JP2000166549A - Heat-stable enzyme and its production - Google Patents

Heat-stable enzyme and its production

Info

Publication number
JP2000166549A
JP2000166549A JP10343212A JP34321298A JP2000166549A JP 2000166549 A JP2000166549 A JP 2000166549A JP 10343212 A JP10343212 A JP 10343212A JP 34321298 A JP34321298 A JP 34321298A JP 2000166549 A JP2000166549 A JP 2000166549A
Authority
JP
Japan
Prior art keywords
enzyme
weight
solution
calcium
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10343212A
Other languages
Japanese (ja)
Other versions
JP3774581B2 (en
Inventor
Ryoichi Minoshima
良一 蓑島
Yoriko Endo
世里子 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Oil Mills Ltd
Original Assignee
Nisshin Oil Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Oil Mills Ltd filed Critical Nisshin Oil Mills Ltd
Priority to JP34321298A priority Critical patent/JP3774581B2/en
Publication of JP2000166549A publication Critical patent/JP2000166549A/en
Application granted granted Critical
Publication of JP3774581B2 publication Critical patent/JP3774581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a heat-stable enzyme capable of improving the heat-stability of lipoxidase for conducting its stable reaction at high temperatures, to provide an enzyme production method for producing a stable enzyme powder hardly reduced in enzyme activity by heat even in heat pulverization. SOLUTION: This heat-stable enzyme is obtained by adding iron salt and calcium salt to a lipoxidase with a metal content of <=0.5 wt.%, wherein a lipoxidase subjected to demineralization treatment is pref. used. The usages of the iron salt and calcium salt are 0.01 to 50 wt.% and 0.01 to 70 wt.% based on the enzyme, respectively. The other objective method for producing an enzyme power is conducted by drying a lipoxidase solution containing an iron salt and calcium salt by, pref., a spray drying method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は脂質分解酵素の熱安
定性に係る。詳しくは脱イオン処理が施された酵素溶液
に金属塩を添加することで酵素の熱安定化を図ると共
に、安定的な酵素製造方法に関する。
The present invention relates to the thermostability of lipolytic enzymes. More specifically, the present invention relates to a method for producing a stable enzyme while stabilizing the heat of the enzyme by adding a metal salt to the deionized enzyme solution.

【0002】[0002]

【従来の技術】酵素は温和な条件で触媒反応を行うこと
ができ、また、化学反応と比較して基質特異性が高い等
により、近年、食品工業、化学工業、医薬品工業等の分
野で酵素の利用範囲が拡大してきている。一般に酵素は
不安定なものであり、特に溶液中での酵素の安定性は低
い。したがって、酵素の濃縮粉末化法としては、熱がか
かりにくい凍結乾燥法、真空乾燥法等が主に利用されて
きている。しかしながら、これらの乾燥法では、大量生
産のための設備投資が莫大になったり、ユーテリテイー
等のランニングコストが高くなってしまったりして、産
業分野で利用するのは問題がある。また、酵素の中で
も、多くの油脂関連酵素は水溶液中で約35℃を超える
と、熱変性が起こり始め、安定的な収率の高い酵素の工
業生産は困難になる。したがって、低い温度域での酵素
液の処理が必要となり、濃縮・粉末化法が上記の方法に
限定されることになる。そこで、これまで酵素の水溶液
中での熱安定性を向上させるため、安定化剤の添加等が
試みられてきた。例えば、酵素溶液にアルブミン、カゼ
イン等の蛋白質、グルタミン酸ソーダ等のアミノ酸、メ
ルカプトエタノール、システイン等の還元剤、グリセロ
ール、ショ糖、ソルビトール等のポリオール類、デキス
トラン等の水溶性高分子物質等を酵素安定化剤として添
加する方法などは一般的に検討されてきた。特開平6−
284886公報には、酵素の溶液中での安定化方法と
して、リポプロテインリパーゼ溶液にマグネシウムイオ
ンおよびカルシウムイオンを添加することが、また、特
表平8−500013公報には、シュードモナス属リパ
ーゼ水溶液中にリパーゼの量に対して少なくも化学理論
的に当量の二価陽イオンを添加することが報告されてい
る。しかしながら、これらの方法では、脂質分解酵素の
水溶液中の熱安定性は37℃〜80℃程度が限界であ
り、融点が高い基質を用いる酵素合成等への応用は困難
であった。また、代表的な乾燥法である噴霧乾燥による
酵素の粉末化法においても、加熱濃縮を経て熱気流中で
乾燥されるため、噴霧乾燥では酵素活性の低下が生じる
という欠点を有していた。
2. Description of the Related Art Enzymes can be catalyzed under mild conditions and have high substrate specificity compared with chemical reactions. Therefore, enzymes have recently been used in the fields of food industry, chemical industry, pharmaceutical industry, etc. The use range of is expanding. In general, enzymes are unstable, and particularly the stability of the enzyme in a solution is low. Therefore, as a method for concentrating and powdering the enzyme, a freeze-drying method, a vacuum-drying method, etc., to which heat is hardly applied, have been mainly used. However, these drying methods have problems in using them in the industrial field due to enormous capital investment for mass production and high running costs such as utility. In addition, among enzymes, when many fats and oils-related enzymes exceed about 35 ° C. in an aqueous solution, thermal denaturation starts to occur, and it becomes difficult to industrially produce enzymes with stable and high yield. Therefore, it is necessary to treat the enzyme solution in a low temperature range, and the concentration / pulverization method is limited to the above method. Therefore, in order to improve the thermal stability of the enzyme in an aqueous solution, attempts have been made to add a stabilizer or the like. For example, in an enzyme solution, proteins such as albumin and casein, amino acids such as sodium glutamate, reducing agents such as mercaptoethanol and cysteine, polyols such as glycerol, sucrose and sorbitol, and water-soluble polymer substances such as dextran are subjected to enzyme stabilization. Methods for adding as an agent have been generally studied. JP-A-6
284886 discloses adding a magnesium ion and a calcium ion to a lipoprotein lipase solution as a method for stabilizing an enzyme in a solution. It has been reported to add at least a stoichiometrically equivalent amount of divalent cation to the amount of lipase. However, in these methods, the thermal stability of the lipolytic enzyme in an aqueous solution is limited to about 37 ° C. to 80 ° C., and application to enzyme synthesis using a substrate having a high melting point has been difficult. In addition, the method of powdering an enzyme by spray drying, which is a typical drying method, has a drawback that the enzyme activity is reduced by spray drying because the enzyme is dried in a hot air stream after heat concentration.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、酵素
の熱安定性を高め、高温での反応を行うことが可能な脂
質関連酵素を提供するとともに、粉末化法においても、
熱による失活が起こり難く、安定的に酵素粉末を生産が
できる製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lipid-related enzyme capable of improving the thermal stability of an enzyme and performing a reaction at a high temperature.
An object of the present invention is to provide a production method capable of stably producing an enzyme powder without causing heat-induced deactivation.

【0004】[0004]

【発明が解決するための手段】本発明者らは上記課題を
達成するために、鋭意検討を重ねた結果、脂質分解酵素
溶液を脱イオンした後、鉄塩およびカルシウム塩を添加
することで、酵素の熱安定性が飛躍的に向上することを
見出し、本発明を完成した。すなわち、金属の含有量が
0.5重量%以下である脂質分解酵素に、鉄塩およびカ
ルシウム塩を添加することを特徴とする、熱安定性酵素
に関する。上記脂質分解酵素は脱イオン処理が施されて
いることが好ましい。また、鉄塩が酵素の重量に対して
0.01〜50重量%、カルシウム塩が酵素の重量に対
して0.01〜70重量%であることが好ましい。また
本発明は、鉄塩およびカルシウム塩を含む脂質分解酵素
溶液を噴霧乾燥して酵素粉末を得る酵素の製造法に関す
る。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, after deionizing a lipolytic enzyme solution, an iron salt and a calcium salt are added. The inventors have found that the thermal stability of the enzyme is dramatically improved, and completed the present invention. That is, the present invention relates to a thermostable enzyme comprising adding an iron salt and a calcium salt to a lipolytic enzyme having a metal content of 0.5% by weight or less. The lipolytic enzyme is preferably subjected to a deionization treatment. The iron salt is preferably 0.01 to 50% by weight based on the weight of the enzyme, and the calcium salt is preferably 0.01 to 70% by weight based on the weight of the enzyme. The present invention also relates to a method for producing an enzyme by spray-drying a lipolytic enzyme solution containing an iron salt and a calcium salt to obtain an enzyme powder.

【0005】[0005]

【発明の実施の形態】以下本発明を詳しく説明する。本
発明は、脱イオンした脂質分解酵素溶液に、鉄塩および
カルシウム塩を添加することによる酵素の熱安定化方法
と加熱乾燥方法による粉末化においても熱による酵素失
活が起こり難くい酵素粉末生産ができる脂質分解酵素の
製造方法である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The present invention provides a method for producing an enzyme powder in which enzyme deactivation by heat is unlikely to occur even in a method for heat stabilization of an enzyme by adding an iron salt and a calcium salt to a deionized lipolytic enzyme solution and powdering by a heat drying method. This is a method for producing a lipolytic enzyme that can produce

【0006】本発明に用いる脂質分解酵素は特に限定さ
れるものではないが、市販の酵素製剤、微生物培養液、
植物抽出液、動物細胞抽出液、動物細胞抽出液等が利用
でき、さらに、培養液、抽出液の濃縮液等も利用でき
る。
Although the lipolytic enzyme used in the present invention is not particularly limited, commercially available enzyme preparations, microbial culture solutions,
A plant extract, an animal cell extract, an animal cell extract, and the like can be used, and further, a culture solution, a concentrate of the extract, and the like can be used.

【0007】脂質分解酵素としては、リパーゼ類、フォ
スフォリパーゼ類、エステラーゼ類等があげられる。リ
パーゼ類は、リポプロテインリパーゼ、モノアシルグリ
セロリパーゼ、ジアシルグリセロリパーゼ、トリアシル
グリセロリパーゼ、ガラクトリパーゼ等があげられる。
フォスフォリパーゼ類は、リゾフォスフォリパーゼ、フ
ォスフォリパーゼA1,A2,B,C,D等があげられ
る。エステラーゼ類は、コリンエステラーゼ、コレステ
ロールエステラーゼ、ペクチンエステラーゼ、トロピン
エステラーゼ、アセチルコリンエステラーゼ、アセチル
エステラーゼ、カルボキシエステラーゼ、アリルエステ
ラーゼ等があげられる。
The lipolytic enzymes include lipases, phospholipases, esterases and the like. The lipases include lipoprotein lipase, monoacylglycerolipase, diacylglycerolipase, triacylglycerolipase, galactolipase and the like.
Phospholipases include lysophospholipase, phospholipases A1, A2, B, C, D and the like. Esterases include cholinesterase, cholesterol esterase, pectin esterase, tropine esterase, acetylcholinesterase, acetylesterase, carboxyesterase, allylesterase and the like.

【0008】本発明で使用される微生物は、細菌、酵
母、糸状菌、放線菌等特に限定されるものではないが、
シュードモナス属(Psudomonas sp.)、アルカリゲネ
ス属(Alcaligenes sp.)、アスロバクター属(Arthro
bacter sp.)、スタフィロコッカス属(Staphylococcu
s sp.)、トルロプシス属(Torulopsis sp.)、エス
チエリシア属(Escherichia sp.)、マイコトルラ属
(Micotorula sp.)、プロピオニバクテリウム属(Pro
pionibacterum sp.)、クロモバクテリウム属(Chromo
bacterum sp.)、キサントモナス属(Xanthomonas s
p.)、クロストリデイウム属(Clostridium sp.)、キ
ャンデイダ属(Candida sp.)、ジオトリカム属(Geot
richum sp.)、サッカロマイコプシス属(Sacchromyco
psis sp.)、ノカルデイア属(Nocardia sp.)、フザ
リウム属(Fuzarium sp.)、アスペルギルス属(Asper
gillus sp.)、ペニシリウム属(Penicillum sp.)、
ムコール属(Mucor sp.)、リゾプス属(Rhizopus s
p)、フィコマイセス属(Phycomycese sp.)、プチニ
ア属(Puccinia sp.)、バチルス属(Bacillus s
p.)、ストレプトマイセス属(Streptmycese sp.)等
があげられる。
The microorganism used in the present invention is not particularly limited, such as bacteria, yeasts, filamentous fungi, actinomycetes, etc.
Pseudomonas sp., Alcaligenes sp., Asrobacter sp.
bacter sp.), Staphylococcus
s sp.), Torulopsis sp., Escherichia sp., Mycotorula sp., Propionibacterium sp.
pionibacterum sp.), Chromobacterium (Chromo
bacterum sp.), Xanthomonas s
p.), Clostridium sp., Candida sp., Geotricum sp.
richum sp.), Saccharomycos sp.
psis sp.), Nocardia sp., Fusarium sp., Aspergillus (Asper)
gillus sp.), Penicillium sp.,
Genus Mucor sp., Rhizopus s
p), Phycomyces sp., Puccinia sp., Bacillus s
p.) and Streptomyces sp.

【0009】リパーゼ生産用培地としては、特に限定さ
れるものではないが、好ましくは、大豆粉、ペプトン、
コーン・ステープ・リカー、K2HPO4、(NH42
4、MgSO4・7H2O等が使用できる。添加量につ
いては、大豆粉は0.1〜20重量%、好ましくは1.
0〜10.0重量%である。ペプトンは0.1〜30重
量%、好ましくは0.5〜10重量%である。コーン・
ステープ・リカーは0.1〜30重量%、好ましくは
0.5〜10.0重量%である。K2HPO4は0.01
〜20重量%、好ましくは0.1〜5重量%である。
(NH42SO4は0.01〜20重量%、好ましくは
0.05〜5重量%である。MgSO4・7H2Oは0.
01〜20重量%、好ましくは0.05〜5重量%であ
る。培養条件については、培養温度は10〜40℃、好
ましくは20〜35℃である。通気量は0.1〜2.0
VVM、好ましくは0.1〜1.0VVMである。攪拌回転数
は100〜800rpm、好ましくは200〜400rpmで
ある。pHは3.0〜10.0、好ましくは4.0〜
9.5である。
The medium for producing lipase is not particularly limited, but is preferably soybean powder, peptone,
Corn stap liquor, K 2 HPO 4 , (NH 4 ) 2 S
O 4 and MgSO 4 .7H 2 O can be used. As for the addition amount, soybean flour is 0.1 to 20% by weight, preferably 1.
0 to 10.0% by weight. Peptone is 0.1 to 30% by weight, preferably 0.5 to 10% by weight. corn·
The stap liquor is 0.1 to 30% by weight, preferably 0.5 to 10.0% by weight. K 2 HPO 4 is 0.01
-20% by weight, preferably 0.1-5% by weight.
(NH 4) 2 SO 4 is 0.01 to 20% by weight, preferably 0.05 to 5 wt%. MgSO 4 · 7H 2 O is 0.
It is from 0.01 to 20% by weight, preferably from 0.05 to 5% by weight. Regarding the culture conditions, the culture temperature is 10 to 40C, preferably 20 to 35C. Ventilation rate is 0.1 to 2.0
VVM, preferably 0.1 to 1.0 VVM. The rotational speed of the stirring is 100 to 800 rpm, preferably 200 to 400 rpm. The pH is between 3.0 and 10.0, preferably between 4.0 and 10.0.
9.5.

【0010】酵素の抽出方法は特に限定されるものでは
ないが、菌体外分泌酵素の場合は、菌体を遠心分離、膜
濾過などで除去することが好ましい。遠心分離は200
〜20,000×g、膜濾過はMF膜、フィルタープレ
スなどで圧力を3.0kg/m 2以下にコントロールする
のが好ましい。菌体内酵素の場合は、ホモジナイザー、
ワーリングブレンダー、超音波破砕、フレンチプレス、
ボールミル等で細胞破砕し、遠心分離、膜濾過などで細
胞残さを除去することが好ましい。ホモジナイザーは5
00〜30,000rpm、好ましくは1,000〜1
5,000rpmである。ワーリングブレンダーは500
〜5,000rpm、0.5〜10分、好ましくは100
〜10,000rpm、1〜5分である。超音波破砕は1
〜50KHz、好ましくは10〜20KHzである。ボールミ
ルは直径0.1〜0.5mm程度のガラス製小球を用いる
のが好ましい。
The method for extracting the enzyme is not particularly limited.
However, in the case of exocrine enzymes, centrifuge the cells,
It is preferable to remove by filtration or the like. Centrifuge 200
20,000 xg, membrane filtration is MF membrane, filter
Pressure of 3.0kg / m TwoControl below
Is preferred. In the case of intracellular enzymes, a homogenizer,
Waring blender, ultrasonic crushing, French press,
Crush cells with a ball mill, etc.
It is preferable to remove cell residue. Homogenizer is 5
00 to 30,000 rpm, preferably 1,000 to 1
5,000 rpm. Waring blender is 500
5,000 rpm, 0.5-10 minutes, preferably 100
10,000 rpm, 1-5 minutes. Ultrasonic crushing is 1
5050 KHz, preferably 10-20 KHz. Ball ball
Use small glass balls with a diameter of about 0.1 to 0.5 mm
Is preferred.

【0011】本発明の金属とは、元素周期表における金
属元素を言い、水素を除くI族、II族、ホウ素を除く
III族、炭素とケイ素を除くIV族、VIII族およ
びV,VI,VII族の各a亜族に属する元素である。
このほかアンチモン、ビスマス、ポロニウム等もあげら
れる。脱イオン処理とは、具体的には酵素の溶液から金
属イオンを除去あるいは低減することで、結果として脂
質分解酵素中の金属の含有量の低減が図られる。除去す
る金属の種類はいずれでもよく、低減する割合が問題と
なる。すなわち、脱イオン処理後の酵素に残存する金属
は0.5重量%以下であり、好ましくは0.25重量%
以下であり、特に好ましくは0.05重量%以下であ
る。0.5重量%を越えて金属が存在すると、鉄塩およ
びカルシウム塩を添加しても熱安定性酵素を得ることは
できない。酵素の脱イオンの方法としては、特に限定さ
れるものではないが、半透膜、異方性膜等の膜を用いた
分子量分画による方法、EDTAによる金属塩の析出
法、分子篩クロマトグラフィー法、電気透析法等があげ
られる。半透膜の材質としては、セロハン膜、コロジオ
ン膜、セルロースアセテート膜等があげられる。また、
異方性膜の材質としては、高分子電解質、ポリサッカラ
イド、セルローストリアセテート、セルロースアセテー
ト、セルロースナイトレート、ポリアクリルニトリル、
ポリフッ化ビニリデンポリアミド、ポリフッ化ビニリデ
ン系等があげられる。膜は平膜、中空繊維膜等があげら
れる。また、膜の分画分子量は、3,000〜100,
000、好ましくは6,000〜50,000である。
膜による濃縮脱イオンの場合、酵素溶液を緩衝液、蒸留
水、イオン交換水、水道水等により、液量を1倍〜1,
000倍、好ましくは2倍〜50倍まで希釈する。その
希釈酵素溶液を膜により濃縮を行い、希釈酵素溶液重量
あたり2倍〜1,000倍まで濃縮を行う。濃縮時の膜
モジュール入口圧力は0.5〜2.0atm、出口圧力
は0.1〜1.5atmが好ましい。分子篩クロマトグ
ラフィーは、ゲルとしてSephadex G−25、
ゲル粒度mediumあるいはcoarseが好まし
い。また、カラムのベット体積の30重量%程度以下に
なるように酵素蛋白質量またはゲル量を調製することが
好ましい。また、Sephadexなどのゲルのカルボ
キシ基などの解離基に蛋白質が吸着されないように、酵
素溶液のイオン強度は0.02以上にするのが好まし
い。電気透析法は、隔膜として、陽イオン交換膜と陰イ
オン交換膜を交互に重ね合わせる方法が好ましい。ED
TAの濃度は、0.01〜100mM、好ましくは0.
1〜50mMである。
The metal of the present invention refers to a metal element in the periodic table of elements, and is a group I except for hydrogen, a group II except for hydrogen, a group III except for boron, a group IV except for carbon and silicon, a group VIII and V, VI, VII It is an element belonging to each subgroup a of the group.
Other examples include antimony, bismuth, and polonium. The deionization treatment specifically removes or reduces metal ions from the enzyme solution, and as a result, the metal content in the lipolytic enzyme is reduced. The type of metal to be removed may be any type, and the reduction ratio is a problem. That is, the metal remaining in the enzyme after the deionization treatment is 0.5% by weight or less, preferably 0.25% by weight.
Or less, and particularly preferably 0.05% by weight or less. If the metal is present in an amount exceeding 0.5% by weight, a thermostable enzyme cannot be obtained even when iron salts and calcium salts are added. The method of deionizing the enzyme is not particularly limited, but a method by molecular weight fractionation using a membrane such as a semipermeable membrane and an anisotropic membrane, a method of depositing a metal salt by EDTA, a method of molecular sieve chromatography And electrodialysis. Examples of the material of the semipermeable membrane include a cellophane membrane, a collodion membrane, and a cellulose acetate membrane. Also,
Examples of the material of the anisotropic film include a polymer electrolyte, polysaccharide, cellulose triacetate, cellulose acetate, cellulose nitrate, polyacrylonitrile,
Examples thereof include polyvinylidene fluoride polyamide and polyvinylidene fluoride. Examples of the membrane include a flat membrane and a hollow fiber membrane. The molecular weight cut off of the membrane is 3,000-100,
000, preferably 6,000 to 50,000.
In the case of concentration deionization using a membrane, the enzyme solution is buffered, distilled water, ion-exchanged water, tap water, etc., to a volume of 1 to 1,
Dilute 000 times, preferably 2 to 50 times. The diluted enzyme solution is concentrated by a membrane, and concentrated to 2 to 1,000 times the weight of the diluted enzyme solution. The membrane module inlet pressure during concentration is preferably 0.5 to 2.0 atm, and the outlet pressure is preferably 0.1 to 1.5 atm. Molecular sieve chromatography was performed on Sephadex G-25 as a gel,
Gel particle size medium or coarse is preferred. Further, it is preferable to adjust the amount of enzyme protein or the amount of gel so as to be about 30% by weight or less of the bed volume of the column. The ionic strength of the enzyme solution is preferably set to 0.02 or more so that the protein is not adsorbed to a dissociating group such as a carboxy group of a gel such as Sephadex. In the electrodialysis method, a method in which a cation exchange membrane and an anion exchange membrane are alternately stacked as a diaphragm is preferable. ED
The concentration of TA is 0.01 to 100 mM, preferably 0.1 to 100 mM.
1 to 50 mM.

【0012】酵素の安定化に使用する鉄塩としては、塩
化第一鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄、硝酸
鉄、リン酸鉄、シュウ酸鉄、乳酸鉄、フマル酸鉄、クエ
ン酸鉄のうち1種または2種以上であることが好まし
い。カルシウム塩としては、塩化カルシウム、硫酸カル
シウム、硝酸カルシウム、酢酸カルシウム、シュウ酸カ
ルシウム、クエン酸カルシウム、アスコルビン酸カルシ
ウム、安息香酸カルシウム、プロピオン酸カルシウム、
サリチル酸カルシウム、ステアリン酸カルシウム、酒石
酸カルシウム、チオシアン酸カルシウム、リン酸水素カ
ルシウム、ケイ酸カルシウムのうち1種または2種以上
であることが好ましい。
The iron salts used for stabilizing enzymes include ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, iron nitrate, iron phosphate, iron oxalate, iron lactate, and fumaric acid. It is preferable to use one or more of iron acid and iron citrate. Calcium salts include calcium chloride, calcium sulfate, calcium nitrate, calcium acetate, calcium oxalate, calcium citrate, calcium ascorbate, calcium benzoate, calcium propionate,
It is preferable to use one or more of calcium salicylate, calcium stearate, calcium tartrate, calcium thiocyanate, calcium hydrogen phosphate, and calcium silicate.

【0013】酵素に鉄塩およびカルシウム塩を添加する
方法としては、酵素を水に溶解し酵素溶液とし、まず対
象となる酵素を0〜25℃、好ましくは0〜5℃におい
て、鉄塩の場合は、鉄塩を酵素の重量に対して0.01
〜50重量%、好ましくは0.05〜30重量%を添加
し、カルシウム塩の場合は、カルシウム塩を酵素の重量
に対して0.01〜70重量%、好ましくは0.05〜
50重量%を添加し、スターラー攪拌で1分〜48時
間、好ましくは30分〜10時間攪拌を行う。また、上
記脱イオン化した酵素溶液に直接鉄塩およびカルシウム
塩を加えることもできる。
As a method for adding an iron salt and a calcium salt to an enzyme, the enzyme is dissolved in water to form an enzyme solution, and the enzyme to be treated is first treated at 0 to 25 ° C., preferably 0 to 5 ° C. Is to add 0.01% iron salt to the weight of the enzyme.
To 50% by weight, preferably 0.05 to 30% by weight, and in the case of a calcium salt, the calcium salt is added to the enzyme at 0.01 to 70% by weight, preferably 0.05 to 70% by weight.
50% by weight is added, and the mixture is stirred with a stirrer for 1 minute to 48 hours, preferably 30 minutes to 10 hours. Further, iron salts and calcium salts can be added directly to the deionized enzyme solution.

【0014】酵素の粉末化方法は、特に限定されるもの
ではないが、通常酵素溶液を濃縮した後、乾燥して酵素
粉末を得る。濃縮法としては、エバポレーター、フラッ
シュエバポレーター、UF膜濃縮、MF膜濃縮、無機塩
類による塩析、溶剤による沈殿法、イオン交換セルロー
ス等による吸着法、吸水性ゲルによる吸水法等の全ての
方法が利用可能である。好ましくはUF膜濃縮、エバポ
レーターが良い。UF膜濃縮用モジュールとしては、分
画分子量3,000〜100,000好ましくは6,0
00〜50,000の平膜または中空糸膜,材質はポリ
アクリルニトリル系、ポリスルフォン系などが好まし
い。エバポレーターとしては、加熱温度90℃以下、減
圧量40cmHg以下、好ましくは加熱温度80℃以下、減
圧量60cmHg以下である。
The method of pulverizing the enzyme is not particularly limited, but usually, the enzyme solution is concentrated and then dried to obtain an enzyme powder. As the concentration method, all methods such as evaporator, flash evaporator, UF membrane concentration, MF membrane concentration, salting out with inorganic salts, precipitation method with solvent, adsorption method with ion exchange cellulose, etc., and water absorption method with water absorbing gel are used. It is possible. Preferably, UF membrane concentration and evaporator are good. As the UF membrane concentration module, the molecular weight cut-off is 3,000 to 100,000, preferably 6,000.
It is preferable to use a polyacrylonitrile-based or polysulfone-based flat membrane or hollow fiber membrane of 00 to 50,000. The evaporator has a heating temperature of 90 ° C. or less and a reduced pressure of 40 cmHg or less, preferably a heating temperature of 80 ° C. or less and a reduced pressure of 60 cmHg or less.

【0015】乾燥法としては、減圧乾燥、凍結乾燥、噴
霧乾燥などがあげられるが、噴霧乾燥が好ましい。噴霧
乾燥機としては、ノズル向流式、デイスク向流式、ノズ
ル並流式、デイスク並流式等があげられる。好ましくは
デイスク並流式が良く、アトマイザー回転数は4,00
0〜20,000rpm、加熱は入口温度100〜200
℃、出口温度60〜100℃で制御する。
Examples of the drying method include vacuum drying, freeze drying, spray drying and the like, and spray drying is preferred. Examples of the spray dryer include a nozzle countercurrent type, a disk countercurrent type, a nozzle cocurrent type, and a disk cocurrent type. A disk parallel flow type is preferable, and the atomizer rotation speed is 4,000.
0-20,000 rpm, heating at inlet temperature 100-200
And the outlet temperature is controlled at 60-100 ° C.

【0016】[0016]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明するが、本発明はそれらによって限定されるもので
はない。実施例および比較例で得られた酵素の熱安定性
と残存活性の評価方法を以下に示す。 [熱安定性]酵素粉末の場合は10重量%の溶液とし、酵
素液の場合は、そのまま90℃恒温槽に入れ、10分、
20分、30分経過時にサンプリングを行い、それぞれ
の酵素液の残存活性を測定し、熱処理していないサンプ
ルと比較を行った。 [残存活性]残存活性は、リパーゼの場合、オリーブ油7
5mL、2%ポリビニルアルコール225mLをホモジ
ナイザー(日本精機製)の容器に入れ、10℃に氷冷し
ながら15,000rpm、10分乳化したオリーブ油乳
化液5mLにリン酸緩衝液pH7.0を4mL加えて試
験管に入れ、酵素液1mLを添加し、37℃、10分反
応後、2NHCLで反応停止させ、加水分解したフリー
の脂肪酸をフェノールフタレインを発色液として、2N
NaOHで滴定を行う。その滴定量を比較して残存活
性を算出した。フォスフォリパーゼの場合、1mLのレ
シチン乳化液、0.05mLの0.1MCaCL2・2
H2O溶液、0.1mLのクエン酸緩衝液(pH5.
5)、0.15mLの7.5%TritonX−100
溶液に0.1mLの酵素液を加えて、37℃、10分反
応を行い、沸騰水に入れて反応停止し、その反応液に4
mLの0.1Mトリス塩酸緩衝液(pH8.0)、4U
のCholine oxidase、4UのPerox
tdase、2mgの4−aminoantipyri
ne、1mgのphenol、20mgのTriton
X−100を添加し、37℃、20分さらに反応を行
い、この反応液の500nmの吸光度を測定して算出し
た。酵素1Uは、1分間に1μmolのコリンを生成す
る酵素量とした。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. The methods for evaluating the thermal stability and residual activity of the enzymes obtained in Examples and Comparative Examples are shown below. [Thermal stability] In the case of the enzyme powder, a 10% by weight solution is used.
Sampling was performed at the lapse of 20 minutes and 30 minutes, and the residual activity of each enzyme solution was measured, and compared with a sample that had not been heat-treated. [Residual activity] In the case of lipase, the residual activity
5 mL of 2% polyvinyl alcohol (225 mL) was placed in a container of a homogenizer (manufactured by Nippon Seiki), and 4 mL of phosphate buffer pH 7.0 was added to 5 mL of an olive oil emulsion emulsified at 15,000 rpm for 10 minutes while cooling at 10 ° C. with ice. After placing in a test tube, 1 mL of the enzyme solution was added, and the reaction was carried out at 37 ° C. for 10 minutes, the reaction was stopped with 2N HCl, and the hydrolyzed free fatty acid was converted to 2N with phenolphthalein as a color developing solution.
Titrate with NaOH. The residual activities were calculated by comparing the titration amounts. For phospholipase, 1 mL of lecithin emulsion, 0.05 mL of 0.1MCaCL2.2
H2O solution, 0.1 mL citrate buffer (pH 5.
5), 0.15 mL of 7.5% Triton X-100
0.1 mL of the enzyme solution was added to the solution, and the reaction was carried out at 37 ° C. for 10 minutes, and the reaction was stopped by adding the solution to boiling water.
mL of 0.1 M Tris-HCl buffer (pH 8.0), 4 U
Choline oxidase of 4U Perox
tdase, 2mg 4-aminoantipyri
ne, 1 mg phenol, 20 mg Triton
X-100 was added, the reaction was further performed at 37 ° C. for 20 minutes, and the absorbance at 500 nm of the reaction solution was measured and calculated. 1 U of the enzyme was defined as an amount of the enzyme that produces 1 μmol of choline per minute.

【0017】実施例1 アルカリゲネス スピーシーズIFO14130(Alcal
igenes sp.)50L発酵槽(仕込み30L)で25℃、
0、5VVM、培地1で36時間培養を行い、26Lの
培養液を得た。その培養液を遠心分離(4000×g、
15分)した上澄みを水道水で260Lに希釈し、その
希釈液を限外ろ過膜(分画分子量;3,000、材質;
ポリアクリルニトリル系)を用いて、入り口2.8at
m、出口1.0atmに調製して、金属が酵素に対して
0.05重量%になるまで脱イオンを行った。さらに、
乳酸カルシウムを酵素重量あたり20重量%、硫酸第一
鉄7水和物を10重量%添加し、5℃に氷冷しながらス
ターラー攪拌を30分行い、混合した。この混合液を噴
霧乾燥(入口温度:190℃、出口温度:95℃)して
リパーゼ粉末432gを得た。その混合液および粉末に
ついて熱安定性を測定した。結果を表1に示す。なお、
乳酸カルシウムと硫酸第一鉄7水和物を添加しない脱イ
オン酵素溶液を噴霧乾燥したリパーゼ粉末326g(対
照1)を得、また、限外ろ過前の希釈液(リパーゼに対
して金属が2.3重量%含有)に上記と同量の乳酸カル
シウムと硫酸第一鉄7水和物を添加し、同様に処理した
混合液を噴霧乾燥したリパーゼ粉末318g(対照2)
を得た。
Example 1 Alkaligenes species IFO14130 (Alcale
igenes sp.) 25 ° C in 50L fermenter (30L charge)
Culture was performed for 36 hours in 0, 5 VVM and Medium 1 to obtain a 26 L culture solution. The culture was centrifuged (4000 × g,
The resulting supernatant was diluted to 260 L with tap water, and the diluted solution was subjected to an ultrafiltration membrane (molecular weight cutoff: 3,000, material:
2.8 at the entrance using polyacrylonitrile)
m, and the outlet was adjusted to 1.0 atm, and deionized until the metal became 0.05% by weight with respect to the enzyme. further,
20% by weight of calcium lactate and 10% by weight of ferrous sulfate heptahydrate were added per enzyme weight, and the mixture was mixed by stirring with a stirrer for 30 minutes while cooling at 5 ° C. with ice. This mixture was spray-dried (inlet temperature: 190 ° C., outlet temperature: 95 ° C.) to obtain 432 g of lipase powder. The thermal stability was measured for the mixture and the powder. Table 1 shows the results. In addition,
326 g (control 1) of a lipase powder obtained by spray-drying a deionized enzyme solution to which calcium lactate and ferrous sulfate heptahydrate were not added, and a diluent before ultrafiltration (a metal containing 2. The same amount of calcium lactate and ferrous sulfate heptahydrate as above was added to the mixture, and 318 g of a lipase powder obtained by spray-drying the mixed solution (Control 2)
I got

【0018】実施例2 実施例1と同様にして培養し、脱イオンした酵素水溶液
24Lに塩化第一鉄を酵素重量あたり20重量%添加
し、実施例1と同様な方法で混合した混合液とそれを噴
霧乾燥したリパーゼ粉末410gを得た。その混合液お
よび粉末について熱安定性を測定した。結果を表1に示
す。
Example 2 Ferrous chloride was added to 24 L of an aqueous enzyme solution cultured and deionized in the same manner as in Example 1 and 20% by weight of the enzyme weight was added thereto. It was spray-dried to obtain 410 g of lipase powder. The thermal stability was measured for the mixture and the powder. Table 1 shows the results.

【0019】比較例1 実施例1と同様にして培養し、脱イオンした酵素水溶液
25Lに塩化銅を酵素重量あたり30重量%、硫酸マグ
ネシウムを20重量%添加し、実施例1と同様な方法で
混合した混合液とそれを噴霧乾燥したリパーゼ粉末41
5gを得た。その混合液および粉末について熱安定性を
測定した。結果を表1に示す。
Comparative Example 1 Copper chloride was added to 25 L of a deionized aqueous solution of an enzyme which had been cultured and deionized in the same manner as in Example 1, and 30% by weight of the enzyme and 20% by weight of magnesium sulfate were added. The mixed liquid mixture and the lipase powder 41 obtained by spray drying the mixed liquid.
5 g were obtained. The thermal stability was measured for the mixture and the powder. Table 1 shows the results.

【0020】比較例2 実施例1と同様にして培養した培養上澄み液26Lに塩
化亜鉛を酵素重量あたり10重量%、塩化マンガンを3
0重量%添加し、実施例1と同様に混合した混合液とそ
れを噴霧乾燥したリパーゼ粉末421gを得た。その混
合液および粉末について熱安定性を測定した。結果を表
1に示す。
Comparative Example 2 Zinc chloride was added to 26 L of the culture supernatant cultivated in the same manner as in Example 1 by weight of 10% by weight of enzyme and manganese chloride by 3%.
0% by weight was added and mixed in the same manner as in Example 1 to obtain 421 g of a lipase powder obtained by spray-drying the mixture. The thermal stability was measured for the mixture and the powder. Table 1 shows the results.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例3 ペニシリウム シクロピウムATCC−34613株
(Penicillium cychlopium)を30L発酵槽で培地2
を用い、250rpm、48時間、通気量1VVMで培養
を行った。この培養液を圧搾ろ過により除菌を行った上
澄み液18Lをイオン交換水で200Lに希釈した。そ
の希釈液を限外ろ過膜(分画分子量;10,000、材
質;セルロースアセテート)により金属が酵素に対して
0.1重量%になるまで脱イオンした。さらに、硫酸カ
ルシウムを酵素重量あたり50重量%、塩化第一鉄を3
0重量%添加し、実施例1と同様な方法で混合して、混
合液を得た。その混合液について熱安定性を測定した。
Example 3 Penicillium cyclopium strain ATCC-34613 (Penicillium cychlopium) was cultured in a 30 L fermenter in culture medium 2.
And cultivation was performed at 250 rpm for 48 hours at an aeration rate of 1 VVM. 18 L of the supernatant obtained by removing bacteria from the culture by squeezing filtration was diluted to 200 L with ion-exchanged water. The diluted solution was deionized with an ultrafiltration membrane (fraction molecular weight: 10,000, material: cellulose acetate) until the metal was 0.1% by weight with respect to the enzyme. Further, 50% by weight of calcium sulfate per enzyme weight and 3% of ferrous chloride
0% by weight was added and mixed in the same manner as in Example 1 to obtain a mixed solution. The thermal stability of the mixture was measured.

【0023】実施例4 実施例3と同様にして培養した培養上澄み液をSeph
adex G−25ゲル粒度mediumを用いて、分
子篩クロマトグラフィーにより金属が酵素に対して0.
25重量%になるまで脱イオンを行った。こさらに、リ
ン酸カルシウムを酵素重量あたり20重量%、クエン酸
鉄を10重量%添加し、実施例3と同様に混合した混合
液を得た。その混合液について熱安定性を測定した。結
果を表2に示す。
Example 4 A culture supernatant cultured in the same manner as in Example 3 was
Using adex G-25 gel particle size medium, the metal was added to the enzyme by molecular sieve chromatography at 0.
Deionization was performed to 25% by weight. Further, 20% by weight of calcium phosphate and 10% by weight of iron citrate were added per enzyme weight, and a mixed solution was obtained in the same manner as in Example 3. The thermal stability of the mixture was measured. Table 2 shows the results.

【0024】実施例5 実施例3と同様にして培養した培養上澄み液を半透膜
(分画分子量;10,000、セルロースアセテート
膜)を用い、入り口1.5atm、出口1.0atmに
調製して、金属が酵素に対して0.3重量%になるまで
脱イオンを行った。さらに、酢酸カルシウムを酵素重量
あたり50重量%、硝酸鉄を20重量%添加し、実施例
3と同様に混合した混合液を得た。その混合液について
熱安定性を測定した。結果を表2に示す。
Example 5 A culture supernatant cultured in the same manner as in Example 3 was prepared using a semipermeable membrane (molecular weight cut off: 10,000, cellulose acetate membrane) at an inlet of 1.5 atm and an outlet of 1.0 atm. Deionized until the metal was 0.3% by weight of the enzyme. Further, 50% by weight of calcium acetate and 20% by weight of iron nitrate were added per enzyme weight, and a mixed solution was obtained in the same manner as in Example 3. The thermal stability of the mixture was measured. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】実施例6 アスペルギルス ニガー NRRL−337株(Asperg
illus niger)を500L発酵槽(仕込み300L)
で、25℃、1VVM、攪拌回転数300rpm、培地2
で48時間培養行った。この培養液を圧搾ろ過でろ過
し、除菌した上澄み液を251L回収した。上澄み液は
蒸留水で1,000Lに希釈した。その希釈液をUF膜
モジュール(分画分子量;3,000、材質;ポリアク
リルニトリル系、中空糸膜)により、30Lまで濃縮し
た。さらに230Lの水道水により希釈を行った後、さ
らに同様な方法で金属が酵素に対して0.4重量%にな
るまで脱イオンを行い、35Lまで濃縮を行った。さら
に、クエン酸カルシウムを酵素重量あたり40重量%、
シュウ酸鉄10重量%を実施例と同様な方法で混合し
た。その混合濃縮液を噴霧乾燥(入り口温度:195
℃、出口温度:95℃、蒸発量:10L/hr)し、
4.8kgのリパーゼ粉末を得た。この粉末の活性回収
率は76.9%であった。このリパーゼ粉末の熱安定性
試験の結果を表3に示す。
Example 6 Aspergillus niger strain NRRL-337 (Asperg
illus niger) in a 500 L fermenter (300 L charge)
At 25 ° C., 1 VVM, stirring speed 300 rpm, medium 2
For 48 hours. This culture solution was filtered by squeezing filtration, and 251 L of the supernatant obtained after removing the bacteria was recovered. The supernatant was diluted to 1,000 L with distilled water. The diluted solution was concentrated to 30 L by a UF membrane module (fraction molecular weight: 3,000, material: polyacrylonitrile, hollow fiber membrane). After dilution with 230 L of tap water, the metal was further deionized to 0.4% by weight of the enzyme in the same manner, and concentrated to 35 L. Furthermore, calcium citrate is added at 40% by weight per enzyme weight,
10% by weight of iron oxalate was mixed in the same manner as in the example. The mixed concentrated solution is spray-dried (entrance temperature: 195
° C, outlet temperature: 95 ° C, evaporation amount: 10 L / hr)
4.8 kg of lipase powder was obtained. The activity recovery of this powder was 76.9%. Table 3 shows the results of the thermal stability test of this lipase powder.

【0027】比較例3 実施例6と同様に混合濃縮液を得た。この混合濃縮液に
対し−20℃のアセトンを等量(1:1)を添加し、ス
ターラーで2時間攪拌を行い、沈殿物をろ紙(A型)で
吸引ろ過し、沈殿物を回収後、真空乾燥(70cmHg
以上)を行い、2.0kgのリパーゼ粉末を得た。この
活性回収率は30.6%であった。このリパーゼ粉末の
熱安定性試験の結果を表3に示す。
Comparative Example 3 A mixed concentrate was obtained in the same manner as in Example 6. An equal amount (1: 1) of acetone at −20 ° C. was added to the mixed concentrated solution, and the mixture was stirred for 2 hours with a stirrer. The precipitate was suction-filtered through a filter paper (type A), and the precipitate was collected. Vacuum drying (70cmHg
Above) to obtain 2.0 kg of lipase powder. The activity recovery was 30.6%. Table 3 shows the results of the thermal stability test of this lipase powder.

【0028】[0028]

【表3】 [Table 3]

【0029】実施例7 キャンデイダ シリンドラッセ NRRL Y−146
9株(Canida sylindracea)を50L発酵槽(仕込み
30L)で25℃、1VVM、培地3、攪拌回転数35
0rpmで24時間培養を行った。その培養液を遠心分離
(3,000×g,15分)し、上澄み液26Lを得
た。上澄み液は、限外ろ過膜により200Lリン酸緩衝
液(pH7.0)で希釈後、金属が酵素に対して0.0
5重量%になるまで脱イオンを行い、エバポレーター
(加熱温度80℃、減圧度60cmHg)で濃縮を行
い、3.2Lの濃縮液を得た。さらに、濃縮液に安息香
酸カルシウムを酵素重量あたり1重量%、乳酸鉄を2重
量%添加し実施例1と同様な方法で混合した。この混合
濃縮液を噴霧乾燥(入口温度:195℃、出口温度:9
0℃、蒸発量:9L/hr)し、430gのリパーゼ粉
末を得た。この混合濃縮液と粉末の熱安定性試験の結果
を表4に示す。
Example 7 Candida Cylindrasse NRRL Y-146
Nine strains (Canida sylindracea) were grown in a 50 L fermenter (30 L charged) at 25 ° C., 1 VVM, medium 3 and stirring speed 35.
The culture was performed at 0 rpm for 24 hours. The culture was centrifuged (3,000 × g, 15 minutes) to obtain 26 L of a supernatant. The supernatant was diluted with a 200 L phosphate buffer (pH 7.0) using an ultrafiltration membrane, and then the metal was added to the enzyme at 0.0%.
The solution was deionized to 5% by weight, and concentrated by an evaporator (heating temperature: 80 ° C., reduced pressure: 60 cmHg) to obtain a 3.2 L concentrated solution. Further, 1% by weight of calcium benzoate and 2% by weight of iron lactate were added to the concentrated solution per enzyme weight, and mixed in the same manner as in Example 1. This mixed concentrated solution is spray-dried (inlet temperature: 195 ° C., outlet temperature: 9
(0 ° C., evaporation amount: 9 L / hr) to obtain 430 g of lipase powder. Table 4 shows the results of the thermal stability test of the mixed concentrate and the powder.

【0030】実施例8 ストレプトマイセス スピーシーズIFO3110株
(Streptmyces sp.)を50L発酵槽(仕込み30L)
で、25℃、1VVM、300rpm、培地4で48時間
培養を行った。培養液を遠心分離(6,000×g、1
0分)を行い、26Lの上澄み液を得た。上澄み液は、
300Lリン酸緩衝液(pH7.0)で希釈を行い、限
外ろ過膜(分画分子量;3,000、材質;ポリアクリ
ルニトリル)により、金属が酵素に対して0.02重量
%になるまで脱イオンを行った後、エバポレーター(加
熱温度80℃、減圧度60cmHg)で濃縮を行い、
3.2Lの濃縮液を得た。さらに、濃縮液に酵素重量あ
たり0.1重量%のアスコルビン酸カルシウム、0.1
重量%の塩化第一鉄を添加し実施例1と同様な方法で混
合した。この混合濃縮液を噴霧乾燥(入口温度:195
℃、出口温度:95℃、蒸発量:10L/hr)し、5
10gのフォスフォリパーゼ粉末を得た。この混合濃縮
液と粉末の熱安定性の結果を表4に示す。
Example 8 A 50 L fermenter (30 L charge) was prepared by using Streptomyces sp.
At 25 ° C., 1 VVM, 300 rpm, medium 4 for 48 hours. The culture is centrifuged (6,000 × g, 1
0 min) to obtain 26 L of a supernatant. The supernatant is
Dilute with 300 L phosphate buffer (pH 7.0) and use ultrafiltration membrane (molecular weight cutoff: 3,000, material: polyacrylonitrile) until the metal becomes 0.02% by weight with respect to the enzyme. After deionization, concentration was performed with an evaporator (heating temperature: 80 ° C., degree of reduced pressure: 60 cmHg),
A 3.2 L concentrate was obtained. Further, 0.1% by weight of calcium ascorbate per enzyme weight, 0.1%
Weight percent ferrous chloride was added and mixed in the same manner as in Example 1. This mixed concentrate is spray-dried (entrance temperature: 195
° C, outlet temperature: 95 ° C, evaporation amount: 10 L / hr)
10 g of phospholipase powder were obtained. Table 4 shows the results of the thermal stability of the mixed concentrate and the powder.

【0031】実施例9 キサントモナス キャンペストリスNRRL−B145
9株(Xanthomonas campestris)を20L発酵槽で、3
0℃、250rpm、通気量1VVM、培地1で48時間
培養を行った。この培養液を遠心分離(6,000×
g、15分)した上澄み液を200Lトリス緩衝液(p
H8.0)で希釈を行った。この希釈液を限外ろ過膜
(分画分子量;10,000、材質;セルロースナイト
レート)により、金属が酵素に対して0.01重量%に
なるまで脱イオンを行った。さらに、4℃に氷冷しなが
らこの脱イオン溶液に酵素重量あたり0.05重量%の
硫酸カルシウムと0.05重量%の硝酸鉄を添加し、4
℃に氷冷しながらスターラーで24時間攪拌を行い、混
合した。この混合液を噴霧乾燥(入り口温度:191
℃、出口温度:95℃、水蒸発量5L/hr)して、エ
ステラーゼ粉末酵素850gを得た。この混合濃縮液と
粉末の熱安定性試験の結果を表4に示す。
Example 9 Xanthomonas campestris NRRL-B145
9 strains (Xanthomonas campestris) in a 20 L fermenter
The cells were cultured at 0 ° C., 250 rpm, aeration rate of 1 VVM, and medium 1 for 48 hours. The culture is centrifuged (6,000 ×
g, 15 minutes), the supernatant was added to a 200 L Tris buffer (p
H8.0). The diluted solution was deionized with an ultrafiltration membrane (fraction molecular weight: 10,000, material: cellulose nitrate) until the metal became 0.01% by weight with respect to the enzyme. Further, 0.05% by weight of calcium sulfate and 0.05% by weight of iron nitrate per enzyme weight were added to the deionized solution while cooling with ice at 4 ° C.
The mixture was stirred with a stirrer for 24 hours while being cooled with ice to ℃, and mixed. This mixture is spray-dried (entrance temperature: 191
° C, outlet temperature: 95 ° C, water evaporation 5 L / hr) to obtain 850 g of esterase powdered enzyme. Table 4 shows the results of the thermal stability test of the mixed concentrate and the powder.

【0032】[0032]

【表4】 [Table 4]

【0033】実施例10 市販リパーゼのリパーゼOF(名糖産業製)、パラター
ゼ(ノボ・ノルデスク製)、リパーゼD(天野製薬製)
を10重量%に水道水で溶解し、それぞれの酵素溶解液
5Lをそれぞれ100Lリン酸緩衝液(pH7.5)で
希釈を行った。この希釈液を限外ろ過膜(分画分子量;
10,000、材質;セルロースアセテート)を用い
て、金属が酵素に対して0.01重量%になるまで脱イ
オンを行った。この脱イオン酵素溶液に、酵素重量あた
り30重量%の硝酸カルシウム、10重量%の塩化第一
鉄を4℃に保ちながら、スターラーで24時間攪拌を行
って混合した。それぞれの混合液を無添加脱イオン酵素
液を対照として熱安定性試験を行った。結果を表5に示
す。
Example 10 Commercially available lipase lipase OF (manufactured by Meito Sangyo), paratase (manufactured by Novo Nordesk), lipase D (manufactured by Amano Pharmaceutical)
Was dissolved in tap water at 10% by weight, and 5 L of each enzyme solution was diluted with 100 L phosphate buffer (pH 7.5). This diluted solution is passed through an ultrafiltration membrane (fraction molecular weight;
Deionization was carried out using 10,000 (material: cellulose acetate) until the metal became 0.01% by weight with respect to the enzyme. To this deionized enzyme solution, 30% by weight of calcium nitrate and 10% by weight of ferrous chloride were mixed with a stirrer for 24 hours while maintaining the temperature at 4 ° C. A heat stability test was performed on each mixture using a deionized enzyme solution without addition as a control. Table 5 shows the results.

【0034】[0034]

【表5】 [Table 5]

【0035】培地1 Medium 1

【0036】培地2 Medium 2

【0037】培地3 Medium 3

【0038】培地4 Medium 4

【0039】[0039]

【発明の効果】本発明によれば、脱イオンを行った脂質
分解酵素溶液に、鉄塩およびカルシウム塩を添加するこ
とにより、酵素の熱安定性が向上し、また、高温で十分
な酵素活性が得られ安定であるため、融点が高い基質を
用いる酵素合成が可能になる。さらに、脂質分解酵素の
製造においても、加熱を経る濃縮、粉末化方法利用で
き、効率的な酵素粉末の製造法が可能になるため極めて
有用である。
According to the present invention, the thermostability of the enzyme is improved by adding an iron salt and a calcium salt to the deionized lipolytic enzyme solution, and sufficient enzyme activity is obtained at a high temperature. Is obtained and stable, so that enzyme synthesis using a substrate having a high melting point becomes possible. Furthermore, in the production of lipolytic enzymes, the method of concentration and pulverization through heating can be used, and an efficient method of producing an enzyme powder is possible, which is extremely useful.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属の含有量が0.5重量%以下である
脂質分解酵素に、鉄塩およびカルシウム塩を添加するこ
とを特徴とする熱安定性酵素。
1. A thermostable enzyme comprising an iron salt and a calcium salt added to a lipolytic enzyme having a metal content of 0.5% by weight or less.
【請求項2】 脂質分解酵素が脱イオン処理を施されて
いる請求項1記載の熱安定性酵素。
2. The thermostable enzyme according to claim 1, wherein the lipolytic enzyme is deionized.
【請求項3】 酵素の重量に対して、鉄塩が0.01〜
50重量%、カルシウム塩が0.01〜70重量%であ
る請求項1の熱安定性酵素。
3. The method according to claim 1, wherein the iron salt is present in an amount of from 0.01 to 0.01 wt.
The thermostable enzyme according to claim 1, wherein 50% by weight and calcium salt are 0.01 to 70% by weight.
【請求項4】 鉄塩およびカルシウム塩を含む酵素溶液
を乾燥して酵素粉末を得る請求項1〜3いずれか1項記
載の酵素の製造方法。
4. The method for producing an enzyme according to claim 1, wherein an enzyme solution containing an iron salt and a calcium salt is dried to obtain an enzyme powder.
【請求項5】 乾燥が噴霧乾燥法である請求項4記載の
酵素の製造方法。
5. The method for producing an enzyme according to claim 4, wherein the drying is a spray drying method.
JP34321298A 1998-12-02 1998-12-02 Thermostable enzyme and method for producing the same Expired - Fee Related JP3774581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34321298A JP3774581B2 (en) 1998-12-02 1998-12-02 Thermostable enzyme and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34321298A JP3774581B2 (en) 1998-12-02 1998-12-02 Thermostable enzyme and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000166549A true JP2000166549A (en) 2000-06-20
JP3774581B2 JP3774581B2 (en) 2006-05-17

Family

ID=18359787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34321298A Expired - Fee Related JP3774581B2 (en) 1998-12-02 1998-12-02 Thermostable enzyme and method for producing the same

Country Status (1)

Country Link
JP (1) JP3774581B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506597A (en) * 2011-02-22 2014-03-17 コーディル・シード・カンパニー・インコーポレイテッド Spray dried myrosinase and use for producing isothiocyanate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506597A (en) * 2011-02-22 2014-03-17 コーディル・シード・カンパニー・インコーポレイテッド Spray dried myrosinase and use for producing isothiocyanate
US10925934B2 (en) 2011-02-22 2021-02-23 Caudill Seed and Warehouse Co., Inc. Spray dried myrosinase and use to produce isothiocynates

Also Published As

Publication number Publication date
JP3774581B2 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
JP2001506504A (en) Fermentative production and isolation of lactic acid
JPS6222599B2 (en)
WO2005097984A1 (en) Lipase powder, process for producing the same and use thereof
JPH0121955B2 (en)
US4329429A (en) Lactase preparation
CA1245590A (en) PROCESS FOR THE ENZYMATIC HYDROLYSIS OF D-.alpha.-AMINO- ACID AMIDES
JP2000106873A (en) Thermally stable enzyme and production thereof
CA1139694A (en) Process for the recovery of intracellular enzyme
JP3774581B2 (en) Thermostable enzyme and method for producing the same
US5034325A (en) 5&#39;-phosphodiesterase enzyme preparation and method for its production
EP1795591B1 (en) Lipase powder, method for producing same and use thereof
EP0406319B1 (en) 5&#39;-phosphodiesterase enzyme preparation and method for its production
JPS63219373A (en) Phospholipase d and production thereof
JPS5838149B2 (en) Purification method of enzyme for cholesterol determination
JP2804067B2 (en) Novel phospholipase DK and method for producing the same
JP2812481B2 (en) Novel esterase and method for producing the same
JP2844350B2 (en) Manufacturing methods for substances produced by microorganisms
JPS6156076A (en) Immobilized enzyme and its preparation
JP2005269925A (en) Method for producing water-insoluble silver-containing whey protein hydrolysate
JP2863607B2 (en) Amylase and production method thereof
JP3820617B2 (en) ε-Poly-L-lysine-degrading enzyme and method for producing ε-poly-L-lysine with low polymerization degree using the same
CN117286135A (en) Yeast nucleic acid extract and preparation method thereof
JP2588707B2 (en) Method for producing sarcosine oxidase
JPH0292281A (en) Novel lipase and production thereof
JPH05304949A (en) Pseudomonas sp. s10-071 strain and lipase to be produced by the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees