JP2000135093A - New amylase for baking and its gene - Google Patents

New amylase for baking and its gene

Info

Publication number
JP2000135093A
JP2000135093A JP11234813A JP23481399A JP2000135093A JP 2000135093 A JP2000135093 A JP 2000135093A JP 11234813 A JP11234813 A JP 11234813A JP 23481399 A JP23481399 A JP 23481399A JP 2000135093 A JP2000135093 A JP 2000135093A
Authority
JP
Japan
Prior art keywords
amylase
gly
asp
ser
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11234813A
Other languages
Japanese (ja)
Inventor
Shinichiro Tamagawa
紳一郎 玉川
Masaharu Yoshida
政晴 吉田
Masashi Minoda
正史 箕田
Satoko Takahashi
聡子 高橋
Yumiko Hidaki
由美子 肥田木
Masakazu Tani
巨和 谷
Satoru Hashimoto
哲 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Kasei KK
Original Assignee
Daiwa Kasei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Kasei KK filed Critical Daiwa Kasei KK
Priority to JP11234813A priority Critical patent/JP2000135093A/en
Publication of JP2000135093A publication Critical patent/JP2000135093A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a new amylase for baking, containing a specific amino acid sequence, having α-amylase activity, and a specific thermostability suitable for baking, providing a bread having an increased volume and improved softness, effective for preventing bread aging. SOLUTION: This variant α-amylase contains an amino acid sequence in which one or plural amino acids are deleted from, inserted into or substituted for those of an amino acid sequence of the formula, has α-amylase activity, remaining α-amylase activity after treatment at 65 deg.C for 30 minutes lower than 80% before the treatment and thermostability suitable for use in baking, is effective for increasing bread volume, improving softness are preventing aging and is useful for baking. The enzyme is obtained by treating a DNA encoding the enzyme or a cell containing the DNA with a mutagenic substance, transducing the obtained variant DNA into a host cell, screening and selecting an α-amylase having a desirable thermostability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規な製パン用変異
型α-アミラーゼおよびこの酵素を用いる製パン方法に
関する。
TECHNICAL FIELD The present invention relates to a novel mutant α-amylase for baking and a baking method using this enzyme.

【0002】[0002]

【従来の技術】α-アミラーゼは、パンの製造(以下、
製パンという)の発酵工程において使用されている。α
-アミラーゼのパン生地への添加は、パンの柔らかさを
向上させる効果、およびパンの老化を防止する効果を有
する。前者は、α-アミラーゼが、パン生地のグルテン
ネットワーク中にこれを支える柱として存在するデンプ
ン粒に作用して、デンプン粒を軟化することによりもた
らされる。後者は、α-アミラーゼが、パン生地中のア
ミロースの再結晶化を防止することによりもたらされ
る。
2. Description of the Related Art α-amylase is used for the production of bread (hereinafter, referred to as bread).
Baking) is used in the fermentation process. α
-The addition of amylase to bread dough has the effect of improving the tenderness of bread and the effect of preventing aging of bread. The former is caused by the fact that the α-amylase acts on the starch granules present as pillars supporting them in the gluten network of the dough and softens the starch granules. The latter is provided by α-amylase preventing recrystallization of amylose in dough.

【0003】製パンにおいて添加されたα-アミラーゼ
の活性がパン生地焼成後に残存すると、パンの品質は低
下する。製パンにおいて現在使用されているα-アミラ
ーゼは主にカビ(例えば、Aspergillus oryzae)に由来
する。なぜなら、カビ由来のα-アミラーゼは一般に耐
熱性が低いからである。しかし、カビ由来のα-アミラ
ーゼは製造のためにコストがかかるので、高価である。
If the activity of α-amylase added in bread making remains after baking of the dough, the quality of the bread is reduced. The α-amylase currently used in baking is mainly derived from mold (eg, Aspergillus oryzae). This is because mold-derived α-amylase generally has low heat resistance. However, mold-derived α-amylase is expensive because of its cost for production.

【0004】工業的に広く利用されているα-アミラー
ゼとしては、Bacillus属細菌(例えば、Bacillus amylo
liquefaciens、Bacillus licheniformis、Bacillus sub
tilisなど)由来のα-アミラーゼが挙げられる。Bacill
us属細菌はα-アミラーゼ、プロテアーゼなどの酵素を
細胞外に多量に分泌する。従って、Bacillus属細菌由来
の酵素は安価に製造され得る。Bacillus属細菌由来のα
-アミラーゼは、例えば、デンプンの液化において利用
されている。一般に、液化は高温で行われる。一方、上
記のように、製パン用酵素は焼成中に失活することが好
ましい。Bacillus属細菌由来のα-アミラーゼは耐熱性
が高すぎるので、液化における使用のためには適切であ
るが、製パンにおける使用のためには不適切であった。
[0004] As α-amylase widely used industrially, bacteria belonging to the genus Bacillus (eg, Bacillus amylo) are used.
liquefaciens, Bacillus licheniformis, Bacillus sub
tilis). Bacill
Us bacteria secrete large amounts of enzymes such as α-amylase and protease outside of cells. Therefore, enzymes derived from Bacillus bacteria can be produced at low cost. Α from Bacillus bacteria
Amylase is used, for example, in starch liquefaction. Generally, liquefaction is performed at elevated temperatures. On the other hand, as described above, it is preferable that the enzyme for baking is deactivated during baking. Α-Amylase from Bacillus sp. Is too heat-resistant to be suitable for use in liquefaction but not for use in baking.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明の目的
は、製パンにおける使用に適切な耐熱性を有するα-ア
ミラーゼを安価に提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an inexpensive α-amylase having heat resistance suitable for use in baking.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記観点
より鋭意研究を重ねてきた。その過程で、Bacillus amy
loliquefaciens由来のα-アミラーゼをコードするDN
Aをランダムに変異誘発し、耐熱性の低下したα-アミ
ラーゼをコードするDNAについてスクリーニングし
た。得られたDNAによりコードされる種々の改変された
α-アミラーゼの中から、親株に比較して耐熱性が大き
く低下したものを選択した。選択された酵素はパン焼成
中に失活するので、パンの柔らかさを向上させ、そして
老化を防止させることにおいて有効であった。本発明者
らは、この酵素(変異型α-アミラーゼ)をコードする
遺伝子を単離し、そのヌクレオチド配列およびこれによ
りコードされるアミノ酸配列を解析することにより、本
発明を完成した。
Means for Solving the Problems The present inventors have intensively studied from the above viewpoint. In the process, Bacillus amy
DN encoding α-amylase from loliquefaciens
A was randomly mutagenized and screened for DNA encoding α-amylase with reduced thermostability. From the various modified α-amylases encoded by the obtained DNA, those having significantly reduced heat resistance compared to the parent strain were selected. The selected enzymes were inactivated during bread baking, so they were effective in improving bread tenderness and preventing aging. The present inventors have isolated the gene encoding this enzyme (mutant α-amylase) and analyzed the nucleotide sequence and the amino acid sequence encoded thereby, thereby completing the present invention.

【0007】本発明によれば、配列番号9のアミノ酸配
列において1もしくは数個のアミノ酸が欠失、置換もし
くは挿入されたアミノ酸配列を含み、α-アミラーゼ活
性を有し、そして65℃30分間の処理後に処理前の活
性に比較して80%より低い残存α-アミラーゼ活性を
有する、製パン用変異型α-アミラーゼが提供される。
According to the present invention, the amino acid sequence of SEQ ID NO: 9 includes an amino acid sequence in which one or several amino acids have been deleted, substituted or inserted, has an α-amylase activity, and has There is provided a mutated α-amylase for baking, having a residual α-amylase activity of less than 80% after treatment compared to the activity before treatment.

【0008】好ましくは、上記欠失、置換もしくは挿入
されたアミノ酸配列は、配列番号9のアミノ酸配列をコ
ードするヌクレオチド配列を含むプラスミドをヒドロキ
シルアミンで処理することによって得られるヌクレオチ
ド配列によってコードされ、この処理は、この処理を受
けたプラスミドで宿主を形質転換して得られる形質転換
体数がこの処理を受けないプラスミドで上記宿主を形質
転換して得られる形質転換体数の約10分の1であるよ
うな処理である。
[0008] Preferably, said deleted, substituted or inserted amino acid sequence is encoded by a nucleotide sequence obtained by treating a plasmid containing the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 9 with hydroxylamine, In the treatment, the number of transformants obtained by transforming a host with the plasmid subjected to this treatment is about one-tenth of the number of transformants obtained by transforming the host with a plasmid not subjected to this treatment. This is a kind of processing.

【0009】1つの実施態様において、上記製パン用変
異型アミラーゼは、配列番号9のアミノ酸配列において
1もしくは2個のアミノ酸が置換されたアミノ酸配列を
含む。
In one embodiment, the mutant amylase for baking comprises an amino acid sequence in which one or two amino acids are substituted in the amino acid sequence of SEQ ID NO: 9.

【0010】1つの実施態様において、上記製パン用変
異型アミラーゼは、配列番号9のアミノ酸配列において
2個のアミノ酸が置換されたアミノ酸配列を含み、この
置換された2個のアミノ酸は約50個以下のアミノ酸を
挟んで存在する。
In one embodiment, the mutated amylase for baking comprises an amino acid sequence in which two amino acids are substituted in the amino acid sequence of SEQ ID NO: 9, and the two substituted amino acids are about 50 amino acids. It exists between the following amino acids.

【0011】1つの実施態様において、上記製パン用変
異型アミラーゼは、配列番号9のアミノ酸配列におい
て、380番目のアラニン残基がスレオニン残基に、3
93番目のフェニルアラニン残基がセリン残基に置換さ
れている。
In one embodiment, the mutated amylase for baking is characterized in that in the amino acid sequence of SEQ ID NO: 9, the alanine residue at position 380 is replaced with a threonine residue.
The phenylalanine residue at position 93 is substituted with a serine residue.

【0012】1つの実施態様において、上記製パン用変
異型アミラーゼは、配列番号9のアミノ酸配列におい
て、30番目のセリン残基がロイシン残基に、195番
目のアスパラギン酸残基がアスパラギン残基に置換され
ている。
[0012] In one embodiment, the mutated amylase for baking is the amino acid sequence of SEQ ID NO: 9, wherein the serine residue at position 30 is a leucine residue and the aspartic acid residue at position 195 is an asparagine residue. Has been replaced.

【0013】1つの実施態様において、上記製パン用変
異型アミラーゼは、配列番号9のアミノ酸配列におい
て、154番目のアルギニン残基がリジン残基に置換さ
れている。
In one embodiment, the mutated amylase for bread making has the amino acid sequence of SEQ ID NO: 9 in which the arginine residue at position 154 is substituted with a lysine residue.

【0014】1つの実施態様において、上記製パン用変
異型アミラーゼは、配列番号9のアミノ酸配列におい
て、192番目のアラニン残基がバリン残基に、233
番目のアスパラギン酸残基がアスパラギンに置換されて
いる。
[0014] In one embodiment, the mutant amylase for baking is the amino acid sequence of SEQ ID NO: 9, in which the alanine residue at position 192 is replaced with a valine residue and 233.
The second aspartic acid residue has been replaced by asparagine.

【0015】1つの実施態様において、上記製パン用変
異型α-アミラーゼは、配列番号9のアミノ酸配列にお
いて、380番目のアラニン残基がスレオニン残基に、
393番目のフェニルアラニン残基がセリン残基に置換
されている。
[0015] In one embodiment, the above-mentioned mutant α-amylase for baking is characterized in that, in the amino acid sequence of SEQ ID NO: 9, the alanine residue at position 380 is replaced with a threonine residue;
The 393rd phenylalanine residue is substituted with a serine residue.

【0016】本発明によれば、上記の製パン用変異α-
アミラーゼをコードするDNAが提供される。
According to the present invention, the above-described mutated α-
A DNA encoding an amylase is provided.

【0017】1つの実施態様において、上記DNAは配
列番号2、配列番号4、配列番号6、または配列番号8
のヌクレオチド配列を含む。
In one embodiment, the DNA is SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, or SEQ ID NO: 8.
The nucleotide sequence of

【0018】本発明によれば、上記のDNAを含む発現
ベクターが提供される。
According to the present invention, there is provided an expression vector containing the above DNA.

【0019】本発明によれば、上記の発現ベクターを含
む組換え宿主細胞が提供される。
According to the present invention, there is provided a recombinant host cell containing the above expression vector.

【0020】本発明によれば、上記の組み換え宿主細胞
を培養する工程および、培養物からα-アミラーゼ活性
を有するポリペプチドを採取する工程を包含する、製パ
ン用変異型α-アミラーゼの製造方法が提供される。
According to the present invention, there is provided a method for producing a mutant α-amylase for baking, which comprises a step of culturing the above-mentioned recombinant host cell and a step of collecting a polypeptide having α-amylase activity from the culture. Is provided.

【0021】本発明によれば、上記のα-アミラーゼを
パン生地に添加する工程を包含する、製パン方法が提供
される。
According to the present invention, there is provided a bread making method comprising the step of adding the above-mentioned α-amylase to bread dough.

【0022】[0022]

【発明の実施の形態】本明細書におけるアミノ酸、ペプ
チド、ヌクレオチド、核酸などの略号による表示は、I
UPAC、IUBの規定、「ヌクレオチド配列又はアミ
ノ酸配列を含む明細書等の作成のためのガイドライン」
(特許庁)、および当該分野における慣用記号に従う。
BEST MODE FOR CARRYING OUT THE INVENTION In the present specification, abbreviations for amino acids, peptides, nucleotides, nucleic acids and the like are expressed as
UPAC, IUB regulations, "Guidelines for preparation of specifications including nucleotide or amino acid sequences"
(Japan Patent Office), and conventional symbols in the art.

【0023】α-アミラーゼは、デンプンのα-1,4グ
ルコシド結合に作用してデンプンを加水分解する酵素で
ある。α-アミラーゼ活性は、例えば、以下のように測
定される。試験管にデンプン溶液および緩衝液を添加
し、これを所定の温度で所定の時間インキュベートす
る。インキュベーション後、試験管に酵素試料を加え、
直ちに混合する。この混合溶液を所定の温度で所定の時
間インキュベートし、フェーリングB液を加えて反応を
停止させる。フェーリング・レーマン・ショール変法に従
って生成還元糖を測定して、各試料の糖化力を決定する
(JISK7001デンプン液化力試験法(199
0);活性は、JLU(JIS法活性単位)で表示され
る)。しかし、このJIS法の反応は高温(65℃)で実
施されるので、耐熱性の低下したα-アミラーゼの活性
測定には適切ではない場合があり得る。代替法におい
て、デンプン糊精化力を、デンプンにアミラーゼが作用
するときの、デンプンの直鎖部分(アミロース)の低分
子に伴うデンプンのヨウ素による呈色の減少を測定して
求める。その単位は、操作法の条件下で試験するとき、
1分間にバレイショデンプンのヨウ素による呈色を10
%減少させる酵素量を1デンプン糊精化力と定義され
る。あるいは、α-アミラーゼ活性は、プレート上で簡
便に検出され得る。所定の量の試料をペーパーディスク
にしみ込ませ、これをデンプン含有培地上にのせる。こ
のプレートを適切な温度でインキュベートした後、これ
にヨウ素−ヨウ化カリウム溶液を噴霧し、形成されるハ
ローを観察する。
Α-Amylase is an enzyme that acts on α-1,4 glucosidic bonds of starch to hydrolyze starch. The α-amylase activity is measured, for example, as follows. The starch solution and the buffer are added to the test tube and this is incubated at a predetermined temperature for a predetermined time. After the incubation, add the enzyme sample to the test tube,
Mix immediately. This mixed solution is incubated at a predetermined temperature for a predetermined time, and the reaction is stopped by adding Fehling B solution. The saccharifying power of each sample is determined by measuring the generated reducing sugars according to the modified Fehling-Lehman-Schole method (JIS K7001 Starch Liquefaction Test (199)).
0); the activity is indicated by JLU (JIS activity unit)). However, since the reaction according to the JIS method is carried out at a high temperature (65 ° C.), it may not be suitable for measuring the activity of α-amylase having reduced thermostability. In an alternative method, the starch gelatinizing power is determined by measuring the reduction of the iodine coloration of the starch associated with the low molecular weight of the linear part of the starch (amylose) when amylase acts on the starch. When the unit is tested under operating conditions,
10 minutes of iodine coloration of potato starch per minute
The amount of enzyme reduced by% is defined as 1 starch paste refining power. Alternatively, α-amylase activity can be conveniently detected on a plate. A predetermined amount of the sample is impregnated on a paper disk, and this is placed on a starch-containing medium. After incubating the plate at the appropriate temperature, it is sprayed with an iodine-potassium iodide solution and the halo formed is observed.

【0024】本発明の変異型α-アミラーゼは、製パン
における品質の向上のために十分に耐熱性であり、かつ
パン生地の焼成後に活性が残存しない程度に熱に感受性
である。1つの実施態様において、本発明の変異型α-
アミラーゼは、Bacillus amyloliquefaciens由来のα-
アミラーゼの耐熱性とAspergillus oryzae由来のα-ア
ミラーゼの耐熱性との間の耐熱性を有する。耐熱性は、
例えば、上記α-アミラーゼ活性の測定におけるインキ
ュベーションを高温で実施し、経時的な活性の低下を示
す熱失活曲線を作成することにより決定され得る。通
常、パンの焼成の間に、パンの内部温度は90℃より高
くまでは上昇しない。従って、本発明の変異型α-アミ
ラーゼは、90℃より低い温度(例えば、80℃)で失
活することが好ましい。Bacillus amyloliquefaciens由
来のα-アミラーゼは65℃での30分間のインキュベ
ーション後に、未処理の酵素に比較して約100%の残存
活性を有する。一方、Aspergillus oryzae由来のα-ア
ミラーゼ(これは、Bacillus amyloliquefaciens由来の
α-アミラーゼに比較して生産にコストがかかる)は同
じ条件下で、未処理の酵素に比較して約10%の残存活
性を有する。本発明の変異型α-アミラーゼはBacillus
amyloliquefaciens由来の野生型α-アミラーゼより低い
耐熱性を有する。1つの実施態様において、本発明の変
異型α-アミラーゼは、65℃30分間の処理後に、処
理前の活性に比較して80%より低い、好ましくは60
%より低い、最も好ましくは40%より低い、残存α-
アミラーゼ活性を有する。
The mutant α-amylase of the present invention is sufficiently heat-resistant for improving the quality of bread making and is sensitive to heat to the extent that no activity remains after baking of the dough. In one embodiment, the variant α-
Amylase is α-derived from Bacillus amyloliquefaciens.
It has a thermostability between that of amylase and that of α-amylase derived from Aspergillus oryzae. Heat resistance is
For example, it can be determined by performing the incubation in the measurement of the α-amylase activity at an elevated temperature and generating a heat inactivation curve showing a decrease in activity over time. Usually, during the baking of the bread, the internal temperature of the bread does not rise above 90 ° C. Therefore, the mutant α-amylase of the present invention is preferably inactivated at a temperature lower than 90 ° C. (eg, 80 ° C.). The α-amylase from Bacillus amyloliquefaciens has about 100% residual activity compared to the untreated enzyme after 30 minutes incubation at 65 ° C. On the other hand, α-amylase from Aspergillus oryzae (which costs more to produce than α-amylase from Bacillus amyloliquefaciens) has about 10% residual activity compared to untreated enzyme under the same conditions. Having. The mutant α-amylase of the present invention is Bacillus
It has lower thermostability than wild type α-amylase derived from amyloliquefaciens. In one embodiment, the mutant α-amylase of the invention has a activity of less than 80%, preferably 60%, after treatment at 65 ° C. for 30 minutes compared to the activity before the treatment.
%, Most preferably less than 40%, residual α-
Has amylase activity.

【0025】変異型α-アミラーゼは、相対的に高い耐
熱性を有するα-アミラーゼをコードするDNAを変異誘発
し、そして耐熱性の低下したα-アミラーゼをコードす
る変異されたクローンを単離することにより、得られ得
る。相対的に高い耐熱性を有するα-アミラーゼとして
は、Bacillus属細菌(例えば、B. amyloliquefaciens、
B. subtilis、およびB. licheniformis)由来のα-アミ
ラーゼが好ましい。なぜなら、Bacillus属細菌由来のα
-アミラーゼは、細胞外に多量に分泌生産されるので、
精製が容易であり、そして安価に製造され得るからであ
る。1つの実施態様において、工業的菌株であるB. amy
loliquefaciens F株(Seki, T.ら、Int. J. Syst. Bact
eriol. 25:258-270 (1975))由来のα-アミラーゼが使
用される。
The mutant α-amylase mutates DNA encoding α-amylase having relatively high thermostability, and isolates a mutated clone encoding α-amylase having reduced thermostability. By doing so, it can be obtained. As α-amylase having relatively high heat resistance, bacteria belonging to the genus Bacillus (for example, B. amyloliquefaciens,
Α-amylases from B. subtilis, and B. licheniformis) are preferred. Because α derived from Bacillus bacteria
-Amylase is secreted and produced in large amounts outside the cell,
It is easy to purify and can be produced at low cost. In one embodiment, the industrial strain B. amy
loliquefaciens F strain (Seki, T. et al., Int. J. Syst. Bact
eriol. 25: 258-270 (1975)).

【0026】B. amyloliquefaciensのα-アミラーゼを
コードするDNAのヌクレオチド配列は、以前に記載され
ている(Takkinen, K.ら、J. Biol. Chem. 258(2):1007
-1013(1983);GenBank accession no. M12034)。従っ
て、このDNAは、公知のヌクレオチド配列に基づいて設
計されたプローブまたはプライマーを使用して、ライブ
ラリーのスクリーニングまたはポリメラーゼ連鎖反応
(PCR)などの周知技術を利用して単離され得る。あ
るいは、このDNAは、目的のDNAを含むクローンの
コロニーの周囲に形成されるハローを検出することによ
り、単離され得る。ハローは、デンプンを含有するプレ
ート上にコロニーを形成させ、次いでこのプレートにヨ
ウ素−ヨウ化カリウム溶液を噴霧することにより検出さ
れ得る。
The nucleotide sequence of the DNA encoding the α-amylase of B. amyloliquefaciens has been described previously (Takkinen, K. et al., J. Biol. Chem. 258 (2): 1007).
-1013 (1983); GenBank accession no. M12034). Thus, the DNA can be isolated using well-known techniques, such as library screening or the polymerase chain reaction (PCR), using probes or primers designed based on the known nucleotide sequence. Alternatively, the DNA can be isolated by detecting a halo formed around the colony of the clone containing the DNA of interest. Halos can be detected by forming colonies on plates containing starch and then spraying the plates with an iodine-potassium iodide solution.

【0027】α-アミラーゼをコードするDNAの変異
誘発は、例えば、このDNAを含む細胞(天然の細胞ま
たは組換え体細胞)に変異原性物質を作用させることに
よりインビボにおいて、あるいは、このDNAに変異原
性物質を作用させるランダムな変異誘発により、または
所望の配列を有するオリゴヌクレオチドを使用する部位
特異的変異誘発によりインビトロにおいて実施され得
る。インビボ方法においては、α-アミラーゼをコード
するDNA以外のヌクレオチド配列も変異され得るの
で、目的のクローンの効率的な単離は困難である。従っ
て、インビトロ方法が好ましい。また、多数の変異型α
-アミラーゼの中から製パンのために最も適切なものを
選択する必要があるので、より多くのそしてより多様な
変異体が得られ得るランダム変異誘発が好ましい。イン
ビトロにおけるランダムな変異誘発は、例えば、クロー
ン化されたα-アミラーゼをコードするDNAをヒドロキシ
ルアミンで処理することにより達成され得る。ヒドロキ
シルアミンを用いる変異誘発方法は、例えば、Sikorsk
i, R.S.およびBoeke, J.D.(Methods Enzymol. 194:302
-318 (1991))に記載されている。
Mutagenesis of α-amylase-encoding DNA can be performed, for example, in vivo by applying a mutagenic substance to cells containing the DNA (natural cells or recombinant cells), or to the DNA. It can be performed in vitro by random mutagenesis with the action of a mutagen, or by site-directed mutagenesis using an oligonucleotide having the desired sequence. In the in vivo method, the nucleotide sequence other than the DNA encoding α-amylase can be mutated, so that efficient isolation of the clone of interest is difficult. Therefore, the in vitro method is preferred. Also, many mutant α
-Random mutagenesis is preferred, as more and more variants can be obtained, since it is necessary to select the most appropriate one for the baking out of the amylase. Random mutagenesis in vitro can be achieved, for example, by treating the cloned DNA encoding α-amylase with hydroxylamine. Mutagenesis methods using hydroxylamine are described, for example, in Sikorsk.
i, RS and Boeke, JD (Methods Enzymol. 194: 302
-318 (1991)).

【0028】もとのα-アミラーゼに比較して耐熱性の
低下したα-アミラーゼをコードするDNAは、例え
ば、以下のようにスクリーニングされる。上記のように
インビトロで変異誘発されたDNAを適切な宿主細胞に
導入する。生じた形質転換体の産生するα-アミラーゼ
活性を、まず、例えば、上記のデンプン含有プレート上
での簡便な検出方法を使用して、高温で活性が低下する
ものについて一次スクリーニングする。次いで、選択さ
れた候補クローンについて、上記のように、熱失活曲線
を作成することにより二次スクリーニングを実施して、
所望の耐熱性を有するα-アミラーゼを選択する。
A DNA encoding an α-amylase having a reduced thermostability compared to the original α-amylase is screened, for example, as follows. The DNA mutated in vitro as described above is introduced into a suitable host cell. The α-amylase activity produced by the resulting transformant is firstly screened for those whose activity decreases at high temperatures, for example, using the above-described simple detection method on a starch-containing plate. Then, for the selected candidate clones, a secondary screening was performed by creating a heat inactivation curve as described above,
An α-amylase having the desired thermostability is selected.

【0029】宿主細胞としては、任意の組換えDNA技
術において使用される宿主細胞が利用可能であるが、処
理されるべきDNAがB. amyloliquefaciensに由来する場
合は、同じBacillus属細菌であるBacillus subtilisが
好ましい。B. subtilisのα-アミラーゼ遺伝子であるam
yEが欠損した変異B. subtilis株がより好ましい。amyE
欠損株としては、例えば、B. subtilis KY110(leuC7,
amyE, r-m-)が挙げられる。B. subtilisの形質転換は
コンピテントセル法またはプロトプラスト法などにより
実施される。コンピテントセル法は、形質転換効率は相
対的に低いが、組換え頻度が高いので、上記のようなα
-アミラーゼ欠損株の作製のために適切である。一方、
プロトプラスト法は、形質転換効率が相対的に高いの
で、多数のクローンのスクリーニングのために適切であ
る。プロトプラスト法は、例えば、Cohenら(Molec. ge
n. Genet. 168:111-115 (1979))に記載される。
As the host cell, any host cell used in any recombinant DNA technology can be used. When the DNA to be treated is derived from B. amyloliquefaciens, the same Bacillus bacterium, Bacillus subtilis, is used. Is preferred. Am, the α-amylase gene of B. subtilis
A mutant B. subtilis strain lacking yE is more preferred. amyE
As a defective strain, for example, B. subtilis KY110 (leuC7,
amyE, rm-). Transformation of B. subtilis is performed by a competent cell method or a protoplast method. In the competent cell method, the transformation efficiency is relatively low, but the recombination frequency is high.
-Suitable for producing amylase-deficient strains. on the other hand,
The protoplast method is suitable for screening a large number of clones because of its relatively high transformation efficiency. The protoplast method is described, for example, in Cohen et al. (Molec.
n. Genet. 168: 111-115 (1979)).

【0030】発現ベクターは、使用される宿主細胞に適
合性のベクターを基礎にして作製される。ベクターは、
プラスミドベクター、ファージベクター、ウイルスベク
ターなどであり得る。B. subtilisが宿主細胞として使
用される場合は、例えば、プラスミドpUB110、pE194、p
C194などまたはその誘導体が使用される。発現ベクター
は、α-アミラーゼコード配列に加えて、この配列の転
写および翻訳のために必要とされる調節配列を含み得
る。これらの調節配列は、α-アミラーゼコード配列に
天然環境において連結されている配列であってもよく、
またはα-アミラーゼコード配列に天然環境において連
結されていない配列であってもよい。例えば、B. amylo
liquefaciens由来のα-アミラーゼコード配列を発現さ
せる場合、この配列に固有のプロモーター、リボソーム
結合部位、ターミネーターなどを利用し得る。
The expression vector is prepared based on a vector compatible with the host cell to be used. The vector is
It may be a plasmid vector, a phage vector, a virus vector, or the like. When B. subtilis is used as a host cell, for example, plasmids pUB110, pE194, p
C194 or a derivative thereof is used. Expression vectors may contain, in addition to the α-amylase coding sequence, regulatory sequences required for transcription and translation of this sequence. These regulatory sequences may be sequences that are linked in their natural environment to the α-amylase coding sequence,
Alternatively, the sequence may not be linked to the α-amylase coding sequence in a natural environment. For example, B. amylo
When expressing an α-amylase coding sequence derived from liquefaciens, a promoter, a ribosome binding site, a terminator and the like unique to this sequence can be used.

【0031】選択された変異型α-アミラーゼは、形質
転換体を培養することにより生産される。培養は、宿主
細胞の増殖および/または目的とする遺伝子の発現のた
めに適切な条件下で実施される。α-アミラーゼが細胞
内に蓄積される場合は、α-アミラーゼは細胞の破砕物
から精製される。α-アミラーゼが細胞外に分泌される
場合はα-アミラーゼは上清から精製される。精製は、
当該分野で公知の種々の方法またはその組み合わせによ
り行われる。例えば、精製は、変異型α-アミラーゼ生
産形質転換体を液体培地中で培養し、培養液を遠心分離
することにより上清を得、上清を限外濾過により濃縮
し、濃縮液をアルコール沈殿し、そして沈澱を真空乾燥
することにより実施される。
[0031] The selected mutant α-amylase is produced by culturing a transformant. The culturing is performed under conditions suitable for the growth of the host cell and / or the expression of the gene of interest. If the α-amylase accumulates in the cells, the α-amylase is purified from cell lysates. If α-amylase is secreted extracellularly, α-amylase is purified from the supernatant. Purification is
It is performed by various methods known in the art or a combination thereof. For example, for purification, a mutant α-amylase-producing transformant is cultured in a liquid medium, a supernatant is obtained by centrifuging the culture, the supernatant is concentrated by ultrafiltration, and the concentrate is subjected to alcohol precipitation. And vacuum drying the precipitate.

【0032】選択された変異型α-アミラーゼの製パン
における有用性は、このα-アミラーゼを使用して製造
されたパンの品質を評価することにより試験される。
The utility of the selected mutant α-amylase in bread making is tested by assessing the quality of the bread made using this α-amylase.

【0033】製パンは、例えば以下のように行われる。
パン生地の材料を混合する(例えば、表1を参照のこ
と)。これに精製変異型α-アミラーゼをさらに添加す
る。パン生地の発酵および焼成は、市販のホームベーカ
リーを使用することにより簡便に実施され得る。
The baking is performed, for example, as follows.
Mix the ingredients of the dough (for example, see Table 1). Purified mutant α-amylase is further added thereto. Fermentation and baking of bread dough can be conveniently performed by using a commercially available home bakery.

【0034】焼きあがったパンの硬さは、例えば、以下
のように評価される。パンを焼成した後、常温で放置
し、水分蒸発を極力防止するためにビニール袋に入れて
一定時間保存する。次いで、パンの硬さを測定する。硬
さの測定は以下のように実施され得る。パンをスライス
し、このパンの中央部を一定の大きさにカットして断片
を作製する。この断片を圧縮し、単位面積(cm2)あ
たりの最大応力(g)の平均値を測定する。さらに、パ
ンの硬さは、官能試験(食感)により評価され得る。パ
ンの老化は、一定期間保存した後に官能試験(食感およ
び/または触感)により評価される。
The hardness of the baked bread is evaluated, for example, as follows. After the bread is baked, it is left at room temperature and stored in a plastic bag for a certain time in order to prevent evaporation of water as much as possible. Then, the hardness of the bread is measured. The hardness measurement can be performed as follows. The bread is sliced, and the center part of the bread is cut into a predetermined size to produce a piece. This piece is compressed and the average value of the maximum stress (g) per unit area (cm 2 ) is measured. Furthermore, bread hardness can be evaluated by a sensory test (texture). The aging of the bread is evaluated by sensory tests (texture and / or feel) after storage for a certain period.

【0035】パンは、各種材料を混合し、調製されたパ
ン生地を発酵し、次いでこれを焼成することにより製造
される。パンを製造するための材料としては、主原料で
ある小麦粉、イースト、イーストフード、油脂類(ショ
ートニング、ラード、マーガリン、バター、液状油、油
中水型乳化組成物、水中油型乳化組成物など)、水(涅
水)、乳製品、食塩、糖類などが挙げられる。必要に応
じて、親水性乳化剤、調味料(グルタミン酸類、核酸
類)、保存料、ビタミン、カルシウムなどの強化剤、タ
ンパク質、化学膨張剤、フレーバーなどが添加される。
Bread is produced by mixing various ingredients, fermenting the prepared dough, and then baking it. Materials for producing bread include flour, yeast, yeast food, and fats and oils (shortening, lard, margarine, butter, liquid oil, water-in-oil emulsion composition, oil-in-water emulsion composition, etc.) ), Water (ninis), dairy products, salt, sugars and the like. If necessary, hydrophilic emulsifiers, seasonings (glutamic acids, nucleic acids), preservatives, enhancers such as vitamins and calcium, proteins, chemical swelling agents, flavors and the like are added.

【0036】フィリングなどの詰め物をしたパンも、本
発明によるパンに含まれることが意図される。すなわ
ち、本発明によるパンは、食パン、特殊パン、調理パ
ン、菓子パン、蒸しパンなどを包含する。例えば、食パ
ンとしては、白パン、黒パン、フランスパン、バラティ
ブレッド、およびロール(テーブルロール、バンズ、バ
ターロールなど)などが挙げられる。特殊パンとして
は、グリッシーニ、マフィン、ラスクなどが挙げられ
る。調理パンとしては、ホットドック、ハンバーガー、
ピザパイなどが挙げられる。菓子パンとしては、ジャム
パン、あんパン、クリームパン、レーズンパン、メロン
パン、スイートロール、およびリッチグッズ(クロワッ
サン、ブリオッシュ、デニッシュペストリー)などが挙
げられる。蒸しパンとしては、肉まん、あんまんなどが
挙げられる。
[0036] Filled breads, such as fillings, are also intended to be included in the breads according to the invention. That is, the bread according to the present invention includes bread, special bread, cooked bread, sweet bread, steamed bread and the like. For example, examples of the bread include white bread, black bread, French bread, varative red, and rolls (table rolls, buns, butter rolls, etc.). Special breads include grissini, muffins and rusks. Hot docks, hamburgers,
Pizza pie and the like. Sweet breads include jam bread, anpan bread, cream bread, raisin bread, melon bread, sweet rolls, and rich goods (croissants, brioches, danish pastries) and the like. Examples of the steamed bread include meat and anman.

【0037】以下、実施例により本発明を具体的に説明
する。しかし、本発明はこれらの実施例により限定され
ない。
Hereinafter, the present invention will be described in detail with reference to examples. However, the invention is not limited by these examples.

【0038】[0038]

【実施例】(実施例1:ヒドロキシルアミンでの処理条
件の検討)宿主として、Bacillus subtilis KY110株(l
euC7, amyE, r-m-)を使用した。Bacillus subtilis KY
110株を、以下のように単離した。Marburg株であるB.su
btilis MI114(leuC7, trpC2, r-m-)を、B. subtilis
118株(aroI, amyE)から抽出した染色体DNAで形質転換
した。トリプトファン非要求性株の中から、α-アミラ
ーゼ活性を有しない株を、デンプン培地(0.6%甘蔗
デンプン、0.1Mリン酸緩衝液(pH7.0)、0.
05%NaN3、1%寒天)上でヨウ素−ヨウ化カリウ
ム溶液の噴霧に際してハローを形成しない株として選択
した。トリプトファン非要求性株の0.5%がα-アミ
ラーゼ欠損株であった。その1株をB.subtilis KY110と
命名した。
Examples (Example 1: Examination of treatment conditions with hydroxylamine) Bacillus subtilis strain KY110 (l
euC7, amyE, rm-) was used. Bacillus subtilis KY
110 strains were isolated as follows. B.su, a Marburg strain
btilis MI114 (leuC7, trpC2, rm-) was replaced with B. subtilis
Transformation was performed with chromosomal DNA extracted from 118 strains (aroI, amyE). Among the non-tryptophan non-auxotrophs, a strain having no α-amylase activity was converted to a starch medium (0.6% sugarcane starch, 0.1 M phosphate buffer (pH 7.0), 0.1%).
05% NaN 3, 1% agar) on iodine - were selected as strains that do not form a halo when spraying potassium iodide solution. 0.5% of tryptophan non-auxotrophs were α-amylase deficient strains. One strain was named B. subtilis KY110.

【0039】B. subtilisのプロトプラストを、Cohenら
の方法(Molec. gen. Genet. 168:111-115 (1979))に
従って形質転換した。宿主細胞をBHI液体培地5ml中
で一晩前培養した。この培養液を200mlのPena
ssay broth(Antibiotic bro
th III(Difco)、17.5g/ml)に接
種し、これを37℃で約2時間振盪培養した。遠心分離
(8,000rpm、10分間)によりペレット化され
た細胞を、20mlのSMMP(0.5 Mスクロー
ス, 0.002 Mマレイン酸(pH6.5), 0.0
2 M MgCl2,antibiotic broth
III)に懸濁した。この懸濁液に40mgのリゾチ
ームを加え、37℃で1〜2時間穏やかに振盪した。得
られたプロトプラストを遠心分離(4,000rpm、
10分間)により採集し、そしてSMMPで1回洗浄し
た。5mlのSMMPに懸濁した細胞の0.5mlを小
試験管に入れ、これにSMM中1μg/mlの濃度のDN
A100μlを添加した。次に、この混合物に1.5m
lの40%PEG(M.W.6,000)を添加し、穏
やかに混合し、そして2分間氷上で放置した。次いで、
5mlのSMMPを加えることによりPEGを希釈し、
そして遠心分離(4,000rpm、10分間)した。
ペレット化された細胞を1mlのSMMPに懸濁し、そ
して30℃で約2時間穏やかに振盪した。次いで、適当
に希釈した細胞懸濁液を、DM3再生培地(4%寒天,
1Mコハク酸ナトリウム, 5%カザミノ酸, 10%酵母
エキス,3.5%K2HPO4, 1.5%KH2PO4, 5
%グルコース, 2%BSA, カナマイシン100μg/
ml)上にプレートし、そして37℃で2日間培養し
て、カナマイシン耐性形質転換体を選択した。
B. subtilis protoplasts were transformed according to the method of Cohen et al. (Molec. Gen. Genet. 168: 111-115 (1979)). The host cells were pre-cultured overnight in 5 ml of BHI liquid medium. Add 200 ml of this culture to Pena
ssay broth (Antibiotical bro
th III (Difco), 17.5 g / ml), and cultured with shaking at 37 ° C. for about 2 hours. The cells pelleted by centrifugation (8,000 rpm, 10 minutes) are mixed with 20 ml of SMMP (0.5 M sucrose, 0.002 M maleic acid (pH 6.5), 0.0
2 M MgCl 2 , antibiotic broth
III). 40 mg of lysozyme was added to this suspension, and the mixture was gently shaken at 37 ° C. for 1 to 2 hours. The obtained protoplasts were centrifuged (4,000 rpm,
10 minutes) and washed once with SMMP. 0.5 ml of the cells suspended in 5 ml of SMMP were placed in a small test tube, and DN was added thereto at a concentration of 1 μg / ml in SMM.
100 μl of A was added. Then add 1.5 m to this mixture
1 of 40% PEG (MW 6,000) was added, mixed gently and left on ice for 2 minutes. Then
Dilute the PEG by adding 5 ml of SMMP,
Then, the mixture was centrifuged (4,000 rpm, 10 minutes).
The pelleted cells were suspended in 1 ml of SMMP and gently shaken at 30 ° C. for about 2 hours. Then, the appropriately diluted cell suspension was added to DM3 regeneration medium (4% agar,
1M sodium succinate, 5% casamino acid, 10% yeast extract, 3.5% K 2 HPO 4 , 1.5% KH 2 PO 4 , 5
% Glucose, 2% BSA, kanamycin 100 μg /
and kanamycin resistant transformants were selected by culturing at 37 ° C. for 2 days.

【0040】α-アミラーゼをコードするDNAの単離
を以下のように実施した。常法により調製したB. amylo
liquefaciens F株の染色体DNAを制限酵素BglIIで
消化し、制限酵素BamHIで消化したpUB110と
連結した。Bacillus subtilis KY110株(leuC7, amyE,
r-m-)をこの連結混合物で形質転換し、カナマイシン耐
性株を得た。α-アミラーゼ陽性株を、カナマイシン
(5μg/ml)を含有するデンプン培地上で、ヨウ素
−ヨウ化カリウムの噴霧に際して周囲にハローを形成す
るコロニーとして選択した。選択した株からプラスミド
DNAを抽出し、これをpAMY110と命名した。pAMY110の
構造を図1に示す。pAMY110中のインサートのヌクレオ
チド配列は、以前に記載されていたB. amyloliquefacie
nsのα-アミラーゼコード配列のヌクレオチド配列(Tak
kinen, K.ら、J. Biol. Chem. 258(2):1007-1013 (198
3))と同一であった。このヌクレオチド配列によりコー
ドされる推定アミノ酸配列を配列番号9に示す。このプ
ラスミドを以下の実験において使用した。次いで、Siko
rski, R.S.およびBoeke, J.D.(Methods Enzymol. 194:
302-318 (1991))の方法に従って、ヒドロキシルアミン
処理を実施した。10μlのプラスミドpAMY110の溶液
(1μg/ml)と1Mヒドロキシルアミン溶液(0.
1MNaCl, 50mMリン酸ナトリウム(pH7.
0), 2mMEDTA, 1M塩酸ヒドロキシルアミン)
500μlとを混合し、70℃で0、30、60、また
は120分間インキュベートし、次いで氷冷して反応を
停止した。イソプロパノール沈殿によって、DNAから
ヒドロキシルアミンを除去した。このプラスミドDNA
でBucillus subtilis KY110株を形質転換した。形質転
換体の数はヒドロキシルアミンでの処理時間の長さが長
くなるにつれて減少し、60または120分処理した場
合の形質転換体数は、非処理の場合の形質転換体数の約
10分の1になった。α-アミラーゼの耐熱性の変化に
ついての予備的なスクリーニング(実施例2を参照のこ
と)を実施し、効率的な変異誘発をもたらす処理条件と
して60分間の処理時間を選択した。
The DNA encoding α-amylase was isolated as follows. B. amylo prepared by a conventional method
The chromosomal DNA of liquefaciens F strain was digested with restriction enzyme BglII and ligated to pUB110 digested with restriction enzyme BamHI. Bacillus subtilis strain KY110 (leuC7, amyE,
rm-) was transformed with this ligation mixture to obtain a kanamycin resistant strain. The α-amylase positive strain was selected as a halo-forming colony upon spraying iodine-potassium iodide on a starch medium containing kanamycin (5 μg / ml). Plasmid DNA was extracted from the selected strain and named pAMY110. The structure of pAMY110 is shown in FIG. The nucleotide sequence of the insert in pAMY110 was as previously described for B. amyloliquefacie.
ns nucleotide sequence of the α-amylase coding sequence (Tak
Kinen, K. et al., J. Biol. Chem. 258 (2): 1007-1013 (198
3)). The deduced amino acid sequence encoded by this nucleotide sequence is shown in SEQ ID NO: 9. This plasmid was used in the following experiments. Next, Siko
rski, RS and Boeke, JD (Methods Enzymol. 194:
302-318 (1991)). 10 μl of a solution of plasmid pAMY110 (1 μg / ml) and 1 M hydroxylamine solution (0.
1 M NaCl, 50 mM sodium phosphate (pH 7.
0), 2 mM EDTA, 1 M hydroxylamine hydrochloride)
500 μl and incubated at 70 ° C. for 0, 30, 60, or 120 minutes, and then the reaction was stopped by cooling on ice. Hydroxylamine was removed from the DNA by isopropanol precipitation. This plasmid DNA
Was used to transform Bucillus subtilis KY110 strain. The number of transformants decreased as the treatment time with hydroxylamine increased, and the number of transformants treated with 60 or 120 minutes was about 10 minutes less than the number of transformants without treatment. It became 1. Preliminary screening for changes in α-amylase thermostability (see Example 2) was performed and a treatment time of 60 minutes was selected as a treatment condition that resulted in efficient mutagenesis.

【0041】(実施例2:耐熱性の低下したα-アミラ
ーゼをコードするクローンについての一次スクリーニン
グ)実施例1に記載の方法に従って、変異誘発を実施し
た。ヒドロキシルアミンで60分間処理したpAMY110を
導入した形質転換体からデンプン培地上でハローを形成
する100個のコロニーを選択し、これを5mlBHI
に接種し、そして37℃で一晩培養した。培養液を遠心
分離し、上清、または上清を80℃で30分間熱処理し
たものを5μlずつペーパーディスク(ToyoRosh
i社製、8mm厚)にしみ込ませ、デンプン培地(0.
6%甘蔗デンプン, 0.1Mリン酸緩衝液(pH7.
0), 0.05%NaN3, 1%寒天)上にのせた。3
0℃での一晩のインキュベーション後、ヨウ素−ヨウ化
カリウム溶液を噴霧し、形成されるハローの大きさを比
較した。図2に結果の一例を示す。図2において、1
は、野生型α-アミラーゼ遺伝子を含むpAMY110を有する
B. subtilis KY110株により形成されるハローを示し、
2〜9は、ヒドロキシルアミンで処理したプラスミドを
有する形質転換体により形成されるハローを示す。図2
に示すように、熱処理した場合のハローが熱処理してい
ないコントロールの場合より顕著に小さい、すなわちα
-アミラーゼの耐熱性が低下していると思われる数個の
クローンが見い出された。このデンプン培地を使用する
一次スクリーニングは、再現性よく反復され得た。
(Example 2: Primary screening for clones encoding α-amylase with reduced thermostability) Mutagenesis was performed according to the method described in Example 1. 100 colonies forming a halo on a starch medium were selected from the transformants into which pAMY110 had been treated with hydroxylamine for 60 minutes, and 5 ml of BHI was selected.
And incubated at 37 ° C. overnight. The culture solution was centrifuged, and the supernatant or the supernatant that had been heat-treated at 80 ° C. for 30 minutes was 5 μl a paper disc (ToyoRosh).
i company, 8 mm thickness), and starch medium (0.
6% sugarcane starch, 0.1 M phosphate buffer (pH 7.
0), 0.05% NaN 3 , 1% agar). 3
After overnight incubation at 0 ° C., the iodine-potassium iodide solution was sprayed and the size of the halo formed was compared. FIG. 2 shows an example of the result. In FIG. 2, 1
Has pAMY110 containing the wild-type α-amylase gene
Shows a halo formed by B. subtilis KY110 strain,
2-9 show halos formed by transformants with plasmids treated with hydroxylamine. FIG.
As shown in the figure, the halo when heat-treated was significantly smaller than the control without heat-treatment, that is, α
-Several clones were found which seemed to have reduced thermostability of amylase. The primary screen using this starch medium could be reproducibly repeated.

【0042】(実施例3:耐熱性試験による二次スクリ
ーニング)実施例2に記載の一次スクリーニングにおい
て選択したNo.21、No.22、No.24、およ
びNo.25の4つのクローンが産生するα-アミラー
ゼについて、55℃、60℃、65℃、70℃、75
℃、80℃、85℃、または90℃における熱失活曲線
を作成した。
Example 3 Secondary Screening by Heat Resistance Test No. 2 selected in the primary screening described in Example 2 21, no. 22, no. 24, and no. For α-amylase produced by 25 4 clones, 55 ° C, 60 ° C, 65 ° C, 70 ° C, 75 ° C
A heat deactivation curve at 80 ° C, 85 ° C, 85 ° C, or 90 ° C was created.

【0043】アミラーゼ活性をデンプン糊精化力として
測定した。1デンプン糊精化力単位は、以下の操作法の
条件下で試験するとき、1分間にバレイショデンプンの
ヨウ素による呈色を10%減少させる酵素量として定義さ
れる。測定手順は以下のとおりである。基質溶液10m
lを37±0.5℃で10分間加温した後、試料溶液1
mlと混合する。この溶液を37±0.5℃で10分間
インキュベートする。この液1mlを0.1N塩酸溶液
10mlと混合する。この液0.5mlを0.0004
Nヨウ素溶液10mlと混合する。この液の660nm
における吸光度を水を対称として測定する(AT)。試
料溶液の代わりに水1mlを使用して得た吸光度をAB
とする。デンプン糊精化力を以下の式に従って算出す
る。デンプン糊精化力(単位/g)=(AB−AT)/A
B×1/W。ここで、試料溶液は、0.2〜0.5デン
プン糊精化力単位/mlの濃度になるようにする。ま
た、基質溶液は、乾燥重量1.000gのバレイショデ
ンプンに水20mlおよび水酸化ナトリウム溶液(2→
25)5mlを加え、加温し、水25mlを加え、2N
塩酸溶液で中和し、そして1M酢酸/酢酸ナトリウム緩
衝液(pH6.0)10mlを加えて調製する。
The amylase activity was measured as the starch gelatinizing power. One starch gelatinizing power unit is defined as the amount of enzyme that reduces iodine coloration of potato starch by 10% per minute when tested under the conditions of the following procedure. The measurement procedure is as follows. Substrate solution 10m
After heating at 37 ± 0.5 ° C. for 10 minutes, the sample solution 1
Mix with ml. This solution is incubated at 37 ± 0.5 ° C. for 10 minutes. 1 ml of this solution is mixed with 10 ml of a 0.1N hydrochloric acid solution. Add 0.5 ml of this solution to 0.0004
Mix with 10 ml of N iodine solution. 660nm of this solution
The absorbance at is measured with water symmetric (A T ). Absorbance obtained by using 1 ml of water instead of the sample solution is expressed as A B
And The starch refining power is calculated according to the following formula. Starch Norisei of force (unit / g) = (A B -A T) / A
B x 1 / W. Here, the sample solution is adjusted to a concentration of 0.2 to 0.5 starch paste refining unit / ml. The substrate solution was prepared by adding 20 ml of water and a sodium hydroxide solution (2 →
25) Add 5 ml, warm, add 25 ml of water, add 2N
Neutralize with hydrochloric acid solution and prepare by adding 10 ml of 1 M acetic acid / sodium acetate buffer (pH 6.0).

【0044】それぞれの温度での各時点における糖化力
を0分時点における糖化力を100とした相対値で示し
た。もとのB. amyloliquefaciens F株由来のα-アミラ
ーゼ(BAA)およびAspergillus oryzae由来のα-ア
ミラーゼ(スミチームL、新日本化学社製)をコントロ
ールとして使用した。
The saccharifying power at each time point at each temperature was shown as a relative value with the saccharifying power at 0 minute as 100. An α-amylase (BAA) derived from the original B. amyloliquefaciens F strain and an α-amylase derived from Aspergillus oryzae (Sumiteam L, manufactured by Shin Nippon Chemical Co., Ltd.) were used as controls.

【0045】結果を図3に示す。4つのクローンのう
ち、No.21の酵素が最も低下した耐熱性を有してい
た。もとのB. amyloliquefaciens F株由来のα-アミラ
ーゼ(LA)は、65℃30分間の処理でほとんど失活
しないが、No.21の変異型α-アミラーゼは同じ条
件下で残存活性はほとんどなかった。
FIG. 3 shows the results. Of the four clones, No. Twenty-one enzymes had the lowest heat resistance. Although the original α-amylase (LA) derived from the B. amyloliquefaciens F strain was hardly inactivated by treatment at 65 ° C. for 30 minutes, No. The 21 mutant α-amylases had little residual activity under the same conditions.

【0046】(実施例4:変異型α-アミラーゼの精
製)実施例3で選択した4つの変異型α-アミラーゼ生
産菌株をBHIS液体培地50mlを入れた500ml
容坂口フラスコに接種し、37℃で一夜振盪培養した。
培養液0.5mlを同じ組成および液量の培地30本の
それぞれに接種し、37℃で72時間振盪培養した。得
られた培養液を遠心分離して、上清1,500mlを得
た。この上清を限外濾過により約10倍濃縮した。次い
で、この濃縮液に3倍量のアルコールを加えて沈澱を形
成させ、この沈澱を真空乾燥することにより粗酵素原末
を得た。
(Example 4: Purification of mutant α-amylase) The four mutant α-amylase-producing strains selected in Example 3 were mixed with 500 ml of BHIS liquid medium in 500 ml.
It was inoculated into a Nosakaguchi flask and cultured with shaking at 37 ° C. overnight.
0.5 ml of the culture solution was inoculated into each of 30 culture media having the same composition and volume, and cultured at 37 ° C. for 72 hours with shaking. The obtained culture was centrifuged to obtain 1,500 ml of the supernatant. This supernatant was concentrated about 10 times by ultrafiltration. Next, a three-fold amount of alcohol was added to the concentrated solution to form a precipitate, and the precipitate was dried under vacuum to obtain a crude enzyme powder.

【0047】(実施例5:変異型α-アミラーゼを使用
する製パン)食パンおよびフランスパンのためのパン生
地の材料を表1に従って混合した。
Example 5 Bread Making Using Mutant α-Amylase Bread dough ingredients for bread and French bread were mixed according to Table 1.

【0048】[0048]

【表1】 [Table 1]

【0049】これに、実施例4において調製した4種の
粗酵素原末をさらに添加した。コントロールには、B. a
myloliquefaciens由来のα-アミラーゼ(BAA)もし
くはAspergiluus oryzae由来のα-アミラーゼ(スミチ
ームL)を添加するか、または酵素を添加しなかった。
酵素添加量は、食パンの場合は、スミチームL以外の酵
素40単位またはスミチームL104単位であり、フラ
ンスパンの場合は、スミチームL以外の酵素28単位ま
たはスミチームL73単位であった。パン生地を、ナシ
ョナル自動ホームベーカリー(SD−BT6)を使用し
て焼成した。焼きあがったパンを以下のように評価し
た。
To this, the four crude enzyme powders prepared in Example 4 were further added. Controls include B. a
α-amylase from myloliquefaciens (BAA) or α-amylase from Aspergiluus oryzae (Sumizyme L) was added or no enzyme was added.
The amount of the enzyme added was 40 units of the enzyme other than Sumizyme L or 104 units of Sumiteam L in the case of bread, and 28 units of the enzyme other than Sumizyme L or 73 units of Sumiteam L in the case of French bread. The dough was baked using a National Automated Home Bakery (SD-BT6). The baked bread was evaluated as follows.

【0050】パンを焼成後常温で1.5時間放置し、水
分蒸発を極力防止するためにビニール袋に入れて20℃
で24時間または72時間保存し、次いで、パンの硬さ
を測定した。硬さの測定は以下のように実施した。パン
を2cm厚にスライスし、このパンの中央部を5cm×
5cmにカットして断片を作製した。この断片をサン化
学製レオメーター(COMPAC−100)を使用し
て、圧縮スピード1mm/秒で1cmまで2回繰り返し
圧縮した。単位面積(cm2)あたりの最大応力(g)
の平均値を測定した。1試料について4回の測定を実施
し、平均値を求めた。
After baking, leave the bread at room temperature for 1.5 hours and place it in a plastic bag at 20 ° C to minimize evaporation of water.
For 24 or 72 hours, and then the bread hardness was measured. The hardness was measured as follows. Slice the bread to a thickness of 2 cm, and measure the center of this bread to 5 cm x
The pieces were cut into 5 cm pieces. This fragment was repeatedly compressed to 1 cm twice at a compression speed of 1 mm / sec using a rheometer (COMPAC-100) manufactured by Sun Chemical. Maximum stress (g) per unit area (cm 2 )
Was measured. Four measurements were performed for one sample, and the average value was determined.

【0051】柔らかさ、および食感は、No.21の酵
素を用いた場合に最も良好であった(データは示さ
ず)。表2に示すように、No.21の酵素を添加した
パンは、酵素無添加のパンと比較して、非常に品質が向
上していた。Aspergillus oryzae由来のα-アミラーゼ
のフランスパンへの添加は、No.21の酵素の添加ほ
どの効果を示さなかった。この原因としては、Aspergil
lus oryzae由来α-アミラーゼの耐熱性が低く、かつそ
のパン中の澱粉への作用様式がB. amyloliquefaciens由
来のα-アミラーゼに比較して適切ではないことなどが
考えられ得る。
The softness and texture were evaluated as follows: It was best when 21 enzymes were used (data not shown). As shown in Table 2, The bread to which the enzyme No. 21 was added had significantly improved quality compared to the bread to which no enzyme was added. The addition of α-amylase from Aspergillus oryzae to French bread is described in It was not as effective as the addition of 21 enzymes. This is due to Aspergil
It can be considered that the heat resistance of lus oryzae-derived α-amylase is low, and that the mode of action on the starch in bread is not appropriate as compared with the α-amylase derived from B. amyloliquefaciens.

【0052】[0052]

【表2】 [Table 2]

【0053】(実施例6:クローンNo.21、No.
22、No.24およびNo.25の配列決定)実施例
5において選択したクローンNo.21、No.22、
No.24およびNo.25の有するプラスミドのイン
サートのヌクレオチド配列を決定した。配列決定反応は
ジデオキシ法(Proc. Natl. Acad. Sci. USA, 74:5463
(1997))に従った。反応は、蛍光標識されたM13ユニ
バーサル・プライマーおよびT7DNAポリメラーゼを
用いて、オートリード・シークエンシング・キット(フ
ァルマシア社製)を使用して実施した。この反応生成物
をA.L.F.DNAシークエンサー(ファルマシア社
製)に供して、ヌクレオチド配列を決定した。
Example 6: Clone No. 21, No.
22, no. 24 and No. 25) The clone No. selected in Example 5 21, no. 22,
No. 24 and No. The nucleotide sequence of the insert of the 25 plasmids was determined. The sequencing reaction was performed by the dideoxy method (Proc. Natl. Acad. Sci. USA, 74: 5463).
(1997)). The reaction was carried out using an autoread sequencing kit (Pharmacia) using a fluorescently labeled M13 universal primer and T7 DNA polymerase. The reaction product is L. F. The nucleotide sequence was determined using a DNA sequencer (Pharmacia).

【0054】配列番号2、配列番号4、配列番号6およ
び配列番号8に、クローンNo.21、No.22、N
o.24およびNo.25のヌクレオチド配列をそれぞ
れ示す。そして配列番号1、配列番号3、配列番号5お
よび配列番号7に、クローンNo.21、No.22、
No.24およびNo.25の推定アミノ酸配列をそれ
ぞれ示す。
SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 and SEQ ID NO: 8 21, no. 22, N
o. 24 and No. Each of the 25 nucleotide sequences is shown. SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No. 7 have clone No. 21, no. 22,
No. 24 and No. Each of the 25 deduced amino acid sequences is shown.

【0055】クローンNo.21のヌクレオチド配列
は、もとのB. amyloliquefaciens F株のα-アミラーゼ
コード領域のヌクレオチドとは2カ所で異なっていた
(配列番号2のヌクレオチド1138位のAおよびヌク
レオチド1178位のCは、それぞれもとの株において
はGおよびTであった)。その結果、配列番号9のアミ
ノ酸配列の380位のアラニンに対するコドンGCCが
スレオニンに対するコドンACCに、そして393位の
フェニルアラニンに対するコドンTTCがセリンに対す
るTCCに、それぞれ変化していることが見出された。
Clone No. The nucleotide sequence of No. 21 was different from the nucleotide of the α-amylase coding region of the original B. amyloliquefaciens strain F in two places (A in nucleotide position 1138 and C in nucleotide position 1178 in SEQ ID NO: 2 were respectively different from each other). G and T in the strains with. As a result, it was found that the codon GCC for alanine at position 380 in the amino acid sequence of SEQ ID NO: 9 was changed to codon ACC for threonine, and the codon TTC for phenylalanine at position 393 was changed to TCC for serine.

【0056】クローンNo.22のヌクレオチド配列も
また、もとのB. amyloliquefaciensF株のα-アミラーゼ
コード領域のヌクレオチドとは2カ所で異なっていた
(配列番号4のヌクレオチド89位のTおよびヌクレオ
チド583位のAは、それぞれもとの株においてはCお
よびGであった)。その結果、配列番号9のアミノ酸配
列の30位のセリンに対するコドンTCAがロイシンに
対するコドンTTAに、そして195位のアスパラギン
酸に対するコドンGATがアスパラギンに対するAAT
に、それぞれ変化していることが見出された。
Clone No. The nucleotide sequence of SEQ ID NO: 22 also differed from the nucleotide of the α-amylase coding region of the original B. amyloliquefaciensF strain in two places (the T at nucleotide position 89 and the A at nucleotide position 583 of SEQ ID NO: 4 were each different). C and G in the strains with. As a result, in the amino acid sequence of SEQ ID NO: 9, the codon TCA for serine at position 30 is the codon TTA for leucine, and the codon GAT for aspartic acid at position 195 is the AAT for asparagine.
It was found that each changed.

【0057】クローンNo.24のヌクレオチド配列
は、もとのB. amyloliquefaciens F株のα-アミラーゼ
コード領域のヌクレオチドとは3カ所で異なっていた
(配列番号6のヌクレオチド461位のA、ヌクレオチ
ド702位のTおよびヌクレオチド1086位のAは、
それぞれもとの株においてはG、CおよびGであっ
た)。その結果、配列番号9のアミノ酸配列の154位
のアルギニンに対するコドンAGAがリジンに対するコ
ドンAAAに変化していることが見出された。
Clone No. The nucleotide sequence of 24 differed from the nucleotides of the α-amylase coding region of the original B. amyloliquefaciens F strain in three places (A at nucleotide position 461, T at nucleotide position 702 and T at nucleotide position 1086 of SEQ ID NO: 6). A of
G, C and G in the original strains, respectively). As a result, it was found that the codon AGA for arginine at position 154 of the amino acid sequence of SEQ ID NO: 9 was changed to codon AAA for lysine.

【0058】クローンNo.25のヌクレオチド配列
は、もとのB. amyloliquefaciens F株のα-アミラーゼ
コード領域のヌクレオチドとは2カ所で異なっていた
(配列番号8のヌクレオチド575位のTおよびヌクレ
オチド697位のAは、それぞれもとの株においてはC
およびGであった)。その結果、配列番号9のアミノ酸
配列の192位のアラニンに対するコドンGCGがバリ
ンに対するコドンGTGに、そして233位のアスパラ
ギン酸に対するコドンGACがアスパラギンに対するA
ACに、それぞれ変化していることが見出された。従っ
て、これらのアミノ酸置換が耐熱性の低下を担っている
ことが示唆された。クローンNo.21の変異型α-ア
ミラーゼにおけるアミノ酸置換の位置を、図4に模式的
に示す。
Clone No. The nucleotide sequence of 25 was different from the nucleotide of the α-amylase coding region of the original B. amyloliquefaciens strain F in two places (T at nucleotide position 575 and A at nucleotide position 697 in SEQ ID NO: 8 were each different). And C
And G). As a result, the codon GCG for alanine at position 192 and the codon GAC for aspartic acid at position 233 in the amino acid sequence of SEQ ID NO: 9 correspond to ATG for asparagine.
AC was found to be altered in each case. Therefore, it was suggested that these amino acid substitutions are responsible for the decrease in heat resistance. Clone No. The positions of amino acid substitutions in 21 mutant α-amylases are schematically shown in FIG.

【0059】No.21変異型α-アミラーゼ生産株で
あるBacillus subtilis KY110(pAMY21)株は、工業技
術院生命工学工業技術研究所に平成10年7月23日に
寄託されており、その受託番号はFERM P−169
05号である。
No. The Bacillus subtilis KY110 (pAMY21) strain, which is a 21-mutant α-amylase-producing strain, was deposited with the National Institute of Bioscience and Human-Technology, National Institute of Advanced Industrial Science and Technology on July 23, 1998, and has a deposit number of FERM P-169.
No. 05.

【0060】B. amyloliquefaciens由来のα-アミラー
ゼのアミノ酸配残基を、対応する位置のB.licheniformi
s由来のα-アミラーゼのアミノ酸残基に置換することに
より、B. amyloliquefaciens由来のα-アミラーゼの耐
熱性を上昇させる研究が報告されている(特開昭63-680
84;Suzuki, Y.ら、J. Biol. Chem. 264(32):18933-189
38 (1989))。Suzukiらは、α-アミラーゼのアミノ酸配
列の中央部に位置する2つの領域を耐熱性に関与し得る
として同定したが、上で同定された30位、154位、
192位、195位、233位、380位および393
位は、これらの領域には含まれていない。すなわち、こ
の文献の記載に基づく部位特異的変異誘発からは、本願
において見出された変異は得られ得ない。このことは、
本発明の、ランダム変異による変異型α-アミラーゼの
スクリーニング方法が、製パンに適切な耐熱性の低下し
たα-アミラーゼの単離において有用であることを示
す。
The amino acid residue of α-amylase derived from B. amyloliquefaciens was changed to B. licheniformi at the corresponding position.
Studies have been reported to increase the heat resistance of α-amylase derived from B. amyloliquefaciens by substituting the amino acid residue of α-amylase derived from s (see JP-A-63-680).
84; Suzuki, Y. et al., J. Biol. Chem. 264 (32): 18933-189.
38 (1989)). Suzuki et al. Identified two regions located at the center of the amino acid sequence of α-amylase as being able to participate in thermostability, but identified at positions 30 and 154,
192, 195, 233, 380 and 393
Positions are not included in these regions. That is, the mutations found in the present application cannot be obtained from site-directed mutagenesis based on the description in this document. This means
It shows that the method for screening for a mutant α-amylase by random mutation of the present invention is useful for isolating α-amylase having reduced thermostability suitable for baking.

【0061】[0061]

【発明の効果】本発明により、製パンにおける使用に適
切な耐熱性を有するα-アミラーゼが提供される。
According to the present invention, an α-amylase having heat resistance suitable for use in bread making is provided.

【0062】[0062]

【配列表】 SEQUENCE LISTING <110> Daiwa Kasei K.K. <120> Novel amylase for making bread and gene therefor <130> J199120165 <140> <141> <150> 10-237839 <151> 1998-08-24 <160> 9 <170> PatentIn Ver. 2.0 <210> 1 <211> 514 <212> PRT <213> Bacillus amyloliquefaciens, clone No. 21 <400> 1 Met Ile Gln Lys Arg Lys Arg Thr Val Ser Phe Arg Leu Val Leu Met 1 5 10 15 Cys Thr Leu Leu Phe Val Ser Leu Pro Ile Thr Lys Thr Ser Ala Val 20 25 30 Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp Gly 35 40 45 Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp Ile 50 55 60 Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Leu Ser Gln 65 70 75 80 Ser Asp Asn Gly Tyr Gly Pro Tyr Asp Leu Tyr Asp Leu Gly Glu Phe 85 90 95 Gln Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Ser Glu Leu 100 105 110 Gln Asp Ala Ile Gly Ser Leu His Ser Arg Asn Val Gln Val Tyr Gly 115 120 125 Asp Val Val Leu Asn His Lys Ala Gly Ala Asp Ala Thr Glu Asp Val 130 135 140 Thr Ala Val Glu Val Asn Pro Ala Asn Arg Asn Gln Glu Thr Ser Glu 145 150 155 160 Glu Tyr Gln Ile Lys Ala Trp Thr Asp Phe Arg Phe Pro Gly Arg Gly 165 170 175 Asn Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly Ala 180 185 190 Asp Trp Asp Glu Ser Arg Lys Ile Ser Arg Ile Phe Lys Phe Arg Gly 195 200 205 Glu Gly Lys Ala Trp Asp Trp Glu Val Ser Ser Glu Asn Gly Asn Tyr 210 215 220 Asp Tyr Leu Met Tyr Ala Asp Val Asp Tyr Asp His Pro Asp Val Val 225 230 235 240 Ala Glu Thr Lys Lys Trp Gly Ile Trp Tyr Ala Asn Glu Leu Ser Leu 245 250 255 Asp Gly Phe Arg Ile Asp Ala Ala Lys His Ile Lys Phe Ser Phe Leu 260 265 270 Arg Asp Trp Val Gln Ala Val Arg Gln Ala Thr Gly Lys Glu Met Phe 275 280 285 Thr Val Ala Glu Tyr Trp Gln Asn Asn Ala Gly Lys Leu Glu Asn Tyr 290 295 300 Leu Asn Lys Thr Ser Phe Asn Gln Ser Val Phe Asp Val Pro Leu His 305 310 315 320 Phe Asn Leu Gln Ala Ala Ser Ser Gln Gly Gly Gly Tyr Asp Met Arg 325 330 335 Arg Leu Leu Asp Gly Thr Val Val Ser Arg His Pro Glu Lys Ala Val 340 345 350 Thr Phe Val Glu Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu Ser 355 360 365 Thr Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Thr Phe Ile Leu Thr 370 375 380 Arg Glu Ser Gly Tyr Pro Gln Val Ser Tyr Gly Asp Met Tyr Gly Thr 385 390 395 400 Lys Gly Thr Ser Pro Lys Glu Ile Pro Ser Leu Lys Asp Asn Ile Glu 405 410 415 Pro Ile Leu Lys Ala Arg Lys Glu Tyr Ala Tyr Gly Pro Gln His Asp 420 425 430 Tyr Ile Asp His Pro Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ser 435 440 445 Ser Ala Ala Lys Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly 450 455 460 Gly Ser Lys Arg Met Tyr Ala Gly Leu Lys Asn Ala Gly Glu Thr Trp 465 470 475 480 Tyr Asp Ile Thr Gly Asn Arg Ser Asp Thr Val Lys Ile Gly Ser Asp 485 490 495 Gly Trp Gly Glu Phe His Val Asn Asp Gly Ser Val Ser Ile Tyr Val 500 505 510 Gln Lys 514 <210> 2 <211> 1545 <212> DNA <213> Bacillus amyloliquefaciens, clone No. 21 <220> <221> CDS <222> (1)..(1545) <220> <221> sig_peptide <222> (1)..(93) <220> <221> mat_peptide <222> (94)..(1542) <400> 2 ATGATTCAAA AACGAAAGCG GACAGTTTCG TTCAGACTTG TGCTTATGTG CACGCTGTTA 60 TTTGTCAGTT TGCCGATTAC AAAAACATCA GCCGTAAATG GCACGCTGAT GCAGTATTTT 120 GAATGGTATA CGCCGAACGA CGGCCAGCAT TGGAAACGAT TGCAGAATGA TGCGGAACAT 180 TTATCGGATA TCGGAATCAC TGCCGTCTGG ATTCCTCCCG CATACAAAGG ATTGAGCCAA 240 TCCGATAACG GATACGGACC TTATGATTTG TATGATTTAG GAGAATTCCA GCAAAAAGGG 300 ACGGTCAGAA CGAAATACGG CACAAAATCA GAGCTTCAAG ATGCGATCGG CTCACTGCAT 360 TCCCGGAACG TCCAAGTATA CGGAGATGTG GTTTTGAATC ATAAGGCTGG TGCTGATGCA 420 ACAGAAGATG TAACTGCCGT CGAAGTCAAT CCGGCCAATA GAAATCAGGA AACTTCGGAG 480 GAATATCAAA TCAAAGCGTG GACGGATTTT CGTTTTCCGG GCCGTGGAAA CACGTACAGT 540 GATTTTAAAT GGCATTGGTA TCATTTCGAC GGAGCGGACT GGGATGAATC CCGGAAGATC 600 AGCCGCATCT TTAAGTTTCG TGGGGAAGGA AAAGCGTGGG ATTGGGAAGT ATCAAGTGAA 660 AACGGCAACT ATGACTATTT AATGTATGCT GATGTTGACT ACGACCACCC TGATGTCGTG 720 GCAGAGACAA AAAAATGGGG TATCTGGTAT GCGAATGAAC TGTCATTAGA CGGCTTCCGT 780 ATTGATGCCG CCAAACATAT TAAATTTTCA TTTCTGCGTG ATTGGGTTCA GGCGGTCAGA 840 CAGGCGACGG GAAAAGAAAT GTTTACGGTT GCGGAGTATT GGCAGAATAA TGCCGGGAAA 900 CTCGAAAACT ACTTGAATAA AACAAGCTTT AATCAATCCG TGTTTGATGT TCCGCTTCAT 960 TTCAATTTAC AGGCGGCTTC CTCACAAGGA GGCGGATATG ATATGAGGCG TTTGCTGGAC 1020 GGTACCGTTG TGTCCAGGCA TCCGGAAAAG GCGGTTACAT TTGTTGAAAA TCATGACACA 1080 CAGCCGGGAC AGTCATTGGA ATCGACAGTC CAAACTTGGT TTAAACCGCT TGCATACACC 1140 TTTATTTTGA CAAGAGAATC CGGTTATCCT CAGGTGTCCT ATGGGGATAT GTACGGGACA 1200 AAAGGGACAT CGCCAAAGGA AATTCCCTCA CTGAAAGATA ATATAGAGCC GATTTTAAAA 1260 GCGCGTAAGG AGTACGCATA CGGGCCCCAG CACGATTATA TTGACCACCC GGATGTGATC 1320 GGATGGACGA GGGAAGGTGA CAGCTCCGCC GCCAAATCAG GTTTGGCCGC TTTAATCACG 1380 GACGGACCCG GCGGATCAAA GCGGATGTAT GCCGGCCTGA AAAATGCCGG CGAGACATGG 1440 TATGACATAA CGGGCAACCG TTCAGATACT GTAAAAATCG GATCTGACGG CTGGGGAGAG 1500 TTTCATGTAA ACGATGGGTC CGTCTCCATT TATGTTCAGA AATAA 1545 <210> 3 <211> 514 <212> PRT <213> Bacillus amyloliquefaciens, clone No. 22 <400> 3 Met Ile Gln Lys Arg Lys Arg Thr Val Ser Phe Arg Leu Val Leu Met 1 5 10 15 Cys Thr Leu Leu Phe Val Ser Leu Pro Ile Thr Lys Thr Leu Ala Val 20 25 30 Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp Gly 35 40 45 Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp Ile 50 55 60 Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Leu Ser Gln 65 70 75 80 Ser Asp Asn Gly Tyr Gly Pro Tyr Asp Leu Tyr Asp Leu Gly Glu Phe 85 90 95 Gln Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Ser Glu Leu 100 105 110 Gln Asp Ala Ile Gly Ser Leu His Ser Arg Asn Val Gln Val Tyr Gly 115 120 125 Asp Val Val Leu Asn His Lys Ala Gly Ala Asp Ala Thr Glu Asp Val 130 135 140 Thr Ala Val Glu Val Asn Pro Ala Asn Arg Asn Gln Glu Thr Ser Glu 145 150 155 160 Glu Tyr Gln Ile Lys Ala Trp Thr Asp Phe Arg Phe Pro Gly Arg Gly 165 170 175 Asn Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly Ala 180 185 190 Asp Trp Asn Glu Ser Arg Lys Ile Ser Arg Ile Phe Lys Phe Arg Gly 195 200 205 Glu Gly Lys Ala Trp Asp Trp Glu Val Ser Ser Glu Asn Gly Asn Tyr 210 215 220 Asp Tyr Leu Met Tyr Ala Asp Val Asp Tyr Asp His Pro Asp Val Val 225 230 235 240 Ala Glu Thr Lys Lys Trp Gly Ile Trp Tyr Ala Asn Glu Leu Ser Leu 245 250 255 Asp Gly Phe Arg Ile Asp Ala Ala Lys His Ile Lys Phe Ser Phe Leu 260 265 270 Arg Asp Trp Val Gln Ala Val Arg Gln Ala Thr Gly Lys Glu Met Phe 275 280 285 Thr Val Ala Glu Tyr Trp Gln Asn Asn Ala Gly Lys Leu Glu Asn Tyr 290 295 300 Leu Asn Lys Thr Ser Phe Asn Gln Ser Val Phe Asp Val Pro Leu His 305 310 315 320 Phe Asn Leu Gln Ala Ala Ser Ser Gln Gly Gly Gly Tyr Asp Met Arg 325 330 335 Arg Leu Leu Asp Gly Thr Val Val Ser Arg His Pro Glu Lys Ala Val 340 345 350 Thr Phe Val Glu Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu Ser 355 360 365 Thr Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu Thr 370 375 380 Arg Glu Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly Thr 385 390 395 400 Lys Gly Thr Ser Pro Lys Glu Ile Pro Ser Leu Lys Asp Asn Ile Glu 405 410 415 Pro Ile Leu Lys Ala Arg Lys Glu Tyr Ala Tyr Gly Pro Gln His Asp 420 425 430 Tyr Ile Asp His Pro Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ser 435 440 445 Ser Ala Ala Lys Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly 450 455 460 Gly Ser Lys Arg Met Tyr Ala Gly Leu Lys Asn Ala Gly Glu Thr Trp 465 470 475 480 Tyr Asp Ile Thr Gly Asn Arg Ser Asp Thr Val Lys Ile Gly Ser Asp 485 490 495 Gly Trp Gly Glu Phe His Val Asn Asp Gly Ser Val Ser Ile Tyr Val 500 505 510 Gln Lys 514 <210> 4 <211> 1545 <212> DNA <213> Bacillus amyloliquefaciens, No. 22 <220> <221> CDS <222> (1)..(1545) <220> <221> sig_peptide <222> (1)..(93) <220> <221> mat_peptide <222> (94)..(1542) <400> 4 ATGATTCAAA AACGAAAGCG GACAGTTTCG TTCAGACTTG TGCTTATGTG CACGCTGTTA 60 TTTGTCAGTT TGCCGATTAC AAAAACATTA GCCGTAAATG GCACGCTGAT GCAGTATTTT 120 GAATGGTATA CGCCGAACGA CGGCCAGCAT TGGAAACGAT TGCAGAATGA TGCGGAACAT 180 TTATCGGATA TCGGAATCAC TGCCGTCTGG ATTCCTCCCG CATACAAAGG ATTGAGCCAA 240 TCCGATAACG GATACGGACC TTATGATTTG TATGATTTAG GAGAATTCCA GCAAAAAGGG 300 ACGGTCAGAA CGAAATACGG CACAAAATCA GAGCTTCAAG ATGCGATCGG CTCACTGCAT 360 TCCCGGAACG TCCAAGTATA CGGAGATGTG GTTTTGAATC ATAAGGCTGG TGCTGATGCA 420 ACAGAAGATG TAACTGCCGT CGAAGTCAAT CCGGCCAATA GAAATCAGGA AACTTCGGAG 480 GAATATCAAA TCAAAGCGTG GACGGATTTT CGTTTTCCGG GCCGTGGAAA CACGTACAGT 540 GATTTTAAAT GGCATTGGTA TCATTTCGAC GGAGCGGACT GGAATGAATC CCGGAAGATC 600 AGCCGCATCT TTAAGTTTCG TGGGGAAGGA AAAGCGTGGG ATTGGGAAGT ATCAAGTGAA 660 AACGGCAACT ATGACTATTT AATGTATGCT GATGTTGACT ACGACCACCC TGATGTCGTG 720 GCAGAGACAA AAAAATGGGG TATCTGGTAT GCGAATGAAC TGTCATTAGA CGGCTTCCGT 780 ATTGATGCCG CCAAACATAT TAAATTTTCA TTTCTGCGTG ATTGGGTTCA GGCGGTCAGA 840 CAGGCGACGG GAAAAGAAAT GTTTACGGTT GCGGAGTATT GGCAGAATAA TGCCGGGAAA 900 CTCGAAAACT ACTTGAATAA AACAAGCTTT AATCAATCCG TGTTTGATGT TCCGCTTCAT 960 TTCAATTTAC AGGCGGCTTC CTCACAAGGA GGCGGATATG ATATGAGGCG TTTGCTGGAC 1020 GGTACCGTTG TGTCCAGGCA TCCGGAAAAG GCGGTTACAT TTGTTGAAAA TCATGACACA 1080 CAGCCGGGAC AGTCATTGGA ATCGACAGTC CAAACTTGGT TTAAACCGCT TGCATACGCC 1140 TTTATTTTGA CAAGAGAATC CGGTTATCCT CAGGTGTTCT ATGGGGATAT GTACGGGACA 1200 AAAGGGACAT CGCCAAAGGA AATTCCCTCA CTGAAAGATA ATATAGAGCC GATTTTAAAA 1260 GCGCGTAAGG AGTACGCATA CGGGCCCCAG CACGATTATA TTGACCACCC GGATGTGATC 1320 GGATGGACGA GGGAAGGTGA CAGCTCCGCC GCCAAATCAG GTTTGGCCGC TTTAATCACG 1380 GACGGACCCG GCGGATCAAA GCGGATGTAT GCCGGCCTGA AAAATGCCGG CGAGACATGG 1440 TATGACATAA CGGGCAACCG TTCAGATACT GTAAAAATCG GATCTGACGG CTGGGGAGAG 1500 TTTCATGTAA ACGATGGGTC CGTCTCCATT TATGTTCAGA AATAA 1545 <210> 5 <211> 514 <212> PRT <213> Bacillus amyloliquefaciens, No. 24 <400> 5 Met Ile Gln Lys Arg Lys Arg Thr Val Ser Phe Arg Leu Val Leu Met 1 5 10 15 Cys Thr Leu Leu Phe Val Ser Leu Pro Ile Thr Lys Thr Ser Ala Val 20 25 30 Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp Gly 35 40 45 Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp Ile 50 55 60 Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Leu Ser Gln 65 70 75 80 Ser Asp Asn Gly Tyr Gly Pro Tyr Asp Leu Tyr Asp Leu Gly Glu Phe 85 90 95 Gln Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Ser Glu Leu 100 105 110 Gln Asp Ala Ile Gly Ser Leu His Ser Arg Asn Val Gln Val Tyr Gly 115 120 125 Asp Val Val Leu Asn His Lys Ala Gly Ala Asp Ala Thr Glu Asp Val 130 135 140 Thr Ala Val Glu Val Asn Pro Ala Asn Lys Asn Gln Glu Thr Ser Glu 145 150 155 160 Glu Tyr Gln Ile Lys Ala Trp Thr Asp Phe Arg Phe Pro Gly Arg Gly 165 170 175 Asn Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly Ala 180 185 190 Asp Trp Asp Glu Ser Arg Lys Ile Ser Arg Ile Phe Lys Phe Arg Gly 195 200 205 Glu Gly Lys Ala Trp Asp Trp Glu Val Ser Ser Glu Asn Gly Asn Tyr 210 215 220 Asp Tyr Leu Met Tyr Ala Asp Val Asp Tyr Asp His Pro Asp Val Val 225 230 235 240 Ala Glu Thr Lys Lys Trp Gly Ile Trp Tyr Ala Asn Glu Leu Ser Leu 245 250 255 Asp Gly Phe Arg Ile Asp Ala Ala Lys His Ile Lys Phe Ser Phe Leu 260 265 270 Arg Asp Trp Val Gln Ala Val Arg Gln Ala Thr Gly Lys Glu Met Phe 275 280 285 Thr Val Ala Glu Tyr Trp Gln Asn Asn Ala Gly Lys Leu Glu Asn Tyr 290 295 300 Leu Asn Lys Thr Ser Phe Asn Gln Ser Val Phe Asp Val Pro Leu His 305 310 315 320 Phe Asn Leu Gln Ala Ala Ser Ser Gln Gly Gly Gly Tyr Asp Met Arg 325 330 335 Arg Leu Leu Asp Gly Thr Val Val Ser Arg His Pro Glu Lys Ala Val 340 345 350 Thr Phe Val Glu Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu Ser 355 360 365 Thr Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu Thr 370 375 380 Arg Glu Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly Thr 385 390 395 400 Lys Gly Thr Ser Pro Lys Glu Ile Pro Ser Leu Lys Asp Asn Ile Glu 405 410 415 Pro Ile Leu Lys Ala Arg Lys Glu Tyr Ala Tyr Gly Pro Gln His Asp 420 425 430 Tyr Ile Asp His Pro Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ser 435 440 445 Ser Ala Ala Lys Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly 450 455 460 Gly Ser Lys Arg Met Tyr Ala Gly Leu Lys Asn Ala Gly Glu Thr Trp 465 470 475 480 Tyr Asp Ile Thr Gly Asn Arg Ser Asp Thr Val Lys Ile Gly Ser Asp 485 490 495 Gly Trp Gly Glu Phe His Val Asn Asp Gly Ser Val Ser Ile Tyr Val 500 505 510 Gln Lys 514 <210> 6 <211> 1545 <212> DNA <213> Bacillus amyloliquefaciens, No. 24 <220> <221> CDS <222> (1)..(1545) <220> <221> sig_peptide <222> (1)..(93) <220> <221> mat_peptide <222> (94)..(1542) <400> 6 ATGATTCAAA AACGAAAGCG GACAGTTTCG TTCAGACTTG TGCTTATGTG CACGCTGTTA 60 TTTGTCAGTT TGCCGATTAC AAAAACATCA GCCGTAAATG GCACGCTGAT GCAGTATTTT 120 GAATGGTATA CGCCGAACGA CGGCCAGCAT TGGAAACGAT TGCAGAATGA TGCGGAACAT 180 TTATCGGATA TCGGAATCAC TGCCGTCTGG ATTCCTCCCG CATACAAAGG ATTGAGCCAA 240 TCCGATAACG GATACGGACC TTATGATTTG TATGATTTAG GAGAATTCCA GCAAAAAGGG 300 ACGGTCAGAA CGAAATACGG CACAAAATCA GAGCTTCAAG ATGCGATCGG CTCACTGCAT 360 TCCCGGAACG TCCAAGTATA CGGAGATGTG GTTTTGAATC ATAAGGCTGG TGCTGATGCA 420 ACAGAAGATG TAACTGCCGT CGAAGTCAAT CCGGCCAATA AAAATCAGGA AACTTCGGAG 480 GAATATCAAA TCAAAGCGTG GACGGATTTT CGTTTTCCGG GCCGTGGAAA CACGTACAGT 540 GATTTTAAAT GGCATTGGTA TCATTTCGAC GGAGCGGACT GGGATGAATC CCGGAAGATC 600 AGCCGCATCT TTAAGTTTCG TGGGGAAGGA AAAGCGTGGG ATTGGGAAGT ATCAAGTGAA 660 AACGGCAACT ATGACTATTT AATGTATGCT GATGTTGACT ATGACCACCC TGATGTCGTG 720 GCAGAGACAA AAAAATGGGG TATCTGGTAT GCGAATGAAC TGTCATTAGA CGGCTTCCGT 780 ATTGATGCCG CCAAACATAT TAAATTTTCA TTTCTGCGTG ATTGGGTTCA GGCGGTCAGA 840 CAGGCGACGG GAAAAGAAAT GTTTACGGTT GCGGAGTATT GGCAGAATAA TGCCGGGAAA 900 CTCGAAAACT ACTTGAATAA AACAAGCTTT AATCAATCCG TGTTTGATGT TCCGCTTCAT 960 TTCAATTTAC AGGCGGCTTC CTCACAAGGA GGCGGATATG ATATGAGGCG TTTGCTGGAC 1020 GGTACCGTTG TGTCCAGGCA TCCGGAAAAG GCGGTTACAT TTGTTGAAAA TCATGACACA 1080 CAGCCAGGAC AGTCATTGGA ATCGACAGTC CAAACTTGGT TTAAACCGCT TGCATACGCC 1140 TTTATTTTGA CAAGAGAATC CGGTTATCCT CAGGTGTTCT ATGGGGATAT GTACGGGACA 1200 AAAGGGACAT CGCCAAAGGA AATTCCCTCA CTGAAAGATA ATATAGAGCC GATTTTAAAA 1260 GCGCGTAAGG AGTACGCATA CGGGCCCCAG CACGATTATA TTGACCACCC GGATGTGATC 1320 GGATGGACGA GGGAAGGTGA CAGCTCCGCC GCCAAATCAG GTTTGGCCGC TTTAATCACG 1380 GACGGACCCG GCGGATCAAA GCGGATGTAT GCCGGCCTGA AAAATGCCGG CGAGACATGG 1440 TATGACATAA CGGGCAACCG TTCAGATACT GTAAAAATCG GATCTGACGG CTGGGGAGAG 1500 TTTCATGTAA ACGATGGGTC CGTCTCCATT TATGTTCAGA AATAA 1545 <210> 7 <211> 514 <212> PRT <213> Bacillus amyloliquefaciens, No. 25 <400> 7 Met Ile Gln Lys Arg Lys Arg Thr Val Ser Phe Arg Leu Val Leu Met 1 5 10 15 Cys Thr Leu Leu Phe Val Ser Leu Pro Ile Thr Lys Thr Ser Ala Val 20 25 30 Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp Gly 35 40 45 Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp Ile 50 55 60 Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Leu Ser Gln 65 70 75 80 Ser Asp Asn Gly Tyr Gly Pro Tyr Asp Leu Tyr Asp Leu Gly Glu Phe 85 90 95 Gln Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Ser Glu Leu 100 105 110 Gln Asp Ala Ile Gly Ser Leu His Ser Arg Asn Val Gln Val Tyr Gly 115 120 125 Asp Val Val Leu Asn His Lys Ala Gly Ala Asp Ala Thr Glu Asp Val 130 135 140 Thr Ala Val Glu Val Asn Pro Ala Asn Arg Asn Gln Glu Thr Ser Glu 145 150 155 160 Glu Tyr Gln Ile Lys Ala Trp Thr Asp Phe Arg Phe Pro Gly Arg Gly 165 170 175 Asn Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly Val 180 185 190 Asp Trp Asp Glu Ser Arg Lys Ile Ser Arg Ile Phe Lys Phe Arg Gly 195 200 205 Glu Gly Lys Ala Trp Asp Trp Glu Val Ser Ser Glu Asn Gly Asn Tyr 210 215 220 Asp Tyr Leu Met Tyr Ala Asp Val Asn Tyr Asp His Pro Asp Val Val 225 230 235 240 Ala Glu Thr Lys Lys Trp Gly Ile Trp Tyr Ala Asn Glu Leu Ser Leu 245 250 255 Asp Gly Phe Arg Ile Asp Ala Ala Lys His Ile Lys Phe Ser Phe Leu 260 265 270 Arg Asp Trp Val Gln Ala Val Arg Gln Ala Thr Gly Lys Glu Met Phe 275 280 285 Thr Val Ala Glu Tyr Trp Gln Asn Asn Ala Gly Lys Leu Glu Asn Tyr 290 295 300 Leu Asn Lys Thr Ser Phe Asn Gln Ser Val Phe Asp Val Pro Leu His 305 310 315 320 Phe Asn Leu Gln Ala Ala Ser Ser Gln Gly Gly Gly Tyr Asp Met Arg 325 330 335 Arg Leu Leu Asp Gly Thr Val Val Ser Arg His Pro Glu Lys Ala Val 340 345 350 Thr Phe Val Glu Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu Ser 355 360 365 Thr Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu Thr 370 375 380 Arg Glu Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly Thr 385 390 395 400 Lys Gly Thr Ser Pro Lys Glu Ile Pro Ser Leu Lys Asp Asn Ile Glu 405 410 415 Pro Ile Leu Lys Ala Arg Lys Glu Tyr Ala Tyr Gly Pro Gln His Asp 420 425 430 Tyr Ile Asp His Pro Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ser 435 440 445 Ser Ala Ala Lys Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly 450 455 460 Gly Ser Lys Arg Met Tyr Ala Gly Leu Lys Asn Ala Gly Glu Thr Trp 465 470 475 480 Tyr Asp Ile Thr Gly Asn Arg Ser Asp Thr Val Lys Ile Gly Ser Asp 485 490 495 Gly Trp Gly Glu Phe His Val Asn Asp Gly Ser Val Ser Ile Tyr Val 500 505 510 Gln Lys 514 <210> 8 <211> 1545 <212> DNA <213> Bacillus amyloliquefaciens, No. 25 <220> <221> CDS <222> (1)..(1545) <220> <221> sig_peptide <222> (1)..(93) <220> <221> mat_peptide <222> (94)..(1542) <400> 8 ATGATTCAAA AACGAAAGCG GACAGTTTCG TTCAGACTTG TGCTTATGTG CACGCTGTTA 60 TTTGTCAGTT TGCCGATTAC AAAAACATCA GCCGTAAATG GCACGCTGAT GCAGTATTTT 120 GAATGGTATA CGCCGAACGA CGGCCAGCAT TGGAAACGAT TGCAGAATGA TGCGGAACAT 180 TTATCGGATA TCGGAATCAC TGCCGTCTGG ATTCCTCCCG CATACAAAGG ATTGAGCCAA 240 TCCGATAACG GATACGGACC TTATGATTTG TATGATTTAG GAGAATTCCA GCAAAAAGGG 300 ACGGTCAGAA CGAAATACGG CACAAAATCA GAGCTTCAAG ATGCGATCGG CTCACTGCAT 360 TCCCGGAACG TCCAAGTATA CGGAGATGTG GTTTTGAATC ATAAGGCTGG TGCTGATGCA 420 ACAGAAGATG TAACTGCCGT CGAAGTCAAT CCGGCCAATA GAAATCAGGA AACTTCGGAG 480 GAATATCAAA TCAAAGCGTG GACGGATTTT CGTTTTCCGG GCCGTGGAAA CACGTACAGT 540 GATTTTAAAT GGCATTGGTA TCATTTCGAC GGAGTGGACT GGGATGAATC CCGGAAGATC 600 AGCCGCATCT TTAAGTTTCG TGGGGAAGGA AAAGCGTGGG ATTGGGAAGT ATCAAGTGAA 660 AACGGCAACT ATGACTATTT AATGTATGCT GATGTTAACT ACGACCACCC TGATGTCGTG 720 GCAGAGACAA AAAAATGGGG TATCTGGTAT GCGAATGAAC TGTCATTAGA CGGCTTCCGT 780 ATTGATGCCG CCAAACATAT TAAATTTTCA TTTCTGCGTG ATTGGGTTCA GGCGGTCAGA 840 CAGGCGACGG GAAAAGAAAT GTTTACGGTT GCGGAGTATT GGCAGAATAA TGCCGGGAAA 900 CTCGAAAACT ACTTGAATAA AACAAGCTTT AATCAATCCG TGTTTGATGT TCCGCTTCAT 960 TTCAATTTAC AGGCGGCTTC CTCACAAGGA GGCGGATATG ATATGAGGCG TTTGCTGGAC 1020 GGTACCGTTG TGTCCAGGCA TCCGGAAAAG GCGGTTACAT TTGTTGAAAA TCATGACACA 1080 CAGCCGGGAC AGTCATTGGA ATCGACAGTC CAAACTTGGT TTAAACCGCT TGCATACGCC 1140 TTTATTTTGA CAAGAGAATC CGGTTATCCT CAGGTGTTCT ATGGGGATAT GTACGGGACA 1200 AAAGGGACAT CGCCAAAGGA AATTCCCTCA CTGAAAGATA ATATAGAGCC GATTTTAAAA 1260 GCGCGTAAGG AGTACGCATA CGGGCCCCAG CACGATTATA TTGACCACCC GGATGTGATC 1320 GGATGGACGA GGGAAGGTGA CAGCTCCGCC GCCAAATCAG GTTTGGCCGC TTTAATCACG 1380 GACGGACCCG GCGGATCAAA GCGGATGTAT GCCGGCCTGA AAAATGCCGG CGAGACATGG 1440 TATGACATAA CGGGCAACCG TTCAGATACT GTAAAAATCG GATCTGACGG CTGGGGAGAG 1500 TTTCATGTAA ACGATGGGTC CGTCTCCATT TATGTTCAGA AATAA 1545 <210> 9 <211> 514 <212> PRT <213> Bacillus amyloliquefaciens <400> 9 Met Ile Gln Lys Arg Lys Arg Thr Val Ser Phe Arg Leu Val Leu Met 1 5 10 15 Cys Thr Leu Leu Phe Val Ser Leu Pro Ile Thr Lys Thr Ser Ala Val 20 25 30 Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp Gly 35 40 45 Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp Ile 50 55 60 Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Leu Ser Gln 65 70 75 80 Ser Asp Asn Gly Tyr Gly Pro Tyr Asp Leu Tyr Asp Leu Gly Glu Phe 85 90 95 Gln Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Ser Glu Leu 100 105 110 Gln Asp Ala Ile Gly Ser Leu His Ser Arg Asn Val Gln Val Tyr Gly 115 120 125 Asp Val Val Leu Asn His Lys Ala Gly Ala Asp Ala Thr Glu Asp Val 130 135 140 Thr Ala Val Glu Val Asn Pro Ala Asn Arg Asn Gln Glu Thr Ser Glu 145 150 155 160 Glu Tyr Gln Ile Lys Ala Trp Thr Asp Phe Arg Phe Pro Gly Arg Gly 165 170 175 Asn Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly Ala 180 185 190 Asp Trp Asp Glu Ser Arg Lys Ile Ser Arg Ile Phe Lys Phe Arg Gly 195 200 205 Glu Gly Lys Ala Trp Asp Trp Glu Val Ser Ser Glu Asn Gly Asn Tyr 210 215 220 Asp Tyr Leu Met Tyr Ala Asp Val Asp Tyr Asp His Pro Asp Val Val 225 230 235 240 Ala Glu Thr Lys Lys Trp Gly Ile Trp Tyr Ala Asn Glu Leu Ser Leu 245 250 255 Asp Gly Phe Arg Ile Asp Ala Ala Lys His Ile Lys Phe Ser Phe Leu 260 265 270 Arg Asp Trp Val Gln Ala Val Arg Gln Ala Thr Gly Lys Glu Met Phe 275 280 285 Thr Val Ala Glu Tyr Trp Gln Asn Asn Ala Gly Lys Leu Glu Asn Tyr 290 295 300 Leu Asn Lys Thr Ser Phe Asn Gln Ser Val Phe Asp Val Pro Leu His 305 310 315 320 Phe Asn Leu Gln Ala Ala Ser Ser Gln Gly Gly Gly Tyr Asp Met Arg 325 330 335 Arg Leu Leu Asp Gly Thr Val Val Ser Arg His Pro Glu Lys Ala Val 340 345 350 Thr Phe Val Glu Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu Ser 355 360 365 Thr Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu Thr 370 375 380 Arg Glu Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly Thr 385 390 395 400 Lys Gly Thr Ser Pro Lys Glu Ile Pro Ser Leu Lys Asp Asn Ile Glu 405 410 415 Pro Ile Leu Lys Ala Arg Lys Glu Tyr Ala Tyr Gly Pro Gln His Asp 420 425 430 Tyr Ile Asp His Pro Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ser 435 440 445 Ser Ala Ala Lys Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly 450 455 460 Gly Ser Lys Arg Met Tyr Ala Gly Leu Lys Asn Ala Gly Glu Thr Trp 465 470 475 480 Tyr Asp Ile Thr Gly Asn Arg Ser Asp Thr Val Lys Ile Gly Ser Asp 485 490 495 Gly Trp Gly Glu Phe His Val Asn Asp Gly Ser Val Ser Ile Tyr Val 500 505 510 Gln Lys 514[Sequence List] SEQUENCE LISTING <110> Daiwa Kasei KK <120> Novel amylase for making bread and gene therefor <130> J199120165 <140> <141> <150> 10-237839 <151> 1998-08-24 <160> 9 <170> PatentIn Ver. 2.0 <210> 1 <211> 514 <212> PRT <213> Bacillus amyloliquefaciens, clone No. 21 <400> 1 Met Ile Gln Lys Arg Lys Arg Thr Val Ser Phe Arg Leu Val Leu Met 1 5 10 15 Cys Thr Leu Leu Phe Val Ser Leu Pro Ile Thr Lys Thr Ser Ala Val 20 25 30 Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp Gly 35 40 45 Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp Ile 50 55 60 Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Leu Ser Gln 65 70 75 80 Ser Asp Asn Gly Tyr Gly Pro Tyr Asp Leu Tyr Asp Leu Gly Glu Phe 85 90 95 Gln Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Ser Glu Leu 100 105 110 Gln Asp Ala Ile Gly Ser Leu His Ser Arg Asn Val Gln Val Tyr Gly 115 120 125 Asp Val Val Leu Asn His Lys Ala Gly Ala Asp Ala Thr Glu Asp Val 130 135 140 Thr Ala Val Glu Val Asn Pro Ala Asn Arg As n Gln Glu Thr Ser Glu 145 150 155 160 Glu Tyr Gln Ile Lys Ala Trp Thr Asp Phe Arg Phe Pro Gly Arg Gly 165 170 175 Asn Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly Ala 180 185 190 Asp Trp Asp Glu Ser Arg Lys Ile Ser Arg Ile Phe Lys Phe Arg Gly 195 200 205 Glu Gly Lys Ala Trp Asp Trp Glu Val Ser Ser Glu Asn Gly Asn Tyr 210 215 220 Asp Tyr Leu Met Tyr Ala Asp Val Asp Tyr Asp His Pro Asp Val Val 225 230 235 240 Ala Glu Thr Lys Lys Trp Gly Ile Trp Tyr Ala Asn Glu Leu Ser Leu 245 250 255 Asp Gly Phe Arg Ile Asp Ala Ala Lys His Ile Lys Phe Ser Phe Leu 260 265 270 270 Arg Asp Trp Val Gln Ala Val Arg Gln Ala Thr Gly Lys Glu Met Phe 275 280 285 Thr Val Ala Glu Tyr Trp Gln Asn Asn Ala Gly Lys Leu Glu Asn Tyr 290 295 300 Leu Asn Lys Thr Ser Phe Asn Gln Ser Val Phe Asp Val Pro Leu His 305 310 315 320 Phe Asn Leu Gln Ala Ala Ser Ser Gln Gly Gly Gly Tyr Asp Met Arg 325 330 335 Arg Leu Leu Asp Gly Thr Val Val Ser Arg His Pro Glu Lys Ala Val 340 345 350 Thr Thr Phe Val Glu Asn His Asp Thr Gln Pro G ly Gln Ser Leu Glu Ser 355 360 365 Thr Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Thr Phe Ile Leu Thr 370 375 380 Arg Glu Ser Gly Tyr Pro Gln Val Ser Tyr Gly Asp Met Tyr Gly Thr 385 390 395 400 Lys Gly Thr Ser Pro Lys Glu Ile Pro Ser Leu Lys Asp Asn Ile Glu 405 410 415 Pro Ile Leu Lys Ala Arg Lys Glu Tyr Ala Tyr Gly Pro Gln His Asp 420 425 430 Tyr Ile Asp His Pro Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ser 435 440 445 Ser Ala Ala Lys Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly 450 455 460 Gly Ser Lys Arg Met Tyr Ala Gly Leu Lys Asn Ala Gly Glu Thr Trp 465 470 470 475 480 Tyr Asp Ile Thr Gly Asn Arg Ser Asp Thr Val Lys Ile Gly Ser Asp 485 490 495 Gly Trp Gly Glu Phe His Val Asn Asp Gly Ser Val Ser Ile Tyr Val 500 505 510 Gln Lys 514 <210> 2 <211> 1545 <212> DNA <213> Bacillus amyloliquefaciens, clone No. 21 <220> <221> CDS <222> (1) .. (1545) <220> <221> sig_peptide <222> (1) .. (93) <220> <221> mat_peptide <222> (94) .. (1542) <400> 2 ATGATTCAAA AACGAAAGCG GACAGTTTCG TTCAGACTTG TGCTTATGTG CACGCTGTTA 60 TTTGTCAGTT TGCCGATTAC AAAAACATCA GCCGTAAATG GCACGCTGAT GCAGTATTTT 120 GAATGGTATA CGCCGAACGA CGGCCAGCAT TGGAAACGAT TGCAGAATGA TGCGGAACAT 180 TTATCGGATA TCGGAATCAC TGCCGTCTGG ATTCCTCCCG CATACAAAGG ATTGAGCCAA 240 TCCGATAACG GATACGGACC TTATGATTTG TATGATTTAG GAGAATTCCA GCAAAAAGGG 300 ACGGTCAGAA CGAAATACGG CACAAAATCA GAGCTTCAAG ATGCGATCGG CTCACTGCAT 360 TCCCGGAACG TCCAAGTATA CGGAGATGTG GTTTTGAATC ATAAGGCTGG TGCTGATGCA 420 ACAGAAGATG TAACTGCCGT CGAAGTCAAT CCGGCCAATA GAAATCAGGA AACTTCGGAG 480 GAATATCAAA TCAAAGCGTG GACGGATTTT CGTTTTCCGG GCCGTGGAAA CACGTACAGT 540 GATTTTAAAT GGCATTGGTA TCATTTCGAC GGAGCGGACT GGGATGAATC CCGGAAGATC 600 AGCCGCATCT TTAAGTTTCG TGGGGAAGGA AAAGCGTGGG ATTGGGAAGT ATCAAGTGAA 660 AACGGCAACT ATGACTATTT AATGTATGCT GATGTTGACT ACGACCACCC TGATGTCGTG 720 GCAGAGACAA AAAAATGGGG TATCTGGTAT GCGAATGAAC TGTCATTAGA CGGCTTCCGT 780 ATTGATGCCG CCAAACATAT TAAATTTTCA TTTCTGCGTG ATTGGGTTCA GGCGGTCAGA 840 CAGGCGACGG GAAAAGAAAT GTTTACGGTT GCGGAGTATT GGCAGAATAA TGCCGGGAAA 900 CTCGAA AACT ACTTGAATAA AACAAGCTTT AATCAATCCG TGTTTGATGT TCCGCTTCAT 960 TTCAATTTAC AGGCGGCTTC CTCACAAGGA GGCGGATATG ATATGAGGCG TTTGCTGGAC 1020 GGTACCGTTG TGTCCAGGCA TCCGGAAAAG GCGGTTACAT TTGTTGAAAA TCATGACACA 1080 CAGCCGGGAC AGTCATTGGA ATCGACAGTC CAAACTTGGT TTAAACCGCT TGCATACACC 1140 TTTATTTTGA CAAGAGAATC CGGTTATCCT CAGGTGTCCT ATGGGGATAT GTACGGGACA 1200 AAAGGGACAT CGCCAAAGGA AATTCCCTCA CTGAAAGATA ATATAGAGCC GATTTTAAAA 1260 GCGCGTAAGG AGTACGCATA CGGGCCCCAG CACGATTATA TTGACCACCC GGATGTGATC 1320 GGATGGACGA GGGAAGGTGA CAGCTCCGCC GCCAAATCAG GTTTGGCCGC TTTAATCACG 1380 GACGGACCCG GCGGATCAAA GCGGATGTAT GCCGGCCTGA AAAATGCCGG CGAGACATGG 1440 TATGACATAA CGGGCAACCG TTCAGATACT GTAAAAATCG GATCTGACGG CTGGGGAGAG 1500 TTTCATGTAA ACGATGGGTC CGTCTCCATT TATGTTCAGA AATAA 1545 <210> 3 <211> 514 <212> PRT <213> Bacillus amyloliquefaciens, clone No. 22 <400 > 3 Met Ile Gln Lys Arg Lys Arg Thr Val Ser Phe Arg Leu Val Leu Met 1 5 10 15 Cys Thr Leu Leu Phe Val Ser Leu Pro Ile Thr Lys Thr Leu Ala Val 20 25 30 Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp Gly 35 40 45 Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp Ile 50 55 60 Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Leu Ser Gln 65 70 75 80 Ser Asp Asn Gly Tyr Gly Pro Tyr Asp Leu Tyr Asp Leu Gly Glu Phe 85 90 95 Gln Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Ser Glu Leu 100 105 110 Gln Asp Ala Ile Gly Ser Leu His Ser Arg Asn Val Gln Val Tyr Gly 115 120 125 Asp Val Val Leu Asn His Lys Ala Gly Ala Asp Ala Thr Glu Asp Val 130 135 140 Thr Ala Val Glu Val Asn Pro Ala Asn Arg Asn Gln Glu Thr Ser Glu 145 150 155 160 Glu Tyr Gln Ile Lys Ala Trp Thr Asp Phe Arg Phe Pro Gly Arg Gly 165 170 175 Asn Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly Ala 180 185 190 Asp Trp Asn Glu Ser Arg Lys Ile Ser Arg Ile Phe Lys Phe Arg Gly 195 200 205 Glu Gly Lys Ala Trp Asp Trp Glu Val Ser Ser Glu Asn Gly Asn Tyr 210 215 220 Asp Tyr Leu Met Tyr Ala Asp Val Asp Tyr Asp His Pro Asp Val Val 225 230 235 240 Ala Glu Thr Lys Lys Trp Gly Ile Trp Tyr Ala Asn Glu Leu Ser Leu 245 250 255 Asp Gly Phe Arg Ile Asp Ala Ala Lys His Ile Lys Phe Ser Phe Leu 260 265 270 270 Arg Asp Trp Val Gln Ala Val Arg Gln Ala Thr Gly Lys Glu Met Phe 275 280 285 Thr Val Ala Glu Tyr Trp Gln Asn Asn Ala Gly Lys Leu Glu Asn Tyr 290 295 300 Leu Asn Lys Thr Ser Phe Asn Gln Ser Val Phe Asp Val Pro Leu His 305 310 315 320 Phe Asn Leu Gln Ala Ala Ser Ser Gln Gly Gly Gly Tyr Asp Met Arg 325 330 335 Arg Leu Leu Asp Gly Thr Val Val Ser Arg His Pro Glu Lys Ala Val 340 345 350 Thr Phe Val Glu Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu Ser 355 360 365 Thr Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu Thr 370 375 380 Arg Glu Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly Thr 385 390 395 400 400 Lys Gly Thr Ser Pro Lys Glu Ile Pro Ser Leu Lys Asp Asn Ile Glu 405 410 415 Pro Ile Leu Lys Ala Arg Lys Glu Tyr Ala Tyr Gly Pro Gln His Asp 420 425 430 Tyr Ile Asp His Pro Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ser 435 440 445 445 Ser Ala Ala Lys Ser Gly LeuAla Ala Leu Ile Thr Asp Gly Pro Gly 450 455 460 Gly Ser Lys Arg Met Tyr Ala Gly Leu Lys Asn Ala Gly Glu Thr Trp 465 470 475 480 Tyr Asp Ile Thr Gly Asn Arg Ser Asp Thr Val Lys Ile Gly Ser Asp 485 490 495 Gly Trp Gly Glu Phe His Val Asn Asp Gly Ser Val Ser Ile Tyr Val 500 505 510 Gln Lys 514 <210> 4 <211> 1545 <212> DNA <213> Bacillus amyloliquefaciens, No. 22 <220> <221> CDS <222> (1) .. (1545) <220> <221> sig_peptide <222> (1) .. (93) <220> <221> mat_peptide <222> (94) .. (1542) <400 > 4 ATGATTCAAA AACGAAAGCG GACAGTTTCG TTCAGACTTG TGCTTATGTG CACGCTGTTA 60 TTTGTCAGTT TGCCGATTAC AAAAACATTA GCCGTAAATG GCACGCTGAT GCAGTATTTT 120 GAATGGTATA CGCCGAACGA CGGCCAGCAT TGGAAACGAT TGCAGAATGA TGCGGAACAT 180 TTATCGGATA TCGGAATCAC TGCCGTCTGG ATTCCTCCCG CATACAAAGG ATTGAGCCAA 240 TCCGATAACG GATACGGACC TTATGATTTG TATGATTTAG GAGAATTCCA GCAAAAAGGG 300 ACGGTCAGAA CGAAATACGG CACAAAATCA GAGCTTCAAG ATGCGATCGG CTCACTGCAT 360 TCCCGGAACG TCCAAGTATA CGGAGATGTG GTTTTGAATC ATAAGGCTGG TGCTGATGCA 420 ACAGAAGATG TAACTGCCG T CGAAGTCAAT CCGGCCAATA GAAATCAGGA AACTTCGGAG 480 GAATATCAAA TCAAAGCGTG GACGGATTTT CGTTTTCCGG GCCGTGGAAA CACGTACAGT 540 GATTTTAAAT GGCATTGGTA TCATTTCGAC GGAGCGGACT GGAATGAATC CCGGAAGATC 600 AGCCGCATCT TTAAGTTTCG TGGGGAAGGA AAAGCGTGGG ATTGGGAAGT ATCAAGTGAA 660 AACGGCAACT ATGACTATTT AATGTATGCT GATGTTGACT ACGACCACCC TGATGTCGTG 720 GCAGAGACAA AAAAATGGGG TATCTGGTAT GCGAATGAAC TGTCATTAGA CGGCTTCCGT 780 ATTGATGCCG CCAAACATAT TAAATTTTCA TTTCTGCGTG ATTGGGTTCA GGCGGTCAGA 840 CAGGCGACGG GAAAAGAAAT GTTTACGGTT GCGGAGTATT GGCAGAATAA TGCCGGGAAA 900 CTCGAAAACT ACTTGAATAA AACAAGCTTT AATCAATCCG TGTTTGATGT TCCGCTTCAT 960 TTCAATTTAC AGGCGGCTTC CTCACAAGGA GGCGGATATG ATATGAGGCG TTTGCTGGAC 1020 GGTACCGTTG TGTCCAGGCA TCCGGAAAAG GCGGTTACAT TTGTTGAAAA TCATGACACA 1080 CAGCCGGGAC AGTCATTGGA ATCGACAGTC CAAACTTGGT TTAAACCGCT TGCATACGCC 1140 TTTATTTTGA CAAGAGAATC CGGTTATCCT CAGGTGTTCT ATGGGGATAT GTACGGGACA 1200 AAAGGGACAT CGCCAAAGGA AATTCCCTCA CTGAAAGATA ATATAGAGCC GATTTTAAAA 1260 GCGCGTAAGG AGTACGCATA CGGGCCCCAG CA CGATTATA TTGACCACCC GGATGTGATC 1320 GGATGGACGA GGGAAGGTGA CAGCTCCGCC GCCAAATCAG GTTTGGCCGC TTTAATCACG 1380 GACGGACCCG GCGGATCAAA GCGGATGTAT GCCGGCCTGA AAAATGCCGG CGAGACATGG 1440 TATGACATAA CGGGCAACCG TTCAGATACT GTAAAAATCG GATCTGACGG CTGGGGAGAG 1500 TTTCATGTAA ACGATGGGTC CGTCTCCATT TATGTTCAGA AATAA 1545 <210> 5 <211> 514 <212> PRT <213> Bacillus amyloliquefaciens, No 24 <400> 5 Met Ile Gln Lys Arg Lys Arg Thr Val Ser Phe Arg Leu Val Leu Met 1 5 10 15 Cys Thr Leu Leu Phe Val Ser Leu Pro Ile Thr Lys Thr Ser Ala Val 20 25 30 Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp Gly 35 40 45 Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp Ile 50 55 60 Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Leu Ser Gln 65 70 75 80 Ser Asp Asn Gly Tyr Gly Pro Tyr Asp Leu Tyr Asp Leu Gly Glu Phe 85 90 95 Gln Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Ser Glu Leu 100 105 110 Gln Asp Ala Ile Gly Ser Leu His Ser Arg Asn Val Gln Val Tyr Gly 115 120 125 Asp Val Val Leu Asn His Lys Ala Gly Ala Asp Ala Thr Glu Asp Val 130 135 140 Thr Ala Val Glu Val Asn Pro Ala Asn Lys Asn Gln Glu Thr Ser Glu 145 150 155 160 Glu Tyr Gln Ile Lys Ala Trp Thr Asp Phe Arg Phe Pro Gly Arg Gly 165 170 175 Asn Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly Ala 180 185 190 Asp Trp Asp Glu Ser Arg Lys Ile Ser Arg Ile Phe Lys Phe Arg Gly 195 200 205 Glu Gly Lys Ala Trp Asp Trp Glu Val Ser Ser Glu Asn Gly Asn Tyr 210 215 220 Asp Tyr Leu Met Tyr Ala Asp Val Asp Tyr Asp His Pro Asp Val Val 225 230 235 240 Ala Glu Thr Lys Lys Trp Gly Ile Trp Tyr Ala Asn Glu Leu Ser Leu 245 250 255 Asp Gly Phe Arg Ile Asp Ala Ala Lys His Ile Lys Phe Ser Phe Leu 260 265 270 Arg Asp Trp Val Gln Ala Val Arg Gln Ala Thr Gly Lys Glu Met Phe 275 280 285 Thr Val Ala Glu Tyr Trp Gln Asn Asn Ala Gly Lys Leu Glu Asn Tyr 290 295 300 Leu Asn Lys Thr Ser Phe Asn Gln Ser Val Phe Asp Val Pro Leu His 305 310 315 320 Phe Asn Leu Gln Ala Ala Ser Ser Gln Gly Gly Gly Tly Asp Met Arg 325 330 335 Arg Leu Leu Asp Gly ThrVal Val Ser Arg His Pro Glu Lys Ala Val 340 345 350 Thr Phe Val Glu Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu Ser 355 360 365 Thr Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu Thr 370 375 380 Arg Glu Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly Thr 385 390 395 400 Lys Gly Thr Ser Pro Lys Glu Ile Pro Ser Leu Lys Asp Asn Ile Glu 405 410 415 Pro Ile Leu Lys Ala Arg Lys Glu Tyr Ala Tyr Gly Pro Gln His Asp 420 425 430 Tyr Ile Asp His Pro Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ser 435 440 445 Ser Ala Ala Lys Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly 450 455 460 Gly Ser Lys Arg Met Tyr Ala Gly Leu Lys Asn Ala Gly Glu Thr Trp 465 470 475 480 480 Tyr Asp Ile Thr Gly Asn Arg Ser Asp Thr Val Lys Ile Gly Ser Asp 485 490 495 Gly Trp Gly Glu Phe His Val Asn Asp Gly Ser Val Ser Ile Tyr Val 500 505 510 Gln Lys 514 <210> 6 <211> 1545 <212> DNA <213> Bacillus amyloliquefaciens, No. 24 <220> <221> CDS <222> (1) .. (1545) <220> <221> sig_peptide <222> (1) .. (93) <220> <221> mat_pep tide <222> (94) .. (1542) <400> 6 ATGATTCAAA AACGAAAGCG GACAGTTTCG TTCAGACTTG TGCTTATGTG CACGCTGTTA 60 TTTGTCAGTT TGCCGATTAC AAAAACATCA GCCGTAAATG GCACGCTGAT GCAGTATTTT 120 GAATGGTATA CGCCGAACGA CGGCCAGCAT TGGAAACGAT TGCAGAATGA TGCGGAACAT 180 TTATCGGATA TCGGAATCAC TGCCGTCTGG ATTCCTCCCG CATACAAAGG ATTGAGCCAA 240 TCCGATAACG GATACGGACC TTATGATTTG TATGATTTAG GAGAATTCCA GCAAAAAGGG 300 ACGGTCAGAA CGAAATACGG CACAAAATCA GAGCTTCAAG ATGCGATCGG CTCACTGCAT 360 TCCCGGAACG TCCAAGTATA CGGAGATGTG GTTTTGAATC ATAAGGCTGG TGCTGATGCA 420 ACAGAAGATG TAACTGCCGT CGAAGTCAAT CCGGCCAATA AAAATCAGGA AACTTCGGAG 480 GAATATCAAA TCAAAGCGTG GACGGATTTT CGTTTTCCGG GCCGTGGAAA CACGTACAGT 540 GATTTTAAAT GGCATTGGTA TCATTTCGAC GGAGCGGACT GGGATGAATC CCGGAAGATC 600 AGCCGCATCT TTAAGTTTCG TGGGGAAGGA AAAGCGTGGG ATTGGGAAGT ATCAAGTGAA 660 AACGGCAACT ATGACTATTT AATGTATGCT GATGTTGACT ATGACCACCC TGATGTCGTG 720 GCAGAGACAA AAAAATGGGG TATCTGGTAT GCGAATGAAC TGTCATTAGA CGGCTTCCGT 780 ATTGATGCCG CCAAACATAT TAAATTTTCA TTTCTGCGTG ATTGGGTTCA GGCG GTCAGA 840 CAGGCGACGG GAAAAGAAAT GTTTACGGTT GCGGAGTATT GGCAGAATAA TGCCGGGAAA 900 CTCGAAAACT ACTTGAATAA AACAAGCTTT AATCAATCCG TGTTTGATGT TCCGCTTCAT 960 TTCAATTTAC AGGCGGCTTC CTCACAAGGA GGCGGATATG ATATGAGGCG TTTGCTGGAC 1020 GGTACCGTTG TGTCCAGGCA TCCGGAAAAG GCGGTTACAT TTGTTGAAAA TCATGACACA 1080 CAGCCAGGAC AGTCATTGGA ATCGACAGTC CAAACTTGGT TTAAACCGCT TGCATACGCC 1140 TTTATTTTGA CAAGAGAATC CGGTTATCCT CAGGTGTTCT ATGGGGATAT GTACGGGACA 1200 AAAGGGACAT CGCCAAAGGA AATTCCCTCA CTGAAAGATA ATATAGAGCC GATTTTAAAA 1260 GCGCGTAAGG AGTACGCATA CGGGCCCCAG CACGATTATA TTGACCACCC GGATGTGATC 1320 GGATGGACGA GGGAAGGTGA CAGCTCCGCC GCCAAATCAG GTTTGGCCGC TTTAATCACG 1380 GACGGACCCG GCGGATCAAA GCGGATGTAT GCCGGCCTGA AAAATGCCGG CGAGACATGG 1440 TATGACATAA CGGGCAACCG TTCAGATACT GTAAAAATCG GATCTGACGG CTGGGGAGAG 1500 TTTCATGTAA ACGATGGGTC CGTCTCCATT TATGTTCAGA AATAA 1545 <210> 7 <211> 514 <212> PRT <213> Bacillus amyloliquefaciens, No. 25 <400> 7 Met Ile Gln Lys Arg Lys Arg Thr Val Ser Phe Arg Leu Val Leu Met 1 5 10 15 Cys Thr Leu Leu Phe Val Ser Leu Pro Ile Thr Lys Thr Ser Ala Val 20 25 30 Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp Gly 35 40 45 Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp Ile 50 55 60 Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Leu Ser Gln 65 70 75 80 Ser Asp Asn Gly Tyr Gly Pro Tyr Asp Leu Tyr Asp Leu Gly Glu Phe 85 90 95 Gln Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Ser Glu Leu 100 105 110 Gln Asp Ala Ile Gly Ser Leu His Ser Arg Asn Val Gln Val Tyr Gly 115 120 125 Asp Val Val Leu Asn His Lys Ala Gly Ala Asp Ala Thr Glu Asp Val 130 135 140 Thr Ala Val Glu Val Asn Pro Ala Asn Arg Asn Gln Glu Thr Ser Glu 145 150 155 160 Glu Tyr Gln Ile Lys Ala Trp Thr Asp Phe Arg Phe Pro Gly Arg Gly 165 170 175 Asn Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly Val 180 185 190 Asp Trp Asp Glu Ser Arg Lys Ile Ser Arg Ile Phe Lys Phe Arg Gly 195 200 205 Glu Gly Lys Ala Trp Asp Trp Glu Val Ser Ser Glu Asn Gly Asn Tyr 210 215 220 Asp Tyr Leu Met Tyr Ala Asp Val Asn Tyr Asp His Pro Asp Val Val 225 230 235 240 Ala Glu Thr Lys Lys Trp Gly Ile Trp Tyr Ala Asn Glu Leu Ser Leu 245 250 255 Asp Gly Phe Arg Ile Asp Ala Ala Lys His Ile Lys Phe Ser Phe Leu 260 265 270 Arg Asp Trp Val Gln Ala Val Arg Gln Ala Thr Gly Lys Glu Met Phe 275 280 285 Thr Val Ala Glu Tyr Trp Gln Asn Asn Ala Gly Lys Leu Glu Asn Tyr 290 295 300 Leu Asn Lys Thr Ser Phe Asn Gln Ser Val Phe Asp Val Pro Leu His 305 310 315 320 Phe Asn Leu Gln Ala Ala Ser Ser Gln Gly Gly Gly Tyr Asp Met Arg 325 330 335 Arg Leu Leu Asp Gly Thr Val Val Ser Arg His Pro Glu Lys Ala Val 340 345 350 Thr Phe Val Glu Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu Ser 355 360 365 Thr Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu Thr 370 375 380 Arg Glu Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly Thr 385 390 395 400 Lys Gly Thr Ser Pro Lys Glu Ile Pro Ser Leu Lys Asp Asn Ile Glu 405 410 415 Pro Ile Leu Lys Ala Arg Lys Glu Tyr Ala Tyr Gly Pro Gln His Asp 420 425 430 Tyr Ile Asp His Pro Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ser 435 440 445 445 Ser Ala Ala Lys Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly 450 455 460 Gly Ser Lys Arg Met Tyr Ala Gly Leu Lys Asn Ala Gly Glu Thr Trp 465 470 475 480 Tyr Asp Ile Thr Gly Asn Arg Ser Asp Thr Val Lys Ile Gly Ser Asp 485 490 495 Gly Trp Gly Glu Phe His Val Asn Asp Gly Ser Val Ser Ile Tyr Val 500 505 510 Gln Lys 514 <210> 8 <211> 1545 <212> DNA <213> Bacillus amyloliquefaciens, No. 25 <220> <221> CDS <222> (1) .. (1545) <220> <221> sig_peptide <222> (1) .. (93) <220> <221> mat_peptide <222> (94) .. (1542) <400> 8 ATGATTCAAA AACGAAAGCG GACAGTTTCG TTCAGACTTG TGCTTATGTG CACGCTGTTA 60 TTTGTCAGTT TGCCGATTAC AAAAACATCA GCCGTAAATG GCACGCTGAT GCAGTATTTT 120 GAATGGTATA CGCCGAACGA CGGCCAGCAT TGGAAACGAT TGCAGAATGA TGCGGAACAT 180 TTATCGGATA TCGGAATCAC TGCCGTCTGG ATTCCTCCCG CATACAAAGG ATTGAGCCAA 240 TCCGATAACG GATACGGACC TTATGATTTG TATGATTTAG GAGAATTCCA GCAAAAAGGG 300 ACGGTCAGAA CGAAATACGG CACAAAATCA GAGCTTCAAG ATGCGATCGG CTCACTGCAT 360 TCCCGGAAC G TCCAAGTATA CGGAGATGTG GTTTTGAATC ATAAGGCTGG TGCTGATGCA 420 ACAGAAGATG TAACTGCCGT CGAAGTCAAT CCGGCCAATA GAAATCAGGA AACTTCGGAG 480 GAATATCAAA TCAAAGCGTG GACGGATTTT CGTTTTCCGG GCCGTGGAAA CACGTACAGT 540 GATTTTAAAT GGCATTGGTA TCATTTCGAC GGAGTGGACT GGGATGAATC CCGGAAGATC 600 AGCCGCATCT TTAAGTTTCG TGGGGAAGGA AAAGCGTGGG ATTGGGAAGT ATCAAGTGAA 660 AACGGCAACT ATGACTATTT AATGTATGCT GATGTTAACT ACGACCACCC TGATGTCGTG 720 GCAGAGACAA AAAAATGGGG TATCTGGTAT GCGAATGAAC TGTCATTAGA CGGCTTCCGT 780 ATTGATGCCG CCAAACATAT TAAATTTTCA TTTCTGCGTG ATTGGGTTCA GGCGGTCAGA 840 CAGGCGACGG GAAAAGAAAT GTTTACGGTT GCGGAGTATT GGCAGAATAA TGCCGGGAAA 900 CTCGAAAACT ACTTGAATAA AACAAGCTTT AATCAATCCG TGTTTGATGT TCCGCTTCAT 960 TTCAATTTAC AGGCGGCTTC CTCACAAGGA GGCGGATATG ATATGAGGCG TTTGCTGGAC 1020 GGTACCGTTG TGTCCAGGCA TCCGGAAAAG GCGGTTACAT TTGTTGAAAA TCATGACACA 1080 CAGCCGGGAC AGTCATTGGA ATCGACAGTC CAAACTTGGT TTAAACCGCT TGCATACGCC 1140 TTTATTTTGA CAAGAGAATC CGGTTATCCT CAGGTGTTCT ATGGGGATAT GTACGGGACA 1200 AAAGGGACAT CGCCAAAGGA AAT TCCCTCA CTGAAAGATA ATATAGAGCC GATTTTAAAA 1260 GCGCGTAAGG AGTACGCATA CGGGCCCCAG CACGATTATA TTGACCACCC GGATGTGATC 1320 GGATGGACGA GGGAAGGTGA CAGCTCCGCC GCCAAATCAG GTTTGGCCGC TTTAATCACG 1380 GACGGACCCG GCGGATCAAA GCGGATGTAT GCCGGCCTGA AAAATGCCGG CGAGACATGG 1440 TATGACATAA CGGGCAACCG TTCAGATACT GTAAAAATCG GATCTGACGG CTGGGGAGAG 1500 TTTCATGTAA ACGATGGGTC CGTCTCCATT TATGTTCAGA AATAA 1545 <210> 9 <211> 514 <212> PRT <213> Bacillus amyloliquefaciens <400> 9 Met Ile Gln Lys Arg Lys Arg Thr Val Ser Phe Arg Leu Val Leu Met 1 5 10 15 Cys Thr Leu Leu Phe Val Ser Leu Pro Ile Thr Lys Thr Ser Ala Val 20 25 30 Asn Gly Thr Leu Met Gln Tyr Phe Glu Trp Tyr Thr Pro Asn Asp Gly 35 40 45 Gln His Trp Lys Arg Leu Gln Asn Asp Ala Glu His Leu Ser Asp Ile 50 55 60 Gly Ile Thr Ala Val Trp Ile Pro Pro Ala Tyr Lys Gly Leu Ser Gln 65 70 75 80 Ser Asp Asn Gly Tyr Gly Pro Tyr Asp Leu Tyr Asp Leu Gly Glu Phe 85 90 95 Gln Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Ser Glu Leu 100 105 110 Gln Asp Ala Ile Gly Ser Leu His Ser Arg Asn Val Gln Val Tyr Gly 115 120 125 Asp Val Val Leu Asn His Lys Ala Gly Ala Asp Ala Thr Glu Asp Val 130 135 140 Thr Ala Val Glu Val Asn Pro Ala Asn Arg Asn Gln Glu Thr Ser Glu 145 150 155 160 Glu Tyr Gln Ile Lys Ala Trp Thr Asp Phe Arg Phe Pro Gly Arg Gly 165 170 175 Asn Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly Ala 180 185 190 Asp Trp Asp Glu Ser Arg Lys Ile Ser Arg Ile Phe Lys Phe Arg Gly 195 200 205 Glu Gly Lys Ala Trp Asp Trp Glu Val Ser Ser Glu Asn Gly Asn Tyr 210 215 220 Asp Tyr Leu Met Tyr Ala Asp Val Asp Tyr Asp His Pro Asp Val Val 225 230 235 240 Ala Glu Thr Lys Lys Trp Gly Ile Trp Tyr Ala Asn Glu Leu Ser Leu 245 250 255 Asp Gly Phe Arg Ile Asp Ala Ala Lys His Ile Lys Phe Ser Phe Leu 260 265 270 Arg Asp Trp Val Gln Ala Val Arg Gln Ala Thr Gly Lys Glu Met Phe 275 280 285 Thr Val Ala Glu Tyr Trp Gln Asn Asn Ala Gly Lys Leu Glu Asn Tyr 290 295 300 Leu Asn Lys Thr Ser Phe Asn Gln Ser Val Phe Asp Val Pro Leu His 305 310 315 320 Phe Asn Leu Gln Ala Ala Ser Ser Gln Gly Gly Gly Tyr Asp Met Arg 325 330 335 Arg Leu Leu Asp Gly Thr Val Val Ser Arg His Pro Glu Lys Ala Val 340 345 350 Thr Phe Val Glu Asn His Asp Thr Gln Pro Gly Gln Ser Leu Glu Ser 355 360 365 Thr Val Gln Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe Ile Leu Thr 370 375 380 Arg Glu Ser Gly Tyr Pro Gln Val Phe Tyr Gly Asp Met Tyr Gly Thr 385 390 395 400 Lys Gly Thr Ser Pro Lys Glu Ile Pro Ser Leu Lys Asp Asn Ile Glu 405 410 415 Pro Ile Leu Lys Ala Arg Lys Glu Tyr Ala Tyr Gly Pro Gln His Asp 420 425 430 Tyr Ile Asp His Pro Asp Val Ile Gly Trp Thr Arg Glu Gly Asp Ser 435 440 445 Ser Ala Ala Lys Ser Gly Leu Ala Ala Leu Ile Thr Asp Gly Pro Gly 450 455 460 Gly Ser Lys Arg Met Tyr Ala Gly Leu Lys Asn Ala Gly Glu Thr Trp 465 470 475 475 480 Tyr Asp Ile Thr Gly Asn Arg Ser Asp Thr Val Lys Ile Gly Ser Asp 485 490 495 Gly Trp Gly Glu Phe His Val Asn Asp Gly Ser Val Ser Ile Tyr Val 500 505 510 Gln Lys 514

【図面の簡単な説明】[Brief description of the drawings]

【図1】プラスミドpAMY110の構造を示す図である。FIG. 1 shows the structure of plasmid pAMY110.

【図2】プレート上での一次スクリーニングの結果を示
す図である。
FIG. 2 shows the results of primary screening on a plate.

【図3】二次スクリーニングにおいて得られた変異型α
-アミラーゼの熱失活曲線を示す図である。
FIG. 3. Mutant α obtained in secondary screening
FIG. 2 is a view showing a heat inactivation curve of amylase.

【図4】クローンNo.21、No.22、No.2
4、およびNo.25におけるアミノ酸置換の位置を示
す図である。
FIG. 21, no. 22, no. 2
4 and No. FIG. 25 is a view showing the position of amino acid substitution in 25.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12R 1:07) (C12N 1/21 C12R 1:125) (C12N 9/28 C12R 1:125) (72)発明者 高橋 聡子 滋賀県甲賀郡甲西町若竹町5 (72)発明者 肥田木 由美子 滋賀県甲賀郡石部町西寺253−4 (72)発明者 谷 巨和 滋賀県神埼郡能登川町佐野311−31 (72)発明者 橋本 哲 滋賀県甲賀郡甲西町若竹町5──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C12R 1:07) (C12N 1/21 C12R 1: 125) (C12N 9/28 C12R 1: 125) (72 Inventor Satoko Takahashi 5 Wakatake-cho, Kosai-cho, Koga-gun, Shiga Prefecture (72) Inventor Yumiko Hidaki 253-4, Saiji-cho, Ishibe-cho, Koga-gun, Shiga Prefecture (72) Inventor Tetsu Hashimoto 5 Wakatake-cho, Kosai-cho, Koka-gun, Shiga Prefecture

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 配列番号9のアミノ酸配列において1も
しくは数個のアミノ酸が欠失、置換もしくは挿入された
アミノ酸配列を含み、α-アミラーゼ活性を有し、そし
て65℃30分間の処理後に処理前の活性に比較して8
0%より低い残存α-アミラーゼ活性を有する、製パン
用変異型α-アミラーゼ。
1. An amino acid sequence of SEQ ID NO: 9 comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or inserted, has an α-amylase activity, and is treated at 65 ° C. for 30 minutes before treatment. 8 compared to the activity of
A variant α-amylase for baking having a residual α-amylase activity of less than 0%.
【請求項2】 前記欠失、置換もしくは挿入されたアミ
ノ酸配列が、配列番号9のアミノ酸配列をコードするヌ
クレオチド配列を含むプラスミドをヒドロキシルアミン
で処理することによって得られるヌクレオチド配列によ
ってコードされ、該処理が、該処理を受けたプラスミド
で宿主を形質転換して得られる形質転換体数が該処理を
受けないプラスミドで該宿主を形質転換して得られる形
質転換体数の約10分の1であるような処理である、請
求項1に記載の製パン用変異型α-アミラーゼ。
2. The deletion, substitution or insertion of the amino acid sequence is encoded by a nucleotide sequence obtained by treating a plasmid containing the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 9 with hydroxylamine. However, the number of transformants obtained by transforming a host with the plasmid subjected to the treatment is about 1/10 of the number of transformants obtained by transforming the host with a plasmid not subjected to the treatment. The mutated α-amylase for baking according to claim 1, which is subjected to such treatment.
【請求項3】 配列番号9のアミノ酸配列において1も
しくは2個のアミノ酸が置換されたアミノ酸配列を含
む、請求項1に記載の製パン用変異型α-アミラーゼ。
3. The mutated α-amylase for baking according to claim 1, comprising an amino acid sequence in which one or two amino acids have been substituted in the amino acid sequence of SEQ ID NO: 9.
【請求項4】 配列番号9のアミノ酸配列において2個
のアミノ酸が置換されたアミノ酸配列を含み、該置換さ
れた2個のアミノ酸が約50個以下のアミノ酸を挟んで
存在する、請求項1に記載の製パン用変異型α-アミラ
ーゼ。
4. The method according to claim 1, comprising an amino acid sequence in which two amino acids have been substituted in the amino acid sequence of SEQ ID NO: 9, wherein the substituted two amino acids are present across about 50 amino acids or less. The mutated α-amylase for baking according to the above.
【請求項5】 配列番号9のアミノ酸配列において、3
80番目のアラニン残基がスレオニン残基に、393番
目のフェニルアラニン残基がセリン残基に置換されてい
る、請求項1に記載の製パン用変異型α-アミラーゼ。
5. The amino acid sequence of SEQ ID NO: 9
The mutant α-amylase for baking according to claim 1, wherein the 80th alanine residue is substituted with a threonine residue, and the 393rd phenylalanine residue is substituted with a serine residue.
【請求項6】 配列番号9のアミノ酸配列において、3
0番目のセリン残基がロイシン残基に、195番目のア
スパラギン酸残基がアスパラギン残基に置換されてい
る、請求項1に記載の製パン用変異型α-アミラーゼ。
6. The amino acid sequence of SEQ ID NO: 9
The mutant α-amylase for baking according to claim 1, wherein the serine residue at position 0 is substituted with a leucine residue and the aspartic acid residue at position 195 is substituted with an asparagine residue.
【請求項7】 配列番号9のアミノ酸配列において、1
54番目のアルギニン残基がリジン残基に置換されてい
る、請求項1に記載の製パン用変異型α-アミラーゼ。
7. The amino acid sequence of SEQ ID NO: 9
The mutant α-amylase for baking according to claim 1, wherein the 54th arginine residue is substituted with a lysine residue.
【請求項8】 配列番号9のアミノ酸配列において、1
92番目のアラニン残基がバリン残基に、233番目の
アスパラギン酸残基がアスパラギンに置換されている、
請求項1に記載の製パン用変異型α-アミラーゼ。
8. The amino acid sequence of SEQ ID NO: 9
The alanine residue at position 92 is substituted with a valine residue and the aspartic acid residue at position 233 is substituted with asparagine;
The mutated α-amylase for baking according to claim 1.
【請求項9】 請求項1から8のいずれかに記載の製パ
ン用変異α-アミラーゼをコードするDNA。
9. A DNA encoding the mutated α-amylase for baking according to any one of claims 1 to 8.
【請求項10】 配列番号2、配列番号4、配列番号
6、または配列番号8のヌクレオチド配列を含む、請求
項9に記載のDNA。
10. The DNA of claim 9, comprising the nucleotide sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, or SEQ ID NO: 8.
【請求項11】 請求項9または10に記載のDNAを
含む発現ベクター。
An expression vector comprising the DNA according to claim 9 or 10.
【請求項12】 請求項11に記載の発現ベクターを含
む組換え宿主細胞。
A recombinant host cell comprising the expression vector according to claim 11.
【請求項13】 請求項12に記載の組み換え宿主細胞
を培養する工程および、培養物からα-アミラーゼ活性
を有するポリペプチドを採取する工程を包含する、製パ
ン用変異型α-アミラーゼの製造方法。
13. A method for producing a mutated α-amylase for baking, comprising a step of culturing the recombinant host cell according to claim 12 and a step of collecting a polypeptide having α-amylase activity from the culture. .
【請求項14】 請求項1から8のいずれかに記載のα
-アミラーゼをパン生地に添加する工程を包含する、製
パン方法。
14. The α according to claim 1, wherein
-A baking method, comprising the step of adding amylase to dough.
JP11234813A 1998-08-24 1999-08-20 New amylase for baking and its gene Withdrawn JP2000135093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11234813A JP2000135093A (en) 1998-08-24 1999-08-20 New amylase for baking and its gene

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23783998 1998-08-24
JP10-237839 1998-08-24
JP11234813A JP2000135093A (en) 1998-08-24 1999-08-20 New amylase for baking and its gene

Publications (1)

Publication Number Publication Date
JP2000135093A true JP2000135093A (en) 2000-05-16

Family

ID=26531771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11234813A Withdrawn JP2000135093A (en) 1998-08-24 1999-08-20 New amylase for baking and its gene

Country Status (1)

Country Link
JP (1) JP2000135093A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008000825A1 (en) * 2006-06-30 2008-01-03 Novozymes A/S Bacterial alpha-amylase variants
JP2010521987A (en) * 2007-03-23 2010-07-01 ダニスコ・ユーエス・インク、ジェネンコー・ディビジョン Increased amylase production by N-terminal introduction into mature amylase protein
JP2013021956A (en) * 2011-07-20 2013-02-04 Nippon Flour Mills Co Ltd METHOD OF MAKING SUGAR-FREE BREAD USING α-AMYLASE
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008000825A1 (en) * 2006-06-30 2008-01-03 Novozymes A/S Bacterial alpha-amylase variants
JP2010521987A (en) * 2007-03-23 2010-07-01 ダニスコ・ユーエス・インク、ジェネンコー・ディビジョン Increased amylase production by N-terminal introduction into mature amylase protein
JP2013021956A (en) * 2011-07-20 2013-02-04 Nippon Flour Mills Co Ltd METHOD OF MAKING SUGAR-FREE BREAD USING α-AMYLASE
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Similar Documents

Publication Publication Date Title
EP1041890B1 (en) Carbohydrate oxidase and use thereof in baking
AU761751B2 (en) Amylolytic enzyme variants
US5306633A (en) Bacterial xylanase, method for its production, bacteria producing a xylanase, DNA fragment encoding a xylanase, plasmid containing the DNA fragment, baking agents containing a xylanase, and method for producing bread and baked goods using the xylanase
US6730346B2 (en) Methods for using lipases in baking
JP2006509511A (en) Thermostable α-amylase
WO1998044804A1 (en) Improved method for preparing flour doughs and products made from such doughs using glycerol oxidase
AU2004312117A1 (en) Amylase
EP2620496A1 (en) Alpha-amylase
AU629959B2 (en) Mutant enzyme having reduced stability under industrial application conditions
AU5823199A (en) Methods for using pectate lyases in baking
JP2000135093A (en) New amylase for baking and its gene
WO1998016112A1 (en) Use of a carbohydrate binding domain in baking
WO2016030448A1 (en) Alicyclobacillus pohliae alpha-amylase variants
US7060474B1 (en) Carbohydrate oxidase and use thereof in baking
US6485761B1 (en) Methods for using lactonohydrolases in baking
EP1710303A1 (en) Amylolytic enzyme variants

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107