JP2000209503A - Solid state image pickup device and its video signal output device - Google Patents

Solid state image pickup device and its video signal output device

Info

Publication number
JP2000209503A
JP2000209503A JP11010022A JP1002299A JP2000209503A JP 2000209503 A JP2000209503 A JP 2000209503A JP 11010022 A JP11010022 A JP 11010022A JP 1002299 A JP1002299 A JP 1002299A JP 2000209503 A JP2000209503 A JP 2000209503A
Authority
JP
Japan
Prior art keywords
video signal
solid
horizontal
read
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11010022A
Other languages
Japanese (ja)
Other versions
JP3875423B2 (en
Inventor
Hiroshi Shimamoto
洋 島本
Original Assignee
Nippon Hoso Kyokai <Nhk>
日本放送協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai <Nhk>, 日本放送協会 filed Critical Nippon Hoso Kyokai <Nhk>
Priority to JP01002299A priority Critical patent/JP3875423B2/en
Publication of JP2000209503A publication Critical patent/JP2000209503A/en
Application granted granted Critical
Publication of JP3875423B2 publication Critical patent/JP3875423B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate a state where every boundary of areas is conspicuous as a fixed pattern noise by outputting the partial images of areas adjacent to each other for every divided area. SOLUTION: A solid state image pickup device with which the image signals are read out of the divided areas in parallel to each other is provided with plural horizontal and/or vertical scanning circuit which reads the image signals overlapping each other out of the vertical and/or horizontal line pixel string respectively. With such a constitution, the characteristics of signal reading circuits placed in every divided area are averaged by an averaging circuit. For instance, the horizontal scanning circuits 1-4 of a MOS amplification type solid state image pickup device are driven by the horizontal start pulses which start at the same time and the vertical scanning circuits 1 and 2 are also driven by the vertical start pulses which start at the same time. The image signals which are read by these horizontal and vertical scanning circuits are outputted from the reading circuits 1-4 simultaneously with and in parallel to each other.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、各分割領域から映像信号が同時並列に読み出される種類の固体撮像素子において、特に、各領域の境界が目立たないようにした固体撮像素子およびそれ用の映像信号出力装置に関する。 The present invention relates, in a type of solid-state imaging device a video signal from the divided areas is read out simultaneously in parallel, in particular, the solid-state imaging device and its use of a video boundary of each region is made inconspicuous It relates to a signal output device.

【0002】 [0002]

【従来の技術】図5は、従来のこの種類のMOS増幅型固体撮像素子の構成例を示している。 BACKGROUND ART FIG. 5 shows a configuration example of a conventional this type of MOS amplifying type solid-state imaging device. 図5において、画素p 11から画素p aaまで(分割領域1)は水平走査回路(シフトレジスタおよび選択スイッチによって構成される)1および垂直走査回路(シフトレジスタによって構成される)1によって、画素p 1bから画素p anまで(分割領域2)は水平走査回路2および垂直走査回路1によって、画素p b1から画素p naまで(分割領域3)は水平走査回路3および垂直走査回路2によって、そして画素p bbから画素p nnまで(分割領域4)は水平走査回路4 5, the pixel p aa to (divided area 1) horizontal scanning circuit (constituted by the shift register and selection switches) 1 and a vertical scanning circuit (constituted by a shift register) 1 from the pixel p 11, pixel p from 1b to the pixel p an, by (divided area 2) the horizontal scanning circuit 2 and the vertical scanning circuit 1, a pixel p b1 to the pixel p na (divided regions 3) by the horizontal scanning circuit 3 and the vertical scanning circuit 2 and the pixel, from p bb to pixel p nn (divided area 4) horizontal scanning circuit 4
および垂直走査回路2によって画素の走査を行いそれぞれ撮像された映像信号を読み出している。 And it is read out video signals respectively captured perform scanning of pixels by the vertical scanning circuit 2.

【0003】上述のようにして、分割領域1乃至4から同時並列に読み出された各映像信号はそれぞれ図示の読み出し回路(増幅器およびA−D変換器からなる回路) [0003] As described above, each of the video signals read simultaneously in parallel from the divided regions 1 to 4 shown in the readout circuit (circuit comprising an amplifier and A-D converter)
1乃至4を介して出力され、いったん画像メモリ(図示しない)に記憶される。 It is 1 or through the 4 output, are temporarily stored in the image memory (not shown).

【0004】 [0004]

【発明が解決しようとする課題】しかし、上述した従来のこの種類の固体撮像素子においては、各分割領域から得られた映像信号をモニター画面上に合成するとき読み出し回路の特性の違いにより、各領域の境界が固定パターンノイズとなって目立ち、表示画像の品質が劣化する。 [0008] However, in the solid-state imaging device of this type of prior art described above, the difference in characteristics of the read circuit when synthesizing the video signal obtained from the respective divided areas on the monitor screen, the noticeable boundary region becomes a fixed pattern noise, the quality of the display image deteriorates.

【0005】また、映像信号をデジタル信号として任意の画素に対しその周囲の画素値を用いて演算処理(以下、2次元画像処理という)を行う場合には、画面端部においても画面中央部と同等の演算結果が得られるようにするために、最終的な有効画素領域を構成する演算結果である出力画像に対して撮影時には1次元的または2 [0005] The arithmetic processing using the pixel values ​​of the surrounding for any pixel video signal as a digital signal (hereinafter, referred to as two-dimensional image processing) in the case of performing the a well screen center portion at the end of the screen to ensure that equivalent operation result is obtained, at the time of final effective pixels constituting the region photographed the output image is a calculation result 1-dimensional or 2
次元的により広い領域の映像信号(以下、のりしろ映像と言う)を必要とするが、従来の固体撮像素子では、各分割領域からの映像信号から直接領域境界部分ののりしろ映像を得ることができず、並列読み出し出力を一度フレームメモリ等に取り込んでから他の分割領域の映像信号も使ってのりしろ映像を作る必要があった。 Dimensionally wider area video signal requires a (hereinafter, referred to as image overlap), in the conventional solid-state imaging device, it is impossible to obtain a margin image directly region boundary portion from the video signals from the divided areas , it is necessary to make the image overlap with even the video signals of the other divided area from the capture to the parallel readout output once a frame memory or the like.

【0006】本発明の第1の目的は、従来、各分割領域から映像信号が同時並列に読み出される種類の固体撮像素子から得られた映像信号をモニタ画面上に合成するとき、各領域の境界が固定パターンノイズとなって目立っていたのを目立たないようにすることにある。 A first object of the present invention, conventional, when the video signals from the respective divided areas to synthesize a video signal obtained from the type of the solid-state imaging device to be read simultaneously in parallel on the monitor screen, the boundary of each region there is to make it inconspicuous had conspicuous become fixed pattern noise.

【0007】また、本発明の第2の目的は、固体撮像素子から得られた映像信号をデジタル信号にして2次元画像処理を行うに際して、分割領域ごとの画面端部においても画面中央部と同等の演算処理が行えるようにすることにある。 [0007] A second object of the present invention, when a video signal obtained from the solid-state imaging device performs the two-dimensional image processing in the digital signal, equal to also the central area in the screen end of each divided region It lies in that allows processing of.

【0008】 [0008]

【課題を解決するための手段】上記目的を達成するために、本発明固体撮像素子は、各分割領域から映像信号が同時並列に読み出される種類の固体撮像素子において、 To achieve the above object of the Invention The present invention solid-state imaging device, in the type of solid-state imaging device a video signal from the divided areas is read out simultaneously in parallel,
前記領域の境界近傍の垂直方向の画素列および/または水平ライン方向の画素列から互いに重複して映像信号の読み出しを行うそれぞれ複数個の水平走査回路および/ Each plurality of horizontal scanning circuits overlap each other in the vertical direction of pixel columns and / or horizontal line direction pixel column read out image signal near the boundary of the region and /
または垂直走査回路を具えてなることを特徴とするものである。 Or those characterized by comprising comprises a vertical scanning circuit.

【0009】また、本発明固体撮像素子は、前記複数個の水平走査回路および/または垂直走査回路によって読み出した映像信号のうち互いに重複する部分の一部を2 Further, the present invention solid-state imaging device, a portion of the portions overlapping each other in the video signals read out by said plurality of horizontal scanning circuits and / or the vertical scanning circuit 2
次元画像処理のためののりしろ映像に形成したことを特徴とするものである。 It is characterized in that formed on the margin image for dimensional image processing.

【0010】また、本発明固体撮像素子用の映像信号出力装置は、各領域の境界近傍の垂直方向の画素列および/または水平ライン方向の画素列から互いに重複して映像信号の読み出しを行うそれぞれ複数個の水平走査回路および/または垂直走査回路を具えてなり各分割領域から映像信号が同時並列に読み出される種類の固体撮像素子から映像信号を出力する映像信号出力装置であって、 [0010] The video signal output device for the present invention the solid-state imaging device, respectively for reading the video signal by overlapping the pixel columns and / or horizontal line direction pixel row in the vertical direction near the boundary of each region a plurality of kinds of solid-state imaging device a video signal from each of the divided regions will comprise a horizontal scanning circuit and / or the vertical scanning circuit are read out simultaneously in parallel to a video signal output device for outputting a video signal,
前記重複して映像信号の読み出しを行う領域に関して、 With respect to those regions to read out the video signal to the overlap,
重複の回数に応じた平均化処理を行って映像信号を出力するための平均化処理回路を具えてなることを特徴とするものである。 Those characterized by comprising comprises an averaging processing circuit for outputting a video signal by performing an averaging process in accordance with the number of duplicates.

【0011】 [0011]

【発明の実施の形態】以下に添付図面を参照し、発明の実施の形態に基づいて本発明を詳細に説明する。 Referring to DETAILED DESCRIPTION OF THE INVENTION accompanying drawings, the present invention will be described in detail based on the embodiments of the invention. 図1 Figure 1
は、MOS増幅型固体撮像素子に本発明を適用した固体撮像素子の一実施形態を示している。 Shows an embodiment of a solid-state imaging device according to the present invention to a MOS amplifying type solid-state imaging device. 図1において、水平走査回路1,2,3,4は同時にスタートする水平スタートパルスで駆動され、垂直走査回路1,2も同時にスタートする垂直スタートパルスで駆動され、これによって読み出された映像信号は読み出し回路1乃至4から同時並列的に出力される。 In Figure 1, the horizontal scanning circuit 1, 2, 3 and 4 are driven by a horizontal start pulse which starts at the same time, the vertical scanning circuit 2 is also driven by the vertical start pulse which starts at the same time, thereby read image signal outputted simultaneously in parallel from the read circuit 1 to 4.

【0012】以上のことをより詳細に説明する。 [0012] will be described more things in more detail. 水平走査線を構成する画素p 11から画素p 1bまでの画素値は垂直走査回路1と水平走査回路1によって選択的に読み出され、読み出し回路1を通って順次に出力される。 Pixel values from pixel p 11 constituting the horizontal scanning lines to the pixel p 1b is selectively read by the vertical scanning circuit 1 and the horizontal scanning circuit 1, it is sequentially outputted through the read circuit 1. これと同時に同じく水平走査線を構成する画素p 1aから画素p 1nまでの画素値は垂直走査回路1と水平走査回路2によって選択的に読み出され、読み出し回路2を通って順次に出力される。 Pixel values from pixel p 1a constituting the same time also the horizontal scanning line to the pixel p 1n is selectively read by the vertical scanning circuit 1 and the horizontal scanning circuit 2 are sequentially outputted through the reading circuit 2 . 以下、同様に別(より下方)の水平走査線を構成する画素p b1から画素p bb 、および画素p ba Hereinafter, the pixel p bb from pixel p b1 constituting the horizontal scanning lines of similar another (more below), and the pixel p ba
から画素p bnの画素値も、それぞれ垂直走査回路1と水平走査回路1および垂直走査回路1と水平走査回路2によって選択的に読み出されるため、1フレームの期間に画素p 11から画素p Pixel value of the pixel p bn from also because they are selectively read by the respective vertical scanning circuit 1 and the horizontal scanning circuit 1 and the vertical scanning circuit 1 and the horizontal scanning circuit 2, a pixel p from pixel p 11 in the period of one frame bbまでの画素値が読み出し回路1から順次に出力されるときは、それと同時に1フレームの期間に画素p 1aから画素p bnまでの画素値が読み出し回路2から順次に出力される。 When the pixel values up bb are sequentially output from the read circuit 1, the same pixel value to a pixel p bn from period to the pixel p 1a of one frame at the same time is sequentially output from the read out circuit 2.

【0013】このように、本発明固体撮像素子は、各領域の境界近傍の水平方向の画素から互いに重複して映像信号の読み出しを行う水平走査回路1と水平走査回路2 [0013] Thus, the present invention solid-state imaging device, the horizontal scanning circuit 1 and the horizontal scanning circuit 2 for reading the video signals overlap with each other in the horizontal direction of the pixels near the boundary of each region
を具えている。 And it includes a. 上記において、重複している部分は、画素p 1aから画素p bbまでである。 In the above, portions are duplicates is from pixel p 1a to the pixel p bb.

【0014】同じことが水平走査回路3と水平走査回路4についても言える。 [0014] The same is true for the horizontal scanning circuit 3 and the horizontal scanning circuit 4. この場合の重複している部分は、 Overlapping part of this case,
画素p aaから画素p nbまでである。 It is from the pixel p aa to the pixel p nb. 垂直走査回路1および2についても、画素p a1から画素p bnまでの重複を有している。 For even vertical scanning circuit 1 and 2, it has an overlap from pixel p a1 to the pixel p bn.

【0015】再び、水平走査回路1と水平走査回路2について言及する。 [0015] Again, referring to the horizontal scanning circuit 1 and the horizontal scanning circuit 2. 水平走査回路1は、第1列目の画素p Horizontal scanning circuit 1, the pixel p in the first column
11 、----- 、画素p a1 、画素p b1に接続される線(以下、垂直読み出し線という)から始めて、最後に第b列目の画素p 1b 、----- 、画素p 11, -----, pixel p a1, the line (hereinafter, referred to as vertical reading line) connected to a pixel p b1 starting from the end to the b-th column of the pixel p 1b, -----, pixel p ab 、画素p bbに接続される垂直読み出し線から映像信号を選択的に順次読み出すように走査を行う。 ab, to scan to read selectively and sequentially the video signals from the vertical read line connected to the pixel p bb.

【0016】これに対して、水平走査回路2は、水平走査回路1と同時に走査を開始し、最初に読み出す垂直読み出し線に接続される画素は画素p 1a 、----- 、画素p [0016] By contrast, the horizontal scanning circuit 2 starts the scanning at the same time as the horizontal scanning circuit 1, the pixels connected to the vertical read lines initially read pixel p 1a, -----, pixel p
aa 、画素p baであるから、これら画素から映像信号を読み出した後も、画素に読み出し前と同量の電荷が残っていないと後で水平走査回路1による映像信号の読み出しができなくなる。 aa, since the pixel p ba, even after reading the image signal from the pixel, can not be read in the video signal by the horizontal scanning circuit 1 later when no remaining charges before the same amount readout pixel. 以上から、本発明固体撮像素子は非破壊読み出し型であることが前提となる。 From the above, the present invention solid-state imaging device that is non-destructive readout type is a prerequisite.

【0017】非破壊読み出し(すなわち、蓄積電荷はそれがリセットされるまで減少しない)であることに加え、フレーム周期に比して水平走査期間が短いので、重複して読み出される画素の水平走査回路1で読み出された時刻における光電変換による蓄積電荷量と水平走査回路2で読み出された時刻における蓄積電荷量とは殆んど変わらないため、重複して読み出されるそれぞれの画素から複数回の読み出しにおいて殆んど同じ値の出力電流が得られることになる。 The non-destructive readout (i.e., the accumulated charge it does not decrease until reset) in addition to being, is short horizontal scanning period than the frame period, the horizontal scanning circuit of the pixel to be read overlap since the accumulated charge amount at the time read by the photoelectric conversion by the amount of accumulated charges and the horizontal scanning circuit 2 at the time read in 1 virtually unchanged, multiple times from each pixel to be read overlap so that almost the read output current of the same value is obtained. 水平走査回路3と水平走査回路4についても同じことが言える。 The same is true for the horizontal scanning circuit 4 horizontal scanning circuit 3.

【0018】なお、垂直走査回路1および2によって選択された水平ラインは、1フレーム期間に1回読み出しを行った後に水平ラインごとに一斉に画素の蓄積電荷のリセット動作を行う(ラインリセット動作)ものとする。 [0018] Incidentally, the horizontal line selected by the vertical scanning circuit 1 and 2, the reset operation is performed in unison pixel accumulated charge for each horizontal line after the once read in one frame period (line reset operation) and things. 具体的には、画素p a1から画素p bnまでの画素は垂直走査回路1および2によって複数回読み出されるが、 Specifically, the pixels from the pixel p a1 to the pixel p bn but read multiple times by the vertical scanning circuit 1 and 2,
これら重複して読み出される水平ラインは垂直走査回路1による読み出し後にはラインリセット動作を行わず、 Horizontal lines are read out in these overlap without line reset operation after reading by the vertical scanning circuit 1,
垂直走査回路1による読み出しの直後に行われる次のフレームの垂直走査回路2による読み出し後にのみラインリセット動作を行う。 Perform only line reset operation after reading by the vertical scanning circuit 2 of the next frame to be performed immediately after the reading by the vertical scanning circuit 1. そのため重複して読み出される水平ラインについては、垂直走査回路1で読み出された時刻における画素の蓄積時間t1は垂直走査回路2で読み出された時刻における画素の蓄積時間t2に比べて短くなるが、この蓄積時間の差(t2−t1)は、重複水平ライン数の走査時間に等しいので、各垂直走査回路に接続されている水平ライン数(本例では、互いに同一数であるb−1本およびn−a本)が十分多いときにはフレーム周期に比して蓄積時間の差が十分に小さくなる。 For this reason horizontal lines are read out in duplicate, the accumulation time t1 of pixels in the read time with the vertical scanning circuit 1 is shorter than the pixel accumulation time t2 in the time read by the vertical scanning circuit 2 this difference in storage time (t2-t1) is equal to the overlapping horizontal line number of the scanning time, the horizontal line number (in this example, which is connected to the vertical scanning circuit, b-1 present the same number of mutually and n-a present) the difference between the storage time than the frame period when enough often small enough. この様子を図2(a),(b)に示している。 This state FIG. 2 (a), shown in (b).

【0019】以上説明したように、図1の画素構成において画素p 1aから画素p bbまでの画素は読み出し回路1 [0019] As described above, the readout circuit is a pixel from pixel p 1a to the pixel p bb in pixel configuration of FIG. 1 1
および2によって、画素p aaから画素p nbまでの画素は読み出し回路3および4によって、画素p a1から画素p And by 2, by the pixel readout circuit 3 and 4 from the pixel p aa to pixel p nb, pixel p from pixel p a1
bbまでの画素は読み出し回路1および3によって、そして画素p aaから画素p bnまでの画素は読み出し回路2および4によってそれぞれ一部の画素が重複して読み出されることになる。 by the pixel readout circuit 1 and 3 to bb, and pixels from the pixel p aa to pixel p bn will be the pixel part, respectively by the reading circuit 2 and 4 are read in duplicate.

【0020】次に、読み出し信号をディジタル信号にしたうえで、2次元画像処理を行う例について説明する。 [0020] Next, after the read signal into a digital signal, an example of performing a two-dimensional image processing will be described.
本例としては、本発明による固体撮像素子からの並列出力信号がアナログ−デジタル変換され画像メモリに保存されたうえで2次元画像処理を行う場合を想定する。 As this example, the parallel output signals from the solid-state imaging device according to the present invention is an analog - it is assumed that the digital conversion performed a two-dimensional image processing in terms of stored in the image memory.

【0021】図3は、本例による2次元画像処理を示している。 [0021] Figure 3 shows a two-dimensional image processing according to the present embodiment. 図3において、縦、横の点線で分割され、その左上部分の分割領域1に含まれる画素は画素p 11から画素p aaまでであるが、読み出し回路1からは画素p 11から画素p bbまでの画素が読み出され、デジタルデータM 3, the vertical, is divided by the horizontal dotted line, although the pixels included in the divided region 1 of the upper left portion is a pixel p 11 to the pixel p aa, from pixel p 11 to the pixel p bb from the read circuit 1 pixels are read, the digital data M
11からM bbとしてメモリ1に保存され、このメモリ1に保存されたデータに対して周囲の画素値を用いた2次元画像処理が行われる。 11 stored in the memory 1 as M bb from the two-dimensional image processing using the pixel values of the surrounding is performed on data stored in the memory 1. 例えば、空間エンハンスフィルタを実現する場合、各画素データに対する計算式の一例は次式で示される。 For example, to achieve a spatial enhancement filter, an example of a calculation formula for each pixel data is represented by the following formula. vw =2・M vw −(M (v-1)w +M v(w-1) +M v(w+1) +M O vw = 2 · M vw - (M (v-1) w + M v (w-1) + M v (w + 1) + M
(v+1)w )/4 ただし、O vwは計算結果、M vwは被計算画像データ、およびv,wは空間座標(vは画面上から下方に増加、w (v + 1) w) / 4 However, O vw is computed, increasing M vw is the calculated image data, and v, w is the spatial coordinates (v is downward from the screen, w
は画面左から右方に増加)である。 Is an increase to the right) from the left side of the screen.

【0022】このように、画素データM vwに対する2次元画像処理を行う場合、画素p vwの周りの画素データM [0022] Thus, when performing the two-dimensional image processing on the pixel data M vw, pixel data M around the pixel p vw
(v-1)w 、M v(w-1) 、M v(w+1) 、M (v+1)w (それぞれ、画素p (v-1) w, M v (w-1), M v (w + 1), M (v + 1) w ( each pixel p vwに対して上、左、右、下の各画素データ)などが必要となる。 above for vw, left, right, and bottom pixel data) are required. メモリに保存されたデータは分割領域1に対して周辺に各1画素分ののりしろ映像データを含むため、2次元画像処理を行った結果はのりしろ映像データに相当する記憶領域が不要となり、データO 22からO aa Since the data stored in the memory including margin image data of each one pixel in the neighborhood on the divided area 1, as a result of the two-dimensional image processing becomes unnecessary storage area corresponding to the video data overlap, the data O 22 from O aa
としてメモリ5に保存され(図3のメモリ1に示す画素データM 2aに対してこの2次元画像処理を行うと、結果は、O 2a =2・M 2a −(M 1a +M 2a ′+M 2b +M 3a )/ As it stored in the memory 5 (Doing this two-dimensional image processing on the pixel data M 2a shown in memory 1 of Figure 3, the results, O 2a = 2 · M 2a - (M 1a + M 2a '+ M 2b + M 3a) /
4となって保存される)分割領域1の処理結果として直接出力することが可能となる。 4. By now it becomes possible to output directly as to) the processing result of the division regions 1 storage.

【0023】なお、上述例(図1から図3に示される例)では重複して読み出される画素を2行、2列として説明したが、これは2行、2列に限られるわけでなく、 [0023] Incidentally, the above example two rows of pixels read in duplicate in (example shown in FIGS. 1-3), has been described as two rows, which two rows, not necessarily limited to two rows,
1行および/または1列、あるいは3行および/または3列、さらにそれ以上でもよいことはいうまでもない。 1 row and / or column, or three rows and / or three columns, further it is needless to say may be higher.
また、分割領域の分割数も上述例の4に限られるわけではなく、任意の複数の分割に対して本発明を適用することができる。 Further, the division number of the divided regions is also not necessarily limited to 4 above example, you are possible to apply the present invention to any of a plurality of split.

【0024】最後に、本発明固体撮像素子用の映像信号出力装置について説明する。 [0024] Finally, a description will be given of the video signal output device for the present invention the solid-state imaging device. ここでは、各領域1から4 Here, from each of the regions 1 4
までのそれぞれから同時並列に得られる映像信号を1つにまとめて合成信号を形成する本発明装置について説明する。 The present invention apparatus for forming a collectively combined signal to one image signal obtained simultaneously in parallel from each to be described. 図4は、本発明装置の一構成例を示している。 Figure 4 shows an example of the configuration of the device of the present invention. 図4において、分割領域1から読み出される信号はメモリ1のa,b,c,dの各領域に保存される。 4, the signal read from the divided area 1 is stored a memory 1, b, c, to each region of the d. 同様に、分割領域2から読み出された信号はメモリ2のe,f, Similarly, signals read from the divided area 2 of the memory 2 e, f,
g,hの各領域に、分割領域3から読み出された信号はメモリ3のi,j,k,lの各領域に、分割領域4から読み出された信号はメモリ4のm,n,o,pの各領域にそれぞれ保存される。 g, in each area of ​​h, i of the signal read from the divided area 3 memory 3, j, k, in each area of ​​the l, signals read from the divided area 4 of the memory 4 m, n, o, it is saved to each area of ​​the p.

【0025】いま、各分割領域1,2,3,4から同時並列に読み出しを開始するものとするとメモリ3,4の領域i,j,m,nに保存される信号はメモリ1,2の領域c,d,g,hに保存される信号に対して(各分割領域の垂直走査時間)−(分割領域間の重複水平ラインの走査時間)だけ早い読み出し信号になるため、図4では読み出し回路1,2の後に1フレーム分の遅延回路を入れて時間的連続性の整合をとっている。 [0025] Now, the area i of each divided Assuming to start reading simultaneously in parallel from the region 1,2,3,4 memory 3, 4, j, m, the signal stored in the n the memory 1 region c, d, g, on the signal stored in the h (vertical scanning time for each divided area) - to become the earliest readout signal (scanning time of overlapping horizontal lines between the divided regions), read in FIG. 4 taking a temporal continuity of the alignment putting a delay circuit for one frame after the circuits 1 and 2. また、メモリ1,2の領域bとeに保存される信号は撮像素子の同じ画素に対応する信号であるので、平均化処理後にメモリ6の領域qの信号として保存する。 The signal that is stored in the area b and e of the memory 1 and 2 since the signal corresponding to the same pixel of the image sensor and stored after the averaging process as the signal region q of the memory 6. 同様に、メモリ1, Similarly, the memory 1,
3の領域cとiに保存される信号は平均化処理後にメモリ6の領域rの、メモリ2,4の領域hとnは平均化処理後にメモリ6の領域sの、メモリ3,4の領域lとo Signals stored in the region c and i of 3 region r of the memory 6 after averaging processing, the region h and n of the memory 2 and 4 in the region s of the memory 6 after averaging processing, area of ​​the memory 3 and 4 l and o
は平均化処理後にメモリ6の領域tの、そしてメモリ1 Region t of the memory 6 after averaging process, and the memory 1
から4のすべてに重複する領域d,g,j,mも同じ画素の信号なので平均化処理後にメモリ6の領域uの信号としてそれぞれ保存する。 Region overlaps the all 4 d, g, j, m may be respectively stored as signals in the region u of the memory 6 after averaging process since signals of the same pixel. メモリ6のそれぞれの領域に保存された信号は本発明映像信号出力装置による合成信号として出力される。 The signal stored in the respective areas of the memory 6 is outputted as the synthesized signal according to the present invention the video signal output apparatus. 上記における平均化処理は、領域d,g,j,mについては4つの分割領域に重複するので1/4にし、他はすべて1/2である。 Averaging processing in the region d, g, j, since overlapping four divided regions for m to 1/4, are all other 1/2.

【0026】なお、図4に示す例では読み出し回路1乃至4の出力(デジタル信号出力)をいったんメモリ1乃至4に保存した後、重複部分について平均化処理を行って再度メモリ6に保存するものとしたが、読み出し回路1乃至4の出力を直接メモリ6に書き込み、重複部分についてはすでに書き込まれたデータとの平均化処理を行ってメモリ内容を更新するようにしてもよく、また、メモリ1乃至4から直接的に合成信号を得てもよい。 [0026] Incidentally, after storage output of the read circuit 1 to 4 (digital signal output) temporarily in the memory 1 to 4 in the example shown in FIG. 4, which stores the averaging processing in the memory 6 again performed on the overlapping portion and it was, but writes the output of the read circuit 1 through 4 in the direct memory 6, the overlapping portion may be configured to update the memory contents by performing averaging processing of the already written data for, also, the memory 1 or may be obtained directly synthesized signal from the 4. 以上、いずれにしても読み出し回路の違いによる出力信号特性の違いは平均化され、各領域間の固定パターンノイズが低減される。 Above, the difference of the output signal characteristics due to the difference of the readout circuit Anyway are averaged, fixed pattern noise between the regions is reduced.

【0027】 [0027]

【発明の効果】本発明によれば、各分割領域から映像信号が同時並列に読み出される種類の固体撮像素子において、分割領域ごとに隣り合う領域の一部の映像を互いに重複して出力するようにしているため、分割領域ごとに設けられた信号読み出し回路の特性が平均化処理回路により平均化され、従来のように、領域間の境界部分が固定パターンノイズとして目立つということがなくなる。 According to the present invention, so that the video signals from the respective divided areas in the type of solid-state imaging device to be read simultaneously in parallel, and outputs a part of the image of a region adjacent to each divided region from each other duplicate since you are the characteristics of the signal read circuit provided for each divided region is averaged by the averaging processing circuit, as in the prior art, a boundary portion between the regions can be eliminated as conspicuous as fixed pattern noise.

【0028】また、本発明によってのりしろ映像を含む映像を出力することにより、同時並列読み出し信号をそのままデジタル化して2次元画像処理することが可能となり、これにより、画像処理の高速化や処理回路の小規模化を図ることができる。 Further, by outputting the image including the margin image by the present invention, it is possible to two-dimensional image processing to directly digitize a simultaneous parallel read-out signal, thereby, the speed and processing circuit of the image processing it is possible to achieve a small reduction.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 MOS増幅型固体撮像素子に本発明を適用した固体撮像素子の一実施形態を示している。 It shows an embodiment of the applied solid-state imaging device of the present invention in FIG. 1 MOS amplifying type solid-state imaging device.

【図2】 図1中の垂直走査回路1および2によって読み出される映像信号の蓄積時間を比較して示している。 It is shown by comparing the accumulation time of the image signal read by FIG. 2 the vertical scanning circuit 1 and 2 in FIG.

【図3】 本発明固体撮像素子からの並列出力信号に対して行われる2次元画像処理の例を示している。 Figure 3 shows an example of a two-dimensional image processing performed on the parallel output signals from the present invention the solid-state imaging device.

【図4】 本発明固体撮像素子用の映像信号出力装置の一構成例を示している。 Figure 4 shows an example of the configuration of a video signal output device for the present invention the solid-state imaging device.

【図5】 従来の領域分割並列読み出し固体撮像素子の構成例を示している。 5 shows a configuration example of a conventional area division parallel readout solid-state imaging device.

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 各分割領域から映像信号が同時並列に読み出される種類の固体撮像素子において、 前記領域の境界近傍の垂直方向の画素列および/または水平ライン方向の画素列から互いに重複して映像信号の読み出しを行うそれぞれ複数個の水平走査回路および/ 1. A kind of the solid-state imaging device a video signal from the divided areas is read out simultaneously in parallel, image overlap each other in the vertical direction of pixel columns and / or horizontal line direction pixel rows near the boundary of the region each read out signal a plurality of horizontal scanning circuits and /
    または垂直走査回路を具えてなることを特徴とする固体撮像素子。 Or a solid-state imaging device characterized by comprising comprises a vertical scanning circuit.
  2. 【請求項2】 請求項1記載の固体撮像素子において、 2. A solid-state imaging device according to claim 1, wherein,
    前記複数個の水平走査回路および/または垂直走査回路によって読み出した映像信号のうち互いに重複する部分の一部を2次元画像処理のためののりしろ映像に形成したことを特徴とする固体撮像素子。 Solid-state image pickup element characterized by forming a part of a portion overlapping one another in the video signal read by said plurality of horizontal scanning circuits and / or the vertical scanning circuit to overlap the image for 2-dimensional image processing.
  3. 【請求項3】 各領域の境界近傍の垂直方向の画素列および/または水平ライン方向の画素列から互いに重複して映像信号の読み出しを行うそれぞれ複数個の水平走査回路および/または垂直走査回路を具えてなり各分割領域から映像信号が同時並列に読み出される種類の固体撮像素子から映像信号を出力する映像信号出力装置であって、前記重複して映像信号の読み出しを行う領域に関して、重複の回数に応じた平均化処理を行って映像信号を出力するための平均化処理回路を具えてなることを特徴とする固体撮像素子用の映像信号出力装置。 Wherein each plurality of horizontal scanning circuits and / or vertical scanning circuit for reading the video signal from the vertical pixel columns and / or horizontal line direction pixel rows overlap each other near the boundary of each region video signals from each of the divided regions will comprise the a video signal output device for outputting a video signal from the type of the solid-state imaging device to be read simultaneously in parallel, with respect to those regions to read out the video signal to the duplication, the number of overlapping averaging the video signal output device for a solid-state imaging device characterized by comprising comprises an averaging processing circuit for outputting a video signal by performing in accordance with the.
JP01002299A 1999-01-19 1999-01-19 A solid-state imaging device and its video signal output device Expired - Fee Related JP3875423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01002299A JP3875423B2 (en) 1999-01-19 1999-01-19 A solid-state imaging device and its video signal output device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01002299A JP3875423B2 (en) 1999-01-19 1999-01-19 A solid-state imaging device and its video signal output device

Publications (2)

Publication Number Publication Date
JP2000209503A true JP2000209503A (en) 2000-07-28
JP3875423B2 JP3875423B2 (en) 2007-01-31

Family

ID=11738784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01002299A Expired - Fee Related JP3875423B2 (en) 1999-01-19 1999-01-19 A solid-state imaging device and its video signal output device

Country Status (1)

Country Link
JP (1) JP3875423B2 (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004350265A (en) * 2003-04-28 2004-12-09 Olympus Corp Imaging apparatus
JP2006094192A (en) * 2004-09-24 2006-04-06 Canon Inc Imaging device
JP2006109050A (en) * 2004-10-05 2006-04-20 Olympus Corp Imaging device
JP2006262192A (en) * 2005-03-17 2006-09-28 Victor Co Of Japan Ltd Image device
JP2006270292A (en) * 2005-03-23 2006-10-05 Sony Corp Physical quantity distribution detecting apparatus, and physical information acquisition method, and physical information acquisition apparatus
JP2007143118A (en) * 2005-09-12 2007-06-07 Victor Co Of Japan Ltd Imaging apparatus
JP2010028856A (en) * 2009-10-30 2010-02-04 Sony Corp Imaging method and apparatus
US7692703B2 (en) 2003-04-28 2010-04-06 Olympus Corporation Image pick-up apparatus
US7746399B2 (en) 2003-04-28 2010-06-29 Olympus Corporation Image pick-up device
WO2011013548A1 (en) * 2009-07-30 2011-02-03 浜松ホトニクス株式会社 Solid-state image pickup device
US8179453B2 (en) 2004-10-29 2012-05-15 Sony Corporation Imaging method and imaging apparatus
JP2013526801A (en) * 2010-05-12 2013-06-24 ペリカン イメージング コーポレイション Architecture for the imaging device array and array camera
JP5270766B2 (en) * 2009-11-06 2013-08-21 パナソニック株式会社 Imaging apparatus
KR101350068B1 (en) 2012-08-23 2014-01-14 삼성전자주식회사 Electronic device for outputting region of interest image
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9380191B2 (en) 2012-03-06 2016-06-28 Sony Corporation Solid-state imaging device, driving method, and electronic apparatus
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692703B2 (en) 2003-04-28 2010-04-06 Olympus Corporation Image pick-up apparatus
JP2004350265A (en) * 2003-04-28 2004-12-09 Olympus Corp Imaging apparatus
US7746399B2 (en) 2003-04-28 2010-06-29 Olympus Corporation Image pick-up device
JP2006094192A (en) * 2004-09-24 2006-04-06 Canon Inc Imaging device
JP2006109050A (en) * 2004-10-05 2006-04-20 Olympus Corp Imaging device
JP4704719B2 (en) * 2004-10-05 2011-06-22 オリンパス株式会社 Imaging device
US8179453B2 (en) 2004-10-29 2012-05-15 Sony Corporation Imaging method and imaging apparatus
US8300118B2 (en) 2004-10-29 2012-10-30 Sony Corporation Imaging method and imaging apparatus
US8582002B2 (en) 2004-10-29 2013-11-12 Sony Corporation Imaging method and imaging apparatus
JP4548163B2 (en) * 2005-03-17 2010-09-22 日本ビクター株式会社 Imaging device
JP2006262192A (en) * 2005-03-17 2006-09-28 Victor Co Of Japan Ltd Image device
JP2006270292A (en) * 2005-03-23 2006-10-05 Sony Corp Physical quantity distribution detecting apparatus, and physical information acquisition method, and physical information acquisition apparatus
JP2007143118A (en) * 2005-09-12 2007-06-07 Victor Co Of Japan Ltd Imaging apparatus
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US8767110B2 (en) 2009-07-30 2014-07-01 Hamamatsu Photonics K.K. Solid-state image pickup device
WO2011013548A1 (en) * 2009-07-30 2011-02-03 浜松ホトニクス株式会社 Solid-state image pickup device
JP5632374B2 (en) * 2009-07-30 2014-11-26 浜松ホトニクス株式会社 The solid-state imaging device
JP2010028856A (en) * 2009-10-30 2010-02-04 Sony Corp Imaging method and apparatus
JP5270766B2 (en) * 2009-11-06 2013-08-21 パナソニック株式会社 Imaging apparatus
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
KR101824672B1 (en) 2010-05-12 2018-02-05 포토네이션 케이맨 리미티드 Architectures for imager arrays and array cameras
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
JP2013526801A (en) * 2010-05-12 2013-06-24 ペリカン イメージング コーポレイション Architecture for the imaging device array and array camera
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9864921B2 (en) 2011-09-28 2018-01-09 Fotonation Cayman Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US9560275B2 (en) 2012-03-06 2017-01-31 Sony Corporation Solid-state imaging device, driving method, and electronic apparatus
US9380191B2 (en) 2012-03-06 2016-06-28 Sony Corporation Solid-state imaging device, driving method, and electronic apparatus
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
KR101350068B1 (en) 2012-08-23 2014-01-14 삼성전자주식회사 Electronic device for outputting region of interest image
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras

Also Published As

Publication number Publication date
JP3875423B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
US6522356B1 (en) Color solid-state imaging apparatus
US7349016B2 (en) Solid-state color imaging apparatus capable of reducing false signals with regard to both luminance and chrominance
EP0926886B1 (en) Solid state image pickup device and signal reading method thereof
KR101331132B1 (en) Solid-state image-pickup device, method of driving solid-state image-pickup device and image-pickup apparatus
US7403226B2 (en) Electric camera
EP0527004B1 (en) Image recording apparatus
KR101424033B1 (en) Solid-state imaging device, method for driving solid-state imaging device, and imaging device
JP3833125B2 (en) Imaging device
CN1239015C (en) Photographic device and photographic system
JP3551571B2 (en) Color ccd solid-state imaging device
JP5188080B2 (en) Imaging device, a driving method of the imaging apparatus, and reading apparatus
JP4956084B2 (en) The photoelectric conversion apparatus and an imaging system using the same
US4963981A (en) Image sensor device capable of electronic zooming
JP4139641B2 (en) The solid-state imaging device
JP4518616B2 (en) Solid-state imaging device and the driving method, and a camera system
EP0346102A2 (en) Solid state image sensing device
JP5038188B2 (en) Imaging apparatus and an imaging system using the same
JP3350073B2 (en) High-speed imaging apparatus
US8023018B2 (en) Drive method for solid-state imaging device, solid-state imaging device, and imaging apparatus
JP3862298B2 (en) The photoelectric conversion device
JP2006311240A (en) Imaging apparatus
JP3832902B2 (en) Semiconductor image sensor
KR970011536B1 (en) High-speed video camera
EP0569202B1 (en) Solid state imaging device with electronic shutter
EP0377025A1 (en) Low resolution verifier for a still video image.

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees