JP2000213876A - Heat exchanger for cooling - Google Patents

Heat exchanger for cooling

Info

Publication number
JP2000213876A
JP2000213876A JP11055994A JP5599499A JP2000213876A JP 2000213876 A JP2000213876 A JP 2000213876A JP 11055994 A JP11055994 A JP 11055994A JP 5599499 A JP5599499 A JP 5599499A JP 2000213876 A JP2000213876 A JP 2000213876A
Authority
JP
Japan
Prior art keywords
heat exchanger
fluid
cooling
outer tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11055994A
Other languages
Japanese (ja)
Other versions
JP3279991B2 (en
Inventor
Akira Higashiyama
明 東山
Shinichiro Ito
晋一郎 伊藤
Takahiro Oguri
貴裕 小栗
Akira Matsubara
章 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP05599499A priority Critical patent/JP3279991B2/en
Publication of JP2000213876A publication Critical patent/JP2000213876A/en
Application granted granted Critical
Publication of JP3279991B2 publication Critical patent/JP3279991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent channelling from occurring by arranging at least two inner tubes where a fluid to be cooled flows between the inside of an outer tube and the outside of a cylindrical object while the cylindrical object that forms a concentric circle with the central position of a sectional circle in a vertical direction for the flow direction of the outer tube is in parallel with a flow direction. SOLUTION: A cylindrical object 1-3 that does not have a space part where a fluid passes are provided on a concentric circle with the central position of the sectional circle of an outer tube, and an inner tube, namely a heat transfer pipe, is arranged only between the outer tube and the cylindrical objects, thus preventing the difference in resistance from being generated. A mixing element 1-4 is filled into each heat transfer pipe to increase heat transfer efficiency by agitating passing fluid, and a conical projection 1-7 is mounted to plates 1-2 for connection so that it can be nearly in parallel with the inclination of a reducer 1-6, thus preventing channelling from occurring and hence performing efficient cooling for the cooling of a high-temperature, high-viscosity fluid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願は、発泡ポリスチレンの
成形工程において機械的特性の優れた発泡成形体を得る
ために押出機直後に設置される冷却用熱交換器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling heat exchanger which is installed immediately after an extruder in order to obtain a foam molded article having excellent mechanical properties in a molding process of expanded polystyrene.

【0002】[0002]

【従来の技術】プラスチックフィルムの最も一般的な成
形方法の一つに、プラスチックを熱で溶融して、その後
T型ダイスから押出してフラットなフィルムを成形する
方法がある。すなわち、プラスチック原料をホッパーか
らスクリュウ溝に供給し、スクリュウを電動機により回
転させることによりプラスチック原料を押出す。ここ
で、スクリュウ溝に沿って輸送される間に、プラスチッ
ク原料はバレルヒーターにより加熱され溶融していく。
この溶融プラスチックスは、スクリーン・ブレーカープ
レート及びアダプタを経てダイから押出されてフィルム
となる。ダイから押出された溶融プラスチックはダイリ
ップ幅の例えば1/10〜1/100の厚さに熱間延伸
され、その後強制的に冷却され、硬化してフィルムとな
る。
2. Description of the Related Art One of the most common methods of forming a plastic film is to melt a plastic by heat and then extrude it from a T-die to form a flat film. That is, a plastic raw material is supplied from a hopper to a screw groove, and the screw is rotated by an electric motor to extrude the plastic raw material. Here, while being transported along the screw groove, the plastic raw material is heated and melted by the barrel heater.
The molten plastic is extruded from a die through a screen breaker plate and an adapter to form a film. The molten plastic extruded from the die is hot-drawn to a thickness of, for example, 1/10 to 1/100 of the die lip width, and then forcibly cooled and cured to form a film.

【0003】同様に、プラスチック発泡体を製造する場
合には、プラスチック原料と共に、加熱により分解して
気体を発生する化合物(分解型発泡剤)を押出機に投入
し、押出機内で樹脂を溶融し、発泡剤を分解温度以上に
加熱した後、押し出す方法が使われる。上記方法にて、
発泡シートを成形する場合種々の問題があった。すなわ
ちは、押出機からダイに入ってきた発泡剤入りプラスチ
ック材料がダイに入った段階では加熱後であっても内部
の圧力が高いため未だ発泡しない状態である。しかしな
がら、プラスチック材料がダイの出口から大気中に押出
されることによりプラスチック材料が発泡して3次元的
に膨張する。この発泡現象は急激であるため、形状歪み
による不規則な波打ちや厚みの変動の原因になったり、
過剰膨張によるフィルム材料の強度低下の原因となった
りする。このような問題が発生する理由としては、押出
機出口後の発泡ガスを含むプラスチック材料が高温高圧
の状態でダイから大気開放状態で放出することにより急
激に発泡するためであり、これを防ぐ手段としてはダイ
へ送る前に冷却することが非常に有効である。しかしな
がら、実際には、高粘性、高温のプラスチック材料を移
送中に効率良く冷却する手段が見当たらず、ダイからで
たフィルムを冷却水槽、冷却ロール、ファンによる強制
空冷等にて冷やしているのが現状であった。
Similarly, in the case of producing a plastic foam, a compound (decomposition type foaming agent) which is decomposed by heating to generate a gas (decomposition type foaming agent) is put into an extruder together with a plastic raw material, and the resin is melted in the extruder. A method is used in which the blowing agent is heated to a temperature higher than the decomposition temperature and then extruded. In the above method,
There are various problems when molding a foamed sheet. That is, when the plastic material containing the foaming agent that has entered the die from the extruder has entered the die, even after heating, the internal pressure is high, so that foaming has not yet occurred. However, when the plastic material is extruded into the atmosphere from the exit of the die, the plastic material foams and expands three-dimensionally. Because this foaming phenomenon is rapid, it may cause irregular wavy or thickness fluctuation due to shape distortion,
Excessive expansion may cause a reduction in the strength of the film material. The reason why such a problem occurs is that the plastic material containing the foaming gas after the outlet of the extruder is rapidly foamed by being discharged from the die in a state of high temperature and high pressure while being opened to the atmosphere. It is very effective to cool before sending to the die. However, in practice, there is no means to efficiently cool high-viscosity, high-temperature plastic materials during transfer, and the film discharged from the die is cooled by forced air cooling using a cooling water tank, cooling rolls, or a fan. It was the current situation.

【0004】高粘性、高温のプラスチック材料を移送中
に冷却する手段としては、二重管式熱交換器、多管式熱
交換器を用いて外管に冷媒(水、空気等)を流して冷却
する方法がある。通常は二重管式熱交換器もしくは特開
昭53−8668で提示されているようなダイ直前に水
槽を設置する方法が用いられる。なぜならば、多管式熱
交換器を用いて高粘性流体の冷却を行うと後述する偏流
の問題があるため使用に適さないからである。しかしな
がら二重管式熱交換器は有効伝熱面積が限れるために必
要な熱交換を行うには、非常に大きなものとなり、使用
上大きな課題があった。
As a means for cooling a high-viscosity, high-temperature plastic material during transfer, a refrigerant (water, air, etc.) is made to flow through an outer tube using a double-tube heat exchanger or a multi-tube heat exchanger. There is a way to cool. Usually, a double-tube heat exchanger or a method of installing a water tank immediately before a die as disclosed in JP-A-53-8668 is used. This is because cooling a high-viscosity fluid using a multi-tube heat exchanger is not suitable for use because of the problem of drift described later. However, the double-pipe heat exchanger is very large to perform the necessary heat exchange because the effective heat transfer area is limited, and there is a major problem in use.

【0005】多管式熱交換器は小さなスペースで有効伝
熱面積が大きくとれる特徴があるが本願で用いる溶融プ
ラスチックスのような高粘性の流体を冷却する場合には
偏流の問題があり使用出来ない。偏流とは、被冷却流体
が二つ以上の内管の全ての内管に同じ流量が流れずにあ
る内管のみを流れる現象をいう。多管式熱交換器を用い
た時に生じる偏流は下記理由より生じる。
[0005] The multi-tube heat exchanger has a feature that a large effective heat transfer area can be obtained in a small space. However, when cooling a highly viscous fluid such as molten plastics used in the present application, there is a problem of drifting and it cannot be used. Absent. The drift refers to a phenomenon in which the fluid to be cooled flows only through a certain inner pipe without the same flow rate flowing through all of the two or more inner pipes. The drift that occurs when using a multitubular heat exchanger occurs for the following reasons.

【0006】最初、高温の高粘性流体は多管式熱交換器
のそれぞれの内管に等分されて流れるがそれぞれの流量
は全く同じでなく少しずつ異なる。逆に熱交換器から冷
媒によって与えられる冷却量はそれぞれの内管に対して
同等である。流量の少ない内管においては、同じ冷却条
件では流量が少ない分冷えやすいことに加え、流速が遅
いため、通過時間(冷却時間)が長くなる。この理由に
より他の内管より速く温度が下がる。温度が下がるとそ
れに伴い流体の粘性が増加し、それだけ流れにくくな
る。従って、後から流れてきた高温流体は当然流れやす
い(抵抗の少ない)管に流れるため、この内管に流れる
流量はさらに少なくなる。この繰り返しにより、この内
管は最終的には閉塞してしまう。従ってこの問題を解決
しない限りこの工程における多管式熱交換器の使用は事
実上出来なかった。
First, a high-temperature, high-viscosity fluid flows equally into each inner tube of the multi-tube heat exchanger, but the respective flow rates are slightly different from each other. Conversely, the amount of cooling provided by the refrigerant from the heat exchanger is the same for each inner tube. Under the same cooling condition, the inner pipe having a small flow rate is easy to cool by the small flow rate, and the passage time (cooling time) is long because the flow velocity is low. For this reason, the temperature drops faster than other inner tubes. As the temperature decreases, the viscosity of the fluid increases accordingly, and the flow becomes less difficult. Accordingly, the high-temperature fluid that has flowed later flows naturally into the easily flowable (low resistance) pipe, so that the flow rate flowing through the inner pipe is further reduced. Due to this repetition, the inner tube is finally closed. Therefore, unless this problem is solved, the use of the shell-and-tube type heat exchanger in this step was practically impossible.

【0007】この問題を回避する方法の一つは、二重管
型の熱交換器を用いることであるが先に述べたように、
同じ容積の場合熱交換を行う有効面積は極端に少なくな
り、充分な冷却が行えない。逆に充分な冷却性能を確保
しようとすると、多管式熱交換器に比べ非常に大きなも
のとなり、コスト・設置スペース等の理由から現実的で
なくなる。多管式熱交換器の編流を防止するための方法
として、熱交換器内の流体の移動を2パス、4パスにす
る方法や、レジューサー内に混合を目的とした種々の邪
魔板等の充填物を入れることが検討されているが、圧力
損失の増大等の問題に加え充分な効果も得られないのが
現状であった。
[0007] One way to avoid this problem is to use a double tube heat exchanger.
In the case of the same volume, the effective area for performing heat exchange becomes extremely small, and sufficient cooling cannot be performed. Conversely, if a sufficient cooling performance is to be ensured, the size of the heat exchanger becomes much larger than that of the multi-tube heat exchanger, and it becomes impractical for reasons such as cost and installation space. As a method for preventing the knitting flow of the multi-tubular heat exchanger, a method of moving the fluid in the heat exchanger in two passes or four passes, various baffles for mixing in the reducer, etc. However, it has been considered that a sufficient effect cannot be obtained in addition to a problem such as an increase in pressure loss.

【0008】[0008]

【発明の解決しようとする課題】本発明は上記問題を鑑
みてなされたものであり、高温の高粘性流体の冷却に対
して偏流現状を生じない多管式熱交換器の構造を提供す
ることである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a structure of a multitubular heat exchanger which does not cause a current drift in cooling a high-temperature high-viscosity fluid. It is.

【0009】[0009]

【課題を解決するための手段】上記課題達成のための手
段として、外管と、該外管内に空隙をもって配設される
内管二以上とからなる多管式熱交換器において、外管の
流れ方向に対して垂直方向の断面円の中心位置と同心円
をなす円柱物が流れ方向に平行に、外管内に配設され、
該外管の内側と該円柱物の外側との間に被冷却流体が流
れる内管を2つ以上配置することである。さらに、熱交
換器における被加熱流体の入口部は被加熱流体が流れる
内管を有する該外管の断面円より小さく、その断面積は
流れ方向に従い外管の取付け部において外管断面円と同
形状になるように広がっている略円錐状のパイプとその
内側に略平行に取付けられた円錐状の突起物とで構成さ
れたレジューサーとなっている。このようにすることに
よって流体は該円錐状の突起物と略円錐状のパイプの間
に有する隙間を通って押出される。さらに内管と接続用
プレートの取付部位は、流れ方向に対して逆テーパ状に
加工されている。これにより流体が内管に流れ込む時の
滞留を防止することができる。
As a means for achieving the above object, a multi-tube heat exchanger comprising an outer tube and two or more inner tubes disposed with a gap in the outer tube includes a multi-tube heat exchanger. A cylindrical object that forms a concentric circle with the center position of the cross-section circle perpendicular to the flow direction is disposed in the outer tube in parallel with the flow direction,
Two or more inner pipes through which the fluid to be cooled flows are arranged between the inner side of the outer pipe and the outer side of the columnar object. Further, the inlet of the fluid to be heated in the heat exchanger is smaller than the cross-sectional circle of the outer pipe having the inner pipe through which the fluid to be heated flows, and the cross-sectional area thereof is the same as the outer pipe cross-section at the mounting portion of the outer pipe in the flow direction. The reducer is composed of a substantially conical pipe that spreads in a shape, and a conical protrusion attached substantially parallel to the inside of the pipe. In this way, the fluid is forced through the gap between the conical projection and the substantially conical pipe. Further, the mounting portion of the inner tube and the connection plate is formed in a reverse taper shape with respect to the flow direction. This can prevent stagnation when the fluid flows into the inner tube.

【0010】[0010]

【発明の実施の形態】以下、本発明の好ましい形態を説
明する。まず、本発明に基づく好ましい製造工程の一つ
は、発泡ポリスチレンのフイルム製造工程である。発泡
ポリスチレン業界では、ロースタック(Low−sta
ck)化すなわち積載時の高さを従来の約2/3にする
動きが始まり、「シートの厚みを薄くし、かつ強度を従
来通り保つ」という品質改良が必要となっている。改良
のポイントは発泡の泡径の制御であり、それには温度コ
ントロールが要求される。すなわち押出成形から押出さ
れたポリスチレン原液がダイに送り込まれる間での正確
な冷却が要求される。しかしながらこの状態における冷
却は上述した理由により、適切な方法がなかった。本発
明においては、上記目的を達成するために、伝熱性能の
よい熱交換器と、編流防止機能を有するレジューサー
と、熱交換器を通過により生じた熱履歴を改善するため
の混合器とで構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. First, one of the preferable production steps according to the present invention is a film production step of a foamed polystyrene film. In the expanded polystyrene industry, Low-sta
ck), that is, a movement to reduce the height at the time of loading to about 2/3 of the conventional height has started, and quality improvement such as "thinning the thickness of the sheet and maintaining the strength as before" is required. The point of improvement is the control of the bubble diameter of the foam, which requires temperature control. That is, accurate cooling is required while the polystyrene stock solution extruded from the extrusion is fed to the die. However, there is no appropriate method for cooling in this state for the reasons described above. In the present invention, in order to achieve the above object, a heat exchanger having good heat transfer performance, a reducer having a knitting prevention function, and a mixer for improving the heat history generated by passing through the heat exchanger It is composed of

【0011】図1に本発明で使用する熱交換器の断面図
を示す。熱交換器は多管式熱交換器を用いている。通常
の多管式熱交換器の伝熱管(1−1)接続用のプレート
(1−2)の取付け位置は熱交換器の粘性流体の進行方
向に垂直な断面に対して例えば三角配列(図2)のよう
に断面上で均一になるように配列されているが、本願に
おいては、外管の断面円の中心位置と同心円上に流体が
通過する空間部を有しない円柱物(1−3)を配設し、
外管と円柱物の間のみに、内管すなわち伝熱管を配列す
ようにしてある(図3)。これにより、それぞれ伝熱管
に対する抵抗の差を極力生じないよう出来る。それぞれ
の伝熱管の内部には通過する流体に攪拌作用を与えるこ
とにより伝熱効率を上げる目的で混合素子(1−4)を
充填している。この混合素子は例えば特開平3−204
592で開示した180°捻りの旋回エレメントを90
°の接続角をもって逆向きに交互接続したいわゆるスタ
ティックミキサ(図4)や、上記180°捻りの旋回エ
レメントを0°の接続角をもって逆向きもしくは、同じ
向きに接続した低抵抗タイプの混合素子(図5)を用い
る。通常の混合素子はその捻り度すなわちL/D(L:
混合素子の流れ方向の長さ,D:伝熱管の内径)を1〜
2で設計するのが熱交換性能の観点から適しているが本
願では高粘性の流体を流すことによる抵抗(圧力損失)
の増加とそれによるそれぞれの伝熱管の抵抗値のバラツ
キを最小限にする目的で捻り度を2〜3で設計してい
る。熱交換器の前後に取付けるレジューサー(1−6)
は上記熱交換器に配列されたそれぞれの伝熱管(1−
3)へ粘性流体が、効率良く流れ込むように設計されて
いる。すなわちレジューサー(1−6)の傾きに対して
略平行になるように、円錐状の突起物(1−7)が接続
用のプレート(1−2)に取付けられている。これによ
りレジューサー内を流れる粘性流体は進行に従いレジュ
ーサーの傾き角に沿って外管(1−8)側へ広がってい
く。
FIG. 1 is a sectional view of a heat exchanger used in the present invention. As the heat exchanger, a multi-tube heat exchanger is used. The mounting position of the plate (1-2) for connecting the heat transfer tubes (1-1) of the ordinary multi-tube heat exchanger is, for example, a triangular arrangement with respect to a cross section perpendicular to the traveling direction of the viscous fluid of the heat exchanger (FIG. Although they are arranged so as to be uniform on the cross section as in 2), in the present application, a cylindrical object (1-3) having no space through which the fluid passes concentrically with the center position of the cross section circle of the outer tube. )
An inner tube, that is, a heat transfer tube is arranged only between the outer tube and the columnar object (FIG. 3). As a result, it is possible to minimize the difference in resistance between the heat transfer tubes. The inside of each heat transfer tube is filled with a mixing element (1-4) for the purpose of increasing the heat transfer efficiency by imparting a stirring action to the passing fluid. This mixing element is disclosed in, for example,
The 180 ° twisting swivel element disclosed in 592
A so-called static mixer (FIG. 4) alternately connected in the opposite direction with a connection angle of 0 °, or a low-resistance type mixing element in which the above-mentioned 180 ° twisting swivel element is connected in the opposite direction or the same direction with a connection angle of 0 ° ( FIG. 5) is used. An ordinary mixing element has a twist degree, ie, L / D (L:
Length of mixing element in flow direction, D: inner diameter of heat transfer tube)
2 is suitable from the viewpoint of heat exchange performance, but in this application, the resistance (pressure loss) caused by flowing a highly viscous fluid
The degree of twist is designed to be 2 to 3 in order to minimize the increase of the resistance and the variation in the resistance value of each heat transfer tube. Reducers to be installed before and after the heat exchanger (1-6)
Are the respective heat transfer tubes (1--1) arranged in the heat exchanger.
3) The viscous fluid is designed to flow efficiently. That is, the conical projection (1-7) is attached to the connection plate (1-2) so as to be substantially parallel to the inclination of the reducer (1-6). As a result, the viscous fluid flowing in the reducer spreads toward the outer tube (1-8) along the inclination angle of the reducer as it progresses.

【0012】ここで上述しているように、この時の粘性
流体の周状に広がるときの流量、圧力が均一であること
が要求される。これらは当然それぞれ流れる方向への抵
抗の違いに起因するものではあるが、その始発原因とな
のは、粘性流体の性状不均一性である。その大きな要因
の一つに粘性流体の流れ方向における速度変化が挙げら
れる。一般に各通過位置における容積は断面積Aと速度
Uの積AUで与えられる。ここで取り扱う粘性流体は非
圧縮流体であるので容積変化は生じない。従ってそれぞ
れの通過地点において速度変化を生じないようにするに
はそれぞれの通過地点において通過断面を一定にする必
要がある。そのためには、レジューサー(1−6)内の
通過する断面の高さHは進行に従い小さくならなければ
ならない。すなわちレジューサー(1−6)の勾配θ2
に対して、円錐状の突起物(1−7)の勾配θ1は急勾
配にしなければならない。経験的には、θ2に対してθ
1が5°〜10°大きくするのが適している。また、熱
交換器の断面プレートと伝熱管の取付け部位がテーパ状
に加工されている(図6)。これにより、断面プレート
部位における粘性流体の滞留を極力防ぐことが出来る。
[0012] As described above, it is required that the flow rate and the pressure of the viscous fluid at this time when it spreads circumferentially be uniform. These are, of course, due to differences in resistance in the flowing direction, but the initial cause is the non-uniform properties of the viscous fluid. One of the major factors is a velocity change in the flow direction of the viscous fluid. Generally, the volume at each passing position is given by the product AU of the cross-sectional area A and the velocity U. Since the viscous fluid handled here is an incompressible fluid, no volume change occurs. Therefore, in order to prevent a speed change at each passing point, it is necessary to make the passing cross section constant at each passing point. For that purpose, the height H of the cross section passing through in the reducer (1-6) must decrease as it progresses. That is, the gradient θ2 of the reducer (1-6)
On the other hand, the gradient θ1 of the conical projection (1-7) must be steep. Empirically, θ2
Suitably, 1 is increased by 5 ° to 10 °. Also, the mounting section of the cross section plate of the heat exchanger and the heat transfer tube is machined into a tapered shape (FIG. 6). Thereby, the stagnation of the viscous fluid in the cross section plate portion can be prevented as much as possible.

【0013】[0013]

【実施例】以下、本発明の一実施例を説明する。図7に
本発明の一実施例である発泡ポリスチレンのフィルム成
形の模式図を示す。プラスチック原料をホッパー(7−
1)からスクリュウ溝(7−2)に供給し、スクリュウ
(7−3)を電動機により回転させることによりプラス
チック原料を押出す。ここで、スクリュウ溝にそって輸
送される間に、プラスチック原料はバレルヒーター(7
−8)により加熱され溶融していく。この溶融プラスチ
ックスは混合器(7−4)で均一にした後熱交換器(7
−5)へ送られ冷却される。熱交換器から出た溶融プラ
スチックスは再度混合器(7−6)で均一化された後、
スクリーン・ブレーカープレート及びアダプタを経てダ
イ(7−7)から押出されてフィルムとなる。
An embodiment of the present invention will be described below. FIG. 7 is a schematic view of forming a foamed polystyrene film according to one embodiment of the present invention. Plastic raw material in hopper (7-
The raw material is supplied from 1) to the screw groove (7-2), and the plastic material is extruded by rotating the screw (7-3) by an electric motor. Here, while being transported along the screw groove, the plastic raw material is supplied to the barrel heater (7).
It is heated and melted by -8). This molten plastics is homogenized in a mixer (7-4) and then heat-exchanged (7-4).
-5) and cooled. After the molten plastics coming out of the heat exchanger is homogenized again by the mixer (7-6),
The film is extruded from the die (7-7) through a screen breaker plate and an adapter to form a film.

【0014】(製造例)以下に本発明の製造例を詳細に
説明する。本発明はスチレン系樹脂を発泡して成形する
方法であって、適用するスチレン系樹脂としては、特に
限られるものではなく、例えば、スチレン単独重合体な
らびにプロピレンとエチレン及び/又は炭素数が4〜1
2個のα−オレフィンとのランダム共重合体ならびにブ
ロック共重合体が挙げられる。
(Production Example) Hereinafter, a production example of the present invention will be described in detail. The present invention is a method of foaming and molding a styrene-based resin, and the styrene-based resin to be applied is not particularly limited. For example, a styrene homopolymer and propylene and ethylene and / or having 4 to 4 carbon atoms are used. 1
Examples include a random copolymer with two α-olefins and a block copolymer.

【0015】これらのスチレン系樹脂は、広く知られた
製造方法によるもので良く、例えば、チタン化合物など
の遷移金属化合物あるいは、例えばマグネシウム化合物
などの担体に担持された遷移金属化合物と、例えば有機
アルミニウム化合物などの有機金属化合物から得られる
触媒系の存在下で重合するもの等が挙げられる。
These styrenic resins may be produced by a widely known production method. For example, a transition metal compound such as a titanium compound or a transition metal compound supported on a carrier such as a magnesium compound may be used. Compounds that polymerize in the presence of a catalyst system obtained from an organic metal compound such as a compound can be used.

【0016】本発明においては、発泡成形性を高めるた
めとしては特に必要とはしないが、スチレンに各種の熱
可塑性樹脂を1種または2種以上ブレンドして用いるこ
とができる。例えば、ポリエチレン、ポリ塩化ビニル、
エチレン−酢酸ビニル共重合体等の重合体または共重合
体を用いることができる。また、顔料、酸化防止剤、滑
剤、帯電防止剤、耐侯性向上剤、充填剤等を周知の使用
量の範囲内で適宜添加することができる。また、発泡
剤、添加剤の樹脂に対する分散性向上のために流動パラ
フィンなどの添着剤を添加して用いることができる。
In the present invention, although it is not particularly necessary to enhance the foaming moldability, one or two or more kinds of thermoplastic resins can be blended with styrene. For example, polyethylene, polyvinyl chloride,
A polymer or a copolymer such as an ethylene-vinyl acetate copolymer can be used. In addition, pigments, antioxidants, lubricants, antistatic agents, weatherability improvers, fillers, and the like can be appropriately added within a known amount. In order to improve the dispersibility of the foaming agent and the additive in the resin, an additive such as liquid paraffin can be added and used.

【0017】本発明においては、こうしたポリスチレン
系樹脂が、一般的なブレンダー、ミキサー等を用いて発
泡剤と混合して押出機に投入される。本発明で使用され
る発泡剤は加熱により分解し気体を発生する分解型発泡
剤である。加熱分解型発泡剤は、有機系及び無機系の各
種加熱分解型発泡剤の1種または2種以上の混合物であ
り、有機系発泡剤としては例えばアゾジカルボンアミ
ド、N,N’−ジニトロソペンタメチレンテトラミン、
P−P’−オキシビスベンゼンスルホニルヒドラジド等
である。また、無機系発泡剤としては重炭酸ナトリウ
ム、炭酸アンモニウム、重炭酸アンモニウム、カルシウ
ムアジド等である。また、分解型発泡剤は、その分解温
度が150℃〜210℃のものが好ましいが、押出機内
の温度で分解するものである必要がある。発泡剤の添加
量は樹脂100重量部に対して0.1〜6重量部、好ま
しくは0.3〜5重量部が適量である。0.3重量部以
下では、発泡倍率が上がらず、6重量部以上では樹脂が
気泡を保持することができずに気泡が潰れるため、従っ
て発泡倍率が低下する。
In the present invention, such a polystyrene resin is mixed with a foaming agent using a general blender, a mixer, or the like, and charged into an extruder. The blowing agent used in the present invention is a decomposition type blowing agent that decomposes upon heating to generate gas. The heat-decomposable foaming agent is one or a mixture of two or more of various organic and inorganic heat-decomposable foaming agents. Examples of the organic foaming agent include azodicarbonamide and N, N'-dinitrosopenta. Methylenetetramine,
And PP′-oxybisbenzenesulfonyl hydrazide. Examples of the inorganic foaming agent include sodium bicarbonate, ammonium carbonate, ammonium bicarbonate, calcium azide and the like. The decomposition-type foaming agent preferably has a decomposition temperature of 150 ° C to 210 ° C, but needs to decompose at the temperature in the extruder. An appropriate amount of the foaming agent is 0.1 to 6 parts by weight, preferably 0.3 to 5 parts by weight, based on 100 parts by weight of the resin. When the amount is less than 0.3 parts by weight, the expansion ratio does not increase, and when the amount is more than 6 parts by weight, the resin cannot retain the air bubbles and the air bubbles are crushed, so that the expansion ratio decreases.

【0018】本発明においては均一で高倍率の発泡体を
製造するために、成形押出機の原料投入口からダイ出口
までの間での融解した樹脂の温度を、その樹脂の融解終
了温度+15℃以下の範囲にする必要があり、融解終了
温度+10℃以下であればより好ましく、融解終了温度
+6℃以下であればさらに好ましい。融解終了温度は成
形に用いる樹脂材料の種類によって異なるが、本発明で
は成形温度をポリスチレンの単独重合体およびブロック
共重合体では、175〜185℃に保つことが好まし
い。尚、上述した分解型発泡剤についても、その分解温
度がこの範囲内にあるものを適用する。
In the present invention, in order to produce a uniform and high-magnification foam, the temperature of the molten resin from the material input port of the molding extruder to the die outlet is determined by the melting end temperature of the resin + 15 ° C. It is necessary to be within the following range, and it is more preferable that the melting end temperature is + 10 ° C or lower, and it is even more preferable that the melting end temperature is + 6 ° C or lower. The melting end temperature varies depending on the type of resin material used for molding, but in the present invention, the molding temperature is preferably maintained at 175 to 185 ° C for a polystyrene homopolymer or a block copolymer. In addition, also about the above-mentioned decomposition type foaming agent, the thing whose decomposition temperature is in this range is applied.

【0019】従来、発砲体の押出成形時の温度に関して
は、樹脂を溶融混練することと発泡剤を分解することが
重要視され、押出機においてはホッパーからガスが散逸
しない範囲内で温度を高くし、ダイ付近でのみ樹脂温度
を下げることが良いとされている。本発明は、押出機の
出口に冷却用熱交換器を取付けて溶融プラスチックの温
度を110℃に制御している。
Conventionally, regarding the temperature at the time of extrusion molding of the foam, it has been important to melt and knead the resin and decompose the foaming agent. In an extruder, the temperature must be raised within a range in which gas does not escape from the hopper. It is said that it is better to lower the resin temperature only near the die. In the present invention, the temperature of the molten plastic is controlled at 110 ° C. by installing a cooling heat exchanger at the outlet of the extruder.

【0020】なお、成形時の樹脂温度は必ずしも押出機
のシリンダーやダイの設定温度と等しくはならず樹脂の
混練条件によって左右される。また、一般的な成形機で
は押出機内の樹脂温度は測定が出来ないものが多いの
で、予めシリンダー部分に温度計を挿入する等して、樹
脂温度と押出し条件を把握しておくことが望ましい。
The temperature of the resin at the time of molding is not always equal to the set temperature of the cylinder or the die of the extruder, but depends on the kneading conditions of the resin. In addition, in many molding machines, the resin temperature in the extruder cannot be measured. Therefore, it is desirable to grasp the resin temperature and the extrusion conditions by inserting a thermometer in a cylinder portion in advance.

【0021】本発明において、樹脂温度をより均一にす
る手段として、図7に示すように、押出機後の冷却器と
ダイの間にスタティックミキサー(7−6)を設ける方
法が有効である。ここで用いられるスタティックミキサ
は、樹脂の温度をさらに均一にする手段として用いるも
のである。
In the present invention, as a means for making the resin temperature more uniform, a method of providing a static mixer (7-6) between a cooler after the extruder and a die as shown in FIG. 7 is effective. The static mixer used here is used as a means for making the temperature of the resin more uniform.

【0022】適用するスタティックミキサーは、一般に
知られているものでよく、図8に示すように、円筒状の
管状ハウジング(8−1)内に、所定角度ねじられたバ
ッフル板の形成された複数個の螺旋状エレメント(8−
2)が配列して概略構成されるもので、隣り合う螺旋状
エレメントの一方の後端と他方の前端とが互いに通常9
0°捻れて配置され、可動部分をもたないものである。
樹脂は、押出機からの加圧力によってスタティックミキ
サーの管状ハウジング内を複数個の螺旋状エレメントに
沿って流動し、その間に温度が均一化される。
The static mixer to be applied may be a generally known one. As shown in FIG. 8, a plurality of baffle plates having a predetermined angle twisted baffle plate are formed in a cylindrical tubular housing (8-1). Spiral elements (8-
2) is arranged and schematically constituted, and one rear end and the other front end of adjacent spiral elements are usually 9
It is arranged to be twisted by 0 ° and has no movable parts.
The resin flows along the plurality of helical elements in the tubular housing of the static mixer under the pressure from the extruder, during which the temperature is made uniform.

【0023】冷却器から押し出された樹脂の温度は、幅
・厚み方向ともに温度が均一でないと、均一な発泡状態
の発泡体が得られず、また、発泡状態が悪化し発泡倍率
が低下する。冷却器から押し出された樹脂の温度が不均
一である原因は、主に押出機からダイに流入する際の樹
脂の温度が不均一であることと冷却における各伝熱管に
よる違いによるもので前記のスタティックミキサ(8−
1)の取付が有効である。
If the temperature of the resin extruded from the cooler is not uniform in both the width and thickness directions, a foam in a uniform foaming state cannot be obtained, and the foaming state deteriorates and the foaming ratio decreases. The reason why the temperature of the resin extruded from the cooler is non-uniform is mainly due to the non-uniform temperature of the resin when flowing into the die from the extruder and the difference due to each heat transfer tube in cooling. Static mixer (8-
The mounting of 1) is effective.

【0024】本発明における発泡体の発泡倍率は、1.
8倍以上、気泡径1.2mm以下のものである。このよ
うなものは強度が強く弾力性に優れている。本発明の発
泡体は板状、シート状、棒状、チューブ状等各種形状に
成形され、断熱材、包装材、防音材、浮力材等として用
いられる。例えば、バインダーの表紙、壁・床の保護
材、通い箱、仕切り板、食品容器、建材、断熱パイプ等
の用途に用いられる。
The expansion ratio of the foam according to the present invention is as follows.
It is eight times or more and the bubble diameter is 1.2 mm or less. Such a material has high strength and excellent elasticity. The foam of the present invention is formed into various shapes such as a plate, a sheet, a bar, and a tube, and is used as a heat insulating material, a packaging material, a soundproofing material, a buoyancy material, and the like. For example, it is used for applications such as a cover of a binder, a protective material for walls and floors, a returnable box, a partition plate, a food container, a building material, and a heat insulating pipe.

【0025】[0025]

【効果】上記構造の熱交換器を用いることにより、高温
の高粘性流体の冷却に対して偏流の発生を防止し効率的
な冷却を行うことが出来る。
[Effect] By using the heat exchanger having the above-described structure, it is possible to prevent the occurrence of a drift in cooling a high-temperature, high-viscosity fluid, and to perform efficient cooling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】冷却用熱交換器断面図FIG. 1 is a sectional view of a heat exchanger for cooling.

【図2】従来の伝熱管配置図FIG. 2 is a conventional heat transfer tube layout.

【図3】本願の伝熱管配置図FIG. 3 is a layout diagram of the heat transfer tubes of the present application.

【図4】スタティックミキサFIG. 4 Static mixer

【図5】混合素子FIG. 5: Mixed element

【図6】断面プレートFIG. 6 is a sectional plate

【図7】発泡ポリエスチレンのフィルム成形の模式図FIG. 7 is a schematic view of forming a film of expanded polystyrene.

【図8】従来の発泡ポリエスチレンのフィルム成形の模
式図
FIG. 8 is a schematic view of a conventional foamed polystyrene film forming.

【符号の簡単な説明】[Brief description of reference numerals]

(1−1)伝熱管 (1−2)接続用のプレート (1−3)空間部を有しない円柱物 (1−4)混合素子 (1−5)冷媒入口 (1−6)レジューサー (1−7)円錐状の突起物 (1−8)外管 (7−1)ホッパー (7−2)スクリュウ溝 (7−3)スクリュウ (7−4)混合器 (7−5)熱交換器 (7−6)混合器 (7−7)ダイ (7−8)バレルヒーター (1-1) Heat transfer tube (1-2) Connection plate (1-3) Column having no space (1-4) Mixing element (1-5) Refrigerant inlet (1-6) Reducer ( 1-7) Conical projection (1-8) Outer tube (7-1) Hopper (7-2) Screw groove (7-3) Screw (7-4) Mixer (7-5) Heat exchanger (7-6) Mixer (7-7) Die (7-8) Barrel heater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小栗 貴裕 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 (72)発明者 松原 章 愛知県名古屋市西区則武新町三丁目1番36 号 株式会社ノリタケカンパニーリミテド 内 Fターム(参考) 3L103 BB26 DD08 DD33 DD38 DD42 DD62 4F207 AA13 AB02 AG01 AG20 AK02 KA01 KA11 KK45 KK63 KL55 KL83  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takahiro Oguri 3-36 Noritake Shinmachi, Nishi-ku, Nagoya City, Aichi Prefecture Inside Noritake Company Limited (72) Inventor Akira Matsubara 3-1-1 Noritake Shinmachi, Nishi-ku, Nagoya City, Aichi Prefecture No. 36 Noritake Co., Ltd. F-term (reference) 3L103 BB26 DD08 DD33 DD38 DD42 DD62 4F207 AA13 AB02 AG01 AG20 AK02 KA01 KA11 KK45 KK63 KL55 KL83

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】外管と該外管内に空隙をもって配設される
内管二以上とからなる多管式熱交換器において、外管の
流れ方向に対して垂直方向の断面円の中心位置と同心円
をなす円柱物が流れ方向に平行に、外管内に配設され、
該外管の内側と該円柱物の外側との間に被冷却流体が流
れる内管を2つ以上配置することを特徴とする冷却用熱
交換器。
1. A multi-tube heat exchanger comprising an outer tube and two or more inner tubes disposed with a gap in the outer tube, wherein a center position of a cross-sectional circle in a direction perpendicular to a flow direction of the outer tube is determined. A concentric cylinder is disposed in the outer tube in parallel with the flow direction,
A cooling heat exchanger comprising two or more inner pipes through which a fluid to be cooled flows is disposed between the inner side of the outer pipe and the outer side of the columnar object.
【請求項2】熱交換器における被冷却流体の入口部は被
冷却流体が流れる内管を有する該外管の断面円より小さ
く、その断面積は流れ方向に従い外管との取付け部にお
いて外管断面円と同形状になるように広がっている略円
錐状のパイプとその内側に略平行に取付けられた円錐状
の突起物とで構成されたレジューサーであることを特徴
とする請求項1の冷却用熱交換器。
2. The inlet of the fluid to be cooled in the heat exchanger is smaller than the cross-sectional circle of the outer pipe having the inner pipe through which the fluid to be cooled flows. 2. A reducer comprising a substantially conical pipe extending so as to have the same shape as a cross-sectional circle and a conical protrusion mounted substantially parallel to the inside of the pipe. Heat exchanger for cooling.
【請求項3】内管と接続用プレートとの取付部位は、流
れ方向に対して逆テーパ状に加工されていることを特徴
とする請求項1の冷却用熱交換器。
3. The cooling heat exchanger according to claim 1, wherein an attachment portion between the inner tube and the connection plate is formed in a reverse taper shape with respect to a flow direction.
【請求項4】請求項1の冷却用熱交換器を用いることを
特徴とするポリスチレンフィルムの製造方法。
4. A method for producing a polystyrene film, comprising using the heat exchanger for cooling according to claim 1.
JP05599499A 1999-01-25 1999-01-25 Cooling heat exchanger Expired - Fee Related JP3279991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05599499A JP3279991B2 (en) 1999-01-25 1999-01-25 Cooling heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05599499A JP3279991B2 (en) 1999-01-25 1999-01-25 Cooling heat exchanger

Publications (2)

Publication Number Publication Date
JP2000213876A true JP2000213876A (en) 2000-08-02
JP3279991B2 JP3279991B2 (en) 2002-04-30

Family

ID=13014648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05599499A Expired - Fee Related JP3279991B2 (en) 1999-01-25 1999-01-25 Cooling heat exchanger

Country Status (1)

Country Link
JP (1) JP3279991B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6742774B2 (en) 1999-07-02 2004-06-01 Holl Technologies Company Process for high shear gas-liquid reactions
US6752529B2 (en) 2001-03-07 2004-06-22 Holl Technologies Company Methods and apparatus for materials processing
US6787246B2 (en) 2001-10-05 2004-09-07 Kreido Laboratories Manufacture of flat surfaced composites comprising powdered fillers in a polymer matrix
US6830806B2 (en) 2001-04-12 2004-12-14 Kreido Laboratories Methods of manufacture of electric circuit substrates and components having multiple electric characteristics and substrates and components so manufactured
US7575728B2 (en) 2002-07-16 2009-08-18 Kreido Laboratories Processes employing multiple successive chemical reaction process steps and apparatus therefore
JP2016221772A (en) * 2015-05-28 2016-12-28 出光興産株式会社 Method for granulating soft resin
CN109760258A (en) * 2019-03-01 2019-05-17 南京法宁格节能科技股份有限公司 A kind of production method and its production system of polyphenylsulfone physical blowing sheet material
CN109813154A (en) * 2019-03-01 2019-05-28 南京法宁格节能科技股份有限公司 A kind of aluminium welding heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030066624A1 (en) * 2001-09-13 2003-04-10 Holl Richard A. Methods and apparatus for transfer of heat energy between a body surface and heat transfer fluid

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6742774B2 (en) 1999-07-02 2004-06-01 Holl Technologies Company Process for high shear gas-liquid reactions
US6994330B2 (en) 1999-07-02 2006-02-07 Kriedo Laboratories Process for high shear gas-liquid reactions
US6752529B2 (en) 2001-03-07 2004-06-22 Holl Technologies Company Methods and apparatus for materials processing
US6830806B2 (en) 2001-04-12 2004-12-14 Kreido Laboratories Methods of manufacture of electric circuit substrates and components having multiple electric characteristics and substrates and components so manufactured
US6787246B2 (en) 2001-10-05 2004-09-07 Kreido Laboratories Manufacture of flat surfaced composites comprising powdered fillers in a polymer matrix
US7575728B2 (en) 2002-07-16 2009-08-18 Kreido Laboratories Processes employing multiple successive chemical reaction process steps and apparatus therefore
JP2016221772A (en) * 2015-05-28 2016-12-28 出光興産株式会社 Method for granulating soft resin
CN109760258A (en) * 2019-03-01 2019-05-17 南京法宁格节能科技股份有限公司 A kind of production method and its production system of polyphenylsulfone physical blowing sheet material
CN109813154A (en) * 2019-03-01 2019-05-28 南京法宁格节能科技股份有限公司 A kind of aluminium welding heat exchanger

Also Published As

Publication number Publication date
JP3279991B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
US3751377A (en) Method for the preparation of plastic foam
US3827841A (en) Extrusion apparatus for use in the production of thermoplastic resin foams
US6376059B1 (en) Polyethylene foams and methods of their production
CN102470597B (en) Molding material for extrusion foam molding, process for producing same, woody molded foam produced from the molding material, and process and apparatus for producing the woody molded foam
US3817669A (en) Apparatus for the preparation of plastic foam
US10464247B2 (en) Method of forming blown polymeric foam film
US8246237B2 (en) Apparatus and method for the introduction of a foaming agent into a polymer melt
JP3279991B2 (en) Cooling heat exchanger
JP2680045B2 (en) Extruder line for making foamable synthetic mixtures
US5902529A (en) Process for producing thermoplastic resin foams
JP7282162B2 (en) 3D printing system for preparing three-dimensional objects
US5277852A (en) Process and apparatus for the production of cellular plastic
EP1211048B1 (en) Equipment for extruding an expanded polymer sheet or plate
US3619445A (en) Method for producing biaxially oriented polystyrene heavy gauge sheet
US4469651A (en) Process for extruding thermoplastic compositions
JP3581025B2 (en) Method for producing non-crosslinked polypropylene resin foam sheet and non-crosslinked polypropylene resin foam sheet
NL8203386A (en) METHOD AND APPARATUS FOR EXTRUDING THERMOPLASTIC COMPOSITIONS
AU2004245248A1 (en) Continuous method for producing solid, hollow or open profiles
CN111136825B (en) Preparation method of fine-cell high-foaming-ratio polylactic acid particles
WO2000015405A1 (en) Method and apparatus for extruding foamed articles
JP7402439B2 (en) Extrusion molds, plastic manufacturing equipment, and plastic manufacturing methods
JP2000072916A (en) Mixture for production of foamed cellular polymer article and production of article by utilizing same
JP2023117237A (en) Manufacturing method of extrusion-foaming particles
TW201144043A (en) Extrusion device with function of high-speed mixing
JP2007230124A (en) Manufacturing method of foam molding and foam molding

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees