curve, where projections are distributed over three quarters of curve

Similar Documents

Publication Publication Date Title
JP5175513B2 (en) Eddy current flaw detection method, eddy current flaw detection apparatus, and eddy current flaw detection probe
JP2550339Y2 (en) Heat source movement detection device
US5293117A (en) Magnetic flaw detector for use with ferromagnetic small diameter tubular goods using a second magnetic field to confine a first magnetic field
AU8871598A (en) Eddy current pipeline inspection device and method
JPS6316202A (en) Measuring device for pressure, normal force and deflection in cylindrical body
JP2000235020A (en) Eddy-current flaw detecting device
CN107389782A (en) Spiral nonmagnetic matrix high accuracy imaging detection device for the detection of pipeline tiny flaw
JP2000235019A (en) Eddy-current flaw detecting probe
JP2006234750A (en) Method and device for sensitivity calibration of eddy current tester
JP2005522656A (en) Rolling bearing with sensor
WO2018128225A1 (en) Eddy current array probe having an insulted transceiver unit and eddy current examination method using same
JP2007163263A (en) Eddy current flaw detection sensor
JPS604127Y2 (en) Differential magnetic flaw detection device
CN110132422A (en) Air conditioner and its thermometric image split-joint method
JPH08211026A (en) Eddy current sensor probe
JPH11513497A (en) Guidance device for determining the size and position of a measuring object made of conductive material
JPH09119919A (en) Eddy current flaw detector
JPS6345555A (en) Inspection method for pitting corrosion of steel tube
JPH075408Y2 (en) Metal flaw detection probe
JP5028211B2 (en) Eddy current flaw detector and eddy current flaw detection method
JP2002055083A (en) Eddy current flaw detection probe
JPS59202057A (en) Magnetic flaw detecting method
JP2610424B2 (en) Eddy current flaw detector
JP2542780Y2 (en) Remote field eddy current flaw detector
JPS586458A (en) Hot eddy current flaw detecting method of steel material