JP2000188118A - Packing material for solid polymer fuel cell separator - Google Patents

Packing material for solid polymer fuel cell separator

Info

Publication number
JP2000188118A
JP2000188118A JP36616398A JP36616398A JP2000188118A JP 2000188118 A JP2000188118 A JP 2000188118A JP 36616398 A JP36616398 A JP 36616398A JP 36616398 A JP36616398 A JP 36616398A JP 2000188118 A JP2000188118 A JP 2000188118A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
packing material
fuel cell
liquid
molding
used
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36616398A
Other languages
Japanese (ja)
Inventor
Hirobumi Iida
Michinari Miyagawa
倫成 宮川
博文 飯田
Original Assignee
Mitsubishi Plastics Ind Ltd
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes

Abstract

PROBLEM TO BE SOLVED: To provide a packing material maintaining elasticity for a long period and excellent in durability by using a material which is made of additive liquid silicone obtained by bridge-reacting two liquids different in structure and has a specific density after bridging. SOLUTION: A packing material covering at least a one-side peripheral edge section of the separator of a solid polymer fuel cell is formed with additive liquid silicone obtained by bridge-reacting a liquid A expressed by formula I and a liquid B expressed by formula II. In the formula I, m+n=50-2000. In the formula II, m'+n'=8-98. The bridge density by the pulse NMR method after bridging is set within the range of 0.3-5.0%. An alloy catalyst is normally used for the catalyst when two liquids A, B are mixed. Injection molding or press molding is used for molding the packing material. When a metal sheet such as a stainless steel sheet is used for a separator main body, the metal thin sheet is held in a die and a resin is injected by the insert molding method.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、小型の燃料電池として使用できる固体高分子型燃料電池セパレータに係り、特に、長期の使用が可能で成形性にも優れたセパレータ用パッキン材に関する。 The present invention relates to relates to a solid polymer fuel cell separator that can be used as a small fuel cell, in particular, it relates to long-separator packing materials used were excellent in possible moldability of.

【0002】 [0002]

【従来の技術】最近の環境問題や資源問題に対応して燃料電池の開発が活発に行われている。 BACKGROUND OF THE INVENTION the development of a fuel cell in response to the recent environmental problems and resource issues have been actively carried out. 特に、燃料電池としては小型、軽量化の要求から固体高分子型燃料電池が検討されている。 In particular, as the fuel cell compact, solid polymer fuel cells has been studied from the lighter requirements. このような電池用のセパレータとしては、より一層小型化が要求されまた多数のセパレータを重ね合わせて使用することから耐久性に優れ、長期間使用できるセパレータ用パッキング材が要求されている。 Such a separator for a battery, more durable since miniaturization used by superimposing the required also a number of separators, long term separator packing material that can be used is required.

【0003】このようなセパレータ用パッキング材として、成形性、耐熱性、弾性に優れたシリコーンゴム製のパッキング材が主に使用されている。 As such a separator packing material, moldability, heat resistance, silicone rubber packing material with excellent elasticity are mainly used. 更にシリコーンゴムとしてはより一層成形性に優れた二液タイプの付加型溶液状シリコーン樹脂が使用されている。 More two-pack type were more excellent in formability addition type solutions like silicone resin is used as a silicone rubber.

【0004】 [0004]

【発明が解決しょうとする課題】しかしながら、二液タイプの付加型液状シリコーン樹脂では確かに成形性は優れているが、長期の弾性を維持することが出来ず、耐久性に劣るという問題があった。 OBJECTS OF THE INVENTION It'll unsolved is excellent certainly formability in two pack type addition type liquid silicone resin, it can not be maintained long-term elasticity, a problem of poor durability It was.

【0005】 [0005]

【課題を解決するための手段】本発明は上述の問題点を解決したもので、その要旨は 固体高分子型燃料電池セパレータの少なくとも片側周縁部に被覆するパッキング材であって、そのパッキング材が次のA液とB液とを架橋反応させてなる付加型液状シリコーンからなり、架橋後のパルスNMR法による架橋密度が0.3〜5.0% The present invention SUMMARY OF] is obtained by solving the above problems, the gist thereof is a packing material covering at least one side periphery of the solid polymer fuel cell separator, its packing material and following solutions a and B by the crosslinking reaction consists of the addition type liquid silicone comprising, crosslink density by a pulse NMR method after crosslinking is 0.3 to 5.0%
の範囲であることを特徴とする固体高分子型燃料電池セパレータ用パッキング材である。 A solid polymer electrolyte fuel cell separator packing materials, characterized in that in the range of.

【化1】 [Formula 1]

【化2】 ## STR2 ##

【0006】 [0006]

【発明の実施の形態】以下、本発明を詳しく説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention is described in detail.
本発明に使用される液状樹脂は、上記に示した化学構造式のA液及びB液を用い、通常この二液は成形直前に混合し、この混合時に触媒として通常白金系触媒が使用される。 Liquid resin used in the present invention, using the liquids A and B of the chemical structural formula shown above, usually the two liquids are mixed immediately before molding, is usually a platinum-based catalyst is used as a catalyst during the mixing . 本発明においては、上記A液及びB液の架橋後のパルスNMR法による架橋密度が0.3〜5.0%の特定の範囲において、パッキング材として優れた特性を有することを見出したものである。 In the present invention, in which the crosslinking density by a pulse NMR method after crosslinking of the liquids A and B is in a specific range of 0.3 to 5.0% were found to have excellent properties as a packing material is there.

【0007】架橋密度の測定法は、パルス水素核磁気共鳴装置(日本電子(株)製、パルスNMR−MU25) [0007] Measurement of the crosslink density, pulsed hydrogen nuclear magnetic resonance apparatus (Nippon Denshi Co., Ltd., pulsed NMR-MU25)
のソリッド. Solid. エコー法を使用し、測定温度40℃、Xax Using echo method, measurement temperature 40 ° C., Xax
Time=40μS/Div、Sampling Point=100/Div、Scan T Time = 40μS / Div, Sampling Point = 100 / Div, Scan T
imes=32、Pw1=2.0μS、Pi1=10μS、 Rep Time=2.5S imes = 32, Pw1 = 2.0μS, Pi1 = 10μS, Rep Time = 2.5S
の測定条件で得られた水素磁化の減衰曲線のうち、ワイブル係数2でカーブフィットできる成分を架橋密度とすればよい。 Of decay curves obtained hydrogen magnetization measurement conditions, a component that can be curve fit Weibull coefficient 2 may be the crosslink density.

【0008】この架橋密度が0.3未満では架橋点が少なすぎてゴムの硬度が低下しパッキン材としてのシール効果が出ないという問題があり、また5.0を越えるものは耐久性に劣るという問題がある。 [0008] There is a problem that the hardness of the rubber is too small, crosslinking points in the crosslinking density of less than 0.3 is not out sealing effect as the reduced packing material, also it is inferior in durability that exceeds 5.0 there is a problem in that.

【0009】上記組成内容のシリコン樹脂を用いたパッキン材の成型方法は射出成形方法やプレス成型方法によればよくて、セパレータ本体にステンレス鋼板等の金属薄板を使用するものは、金型内に金属薄板を保持して樹脂を射出するインサート成型法がよい。 [0009] method of molding the packing material using the silicone resin of the above composition content well according to the injection molding method and press molding method, which uses a sheet metal stainless steel plate or the like to the separator body is in a mold it is insert molding method for injection to the resin holding the sheet metal.

【0010】また上記シリコーン樹脂は、粘度が10 3 [0010] The silicone resin has a viscosity of 10 3
〜10 4ポイズ(25℃)の樹脂が好適に使用できる。 10 4 resin poise (25 ° C.) can be suitably used.
粘度が10 3ポイズ未満のシリコーン樹脂は柔らかすぎて取り扱い難く、また10 4ポイズを越えるシリコーン樹脂では射出成型時の流動性に欠ける傾向がある。 The viscosity tends to lack fluidity during injection molding is 103 silicone resin under poise difficult to handle too soft and silicone resin exceeding 10 4 poise. なお、必要に応じて微粉末シリカ、ケイ藻土、高熱伝導性無機フィラー等の充填剤を添加してもよい。 Incidentally, the fine silica powder optionally, diatomaceous earth, may be added fillers such as highly thermally conductive inorganic filler.

【0011】成形後のシリコーン樹脂層の厚みは0.0 [0011] The thickness of the silicone resin layer after molding 0.0
5〜1.0mmの範囲が好適であり、0.05mm未満では正確な成形がしずらく又弾力効果が出にくいのでパッキン材としての具備すべき性質として多少見劣りがする。 Range 5~1.0mm are preferred, somewhat inferior to the properties to be provided as a packing material so hard out Zuraku The resilient effect by precise molding is less than 0.05 mm. そして1.0mmを越えるものでは特に固体高分子型燃料電池のセパレータ用としての用途では小型化しずらく又コスト高となる。 And those exceeding 1.0mm is the pleasure also costly not miniaturized, especially in use as a separator for a polymer electrolyte fuel cell.

【0012】さらに、成形後のシリコーン樹脂層の硬度を40〜70、好ましくは50〜60の範囲がよい。 Furthermore, the hardness of the silicone resin layer after the molding 40 to 70, preferably in the range of 50-60. 硬度の測定方法はJISK6301 スプリング式硬さ試験A形に準拠して行う。 Method of measuring the hardness is carried out in conformity with JISK6301 spring type hardness test A type. この硬度が40未満では柔らかすぎて取り扱いずらく、また70を越えると硬くなりすぎて弾力性に欠ける。 The hardness not a handle too soft Raku is less than 40, also too hard it exceeds 70 lacks elasticity.

【0013】 [0013]

【実施例】以下、本発明の実施例を図面に基づき説明する。 BRIEF DESCRIPTION OF THE PREFERRED EMBODIMENT Examples of the present invention with reference to the drawings. A液及びB液中にビニル基を、またB液中には、A A vinyl group in A solution and B solution, also in the solution B is, A
液及びB液中に含まれた合計ビニル基モル量を上まわる水素基量を含ませ、A液及びB液中の合計ビニル基モル量を架橋剤量とし、その割合の異なる原料を作成した。 Moistened with hydrogen groups amounts exceed the total vinyl group molar quantity contained in the liquid and B liquid, the total vinyl group molar amounts of A liquid and B liquid and the crosslinking agent amount, created the proportion of different material .

【0014】表1に示した架橋剤量の異なる液状シリコーンゴムを用いて下記方法にてパッキン材を得た。 [0014] to obtain a packing material by the following method using a crosslinking agent amount of different liquid silicone rubber shown in Table 1. 原料のA液とB液を1:1(重量比)でビーカー中で攪拌混合し、2時間真空乾燥機中で真空脱泡した。 A liquid and B liquid raw material 1: 1 were stirred and mixed in a beaker (weight ratio), was vacuum defoamed in vacuum for 2 hours dryer. その後、所定形状(100mm×100mm×12.5mm)の金型に充填し、再度2時間真空乾燥機中で真空脱泡した。 Then, it was filled in a mold of a predetermined shape (100mm × 100mm × 12.5mm), and vacuum defoaming in again 2 hours in a vacuum dryer.
次に上型で蓋をし、プレス機を用いて170℃の加熱温度で、90Kgf/cm 2の圧力で10分間加圧した。 Then covered with the upper mold, at a heating temperature of 170 ° C. using a pressing machine, and pressurized for 10 minutes at a pressure of 90 kgf / cm 2.
その後、200℃で4時間乾燥(二次加硫)し得られた板状の試験片を所定の円形状試験片に打ち抜いた。 Thereafter, were punched out for 4 hours drying (secondary vulcanization) was obtained was plate-shaped test piece at 200 ° C. in a predetermined circular specimen. 得られた円形状試験片につき、応力緩和耐久試験を行い、その結果を表1に示した。 Per resulting circular specimen subjected to stress relaxation durability test, and the results are shown in Table 1.

【0015】応力緩和耐久試験の試験法:直径29.0 [0015] The stress relaxation endurance test of the test method: diameter 29.0
mm、厚さ12.5の円形状試験片を圧縮板に挟み、2 mm, sandwiched circular test piece having a thickness of 12.5 to compression plate, 2
分間で25%の圧縮歪みが生ずるまで圧縮した。 It was compressed to cause a compressive strain of 25% in minutes. 圧縮歪みを与えた状態の試験片を、直ちに予め90℃、90% The test piece while applying a compressive strain, immediately in advance 90 ° C., 90%
に保持した恒温恒湿槽に入れて30分間後に取り出した。 It was removed after 30 minutes and put in a constant temperature and constant humidity chamber maintained at. 取り出された試験片を2時間掛けて試験室の標準状態の雰囲気に戻し、試験室の標準状態の雰囲気で当該試験片の圧縮応力F(0)を測定した。 The retrieved specimen returned to the atmosphere in the standard state for two hours over a test chamber were measured compressive stress F (0) of the test piece in an atmosphere of the standard state of the test chamber. 圧縮応力F(0) Compressive stress F (0)
の測定後、再び試験片を90℃、90%に保持した恒温恒湿槽に入れ、150時間経過後に取り出した再度、取り出された試験片を2時間掛けて試験室の標準状態の雰囲気に戻し、試験室の標準状態の雰囲気で当該試験片の圧縮応力F(150)を測定した。 After the measurement, again test piece 90 ° C., placed in a thermo-hygrostat kept at 90%, again taken out after the lapse of 150 hours, returned to the atmosphere of the standard state of the test chamber over a picked specimen was 2 hours It was measured compressive stress F (0.99) of the test piece in an atmosphere of the standard state of the test chamber. 測定は2回づつ行い、測定値が10%以内で一致することを確かめた。 The measurement was carried out at a time twice, confirmed that the measurement values ​​match within 10%.
尚、上記圧縮応力は、英国ウォーレス社製圧縮応力緩和測定装置、リラクソメータC−11型を用いて測定した。 Note that the compression stress, UK Wallace Inc. compressive stress relaxation measurement apparatus was measured using a Rirakusometa C-11 type. 圧縮保持率は下記の式により算出した。 Compression retention ratio was calculated by the following equation. R(t)=F(150)/F(0)×100。 R (t) = F (150) / F (0) × 100. この値が75%以上のものを(◎)、65%以上〜75 What the value is more than 75% (◎), more than 65% to 75
%未満のものを(△)、65%未満のものを(×)とした。 % Less than those (△), was of less than 65 percent and (×).

【0016】 [0016]

【表1】 [Table 1]

【0017】表1から本発明において規定する架橋後の架橋密度を満足する資料NO1及び2は圧縮応力保持率ば良好で長期間弾性を維持できるため長期の耐久性に優れていることが分かる。 [0017] Table article NO1 and 2 satisfies the crosslink density of the crosslinked prescribed in the present invention from 1 it can be seen that excellent long-term durability because it can maintain good long-term elasticity if compressive stress retention. これに対して、架橋密度が本発明の範囲外の資料NO3及び4は圧縮応力保持率が低く耐久性に劣っていることが分かる。 In contrast, the crosslinking density is out of range article NO3 and 4 of the present invention it can be seen that the compressive stress retention is inferior to low durability.

【0018】 [0018]

【発明の効果】上述したように、本発明のパッキング材は、長期間弾性を維持できて耐久性に優れており、長期の使用が可能な固体高分子型燃料電池のセパレータ用パッキング材として好適に使用できる。 [Effect of the Invention] As described above, the packing material of the present invention, a long period of time is excellent in durability can be maintained elasticity, suitable as a separator for packing material of a polymer electrolyte fuel cell capable of long-term use It can be used for.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) H01M 8/10 H01M 8/10 Fターム(参考) 4F071 AA67 AA82 AE02 AF20 AF45 AF57 AH19 BA01 BB03 BB05 BC03 4H017 AA03 AB16 AC19 AD03 AE04 AE05 4J002 CP04X CP14W CP14X GJ02 GQ00 5H026 AA06 BB04 BB10 CX08 EE18 HH05 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI theme Court Bu (reference) H01M 8/10 H01M 8/10 F-term (reference) 4F071 AA67 AA82 AE02 AF20 AF45 AF57 AH19 BA01 BB03 BB05 BC03 4H017 AA03 AB16 AC19 AD03 AE04 AE05 4J002 CP04X CP14W CP14X GJ02 GQ00 5H026 AA06 BB04 BB10 CX08 EE18 HH05

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 固体高分子型燃料電池セパレータの少なくとも片側周縁部に被覆するパッキング材であって、そのパッキング材が次のA液とB液とを架橋反応させてなる付加型液状シリコーンからなり、架橋後のパルスNM 1. A packing material covering at least one side periphery of the solid polymer fuel cell separator, addition type liquid silicone that packing material is by crosslinking reaction and subsequent liquid A and liquid B , pulse NM after crosslinking
    R法による架橋密度が0.3〜5.0%の範囲であることを特徴とする固体高分子型燃料電池セパレータ用パッキング材。 Polymer electrolyte fuel cell separator packing materials, wherein the cross-linking density by R method is in the range of 0.3 to 5.0%. 【化1】 [Formula 1] 【化2】 ## STR2 ##
JP36616398A 1998-12-24 1998-12-24 Packing material for solid polymer fuel cell separator Pending JP2000188118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36616398A JP2000188118A (en) 1998-12-24 1998-12-24 Packing material for solid polymer fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36616398A JP2000188118A (en) 1998-12-24 1998-12-24 Packing material for solid polymer fuel cell separator

Publications (1)

Publication Number Publication Date
JP2000188118A true true JP2000188118A (en) 2000-07-04

Family

ID=18486080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36616398A Pending JP2000188118A (en) 1998-12-24 1998-12-24 Packing material for solid polymer fuel cell separator

Country Status (1)

Country Link
JP (1) JP2000188118A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083616A (en) * 2000-07-05 2002-03-22 Mitsubishi Plastics Ind Ltd Packing material for solid polymer type fuel cell
EP1263065A1 (en) * 2001-05-23 2002-12-04 Wacker-Chemie GmbH Use of crosslinkable silicone rubbers, stable against degradation as sealants in fuel cells
US6713205B2 (en) 2001-04-17 2004-03-30 Shin-Etsu Chemical Co., Ltd. Sealing material for solid polymer fuel cell separator
EP1416554A1 (en) * 2001-07-06 2004-05-06 HONDA MOTOR CO., Ltd. SEALING MATERIAL COATING METHOD FOR FUEL CELL−USE SEPARATOR
US6780535B2 (en) 2001-11-12 2004-08-24 Shin-Etsu Chemical Co., Ltd. Polymer electrolyte fuel-cell separator sealing rubber composition
US6875534B2 (en) 2001-06-22 2005-04-05 Shin-Etsu Chemical Co., Ltd. Polymer electrolyte fuel-cell separator sealing rubber composition
US7087338B2 (en) 2002-02-28 2006-08-08 Shin-Etsu Chemical Co., Ltd. Polymer electrolyte fuel-cell separator sealing rubber composition
US7482403B2 (en) 2001-04-13 2009-01-27 Shin-Etsu Chemical Co., Ltd. Sealing material for polymer electrolyte fuel-cell separator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083616A (en) * 2000-07-05 2002-03-22 Mitsubishi Plastics Ind Ltd Packing material for solid polymer type fuel cell
US7482403B2 (en) 2001-04-13 2009-01-27 Shin-Etsu Chemical Co., Ltd. Sealing material for polymer electrolyte fuel-cell separator
US6713205B2 (en) 2001-04-17 2004-03-30 Shin-Etsu Chemical Co., Ltd. Sealing material for solid polymer fuel cell separator
EP1263065A1 (en) * 2001-05-23 2002-12-04 Wacker-Chemie GmbH Use of crosslinkable silicone rubbers, stable against degradation as sealants in fuel cells
US6875534B2 (en) 2001-06-22 2005-04-05 Shin-Etsu Chemical Co., Ltd. Polymer electrolyte fuel-cell separator sealing rubber composition
EP1416554A1 (en) * 2001-07-06 2004-05-06 HONDA MOTOR CO., Ltd. SEALING MATERIAL COATING METHOD FOR FUEL CELL−USE SEPARATOR
EP1416554A4 (en) * 2001-07-06 2007-12-05 Honda Motor Co Ltd Sealing material coating method for fuel cell-use separator
US6780535B2 (en) 2001-11-12 2004-08-24 Shin-Etsu Chemical Co., Ltd. Polymer electrolyte fuel-cell separator sealing rubber composition
US7087338B2 (en) 2002-02-28 2006-08-08 Shin-Etsu Chemical Co., Ltd. Polymer electrolyte fuel-cell separator sealing rubber composition

Similar Documents

Publication Publication Date Title
Wada Mechanical Dispersions and Transition Phenomena in Semicrystalline Polymers
Bisanda et al. Properties of sisal-CNSL composites
US5695873A (en) Polymer-ceramic composite electrolytes
Norton et al. Effect of end-anchored chains on the adhesion at a thermoset-thermoplastic interface
US4770422A (en) Composition for making durable golf balls and other products
US5093138A (en) Glycerin-containing flowable, pressure-compensating material and process for producing same
Bucknall et al. Rubber-toughening of plastics
US5989700A (en) Pressure sensitive ink means, and methods of use
US4137200A (en) Crosslinked hydrophilic foams and method
US4799360A (en) Method of binding a metal hydride to a surface
US5679457A (en) Thermally conductive interface for electronic devices
US4621106A (en) Polyester polyurethane foams having antistatic properties
US4701017A (en) Touch position sensitive optical waveguides
Bae et al. Insulin permeation through thermo-sensitive hydrogels
Yeo et al. Physical properties and supermolecular structure of perfluorinated ion‐containing (Nafion) polymers
US20050001352A1 (en) Preparation of fuel cell composite bipolar plate
Siegel et al. pH-dependent equilibrium swelling properties of hydrophobic polyelectrolyte copolymer gels
US5195945A (en) Orthotic pads and methods
Papir et al. The mechanical properties of stratum corneum: I. The effect of water and ambient temperature on the tensile properties of newborn rat stratum corneum
US5002047A (en) Orthotic pads and methods
EP0240162A2 (en) Liquid curable polyorganosiloxane compositions
US4302552A (en) Microcellular polyurethane vibration isolator
Martin et al. The influence of composition ratio on the morphology of biomedical polyurethanes
JPH09251857A (en) Solid ion conductor
JPH0347825A (en) Moisture-curing resin composition