JP2000124522A - Magnetoresistive effect element and magnetic-field sensor - Google Patents

Magnetoresistive effect element and magnetic-field sensor

Info

Publication number
JP2000124522A
JP2000124522A JP10309489A JP30948998A JP2000124522A JP 2000124522 A JP2000124522 A JP 2000124522A JP 10309489 A JP10309489 A JP 10309489A JP 30948998 A JP30948998 A JP 30948998A JP 2000124522 A JP2000124522 A JP 2000124522A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic layer
magnetic
resistance
external magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10309489A
Other languages
Japanese (ja)
Inventor
Yuichi Sato
雄一 佐藤
Osamu Shinoura
治 篠浦
Daisuke Miyauchi
大助 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP10309489A priority Critical patent/JP2000124522A/en
Publication of JP2000124522A publication Critical patent/JP2000124522A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve operability between an element and external magnetic field by making a resistance changing rate represented by a specific formula to be negative when a specified external magnetic field is applied, and constituting the element in a manner that the absolute value of the resistance changing rate has a value of specific percentage or more. SOLUTION: A magnetoresistive effect element 1 has a laminated film structure in which a first magnetic layer 10 and a second magnetic layer 20 are joined with each other like a cross with a non-magnetic layer 30 interposed, and a resistance at the time when a current is applied vertically to the surface of the laminated film is made to change according to the application of external magnetic field. Assuming that the resistance value at the time when the external magnetic field Hs is applied is Rs and the resistance value at the time when the external magnetic field H (|Hs|>|H|) is applied is R, a resistance changing rate represented by a formula, (R-Rs)/Rs, is made negative, and its absolute value is made to be 5% or more. Thus, the operability between the element and external magnetic field can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁性金属層/非磁性
層/磁性金属層の積層膜構造を有する磁気抵抗効果素子
およびこれを用いた磁界センサに関し、特に、積層膜に
垂直に流れる電流に対する電気抵抗が外部磁界強度によ
り変化する現象を利用した磁気抵抗効果素子およびこれ
を用いた磁界センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element having a laminated structure of a magnetic metal layer / non-magnetic layer / magnetic metal layer and a magnetic field sensor using the same, and more particularly to a magnetic field sensor using the same. The present invention relates to a magnetoresistive effect element using a phenomenon in which electric resistance changes depending on an external magnetic field strength, and a magnetic field sensor using the same.

【0002】[0002]

【従来の技術】磁気記録の分野における記録密度の高密
度化の実現に伴い、磁気ヘッドは従来の電磁誘導を原理
としたインダクティブヘッドから異方性磁気抵抗効果
(AMR)を原理としたAMRヘッド、さらには巨大磁
気抵抗効果(GMR)を利用したGMRヘッドへと急速
に推移しつつある。また、磁気記録の分野のみならず各
種電子機器、光学機器の可動部分の位置制御、速度制御
に用いられるセンサの分野においても高出力を持つ磁気
抵抗効果素子が求められている。
2. Description of the Related Art With the realization of a higher recording density in the field of magnetic recording, a magnetic head has been changed from a conventional inductive head based on electromagnetic induction to an AMR head based on anisotropic magnetoresistance effect (AMR). In addition, GMR heads utilizing the giant magnetoresistance effect (GMR) are rapidly shifting. Further, a magnetoresistive element having a high output is required not only in the field of magnetic recording but also in the field of sensors used for position control and speed control of movable parts of various electronic devices and optical devices.

【0003】原理的に、AMRでは電気抵抗が電流と磁
化の向きに依存することを利用している。これに対して
GMRは磁性層の磁化の相対的な向きに依存している。
材料的にみるとGMRはスピンバルブや反強磁性結合を
利用したもの、磁性層の保磁力の違いを利用したもの、
そしてグラニュラー等に大別される。これらのGMR材
料では隣り合った2つの磁性層の磁化の向きが平行であ
るときに最小となり、反平行の場合に最大となる。すな
わち、観測される抵抗変化は磁性層が磁気的に飽和する
磁界を印加したときを最小として磁界変化に対して増大
する正の磁気抵抗変化が観測される。
In principle, AMR utilizes the fact that the electric resistance depends on the current and the direction of magnetization. On the other hand, GMR depends on the relative direction of magnetization of the magnetic layer.
In terms of materials, GMR uses a spin valve or antiferromagnetic coupling, uses the difference in coercivity of the magnetic layer,
And it is roughly divided into granular and the like. These GMR materials have a minimum when the magnetization directions of two adjacent magnetic layers are parallel, and have a maximum when the magnetization directions are antiparallel. In other words, the observed resistance change is a positive magnetic resistance change that is increased with respect to the magnetic field change with a minimum when a magnetic field that magnetically saturates the magnetic layer is applied.

【0004】ところで、MR変化率に注目してAMR膜
とGMR膜とを比較すると、AMR膜の抵抗変化率は2
〜3%程度と小さいのに対して、GMR膜のうち、例え
ば、スピンバルブでは5〜8%とかなり大きなものがあ
る。しかしながら、8%と変化率が高いものでは耐熱性
などに問題があり、実用的には5%以下に留まっている
のが現実である。
When the AMR film and the GMR film are compared with attention to the MR change rate, the resistance change rate of the AMR film is 2%.
For example, a spin valve has a considerably large thickness of 5 to 8%, whereas the GMR film is as small as approximately 3%. However, when the change rate is as high as 8%, there is a problem in heat resistance and the like, and in reality, it is actually 5% or less.

【0005】ここに示したAMR膜やGMR膜を用いた
素子では膜面内に流れる電流(CIP)に対する電気抵
抗が膜面に平行の磁界を印加した際に生じる変化を利用
している。それに対して、膜面に垂直に電流を流した垂
直GMR膜(CPP)では、より大きな抵抗変化を示す
ことが報告されている(Phys.Rev.Lett.70, 3343 (199
3))。しかしながら、ここで報告されているFe/Cr
系の垂直GMRは、比抵抗が小さく電気抵抗の測定が困
難で有り実用上問題があると言える。
In the device using the AMR film or the GMR film shown here, the change in the electric resistance with respect to the current (CIP) flowing in the film surface occurs when a magnetic field parallel to the film surface is applied. On the other hand, it has been reported that a perpendicular GMR film (CPP) in which a current flows perpendicularly to the film surface exhibits a larger resistance change (Phys. Rev. Lett. 70, 3343 (199).
3)). However, the Fe / Cr reported here
It can be said that the vertical GMR of the system has a practical problem because it has a small specific resistance and it is difficult to measure the electric resistance.

【0006】これに対して強磁性金属層/非磁性絶縁層
/強磁性金属層からなるトンネル接合磁気抵抗効果素子
(TMR)、例えば近年、Fe/Al23 /Fe接合
膜で室温で18%ものMR変化率を示すTMRが報告さ
れ(J.Magn.Magn.Mater. 139L231-L234, (1995))、注
目されている。
On the other hand, a tunnel junction magnetoresistive element (TMR) composed of a ferromagnetic metal layer / a non-magnetic insulating layer / a ferromagnetic metal layer, for example, a Fe / Al 2 O 3 / Fe junction film which has recently % TMR showing an MR change rate of as much as 1% has been reported (J. Magn. Magn. Mater. 139L231-L234, (1995)) and attracted attention.

【0007】そのほかスピンバルブGMRと同様に片側
の磁性層を反強磁性層でピンニングし磁性層の磁化の向
きを制御したスピンバルブ型TMRも報告されている
(日本応用磁気学会誌21 489-492, (1997))。
In addition, similarly to the spin valve GMR, a spin valve type TMR in which one magnetic layer is pinned with an antiferromagnetic layer to control the direction of magnetization of the magnetic layer has been reported (Journal of the Japan Society of Applied Magnetics, 21 489-492). , (1997)).

【0008】TMRは積層膜に垂直に流れるトンネル電
流に対し上下の磁性層の磁化の相対的な向きにより抵抗
が変化する。現象論的にはTMRにおいても接合抵抗が
磁性層の相対角に依存しており2つの磁性層の磁化の向
きが平行であるときに最小となり反平行の場合に最大と
なる。先に示した報告例でもこの原理に基づいて正の抵
抗変化が観測される。すなわち、何れの例でも磁性層が
磁気的に飽和する磁界に対して観測される接合抵抗は最
小であり磁界の変化に対して接合抵抗が増加する。この
ようにTMRは磁化の相対角により抵抗が変化し、磁界
に対する抵抗変化が生じる点でGMRと類似している
が、構造、原理など多くの点で異なっている。例えば、
TMRを構造的に見れば、電流が膜面に垂直に流れるこ
とから2つの短冊状の磁性層を交差させて十字型に形成
し、非磁性絶縁層を介して接合させる形態が一般的であ
る。
In the TMR, the resistance changes depending on the relative directions of the magnetizations of the upper and lower magnetic layers with respect to the tunnel current flowing perpendicularly to the laminated film. Phenomenologically, also in TMR, the junction resistance depends on the relative angle of the magnetic layers, and becomes minimum when the magnetization directions of the two magnetic layers are parallel and becomes maximum when the magnetization directions are antiparallel. In the above-mentioned report example, a positive resistance change is observed based on this principle. That is, in any of the examples, the junction resistance observed for a magnetic field in which the magnetic layer is magnetically saturated is minimum, and the junction resistance increases with a change in the magnetic field. As described above, the TMR is similar to the GMR in that the resistance changes according to the relative angle of the magnetization and the resistance changes with respect to the magnetic field, but differs in many points such as the structure and the principle. For example,
In view of the structure of TMR, since current flows perpendicularly to the film surface, it is common that two strip-shaped magnetic layers are crossed to form a cross shape and joined via a non-magnetic insulating layer. .

【0009】上述してきたような先行技術における磁気
抵抗効果素子は、いずれも外部磁界に対して正の抵抗変
化を示す磁気抵抗効果素子であり、このような正の抵抗
変化を示す挙動が一般的であると考えられていた。とこ
ろが、この一般的な考えを否定し、特に稀なケースとし
て、J. Appl. Phys. Vol.76, 6104-6106 (1994) には、
磁界に対して負の磁気抵抗抵抗効果を示す素子例が報告
されている。この報告によれば、当該素子は、2つの第
一および第二の磁性層が非磁性酸化物を介して十字型に
直交するように配置・接合されたTMRにおいて一般的
とも思える形状を有しているのであるが、外部磁界が第
一および第二の磁性層に対して45度の角度をもつ場合
に限って−1%程度の負の抵抗変化率を示すことが報告
されている。負の抵抗変化率を示す磁気抵抗効果は、極
めて特異的な現象であり、これにより今後の磁気抵抗効
果素子の応用範囲は格段と広がるものと考えられる。
The above-described magnetoresistive elements in the prior art are all magnetoresistive elements exhibiting a positive change in resistance to an external magnetic field, and generally exhibit such a positive change in resistance. Was thought to be. However, denying this general idea, and as a rare case, J. Appl. Phys. Vol. 76, 6104-6106 (1994)
Examples of devices exhibiting a negative magnetoresistance effect on a magnetic field have been reported. According to this report, the device has a shape that seems to be common in a TMR in which two first and second magnetic layers are arranged and joined so as to be orthogonal to a cross via a nonmagnetic oxide. However, it is reported that a negative resistance change rate of about -1% is exhibited only when the external magnetic field has an angle of 45 degrees with respect to the first and second magnetic layers. The magnetoresistance effect exhibiting a negative rate of change in resistance is an extremely peculiar phenomenon, and it is thought that the application range of the magnetoresistance effect element in the future will be greatly expanded.

【0010】しかしながら、上記の負の抵抗変化率を示
す磁気抵抗効果素子は、AMRを動作原理としているた
め、その抵抗変化率が−1%と小さくて、実用性に乏し
い。また、負の抵抗変化は外部磁界が第一および第二の
磁性層に対して45度の角度をもつ場合に限られ、操作
上の角度方向を常に考慮しなければならず、操作性が良
いとは言えない。
However, since the magnetoresistance effect element exhibiting the above-described negative resistance change rate uses the AMR as its operating principle, its resistance change rate is as small as -1%, and is not practical. Further, the negative resistance change is limited to the case where the external magnetic field has an angle of 45 degrees with respect to the first and second magnetic layers. It can not be said.

【0011】[0011]

【発明が解決しようとする課題】このような実状のもと
に本発明は創案されたものであり、その目的は、素子−
外部磁場間の操作性に優れ、しかも実用性に優れた負の
抵抗変化率を示す磁気抵抗効果素子を提供することにあ
る。さらにはこの素子を用いた高出力の磁界センサを提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such a situation, and its object is to provide a device.
It is an object of the present invention to provide a magnetoresistive element having excellent operability between external magnetic fields and exhibiting a negative resistance change rate which is excellent in practical use. Another object of the present invention is to provide a high-output magnetic field sensor using this element.

【0012】[0012]

【課題を解決するための手段】このような課題を解決す
るために、本発明は、第一の磁性層と第二の磁性層が非
磁性層を介して接合されてなる積層膜構造を有し、当該
積層膜面に対し垂直に電流を流したときの電気抵抗が外
部磁界の印加により変化する磁気抵抗効果素子であっ
て、当該磁気抵抗効果素子は、外部磁界Hs を印加した
場合の抵抗値をRs 、外部磁界H(ただし、|Hs |>
|H|)を印加した場合の抵抗値をRとしたとき、(R
−Rs )/Rs であらわされる抵抗変化率が負の値を示
し、かつその絶対値が5%以上の値を有するように構成
される。
In order to solve such problems, the present invention has a laminated film structure in which a first magnetic layer and a second magnetic layer are joined via a non-magnetic layer. A magnetoresistive element whose electric resistance changes when an electric current is applied perpendicularly to the surface of the laminated film, by applying an external magnetic field, wherein the magnetoresistive element has a resistance when an external magnetic field Hs is applied. The value is Rs and the external magnetic field H (| Hs |>
When | H |) is applied and the resistance value is R, (R
−R s) / R s indicates a negative value of the rate of change of resistance and has an absolute value of 5% or more.

【0013】また、本発明の好ましい態様として、前記
第一の磁性層および前記第二の磁性層は、短冊状の形状
を有し、前記非磁性層を介して十字(クロス)状に接合
され、前記第一の磁性層および前記第二の磁性層の内、
少なくとも一方が、短冊状の素子部分の線幅をW、長さ
をLとした場合、線幅Wが80〜200μmの範囲内で
あり、これらのアスペクト比(L/W)が15〜40と
なるように構成される。
In a preferred embodiment of the present invention, the first magnetic layer and the second magnetic layer have a strip shape, and are joined in a cross shape via the nonmagnetic layer. Among the first magnetic layer and the second magnetic layer,
When at least one of the strip-shaped element portions has a line width of W and a length of L, the line width W is in the range of 80 to 200 μm and their aspect ratio (L / W) is 15 to 40. It is configured to be.

【0014】本発明の磁界センサは、負の抵抗変化を示
す素子と、正の抵抗変化を示す素子とが組み合わされ、
差動動作させて用いられるように構成される。
According to the magnetic field sensor of the present invention, an element exhibiting a negative resistance change and an element exhibiting a positive resistance change are combined,
It is configured to be used by performing a differential operation.

【0015】また、本発明の好ましい態様として、磁界
センサに用いられる抵抗変化を示す素子が、それぞれ磁
気抵抗効果素子であるように構成される。
In a preferred embodiment of the present invention, the elements exhibiting a change in resistance used in the magnetic field sensor are each configured as a magnetoresistive element.

【0016】また、本発明の好ましい態様として、磁界
センサに用いられる負の抵抗変化を示す素子が、第一の
磁性層と第二の磁性層が非磁性層を介して接合されてな
る積層膜構造を有し、当該積層膜面に対し垂直に電流を
流したときの電気抵抗が外部磁界の印加により変化する
磁気抵抗効果素子であって、当該磁気抵抗効果素子は、
外部磁界Hs を印加した場合の抵抗値をRs 、外部磁界
H(ただし、|Hs |>|H|)を印加した場合の抵抗
値をRとしたとき、(R−Rs )/Rs であらわされる
抵抗変化率が負の値を示し、かつその絶対値が5%以上
の値を有するように構成される。
Further, as a preferred embodiment of the present invention, a device used in a magnetic field sensor, which exhibits a negative resistance change, is a laminated film in which a first magnetic layer and a second magnetic layer are joined via a non-magnetic layer. A magnetoresistive element having a structure, the electric resistance of which changes when an electric current flows perpendicularly to the surface of the laminated film by application of an external magnetic field.
Assuming that the resistance value when the external magnetic field Hs is applied is Rs and the resistance value when the external magnetic field H (| Hs |> | H |) is R, it is expressed as (R-Rs) / Rs. The resistance change rate shows a negative value, and its absolute value has a value of 5% or more.

【0017】また、本発明の好ましい態様として、磁界
センサに用いられる負の抵抗変化を示す素子における前
記第一の磁性層および前記第二の磁性層は、短冊状の形
状を有し、前記非磁性層を介して十字(クロス)状に接
合され、前記第一の磁性層および前記第二の磁性層の
内、少なくとも一方が、短冊状の素子部分の線幅をW、
長さをLとした場合、線幅Wが80〜200μmの範囲
内であり、これらのアスペクト比(L/W)が15〜4
0となるように構成される。
In a preferred embodiment of the present invention, the first magnetic layer and the second magnetic layer of the element exhibiting a negative resistance change used in the magnetic field sensor have a strip shape, and The first magnetic layer and the second magnetic layer are joined in a cross shape through a magnetic layer, and at least one of the first magnetic layer and the second magnetic layer has a line width of a strip-shaped element portion of W,
When the length is L, the line width W is in the range of 80 to 200 μm, and their aspect ratio (L / W) is 15 to 4
It is configured to be zero.

【0018】[0018]

【発明の実施の形態】以下、本発明の磁気抵抗効果素子
の好適な実施の形態の一例について図1を参照しつつ説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an example of a preferred embodiment of a magnetoresistive element according to the present invention will be described with reference to FIG.

【0019】図1は、本発明の磁気抵抗効果素子1の概
略平面図であり、この図に示されるように、本発明の磁
気抵抗効果素子1は、第一の磁性層10と第二の磁性層
20が非磁性層30を介して十字(クロス)状に接合さ
れてなる積層膜構造を有している。
FIG. 1 is a schematic plan view of a magnetoresistive element 1 according to the present invention. As shown in FIG. 1, the magnetoresistive element 1 according to the present invention includes a first magnetic layer 10 and a second magnetic layer 10. It has a laminated film structure in which the magnetic layer 20 is joined in a cross shape through the non-magnetic layer 30.

【0020】第一の磁性層10および第二の磁性層20
は、それぞれ、細帯状の実質的な素子部分11および2
1を有し、これらは略中央部で非磁性層30を介して接
合されている。また、素子部分11および21の各両端
部には、それぞれ主として直流電源40や電圧計50を
接続するための接続幅広端部15,15および25,2
5が形成されている。
First magnetic layer 10 and second magnetic layer 20
Are substantially strip-shaped substantial element portions 11 and 2 respectively.
1 which are joined at a substantially central portion via a non-magnetic layer 30. At both ends of the element portions 11 and 21, the connection wide ends 15, 15, and 25, 2 for mainly connecting the DC power supply 40 and the voltmeter 50, respectively.
5 are formed.

【0021】そして、このような磁気抵抗効果素子1
は、当該積層膜面に対し垂直(紙面に対して垂直)に電
流を流したときの抵抗が外部磁界の印加により変化する
ように作用し、しかも、当該磁気抵抗効果素子1は、外
部磁界Hs を印加した場合の抵抗値をRs 、外部磁界H
(ただし、|Hs |>|H|)を印加した場合の抵抗値
をRとしたとき、(R−Rs )/Rs であらわされる抵
抗変化率が負の値を示し、かつその絶対値が5%以上の
値を有するように構成されている。ここで、|Hs |お
よび|H|は、それぞれ外部磁界Hs およびHの絶対値
を示している。
Then, such a magnetoresistive element 1
Acts so that the resistance when a current flows perpendicularly to the surface of the laminated film (perpendicular to the plane of the paper) is changed by the application of an external magnetic field. Rs and the external magnetic field H
(Where | Hs |> | H |) is R, the resistance change rate represented by (R−Rs) / Rs is a negative value and the absolute value is 5 %. Here, | Hs | and | H | indicate the absolute values of the external magnetic fields Hs and H, respectively.

【0022】このような構成をサポートするための特に
好適な磁性層10,20の形態としては、図1に示され
るように第一の磁性層10の細帯状の素子部分11の線
幅をW1 、長さをL1 とした場合、これらのアスペクト
比(L1 /W1 )が15〜40であり、かつ、線幅W1
を80〜200μmの範囲とすることが望ましい。
As a particularly preferred form of the magnetic layers 10 and 20 for supporting such a configuration, as shown in FIG. 1, the line width of the strip-shaped element portion 11 of the first magnetic layer 10 is set to W. 1 , when the length is L 1 , the aspect ratio (L 1 / W 1 ) is 15 to 40, and the line width W 1
Is desirably in the range of 80 to 200 μm.

【0023】このような関係は第二の磁性層20につい
ても同様であり、図1に示されるように第二の磁性層2
0の細帯状の素子部分21の線幅をW2 、長さをL2
した場合、これらのアスペクト比(L2 /W2 )が15
〜40であり、かつ、線幅W2 を80〜200μmの範
囲とすることが望ましい。
This relationship is the same for the second magnetic layer 20, and as shown in FIG.
Assuming that the line width of the strip-like element portion 21 of 0 is W 2 and the length is L 2 , their aspect ratio (L 2 / W 2 ) is 15
And the line width W 2 is desirably in the range of 80 to 200 μm.

【0024】また、測定すべき外部磁場Hと、本発明の
十字状の磁気抵抗効果素子1との測定位置関係は、特に
限定されるものではないが、図1に示されるごとく外部
磁場Hの方向に対して、いずれか一方の磁性層が平行に
配置されるようにすることが望ましい。このような平行
配置とすることによって、より大きな負の抵抗変化率が
得られる。
The positional relationship between the external magnetic field H to be measured and the cross-shaped magnetoresistive element 1 of the present invention is not particularly limited, but as shown in FIG. It is desirable that one of the magnetic layers is arranged in parallel to the direction. With such a parallel arrangement, a larger negative resistance change rate can be obtained.

【0025】本発明の素子の作製は、例えばスパッタ法
や蒸着法等の真空成膜法を用い、成膜する際にメタルマ
スクによりパターニングを行えばよい。
The device of the present invention may be manufactured by using a vacuum film forming method such as a sputtering method or a vapor deposition method, and performing patterning with a metal mask when forming the film.

【0026】本発明における素子の抵抗変化率は、図1
に示される直流電源40により2つの磁性層10,20
間に電圧を印加して膜面に対して垂直に流れる電流を流
して抵抗を計測すればよい。本発明において測定される
抵抗は、前述したように外部磁界の印加により変化し、
最大変化率は−5%以上の値を有する。
FIG. 1 shows the resistance change rate of the device according to the present invention.
The two magnetic layers 10 and 20 are driven by a DC power supply 40 shown in FIG.
The resistance may be measured by applying a voltage between them and flowing a current flowing perpendicularly to the film surface. The resistance measured in the present invention changes by the application of an external magnetic field as described above,
The maximum rate of change has a value of -5% or more.

【0027】このような大きな負の抵抗変化が、非磁性
絶縁層をトンネル障壁とするTMRによるものか不完全
な絶縁層を電流が流れる垂直GMRによるものかは明ら
かではない。また、負の磁気抵抗効果が観測される原理
は形状による磁気異方性の効果や磁区による磁化のピン
ニングによる効果などによるものと推測される。
It is not clear whether such a large negative resistance change is caused by TMR using a nonmagnetic insulating layer as a tunnel barrier or by vertical GMR in which a current flows through an imperfect insulating layer. The principle that the negative magnetoresistance effect is observed is presumed to be due to the effect of magnetic anisotropy due to shape, the effect of magnetization pinning due to magnetic domains, and the like.

【0028】例えば、図1に示されるように第一の磁性
層10と第二の磁性層20が十字状に直交しており、第
一の磁性層10の磁化容易軸が形状磁気異方性により磁
性層の長手方向であり、第一の磁性層10と直交方向の
外部磁界Hが与えられている場合を考える。磁性層の形
状が短冊状の長さと幅に極端な比をもつ場合(例えば上
記のアスペクト比15〜40の場合)、磁化容易軸は長
手方向となり磁化が形状磁気異方性により長手方向にピ
ンニングされる。
For example, as shown in FIG. 1, the first magnetic layer 10 and the second magnetic layer 20 are orthogonal to each other in a cross shape, and the axis of easy magnetization of the first magnetic layer 10 has a shape magnetic anisotropy. , The case where an external magnetic field H is applied in the longitudinal direction of the magnetic layer and in a direction perpendicular to the first magnetic layer 10. When the shape of the magnetic layer has an extreme ratio of the length and width of the strip (for example, in the case of the above aspect ratio of 15 to 40), the axis of easy magnetization becomes the longitudinal direction, and the magnetization is pinned in the longitudinal direction due to the shape magnetic anisotropy. Is done.

【0029】そのため、第一の磁性層10に対し直交方
向の磁界が与えられても磁界に直交する第一の磁性層1
0は飽和せず、第一の磁性層10と磁界と平行な第二の
磁性層20の磁化は平行にはならない。しかしながら、
磁界の符号が正から負あるいは負から正に反転した直
後、磁界と平行であった磁性層20の磁化が外部磁界の
反転に伴って反転するエリアで2つの磁性層10,20
の磁化が平行になり抵抗が極小となるものと考えられ
る。すなわち、本発明の磁気抵抗効果素子では磁界に対
して平行な磁性層20の磁化が反転する際に抵抗値が最
小となる負の抵抗変化を示すものと考えられる。
Therefore, even when a magnetic field in the orthogonal direction is applied to the first magnetic layer 10, the first magnetic layer 1 orthogonal to the magnetic field
0 does not saturate, and the magnetization of the first magnetic layer 10 and the magnetization of the second magnetic layer 20 parallel to the magnetic field do not become parallel. However,
Immediately after the sign of the magnetic field reverses from positive to negative or from negative to positive, the two magnetic layers 10 and 20 are arranged in an area where the magnetization of the magnetic layer 20 parallel to the magnetic field reverses with the reversal of the external magnetic field.
Are considered to be parallel and the resistance is minimized. That is, it is considered that the magnetoresistance effect element of the present invention exhibits a negative resistance change in which the resistance value becomes minimum when the magnetization of the magnetic layer 20 parallel to the magnetic field is reversed.

【0030】また、第二の磁性層20が形状磁気異方性
により長手方向に磁化容易軸を持つ場合、第二の磁性層
に直交する方向の磁界に対して同様の磁気抵抗変化がお
きるものと考えられる。
When the second magnetic layer 20 has an easy axis of magnetization in the longitudinal direction due to the shape magnetic anisotropy, a similar change in magnetoresistance occurs in a magnetic field in a direction perpendicular to the second magnetic layer. it is conceivable that.

【0031】なお、前述したように外部磁界の方向は必
ずしも形状磁気異方性により制御された磁性層と直交す
る方向に印加する必要はない。また、第一および第二の
磁性層は少なくとも一方が形状磁気異方性により磁化容
易軸が長手方向を向いていればよく、2つの磁性層共に
磁化容易軸方向が形状磁気異方性により制御されていて
もよい。
As described above, the direction of the external magnetic field need not necessarily be applied in a direction perpendicular to the magnetic layer controlled by the shape magnetic anisotropy. Also, at least one of the first and second magnetic layers only needs to have the easy axis of magnetization oriented in the longitudinal direction due to shape magnetic anisotropy. It may be.

【0032】なお、本発明の磁気抵抗効果素子は、一般
に、基板上に形成される。基板としては特に限定される
ものではなくガラス基板の他シリコン単結晶基板あるい
は表面に酸化層を持つ熱酸化シリコン基板やアルミナ等
のセラミックス基板が用いられる。
Incidentally, the magnetoresistance effect element of the present invention is generally formed on a substrate. The substrate is not particularly limited, and a glass single substrate, a silicon single crystal substrate, a thermally oxidized silicon substrate having an oxide layer on its surface, or a ceramic substrate such as alumina is used.

【0033】本発明の負の磁気抵抗変化を示す磁気抵抗
効果素子は、単独で用いても良いが、特に、正の磁気抵
抗変化を示す素子と組み合わせて用いることで高出力の
磁界センサとすることが可能である。すなわち、正の磁
気抵抗変化を示す素子と、負の磁気抵抗変化を示す素子
を組み合わせて差動動作することで高出力が得られる。
例えば、図2に示されるように負の磁気抵抗変化を示す
素子S1と正の磁気抵抗変化を示す素子S2を直列に接
続し、定電圧駆動し、この中点電位を検出する差動動作
磁界センサ60とする。すなわち、負の磁気抵抗変化を
示す素子S1としては、例えば、上述してきた磁気抵抗
効果素子1(図1)が用いられ、また、正の磁気抵抗変
化を示す素子S2としては、いわゆるAMR膜、GMR
膜などの公知の種々の正の磁気抵抗変化を示すものが用
いられる(これらについては、すでに従来技術の欄で例
を挙げて説明している)。なお、図2において、符号6
1は電圧計、符号65は電源を示している。
The magnetoresistive element of the present invention exhibiting a negative magnetoresistance change may be used alone, but in particular, it is used in combination with an element exhibiting a positive magnetoresistance change to provide a high-output magnetic field sensor. It is possible. That is, a high output can be obtained by performing a differential operation by combining an element exhibiting a positive magnetoresistance change and an element exhibiting a negative magnetoresistance change.
For example, as shown in FIG. 2, an element S1 exhibiting a negative magnetoresistance change and an element S2 exhibiting a positive magnetoresistance change are connected in series, driven at a constant voltage, and a differential operating magnetic field for detecting the midpoint potential is used. The sensor 60 is used. That is, as the element S1 exhibiting a negative magnetoresistance change, for example, the above-described magnetoresistance effect element 1 (FIG. 1) is used. As the element S2 exhibiting a positive magnetoresistance change, a so-called AMR film, GMR
A variety of known positive magnetoresistance changes, such as films, are used (these are already described by way of example in the section of the prior art). In addition, in FIG.
Reference numeral 1 denotes a voltmeter, and reference numeral 65 denotes a power supply.

【0034】このような磁界センサ60(図2)に、磁
界が印加されると素子S1の抵抗は減少し、素子S2の
抵抗は増加するために中点電位は大きく変化する。もち
ろん4個の素子をブリッジ接続した形の差動動作でも同
様の効果が得られる。
When a magnetic field is applied to such a magnetic field sensor 60 (FIG. 2), the resistance of the element S1 decreases and the resistance of the element S2 increases, so that the midpoint potential greatly changes. Of course, the same effect can be obtained by a differential operation in which four elements are bridge-connected.

【0035】[0035]

【実施例】以下、具体的な実施例を示し本発明をさらに
詳細に説明する。
Hereinafter, the present invention will be described in more detail with reference to specific examples.

【0036】(実施例1)7059ガラス基板(コーニ
ング社製)を用い、この基板上に、鉄(Fe)膜からな
る第一の磁性層をメタルマスク(厚さ50μmのリン青
銅製メタルマスク)を用いてパターニングしながら膜厚
200Åに成膜した。第一の磁性層の長さL1 は300
0μm、線幅W1 は80μmとした(アスペクト比L1
/W1 は37.5)。なお、素子の成膜はIBS(ion b
eam sputter)法により行った。
(Example 1) A 7059 glass substrate (manufactured by Corning Incorporated) was used, and a first magnetic layer made of an iron (Fe) film was formed on this substrate with a metal mask (a 50 μm-thick phosphor bronze metal mask). The film was formed to a thickness of 200 ° while being patterned by using The length L 1 of the first magnetic layer is 300
0 μm, and the line width W 1 was 80 μm (aspect ratio L 1
/ W 1 is 37.5). In addition, the film formation of the element is performed using IBS (ion b
eam sputter) method.

【0037】次に、第一および第二の磁性層が上下に交
差する予定の部分に、アルミニウム膜を円形(直径2m
mφの円形)にパターニングした。アルミニウム膜の膜
厚は50Åとした。そしてアルミニウム膜を成膜後、室
温大気中で184時間、アルミニウム膜の自然酸化を行
った。次いで、図1に示されるように第一の磁性層と直
交するようにコバルト膜からなる第二の磁性層をメタル
マスクでパターニングしながら膜厚200Åに成膜し、
実施例1の磁気抵抗効果素子を作製した。
Next, an aluminum film is formed in a circular shape (having a diameter of 2 m) on the portion where the first and second magnetic layers are expected to intersect vertically.
(circle of mφ). The thickness of the aluminum film was 50 °. After the formation of the aluminum film, the aluminum film was spontaneously oxidized at room temperature for 184 hours. Next, as shown in FIG. 1, a second magnetic layer made of a cobalt film is formed to a thickness of 200 ° while being patterned with a metal mask so as to be orthogonal to the first magnetic layer,
Example 1 A magnetoresistive element of Example 1 was manufactured.

【0038】なお、第二の磁性層の長さL2 は3000
μm、線幅W2 は80μmとした(アスペクト比L2
2 は37.5)。なお、第一および第二の磁性層の接
合面積は磁性層の交差部分となるためにストライプ幅の
積で与えられる。
The length L 2 of the second magnetic layer is 3000
μm and a line width W 2 of 80 μm (aspect ratio L 2 /
W 2 is 37.5). Note that the junction area of the first and second magnetic layers is given by the product of the stripe widths in order to be the intersection of the magnetic layers.

【0039】(実施例2)上記実施例1において、アル
ミニウム膜の自然酸化時間を、184時間から84時間
に変えた。それ以外は、前記実施例1と同様にして、実
施例2の磁気抵抗効果素子を作製した。
Example 2 In Example 1, the natural oxidation time of the aluminum film was changed from 184 hours to 84 hours. Otherwise, the procedure of Example 1 was followed to fabricate a magnetoresistive element of Example 2.

【0040】(実施例3)上記実施例2において、第一
および第二の上下の磁性層の線幅W1 およびW2をそれ
ぞれ80μmから200μmに変えた。それ以外は、前
記実施例2と同様にして、実施例3の磁気抵抗効果素子
を作製した。
Example 3 In Example 2, the line widths W 1 and W 2 of the first and second upper and lower magnetic layers were changed from 80 μm to 200 μm, respectively. Otherwise, the procedure of Example 2 was followed to fabricate a magnetoresistance effect element of Example 3.

【0041】以上のようにして作製した実施例1〜3の
磁気抵抗効果素子における抵抗変化を直流4端子法によ
り求めた。より具体的には鉄膜からなる第一の磁性層と
平行な方向の面内直流磁界中、およびコバルト膜からな
る第二の磁性層と平行な方向の面内直流磁界中で、それ
ぞれ測定し、MR変化率(%)を求めた。
The resistance change in each of the magnetoresistive elements of Examples 1 to 3 manufactured as described above was determined by a DC four-terminal method. More specifically, measurement was performed in an in-plane DC magnetic field in a direction parallel to the first magnetic layer made of an iron film, and in an in-plane DC magnetic field in a direction parallel to the second magnetic layer made of a cobalt film. And the MR change rate (%) were determined.

【0042】結果を下記表1に示す。なお、各MR曲線
は表1を介して図3〜図8に示した。
The results are shown in Table 1 below. In addition, each MR curve was shown in FIGS.

【0043】[0043]

【表1】 (実施例4)図2に示されるような差動動作磁界センサ
を作製した。すなわち、上記実施例1の磁気抵抗効果素
子を、負の抵抗変化を示す素子S1とし、これにスピン
バルブGMR多層膜(膜構成は、 Ta/NiFe/Cu/NiFe/FeM
n/Ta)を正の抵抗効果素子S2として直列に接続し、差
動動作磁界センサとした。このセンサに直流定電流電源
を接続して中点電位を計測したところ、外部磁界の変化
に対して高い出力が得られた。
[Table 1] (Example 4) A differential operation magnetic field sensor as shown in FIG. 2 was manufactured. That is, the magnetoresistive element of the first embodiment is an element S1 exhibiting a negative change in resistance, and is provided with a spin-valve GMR multilayer film (film structure is Ta / NiFe / Cu / NiFe / FeM).
n / Ta) were connected in series as a positive resistance effect element S2 to obtain a differential operation magnetic field sensor. When a DC constant current power supply was connected to this sensor and the midpoint potential was measured, a high output was obtained with respect to changes in the external magnetic field.

【0044】[0044]

【発明の効果】上記の結果より本発明の効果は明らかで
ある。すなわち、本発明の磁気抵抗効果素子は、第一の
磁性層と第二の磁性層が非磁性層を介して接合されてな
る積層膜構造を有し、当該積層膜面に対し垂直に電流を
流したときの電気抵抗が外部磁界の印加により変化する
磁気抵抗効果素子であって、当該磁気抵抗効果素子は、
外部磁界Hs を印加した場合の抵抗値をRs 、外部磁界
H(ただし、|Hs |>|H|)を印加した場合の抵抗
値をRとしたとき、(R−Rs )/Rs であらわされる
抵抗変化率が負の値を示し、かつその絶対値が5%以上
の値を有するように構成されるので、素子−外部磁場間
の操作性に優れ、しかも実用性にも優れる。また、この
負の抵抗変化を示す素子を、正の抵抗変化を示す素子と
組み合わせることによって高出力の磁界センサを提供す
ること可能となる。
The effects of the present invention are clear from the above results. That is, the magnetoresistance effect element of the present invention has a laminated film structure in which the first magnetic layer and the second magnetic layer are joined via the non-magnetic layer, and applies a current perpendicular to the laminated film surface. An electric resistance when flowing is a magnetoresistive element that changes by application of an external magnetic field, and the magnetoresistive element is:
When the resistance value when an external magnetic field Hs is applied is Rs, and when the external magnetic field H (| Hs |> | H |) is R, the resistance value is expressed as (R-Rs) / Rs. Since the resistance change rate shows a negative value and the absolute value has a value of 5% or more, the operability between the element and the external magnetic field is excellent, and the practicability is also excellent. Further, by combining the element exhibiting the negative resistance change with the element exhibiting the positive resistance change, a high-output magnetic field sensor can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気抵抗効果素子の構造を概略的に示
す平面図である。
FIG. 1 is a plan view schematically showing the structure of a magnetoresistance effect element according to the present invention.

【図2】本発明の磁界センサの構成を概略的に示す平面
図である。
FIG. 2 is a plan view schematically showing a configuration of a magnetic field sensor of the present invention.

【図3】本発明の磁気抵抗効果素子の磁界に対する抵抗
変化率を示す図である。
FIG. 3 is a diagram showing a rate of change in resistance with respect to a magnetic field of the magnetoresistive element of the present invention.

【図4】本発明の磁気抵抗効果素子の磁界に対する抵抗
変化率を示す図である。
FIG. 4 is a diagram showing a resistance change rate with respect to a magnetic field of the magnetoresistive element of the present invention.

【図5】本発明の磁気抵抗効果素子の磁界に対する抵抗
変化率を示す図である。
FIG. 5 is a diagram showing a resistance change rate with respect to a magnetic field of the magnetoresistive element of the present invention.

【図6】本発明の磁気抵抗効果素子の磁界に対する抵抗
変化率を示す図である。
FIG. 6 is a diagram showing a resistance change rate with respect to a magnetic field of the magnetoresistance effect element of the present invention.

【図7】本発明の磁気抵抗効果素子の磁界に対する抵抗
変化率を示す図である。
FIG. 7 is a diagram showing a resistance change rate with respect to a magnetic field of the magnetoresistive element of the present invention.

【図8】本発明の磁気抵抗効果素子の磁界に対する抵抗
変化率を示す図である。
FIG. 8 is a diagram showing a rate of change in resistance with respect to a magnetic field of the magnetoresistive element of the present invention.

【符号の説明】[Explanation of symbols]

10…第一の磁性層 11…ライン状の素子部分 20…第二の磁性層 21…ライン状の素子部分 30…非磁性絶縁層 60…磁界センサ S1…負の抵抗変化を示す素子 S2…正の抵抗変化を示す素子 Reference Signs List 10 first magnetic layer 11 linear element part 20 second magnetic layer 21 linear element part 30 non-magnetic insulating layer 60 magnetic field sensor S1 element exhibiting a negative resistance change S2 positive Element showing resistance change of

フロントページの続き (72)発明者 宮内 大助 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 Fターム(参考) 2G017 AC08 AD54 AD63 AD65 BA05 BA09 5D034 BA02 BB02 Continuation of the front page (72) Inventor Daisuke Miyauchi 1-13-1, Nihonbashi, Chuo-ku, Tokyo TDC Corporation F term (reference) 2G017 AC08 AD54 AD63 AD65 BA05 BA09 5D034 BA02 BB02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 第一の磁性層と第二の磁性層が非磁性層
を介して接合されてなる積層膜構造を有し、当該積層膜
面に対し垂直に電流を流したときの電気抵抗が外部磁界
の印加により変化する磁気抵抗効果素子であって、 当該磁気抵抗効果素子は、外部磁界Hs を印加した場合
の抵抗値をRs 、外部磁界H(ただし、|Hs |>|H
|)を印加した場合の抵抗値をRとしたとき、(R−R
s )/Rs であらわされる抵抗変化率が負の値を示し、
かつその絶対値が5%以上の値を有することを特徴とす
る磁気抵抗効果素子。
1. A laminated film structure in which a first magnetic layer and a second magnetic layer are joined via a non-magnetic layer, and an electric resistance when a current flows perpendicularly to the laminated film surface. Is a magnetoresistive element that changes when an external magnetic field is applied. The magnetoresistive element has a resistance value when an external magnetic field Hs is applied, Rs, and an external magnetic field H (| Hs |> | H
|) Is applied, the resistance value is R, and (R−R
s) / Rs has a negative resistance change rate,
And a magnetoresistive element having an absolute value of 5% or more.
【請求項2】 前記第一の磁性層および前記第二の磁性
層は、短冊状の形状を有し、前記非磁性層を介して十字
(クロス)状に接合され、 前記第一の磁性層および前記第二の磁性層の内、少なく
とも一方が、短冊状の素子部分の線幅をW、長さをLと
した場合、線幅Wが80〜200μmの範囲内であり、
これらのアスペクト比(L/W)が15〜40である請
求項1に記載の磁気抵抗効果素子。
2. The first magnetic layer and the second magnetic layer have a strip shape, and are joined in a cross shape via the non-magnetic layer. And when at least one of the second magnetic layers has a line width W and a length L of the strip-shaped element portion, the line width W is in the range of 80 to 200 μm,
The magnetoresistive element according to claim 1, wherein the aspect ratio (L / W) is 15 to 40.
【請求項3】 負の抵抗変化を示す素子と、正の抵抗変
化を示す素子とが組み合わされ、差動動作させて用いら
れることを特徴とする磁界センサ。
3. A magnetic field sensor wherein an element exhibiting a negative resistance change and an element exhibiting a positive resistance change are combined and used in differential operation.
【請求項4】 前記抵抗変化を示す素子が、それぞれ磁
気抵抗効果素子である請求項3に記載の磁界センサ。
4. The magnetic field sensor according to claim 3, wherein the elements exhibiting a change in resistance are magnetoresistive elements.
【請求項5】 前記負の抵抗変化を示す素子が、第一の
磁性層と第二の磁性層が非磁性層を介して接合されてな
る積層膜構造を有し、当該積層膜面に対し垂直に電流を
流したときの電気抵抗が外部磁界の印加により変化する
磁気抵抗効果素子であって、 当該磁気抵抗効果素子は、外部磁界Hs を印加した場合
の抵抗値をRs 、外部磁界H(ただし、|Hs |>|H
|)を印加した場合の抵抗値をRとしたとき、(R−R
s )/Rs であらわされる抵抗変化率が負の値を示し、
かつその絶対値が5%以上の値を有する請求項3または
請求項4に記載の磁界センサ。
5. An element exhibiting a negative resistance change has a laminated film structure in which a first magnetic layer and a second magnetic layer are joined via a non-magnetic layer. A magnetoresistive element whose electric resistance changes when an external magnetic field is applied when a current flows vertically. The magnetoresistive element has a resistance value Rs when an external magnetic field Hs is applied, an external magnetic field H ( Where | Hs |> | H
|) Is applied, the resistance value is R, and (R−R
s) / Rs has a negative resistance change rate,
The magnetic field sensor according to claim 3, wherein the absolute value has a value of 5% or more.
【請求項6】 前記第一の磁性層および前記第二の磁性
層は、短冊状の形状を有し、前記非磁性層を介して十字
(クロス)状に接合され、 前記第一の磁性層および前記第二の磁性層の内、少なく
とも一方が、短冊状の素子部分の線幅をW、長さをLと
した場合、線幅Wが80〜200μmの範囲内であり、
これらのアスペクト比(L/W)が15〜40である請
求項5に記載の磁界センサ。
6. The first magnetic layer and the second magnetic layer have a strip shape, and are joined in a cross shape via the non-magnetic layer. And when at least one of the second magnetic layers has a line width W and a length L of the strip-shaped element portion, the line width W is in the range of 80 to 200 μm,
The magnetic field sensor according to claim 5, wherein the aspect ratio (L / W) is 15 to 40.
JP10309489A 1998-10-15 1998-10-15 Magnetoresistive effect element and magnetic-field sensor Withdrawn JP2000124522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10309489A JP2000124522A (en) 1998-10-15 1998-10-15 Magnetoresistive effect element and magnetic-field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10309489A JP2000124522A (en) 1998-10-15 1998-10-15 Magnetoresistive effect element and magnetic-field sensor

Publications (1)

Publication Number Publication Date
JP2000124522A true JP2000124522A (en) 2000-04-28

Family

ID=17993614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10309489A Withdrawn JP2000124522A (en) 1998-10-15 1998-10-15 Magnetoresistive effect element and magnetic-field sensor

Country Status (1)

Country Link
JP (1) JP2000124522A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001099206A1 (en) * 2000-06-22 2001-12-27 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device and magnetoresistance effect head comprising the same, and magnetic recording/reproducing apparatus
JP2003531476A (en) * 2000-03-22 2003-10-21 モトローラ・インコーポレイテッド Magnetic element with improved magnetoresistance ratio
JP2008192634A (en) * 2007-01-31 2008-08-21 Fujitsu Ltd Tunnel magnetoresistive effect film and magnetic device
JP2011164098A (en) * 2010-01-15 2011-08-25 Institute Of National Colleges Of Technology Japan Magnetic sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531476A (en) * 2000-03-22 2003-10-21 モトローラ・インコーポレイテッド Magnetic element with improved magnetoresistance ratio
WO2001099206A1 (en) * 2000-06-22 2001-12-27 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device and magnetoresistance effect head comprising the same, and magnetic recording/reproducing apparatus
US6982854B2 (en) 2000-06-22 2006-01-03 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device and magnetoresistance effect head comprising the same, and magnetic recording/reproducing apparatus
JP2008192634A (en) * 2007-01-31 2008-08-21 Fujitsu Ltd Tunnel magnetoresistive effect film and magnetic device
JP2011164098A (en) * 2010-01-15 2011-08-25 Institute Of National Colleges Of Technology Japan Magnetic sensor

Similar Documents

Publication Publication Date Title
US5686838A (en) Magnetoresistive sensor having at least a layer system and a plurality of measuring contacts disposed thereon, and a method of producing the sensor
US6577124B2 (en) Magnetic field sensor with perpendicular axis sensitivity, comprising a giant magnetoresistance material or a spin tunnel junction
JP5452006B2 (en) Manufacturing method of magnetic device and manufacturing method of magnetic field angle sensor
JP2000251223A (en) Spin valve magnetoresistance sensor and thin-film magnetic head
JP2000149228A (en) Manufacturing method for thin film magnetic head
KR20060050168A (en) Azimuth meter having spin-valve giant magneto-resistive elements
Jia et al. Magnetic sensors for data storage: perspective and future outlook
JPWO2020208907A1 (en) Magneto Resistive Sensor and Magnetometer
WO2011028185A1 (en) A sensor arrangement
WO2019142634A1 (en) Magnetic detection device and method for manufacturing same
JP2001250208A (en) Magneto-resistive element
JPH10198927A (en) Magnetoresistance effect film and its production
JPH10188235A (en) Magneto-resistive film and its production
JPH10162320A (en) Magnetoresistance effect type head and its usage
JP2000215421A (en) Spin valve thin film magnetic element, thin film magnetic head, and production of spin valve thin film magnetic element
US6700756B1 (en) Spin-valve thin film magnetic element and method of manufacturing the same
JP2000338211A (en) Magnetic sensor and its manufacture
Chan et al. Spin valves with Conetic based synthetic ferrimagnet free layer
JP2000124522A (en) Magnetoresistive effect element and magnetic-field sensor
JPH11273033A (en) Magnetoresistance multi-layer film and thin film magnetic head provided with its multi-layer film
KR20050025238A (en) Magnetoresistance effect film and magnetoresistance effect head
JP2012063232A (en) Method for manufacturing magnetic field detection apparatus, and magnetic field detection apparatus
Miller et al. Novel absolute linear displacement sensor utilizing giant magnetoresistance elements
JPH11273034A (en) Magnetic sensor, thin-film magnetic head and production of thin-film magnetic head
JP2001052315A (en) Spin valve-type thin-film magnetic element, thin-film magnetic head and manufacture of the spin valve-type thin-film magnetic element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110