JP2000227264A - Cooling device for electronic device - Google Patents

Cooling device for electronic device

Info

Publication number
JP2000227264A
JP2000227264A JP11028390A JP2839099A JP2000227264A JP 2000227264 A JP2000227264 A JP 2000227264A JP 11028390 A JP11028390 A JP 11028390A JP 2839099 A JP2839099 A JP 2839099A JP 2000227264 A JP2000227264 A JP 2000227264A
Authority
JP
Japan
Prior art keywords
expansion valve
temperature
cold plate
refrigerant
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11028390A
Other languages
Japanese (ja)
Inventor
Kenichi Hayashi
倹一 林
Takehide Itoyama
武秀 糸山
Akio Adachi
昭夫 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11028390A priority Critical patent/JP2000227264A/en
Publication of JP2000227264A publication Critical patent/JP2000227264A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To minimize the temperature change of an element depending on the variation of a load with a rapid response control when an electronic device is cooled by using a refrigerating machine and always maintain constant temperature. SOLUTION: In a cooling device, a cold plate 3 attached to the heat generating element 1 of an electronic device is used as an evaporator and is combined with an electric compressor 4, a condenser 5 and an expansion valve to form a refrigerating cycle. An electronic expansion valve 8 is employed as an expansion valve. The power source of the motor-driven compressor 4 is combined with an inverter controller 11 to control the opening degree of the electronic expansion valve 8 and the rotating speed of the motor-driven compressor 4 so as to maintain the prescribed temperature of the element following the change of the hear generation rate of the element. In the electronic expansion valve 8, the opening degree of the valve is adjusted in accordance with the command of a control part 8a so that the temperature difference between refrigerant temperature Ti and To detected at the inlet and the outlet of the cold plate is made constant. The inverter controller 11 controls the rotating speed of the compressor 4 so that refrigerant evaporation pressure P or refrigerant temperature T detected in the outlet side of the cold plate corresponds to a set value to balance a refrigerating capacity with a cooling load.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍機を組み合わ
せて発熱素子を冷却する電子機器の冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for electronic equipment which cools a heating element by combining a refrigerator.

【0002】[0002]

【従来の技術】大型電子計算機などを対象に、通電に伴
う発熱量(熱損失)の大きな発熱素子(半導体素子)に
伝熱結合したコールドプレートを冷凍機の蒸発器として
素子を冷却するようにした電子機器の冷却装置が特開平
4−196395号公報などで公知である。
2. Description of the Related Art For a large-sized computer, a cold plate, which is heat-coupled to a heat-generating element (semiconductor element) having a large heat value (heat loss) upon energization, is used as an evaporator of a refrigerator to cool the element. A cooling device for an electronic device is disclosed in Japanese Patent Laid-Open No. 4-196395.

【0003】ここで、従来実施されている電子機器冷却
装置の冷凍サイクルを図5に示す。図において、1は電
子機器の発熱素子(半導体素子など)、2はその電源、
3はヒートシンクとして発熱素子1に取付けたコールド
プレートであり、該コールドプレート3を蒸発器として
これに電動圧縮機4,凝縮器5,膨張弁(温度膨張弁)
6を組み合わせて冷凍サイクルを構成している。なお、
7は冷凍サイクルの冷媒配管である。
FIG. 5 shows a refrigeration cycle of a conventional cooling apparatus for electronic equipment. In the figure, 1 is a heating element (such as a semiconductor element) of an electronic device, 2 is a power supply thereof,
Reference numeral 3 denotes a cold plate attached to the heating element 1 as a heat sink. The cold plate 3 serves as an evaporator, and is provided with an electric compressor 4, a condenser 5, and an expansion valve (temperature expansion valve).
6 constitute a refrigeration cycle. In addition,
Reference numeral 7 denotes a refrigerant pipe of the refrigeration cycle.

【0004】かかる冷凍サイクルの動作は周知であり、
圧縮機4から吐き出された高温,高圧の冷媒ガスは凝縮
器5で凝縮,液化された後、膨張弁6で減圧されてコー
ルドプレート(蒸発器)に送られ、ここで蒸発してコー
ルドプレート3に冷熱を発生した後に再び圧縮機4に戻
るように循環する。この冷凍サイクルにより、発熱素子
1の発生熱が除熱される。
[0004] The operation of such a refrigeration cycle is well known.
The high-temperature, high-pressure refrigerant gas discharged from the compressor 4 is condensed and liquefied in a condenser 5, then decompressed by an expansion valve 6 and sent to a cold plate (evaporator), where it evaporates and is cooled. And then circulates back to the compressor 4 again. With this refrigeration cycle, the heat generated by the heating element 1 is removed.

【0005】[0005]

【発明が解決しようとする課題】上記の冷却装置におい
て、電子機器を安定した状態で運転するには、発熱素子
(素子温度により動作特性が変わる)を常に許容温度内
で一定の温度に維持することが必要である。この場合
に、発熱素子の発熱量は通電に伴う消費電力(電流)に
よって変動することから、素子の発熱量(冷却負荷)と
冷凍能力とがバランスするように冷凍機を運転制御する
必要があるが、従来構成の冷却装置のままでは制御面で
次記のような問題点が残る。すなわち、 (1) 各蒸発器(コールドプレート)ごとにその入口側に
接続して蒸発器の冷媒流量を調整する膨張弁として、従
来より一般に用いられている温度膨張弁(蒸発器の出口
温度に対応して弁開度を自動調整するメカニカル式の温
度膨張弁)を採用して蒸発器出口での冷媒過熱度を一定
に制御する場合に、冷却負荷の増減に伴って冷媒の蒸発
温度が変化すると、蒸発器内の圧力損失などにより温度
膨張弁がハンチング等を引き起こして動作が不安定とな
る。また、蒸発器の表面温度分布をできるだけ均一化す
るためには、蒸発器を流れる冷媒の過熱度が極力小さい
ことが望ましいが、前記の温度膨張弁では冷媒の過熱度
を低く抑える機能が十分でない。
In the above-described cooling device, in order to operate the electronic equipment in a stable state, the heating element (operating characteristics vary depending on the element temperature) is always maintained at a constant temperature within an allowable temperature. It is necessary. In this case, the amount of heat generated by the heating element varies depending on the power consumption (current) due to energization. Therefore, it is necessary to control the operation of the refrigerator so that the amount of heat generated by the element (cooling load) and the refrigerating capacity are balanced. However, if the conventional cooling device is used, the following problems remain in terms of control. (1) As an expansion valve connected to the inlet side of each evaporator (cold plate) to adjust the refrigerant flow rate of the evaporator, a temperature expansion valve generally used conventionally (e.g. When the superheat degree of the refrigerant at the evaporator outlet is controlled to be constant by adopting a mechanical temperature expansion valve that automatically adjusts the valve opening in response, the evaporation temperature of the refrigerant changes as the cooling load increases or decreases. Then, the temperature expansion valve causes hunting or the like due to a pressure loss in the evaporator and the operation becomes unstable. Further, in order to make the surface temperature distribution of the evaporator as uniform as possible, it is desirable that the superheat degree of the refrigerant flowing through the evaporator is as small as possible. However, the function of suppressing the superheat degree of the refrigerant is not sufficient in the temperature expansion valve. .

【0006】(2) 冷却負荷の変動に合わせて冷凍機を運
転制御する場合に、従来では発熱素子,あるいはコール
ドプレートの温度を検出し、この検出値を基に圧縮機を
オン,オフ制御するようにしているが、この制御方式で
は圧縮機の停止中にコールドプレートの温度が上昇する
ために発熱素子の温度を常に一定に保つことが困難であ
る。
(2) Conventionally, when the operation of a refrigerator is controlled in accordance with the fluctuation of a cooling load, the temperature of a heating element or a cold plate is detected, and the compressor is turned on and off based on the detected value. However, in this control method, it is difficult to always keep the temperature of the heating element constant because the temperature of the cold plate rises while the compressor is stopped.

【0007】(3) また、前記のように発熱素子,あるい
はコールドプレートの温度検出値を基に圧縮機を運転制
御する方式では、発熱素子,コールドプレートの熱容量
に起因する熱伝達系の遅れ,および冷凍機の制御系の応
答遅れがあるために、発熱素子を温度変動を低く抑える
ことが実際面で困難である。
(3) In the method of controlling the operation of the compressor on the basis of the temperature detection value of the heating element or the cold plate as described above, the delay of the heat transfer system due to the heat capacity of the heating element or the cold plate is reduced. In addition, due to the response delay of the control system of the refrigerator, it is practically difficult to suppress the temperature fluctuation of the heating element.

【0008】(4) 特に、電子機器に組み込まれている複
数の発熱素子は種類,通電容量などにより発熱量,発熱
密度が異なることから、各素子ごとにコールドプレート
(蒸発器)を取付けた上で各蒸発器を1台の冷凍機で並
列運転する場合に、従来の冷却装置では前記各項の問題
があってきめ細かな冷凍機制御が行えない。
(4) In particular, since a plurality of heating elements incorporated in an electronic device have different amounts of heat and different heat densities depending on the type, conduction capacity, etc., a cold plate (evaporator) must be attached to each element. When each evaporator is operated in parallel by one refrigerator, the conventional cooling device suffers from the above-mentioned problems and cannot perform fine refrigerator control.

【0009】本発明は上記の点に鑑みなされたものであ
り、その目的は前記の各課題を解決し、発熱素子の負荷
変動に伴う温度変化を速い応答制御で最小に抑えて、素
子を常に安定よく一定温度に維持できるように改良した
電子機器の冷却装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has as its object to solve the above-mentioned problems, to minimize the temperature change due to the load fluctuation of the heating element by a fast response control, and to always keep the element. An object of the present invention is to provide a cooling device for an electronic device which is improved so as to be able to stably maintain a constant temperature.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、電子機器の発熱素子にコールドプ
レートを伝熱的に取付け、該コールドプレートを蒸発器
としてこれに電動圧縮機,凝縮器,膨張弁を組合せて冷
凍サイクルを構成した電子機器の冷却装置において、膨
張弁に電子式膨張弁を採用するとともに、電動圧縮機の
電源にインバータ制御装置を組合せ、素子の発熱量変化
に追従して発熱素子の温度を一定に保つように電子式膨
張弁の弁開度,および電動圧縮機の回転数を制御する
(請求項1)ものとし、具体的には次記のような態様で
実施する。
According to the present invention, in order to achieve the above object, according to the present invention, a cold plate is conductively attached to a heating element of an electronic apparatus, and the cold plate is used as an evaporator and an electric compressor. In a cooling system for electronic equipment that has a refrigeration cycle consisting of a combination of a condenser, a condenser, and an expansion valve, an electronic expansion valve is used as the expansion valve, and an inverter control device is combined with the power supply of the electric compressor to change the heating value of the element. The opening degree of the electronic expansion valve and the number of revolutions of the electric compressor are controlled so that the temperature of the heating element is kept constant according to the following (claim 1). Performed in an embodiment.

【0011】(1) 同じ電子機器に組み込まれた複数個の
発熱素子に対して、各素子ごとにコールドプレートとし
ての蒸発器を取付けるとともに、個々の蒸発器に電子式
膨張弁を組合せた上で、各蒸発器を冷凍サイクルの冷媒
回路に並列接続して冷凍サイクルを構成する(請求項
2)。
(1) For a plurality of heating elements incorporated in the same electronic equipment, an evaporator as a cold plate is attached to each element, and an electronic expansion valve is combined with each evaporator. Each evaporator is connected in parallel to the refrigerant circuit of the refrigeration cycle to form a refrigeration cycle (claim 2).

【0012】(2) 蒸発器の入口,および出口側で計測し
た冷媒温度の検出値を基に、その検出値の温度差が一定
となるように電子式膨張弁の弁開度を調節する制御部を
備える(請求項3)。
(2) Control for adjusting the valve opening of the electronic expansion valve based on the detected values of the refrigerant temperature measured at the inlet and outlet of the evaporator so that the temperature difference between the detected values is constant. (Claim 3).

【0013】(3) 蒸発器の冷媒蒸発圧力,もしくは冷媒
温度を検出し、この検出値が設定値と一致するようにイ
ンバータ制御装置で圧縮機の回転数を制御する(請求項
4)。
(3) The refrigerant evaporating pressure of the evaporator or the refrigerant temperature is detected, and the rotational speed of the compressor is controlled by the inverter control device so that the detected value coincides with the set value.

【0014】(4) 発熱素子の通電電力を検出し、この検
出値を基にインバータ制御装置で圧縮機の回転数を制御
する(請求項5)。
(4) The power supplied to the heating element is detected, and the rotation speed of the compressor is controlled by the inverter control device based on the detected value.

【0015】(5) 前項(4) において、蒸発器の冷媒蒸発
圧力,もしくは冷媒温度の検出値をインバータ制御装置
に入力して圧縮機の回転数を修正制御する(請求項
6)。
(5) In the above item (4), the detected value of the refrigerant evaporation pressure or the refrigerant temperature of the evaporator is input to the inverter control device to correct and control the rotational speed of the compressor (claim 6).

【0016】上記において、電子式膨張弁は、その弁内
部に設けたロータが制御部から与えられるパルス信号の
パルス数に合わせて回転し、ロータの回転数に応じて弁
開度を変えるようにした膨張弁であり、コールドプレー
ト(蒸発器)の入口,出口側で計測した冷媒温度検出値
を基に、その温度検出値の温度差が一定となるようにパ
ルス数を設定することで、蒸発器の冷媒過熱度が常に一
定となるように弁開度が調節される。また、電子式膨張
弁の特長として、コールドプレート内の冷媒通路で圧力
損失が生じた場合でも常に安定した冷媒制御が可能であ
り、かつコールドプレート出口の冷媒過熱度も一般的な
温度膨張弁と比べて低く設定できる。これにより、コー
ルドプレートの温度分布を均一化して素子温度の変動の
少ない制御が可能となる。一方、インバータは周知のよ
うにその出力周波数に対応してモータの回転数を制御す
る装置であり、電動圧縮機をインバータ制御することで
冷凍機の冷凍能力を連続的に増減変化できる。
In the above, in the electronic expansion valve, the rotor provided inside the valve rotates according to the number of pulses of the pulse signal given from the control unit, and changes the valve opening according to the number of rotations of the rotor. The expansion valve is based on refrigerant temperature detection values measured at the inlet and outlet sides of the cold plate (evaporator), and the number of pulses is set so that the temperature difference between the detected temperature values is constant. The degree of valve opening is adjusted so that the degree of superheat of the refrigerant in the vessel is always constant. In addition, as a feature of the electronic expansion valve, stable refrigerant control is always possible even when pressure loss occurs in the refrigerant passage in the cold plate, and the degree of superheat of the refrigerant at the cold plate outlet is different from that of a general temperature expansion valve. Can be set lower. As a result, the temperature distribution of the cold plate can be made uniform, and control can be performed with less fluctuation in element temperature. On the other hand, an inverter is a device that controls the number of revolutions of a motor according to its output frequency, as is well known, and the refrigeration capacity of the refrigerator can be continuously increased or decreased by controlling the electric compressor with the inverter.

【0017】したがって、発熱素子を冷却する冷凍機の
制御手段として、電子式膨張弁,およびインバータ制御
装置を組合せて併用することにより、発熱量の異なる複
数の発熱素子を1台の冷凍機で並列運転する場合でも、
各発熱素子をそれぞれ一定温度に安定よく保つことがで
きる。
Therefore, by using a combination of an electronic expansion valve and an inverter control device as control means of a refrigerator for cooling the heating elements, a plurality of heating elements having different heating values can be parallelized by one refrigerator. Even when driving,
Each heating element can be stably maintained at a constant temperature.

【0018】また、特に発熱素子の通電電力を検出し、
これを基にインバータ制御装置で電動圧縮機の回転数を
制御することにより、発熱素子,もしくはコールドプレ
ートの温度を検出する方式と比べて制御の応答性が速く
なり、この場合に蒸発器の冷媒蒸発圧力,もしくは冷媒
温度の検出値を加えて圧縮機の回転数を修正制御するこ
とで、周囲からコールドプレートに流入する熱量,およ
び発熱素子の表面から周囲への熱放散分を補償して、圧
縮機の冷凍能力と発熱素子の冷却負荷とがバランスする
ように安定よく制御が行える。
In particular, the power supplied to the heating element is detected,
By controlling the number of revolutions of the electric compressor with the inverter control device based on this, the response of the control becomes faster than the method of detecting the temperature of the heating element or the cold plate. By correcting and controlling the rotation speed of the compressor by adding the detected value of the evaporation pressure or the refrigerant temperature, the amount of heat flowing into the cold plate from the surroundings and the amount of heat dissipation from the surface of the heating element to the surroundings are compensated. Control can be performed stably so that the refrigerating capacity of the compressor and the cooling load of the heating element are balanced.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図1
〜図4に示す各実施例に基づいて説明する。なお、各実
施例の図中で図5に対応した部材には同じ符号を付して
その説明は省略する。
FIG. 1 is a block diagram showing an embodiment of the present invention.
A description will be given based on each embodiment shown in FIGS. In the drawings of each embodiment, members corresponding to those in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted.

【0020】〔実施例1〕図1は本発明の請求項1,
3,4に対応した基本実施例を示す冷凍サイクルの制御
回路図である。この実施例では冷凍サイクルの構成が基
本的に図5と同様であるが、コールドプレート(蒸発
器)3の入口側には電子式膨張弁8が接続されており、
その弁開度が電子式膨張弁の制御部8aから与えられる
パルス信号で調節される。すなわち、コールドプレート
3の冷媒入口,出口側にはそれぞれ温度計9,10を接
続して冷媒温度Ti,およびTo を計測し、制御部8aは
前記温度検出値を取り込んだ上でその温度差,つまり冷
媒過熱度(Ti −To )が設定値と一致するように電子
式膨張弁8の弁開度を調節制御する。
FIG. 1 shows a first embodiment of the present invention.
FIG. 3 is a control circuit diagram of a refrigeration cycle showing a basic embodiment corresponding to FIGS. In this embodiment, the configuration of the refrigeration cycle is basically the same as that of FIG. 5, but an electronic expansion valve 8 is connected to the inlet side of the cold plate (evaporator) 3.
The valve opening is adjusted by a pulse signal provided from the control unit 8a of the electronic expansion valve. That is, thermometers 9 and 10 are connected to the refrigerant inlet and outlet sides of the cold plate 3 to measure the refrigerant temperatures Ti and To, respectively. That is, the valve opening of the electronic expansion valve 8 is adjusted and controlled so that the refrigerant superheat degree (Ti-To) matches the set value.

【0021】すなわち、制御部8aで冷媒過熱度(Ti
−To )を例えば5℃に設定した場合に、温度計9,1
0で計測した冷媒温度の温度差が10℃であれば、電子
式膨張弁8の弁開度が大きくなるように制御部8aから
制御指令(パルス信号)を出力する。なお、この場合に
冷媒の温度差からパルス信号への変換は比例制御,PI
D制御などの制御方法によって行う。
That is, the degree of superheat of the refrigerant (Ti
−To) is set to, for example, 5 ° C.,
If the temperature difference of the refrigerant temperature measured at 0 is 10 ° C., a control command (pulse signal) is output from the control unit 8 a so that the valve opening of the electronic expansion valve 8 increases. In this case, the conversion from the temperature difference of the refrigerant to the pulse signal is proportional control, PI
This is performed by a control method such as D control.

【0022】一方、電動圧縮機4の電源2にはインバー
タ制御装置11を備え、その出力周波数に対応して電動
圧縮機4の回転数を制御するようにしている。ここで、
コールドプレート3の出口側配管路に接続した圧力計1
2で計測した冷媒蒸発圧力Pを検出値としてインバータ
制御装置11に入力する。また、インバータ制御装置1
1ではあらかじめ定めた冷媒蒸発圧力の設定値に対応す
る電動圧縮機の回転数を設定しておき、前記の冷媒蒸発
圧力Pが設定値と一致するように電動圧縮機4の回転数
を制御する。なお、冷媒蒸発圧力Pの代わりに、温度計
13で計測したコールドプレート3の表面温度T(冷媒
温度に対応する)を用い、この検出値を基に圧縮機4を
インバータ制御してもよい。
On the other hand, the power supply 2 of the electric compressor 4 is provided with an inverter control device 11 for controlling the rotation speed of the electric compressor 4 in accordance with the output frequency. here,
Pressure gauge 1 connected to the piping on the outlet side of cold plate 3
The refrigerant evaporation pressure P measured in 2 is input to the inverter control device 11 as a detected value. In addition, the inverter control device 1
In step 1, the number of rotations of the electric compressor corresponding to a predetermined set value of the refrigerant evaporation pressure is set, and the number of rotations of the electric compressor 4 is controlled so that the refrigerant evaporation pressure P matches the set value. . Instead of the refrigerant evaporation pressure P, the surface temperature T of the cold plate 3 (corresponding to the refrigerant temperature) measured by the thermometer 13 may be used, and the compressor 4 may be inverter-controlled based on the detected value.

【0023】これにより、前記の冷媒蒸発圧力Pを例え
ば2kgf/cm2 に設定した場合に、運転時における圧力検
出値が1.5kgf/cm2 であれば、圧縮機4の回転数が速す
ぎるために冷媒蒸発圧力Pが設定値より低下したと判断
し、インバータ制御装置11が圧縮機4の回転数を低め
て蒸発圧力Pが設定値と一致するように制御する。
Thus, when the refrigerant evaporation pressure P is set to, for example, 2 kgf / cm 2 and the detected pressure value during operation is 1.5 kgf / cm 2 , the rotational speed of the compressor 4 is too high. Therefore, it is determined that the refrigerant evaporation pressure P has dropped below the set value, and the inverter control device 11 reduces the rotation speed of the compressor 4 and controls the evaporation pressure P to match the set value.

【0024】〔実施例2〕図2は本発明の請求項5,6
に対応した実施例を示す冷凍サイクルの制御回路図であ
る。この実施例においては、冷凍サイクル,およびコー
ルドプレート3に電子式膨張弁8を接続した点は先記実
施例1と同様であるが、インバータ制御装置11には、
発熱素子1の電源2に接続した電力計14で計測した通
電電力(素子1の入力電力),および圧力計15,16
で計測した電動圧縮機4の吸込圧力Pi,吐出圧力Po を
入力し、さらに図1と同様に圧力計12で計測した冷媒
蒸発圧力P,あるいは温度計13で計測したコールドプ
レート3の表面温度Tを追加入力し、これら入力信号を
基にインバータ制御装置11が電動圧縮機4を回転数制
御するようにしている。なお、電力計14を電流計(C
T)に置き換えて実施することできる。
FIG. 2 shows a second embodiment of the present invention.
FIG. 3 is a control circuit diagram of a refrigeration cycle showing an embodiment corresponding to FIG. In this embodiment, the refrigeration cycle and the point that an electronic expansion valve 8 is connected to the cold plate 3 are the same as those in the first embodiment.
Energized power (input power of element 1) measured by wattmeter 14 connected to power supply 2 of heating element 1, and pressure gauges 15, 16
The suction pressure Pi and the discharge pressure Po of the electric compressor 4 measured in step (1) are input, and the refrigerant evaporation pressure P measured by the pressure gauge 12 or the surface temperature T of the cold plate 3 measured by the thermometer 13 as in FIG. And the inverter control device 11 controls the rotation speed of the electric compressor 4 based on these input signals. The power meter 14 is connected to an ammeter (C
T).

【0025】上記により、電動圧縮機11の冷凍能力
(圧縮の仕事)は圧縮機の回転数,吸込冷媒圧力,吐出
冷媒圧力から演算により求められる。一方、素子1の発
熱量はその通電電力に比例して変化する。したがって、
インバータ制御装置11では電力計14の検出値を基に
発熱素子1の発熱量を演算し、発熱量と冷凍能力がバラ
ンスするように電動圧縮機4の回転数を制御すること
で、応答遅れなしに制御が行えて素子1の温度変動を低
く抑えることが可能となる。
As described above, the refrigerating capacity (compression work) of the electric compressor 11 can be obtained by calculation from the rotation speed of the compressor, the suction refrigerant pressure, and the discharge refrigerant pressure. On the other hand, the amount of heat generated by the element 1 changes in proportion to the supplied power. Therefore,
The inverter control device 11 calculates the heat value of the heating element 1 based on the detection value of the power meter 14 and controls the rotation speed of the electric compressor 4 so that the heat value and the refrigerating capacity are balanced, so that there is no response delay. And the temperature fluctuation of the element 1 can be kept low.

【0026】なお、この場合に周囲からコールドプレー
ト3に流入する熱量,および発熱素子1から周囲に放散
する熱量があると、これが外乱要因となって前記の制御
により冷凍能力と冷却負荷とが正しくバランスしない。
かかる点、この実施例では前記のように圧力計12で計
測した冷媒蒸発圧力P,あるいは温度計13で計測した
コールドプレート3の表面温度Tの検出値を追加入力
し、その圧力,または温度が設定値と一致するように電
動圧縮機4の回転数を修正制御することで、冷凍能力と
冷却負荷をバランスさせて発熱素子1を一定温度に保つ
ことができる。
In this case, if the amount of heat flowing into the cold plate 3 from the surroundings and the amount of heat dissipated from the heating element 1 to the surroundings are caused by disturbances, the refrigeration capacity and the cooling load are correctly controlled by the above control. Does not balance.
In this regard, in this embodiment, as described above, the refrigerant evaporation pressure P measured by the pressure gauge 12 or the detected value of the surface temperature T of the cold plate 3 measured by the thermometer 13 is additionally input, and the pressure or the temperature is changed. By correcting and controlling the rotational speed of the electric compressor 4 so as to match the set value, the refrigerating capacity and the cooling load can be balanced to keep the heating element 1 at a constant temperature.

【0027】〔実施例3〕図3は、先記の実施例1をベ
ースにした本発明の請求項2に対応する実施例を示すも
のである。この実施例では、電子機器に組み込まれた複
数個の発熱素子1に対して各素子ごとにコールドプレー
ト3が伝熱的に結合されており、かつ各コールドプレー
ト3を蒸発器として冷凍サイクルを構成する冷媒回路に
並列接続し、1台の電動圧縮機4で並列運転するよう構
成している。ここで、各コールドプレート3には図1と
同様に、冷媒入口側に電子式膨張弁8を接続し、コール
ドプレート3の入口,出口側で計測した冷媒温度Ti,お
よびTo を制御部8aに取り込んだ上でその温度差,つ
まり冷媒過熱度(Ti −To )が設定値と一致するよう
に電子式膨張弁8の弁開度を調節制御するようにしてい
る。
[Embodiment 3] FIG. 3 shows an embodiment corresponding to claim 2 of the present invention based on the aforementioned embodiment 1. In this embodiment, a cold plate 3 is thermally conductively connected to each of a plurality of heating elements 1 incorporated in an electronic device, and a refrigerating cycle is constituted by using each cold plate 3 as an evaporator. The compressors are connected in parallel to each other and are operated in parallel by one electric compressor 4. Here, similarly to FIG. 1, an electronic expansion valve 8 is connected to each cold plate 3 at the refrigerant inlet side, and the refrigerant temperatures Ti, To measured at the inlet and outlet sides of the cold plate 3 are sent to the control unit 8a. After taking in, the valve opening of the electronic expansion valve 8 is adjusted and controlled so that the temperature difference, that is, the refrigerant superheat degree (Ti-To) matches the set value.

【0028】また、電動圧縮機4に対してはその電源に
インバータ制御装置11を組合せ、圧力計12で計測し
た冷媒蒸発圧力Pが設定値と一致するように圧縮機4の
回転数を制御する。
Further, the electric compressor 4 is combined with an inverter control device 11 for its power supply, and the number of revolutions of the compressor 4 is controlled so that the refrigerant evaporation pressure P measured by the pressure gauge 12 coincides with a set value. .

【0029】かかる構成において、電動圧縮機4は各発
熱素子1の発熱量合計に見合う系内の熱負荷に合わせて
冷凍能力を発生するようにその回転数がインバータ制御
される。また、各コールドプレート3に対しては、個々
にその冷媒入口側側に接続した電子式膨張弁8により冷
媒過熱度が一定となるように冷媒流量が適正に調整され
る。これにより、各発熱素子1の発熱量が異なる場合で
も、個々の素子を所定の温度に保って冷凍機を安定よく
運転制御することができる。
In such a configuration, the number of revolutions of the electric compressor 4 is inverter-controlled so as to generate a refrigerating capacity in accordance with the heat load in the system corresponding to the total amount of heat generated by each heating element 1. The coolant flow rate of each cold plate 3 is appropriately adjusted by an electronic expansion valve 8 connected to the coolant inlet side so that the degree of superheat of the coolant is constant. Thereby, even when the heat generation amounts of the respective heating elements 1 are different, the operation of the refrigerator can be stably controlled while maintaining the individual elements at a predetermined temperature.

【0030】〔実施例4〕次に、先記の実施例2をベー
スにした本発明の請求項2に対応する実施例を図4に示
す。この実施例においては、その冷凍サイクルが先記実
施例3と同様な構成になり、かつ各コールドプレート3
ごとに電子式膨張弁8が接続されているのに対して、電
動圧縮機4の電源側に接続したインバータ装置11には
先記実施例2で述べたと同様に、各発熱素子1の電源2
に接続した電力計14で計測した全体の入力電力,およ
び圧力計15,16で計測した電動圧縮機4の吸込圧力
Pi,吐出圧力Po を入力し、さらに圧力計12で計測し
た冷媒蒸発圧力Pを補正検出値として追加入力し、これ
ら入力信号を基にインバータ制御装置11が電動圧縮機
4を回転数制御するようにしている。
[Embodiment 4] Next, FIG. 4 shows an embodiment corresponding to claim 2 of the present invention based on the aforementioned embodiment 2. In this embodiment, the refrigeration cycle has the same configuration as that of the third embodiment, and each cold plate 3
Each of the electronic expansion valves 8 is connected to each of the inverter devices 11 connected to the power supply side of the electric compressor 4 in the same manner as described in the second embodiment.
, The suction pressure Pi and the discharge pressure Po of the electric compressor 4 measured by the pressure gauges 15 and 16, and the refrigerant evaporation pressure P measured by the pressure gauge 12. Is additionally input as a correction detection value, and the inverter control device 11 controls the rotation speed of the electric compressor 4 based on these input signals.

【0031】これにより、実施例3と同様に電子機器に
組み込まれた各発熱素子1の発熱量が異なる場合でも、
個々の素子を所定の温度に保って冷凍機を安定よく運転
制御することができる。
As a result, even when the heating values of the respective heating elements 1 incorporated in the electronic device are different from each other as in the third embodiment,
The operation of the refrigerator can be controlled stably with the individual elements kept at a predetermined temperature.

【0032】[0032]

【発明の効果】以上述べたように、本発明の冷却装置に
より次記の効果を奏する。 (1) 蒸発器(コールドプレート)の冷媒流量を調節する
膨張弁として電子式膨張弁を採用し、これに電動圧縮機
のインバータ制御を組合せて冷凍機を制御することによ
り、電子式膨張弁の特長を生かしてコールドプレート内
の圧力損失がある場合でも常に安定した制御が可能であ
り、かつコールドプレートでの冷媒過熱度も従来の一般
的な温度膨張弁に比べて低く設定でき、これによりコー
ルドプレートの温度分布の均一化,並びに温度変動の少
ない制御が達成できる。また、電動圧縮機をインバータ
制御することで、従来のオン,オフ制御方式で問題とな
っていた冷媒蒸発温度の変動が少なく、発熱素子の負荷
変動に合わせてコールドプレートにおける冷媒蒸発温度
を常に設定値に保って発熱素子を一定温度に保持するこ
とができて電子機器の安定運転化が図れる。
As described above, the cooling device of the present invention has the following effects. (1) An electronic expansion valve is used as an expansion valve to adjust the refrigerant flow rate of the evaporator (cold plate), and this is combined with the inverter control of the electric compressor to control the refrigerator. Taking advantage of the features, stable control is always possible even when there is a pressure loss in the cold plate, and the degree of superheat of the refrigerant in the cold plate can be set lower than that of a conventional general temperature expansion valve. Uniform temperature distribution of the plate and control with less temperature fluctuation can be achieved. In addition, the inverter control of the electric compressor minimizes the fluctuation of the refrigerant evaporation temperature, which has been a problem with the conventional on / off control method. The refrigerant evaporation temperature in the cold plate is always set according to the load fluctuation of the heating element. The heating element can be maintained at a constant temperature while maintaining the value, and stable operation of the electronic device can be achieved.

【0033】(2) 請求項2の発明により、発熱量,発熱
密度の異なる複数の発熱素子を1台の冷凍機で安定よく
一定温度に制御することができる。
(2) According to the second aspect of the present invention, it is possible to stably control a plurality of heating elements having different heating values and heating densities to a constant temperature with a single refrigerator.

【0034】(3) また、請求項5,6の発明によれば、
発熱素子の電源回路で直接計測した電力検出値を基に電
動圧縮機をインバータ制御するようにしたことで、発熱
素子,もしくはコールドプレートの温度を検出して冷凍
機を制御する方式と比べて熱伝達系の応答遅れを考慮せ
ずに速い応答性での制御が行え、発熱素子の負荷変動が
発生して制御が行われるまでの時間を短縮して素子の温
度変動を低く抑えることができる。
(3) According to the fifth and sixth aspects of the present invention,
Inverter control of the electric compressor based on the power detection value measured directly by the power supply circuit of the heating element makes it possible to detect the temperature of the heating element or the cold plate and control the refrigerator. Control can be performed with a fast response without considering the response delay of the transmission system, and the time until the control is performed due to the load fluctuation of the heating element can be shortened to suppress the temperature fluctuation of the element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に対応した冷却装置の冷凍サ
イクル,およびその制御回路を表す図
FIG. 1 is a diagram illustrating a refrigeration cycle of a cooling device and a control circuit thereof according to a first embodiment of the present invention.

【図2】本発明の実施例2に対応した冷却装置の冷凍サ
イクル,およびその制御回路を表す図
FIG. 2 is a diagram illustrating a refrigeration cycle of a cooling device and a control circuit thereof according to a second embodiment of the present invention.

【図3】本発明の実施例3に対応した冷却装置の冷凍サ
イクル,およびその制御回路を表す図
FIG. 3 is a diagram illustrating a refrigeration cycle of a cooling device and a control circuit thereof according to a third embodiment of the present invention.

【図4】本発明の実施例4に対応した冷却装置の冷凍サ
イクル,およびその制御回路を表す図
FIG. 4 is a diagram illustrating a refrigeration cycle of a cooling device and a control circuit thereof according to a fourth embodiment of the present invention.

【図5】従来における電子機器冷却装置の冷凍サイクル
の構成図
FIG. 5 is a configuration diagram of a refrigeration cycle of a conventional electronic device cooling device.

【符号の説明】[Explanation of symbols]

1 発熱素子 2 電源 3 コールドプレート(蒸発器) 4 電動圧縮機 5 凝縮器 8 電子式膨張弁 8a 制御部 9,10,13 温度計 11 インバータ制御装置 12,15,16 圧力計 14 電力計 DESCRIPTION OF SYMBOLS 1 Heating element 2 Power supply 3 Cold plate (evaporator) 4 Electric compressor 5 Condenser 8 Electronic expansion valve 8a Control part 9,10,13 Thermometer 11 Inverter controller 12,15,16 Pressure gauge 14 Power meter

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】電子機器の発熱素子にコールドプレートを
伝熱的に結合し、該コールドプレートを蒸発器としてこ
れに電動圧縮機,凝縮器,膨張弁を組合せて冷凍サイク
ルを構成した電子機器の冷却装置において、膨張弁に電
子式膨張弁を採用するとともに、電動圧縮機の電源にイ
ンバータ制御装置を組合せ、素子の発熱量変化に追従し
て発熱素子の温度を一定に保つように電子式膨張弁の弁
開度,および電動圧縮機の回転数を制御することを特徴
とする電子機器の冷却装置。
A cold plate is conductively coupled to a heat generating element of an electronic device, and the cold plate is used as an evaporator, and an electric compressor, a condenser, and an expansion valve are combined with the cold plate to form a refrigeration cycle. In the cooling system, an electronic expansion valve is used for the expansion valve, and an inverter control unit is combined with the power supply of the electric compressor to keep the temperature of the heating element constant following changes in the heating value of the element. A cooling device for an electronic device, which controls a valve opening of a valve and a rotation speed of an electric compressor.
【請求項2】請求項1記載の冷却装置において、複数個
の発熱素子に対して、各素子ごとにコールドプレートと
しての蒸発器を取付けるとともに、個々の蒸発器に電子
式膨張弁を組合せた上で、各蒸発器を冷凍サイクルの冷
媒回路に並列接続したことを特徴とする電子機器の冷却
装置。
2. The cooling device according to claim 1, wherein an evaporator as a cold plate is attached to each of the plurality of heating elements, and an electronic expansion valve is combined with each evaporator. A cooling device for electronic equipment, wherein each evaporator is connected in parallel to a refrigerant circuit of a refrigeration cycle.
【請求項3】請求項1,または2記載の冷却装置におい
て、蒸発器の入口,および出口側で計測した冷媒温度の
検出値を基に、その検出値の温度差が一定となるように
電子式膨張弁の弁開度を調節する制御部を備えたことを
特徴とする電子機器の冷却装置。
3. The cooling device according to claim 1, wherein the temperature difference between the detected values is constant based on the detected value of the refrigerant temperature measured at the inlet and the outlet of the evaporator. A cooling device for an electronic device, comprising: a control unit for adjusting a valve opening of the expansion valve.
【請求項4】請求項1,または2記載の冷却装置におい
て、蒸発器の冷媒蒸発圧力,もしくは冷媒温度を検出
し、この検出値が設定値と一致するようにインバータ制
御装置で圧縮機の回転数を制御することを特徴とする電
子機器の冷却装置。
4. The cooling device according to claim 1, wherein the refrigerant evaporating pressure of the evaporator or the refrigerant temperature is detected, and the rotation of the compressor is controlled by the inverter control device so that the detected value matches the set value. A cooling device for an electronic device, wherein the number is controlled.
【請求項5】請求項1,または2記載の冷却装置におい
て、発熱素子の入力電力を検出し、この検出値を基にイ
ンバータ制御装置で圧縮機の回転数を制御することを特
徴とする電子機器の冷却装置。
5. The cooling device according to claim 1, wherein the input power to the heating element is detected, and the rotation speed of the compressor is controlled by an inverter control device based on the detected value. Equipment cooling equipment.
【請求項6】請求項5記載の冷却装置において、蒸発器
の冷媒蒸発圧力,もしくは冷媒温度の検出値をインバー
タ制御装置に入力して圧縮機の回転数を修正制御するこ
とを特徴とする電子機器の冷却装置。
6. A cooling device according to claim 5, wherein the detected value of the refrigerant evaporation pressure or the refrigerant temperature of the evaporator is input to an inverter control device to correct and control the rotation speed of the compressor. Equipment cooling equipment.
JP11028390A 1999-02-05 1999-02-05 Cooling device for electronic device Pending JP2000227264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11028390A JP2000227264A (en) 1999-02-05 1999-02-05 Cooling device for electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11028390A JP2000227264A (en) 1999-02-05 1999-02-05 Cooling device for electronic device

Publications (1)

Publication Number Publication Date
JP2000227264A true JP2000227264A (en) 2000-08-15

Family

ID=12247340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11028390A Pending JP2000227264A (en) 1999-02-05 1999-02-05 Cooling device for electronic device

Country Status (1)

Country Link
JP (1) JP2000227264A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153429A (en) * 2004-10-25 2006-06-15 Nuflare Technology Inc Constant-temperature fluid supply system
CN104470329A (en) * 2014-11-27 2015-03-25 无锡市豫达换热器有限公司 High-power heating device set cooling device
US20170254574A1 (en) * 2016-03-01 2017-09-07 Jay Eunjae Kim Direct Cooling Platform With Vapor Compression Refrigeration Cycle And Applications Thereof
CN109520188A (en) * 2018-11-22 2019-03-26 广东美的制冷设备有限公司 Refrigerating plant control method, refrigerating plant and storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153429A (en) * 2004-10-25 2006-06-15 Nuflare Technology Inc Constant-temperature fluid supply system
CN104470329A (en) * 2014-11-27 2015-03-25 无锡市豫达换热器有限公司 High-power heating device set cooling device
US20170254574A1 (en) * 2016-03-01 2017-09-07 Jay Eunjae Kim Direct Cooling Platform With Vapor Compression Refrigeration Cycle And Applications Thereof
CN109520188A (en) * 2018-11-22 2019-03-26 广东美的制冷设备有限公司 Refrigerating plant control method, refrigerating plant and storage medium

Similar Documents

Publication Publication Date Title
US6415619B1 (en) Multi-load refrigeration system with multiple parallel evaporators
US9574805B2 (en) Motor housing temperature control system
US8590327B2 (en) Refrigerating apparatus
TWI646264B (en) Low temperature refrigeration system and method for controlling supply of helium refrigerant
US20170219277A1 (en) Refrigerator and method of controlling the same
US11353252B2 (en) Method to avoid fan cycling during low ambient operation
US20090007575A1 (en) Cooling apparatus
JP2000227264A (en) Cooling device for electronic device
US20160238284A1 (en) Adaptive temperature control system for cooling working fluid
JP6076136B2 (en) Refrigeration equipment
JP3758074B2 (en) Electronic equipment cooling system
JP4827416B2 (en) Cooling system
JP2004125243A (en) Control method of temperature testing device and its device
KR100319910B1 (en) Control system for compressor of screw chiller
JP3203139B2 (en) Vending machine cooling system
JP2682629B2 (en) LSI cooling device
JP2000258006A (en) Apparatus and method for controlling operation of ice storage cooling and refrigerating system
JP3477533B2 (en) Cold water supply device
JP3255455B2 (en) Cooling system
JP2007240048A (en) Stirling cooling storage
JP2853977B2 (en) Refrigeration cycle device
JP2003279110A (en) Air conditioner
JPH09318138A (en) Air conditioner
JPH06180152A (en) Chilled water feeding device
JPH086996B2 (en) Cooling water control method in refrigeration system and its control device