JP2000121724A - Laser radar equipment - Google Patents

Laser radar equipment

Info

Publication number
JP2000121724A
JP2000121724A JP10294789A JP29478998A JP2000121724A JP 2000121724 A JP2000121724 A JP 2000121724A JP 10294789 A JP10294789 A JP 10294789A JP 29478998 A JP29478998 A JP 29478998A JP 2000121724 A JP2000121724 A JP 2000121724A
Authority
JP
Japan
Prior art keywords
laser beam
laser
light
field stop
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10294789A
Other languages
Japanese (ja)
Other versions
JP3835016B2 (en
Inventor
Ryuichi Higuchi
隆一 樋口
Original Assignee
Mitsubishi Electric Corp
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, 三菱電機株式会社 filed Critical Mitsubishi Electric Corp
Priority to JP29478998A priority Critical patent/JP3835016B2/en
Publication of JP2000121724A publication Critical patent/JP2000121724A/en
Application granted granted Critical
Publication of JP3835016B2 publication Critical patent/JP3835016B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To enable detecting mutual deviation of a transmitting axis and a receiving axis in laser radar equipment.
SOLUTION: By illuminating a field stop 4 determining a receiving axis, a light is outputted in the direction opposite to a receiving light. A part of the outputted light is led out with a reflecting mirror 9. A part of a transmitting laser beam is led out with a semitransparent mirror 10. The two beams are combined by the semitransparent mirror 10 and inputted in an image sensor 12. The axis deviation appears as discrepancy of spot positions on the image sensor 12. In order to prevent that axes mutually independently change by the environmental influence, the reflecting mirror 9 and the semitransparent mirror 10 are constituted integrally by using a retaining frame 11.
COPYRIGHT: (C)2000,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】この発明はレーザレーダ装置の送信軸と受信軸との軸ずれ検出に関するものである。 TECHNICAL FIELD OF THE INVENTION This invention relates to axial misalignment detection and reception axis and the transmission axis of the laser radar apparatus.

【0002】 [0002]

【従来の技術】レーザレーダ装置は、自らレーザを発射して目標物に当て目標物からの反射光を受けて信号の大きさと発射時からの時間を測ることにより、目標物の特性や目標物までの距離を求める装置である。 BACKGROUND ART Laser radar apparatus, by measuring the time from receiving the reflected light signal magnitude and fired from target against a target by firing their laser, characteristics and target of the target a device for determining the distance to. 最近は応用分野が拡がり、人工衛星に搭載して大気の散乱特性の高度分布を測定することも可能になった。 Recently spread is applications became possible to measure the altitude distribution of scattering properties of the atmosphere board satellites. レーザレーダ装置においてはレーザ反射光を受けるので、レーザで照射された目標物が必ず受信光学系の視野内になければならない。 Since receiving the reflected laser beam in the laser radar apparatus, it must always target irradiated with laser in the receiving optical system of the visual field. 視野内から完全に外れればそもそも信号を掴むことができないし、部分的に外れても目標物の特性を正確に測定できなくなる。 It is not possible to grasp the full Hazurere In the first place the signal from the field of view, even partially out can not be accurately measuring characteristics of a target. したがって、レーザで照射された目標物を受信光学系の視野中心に保つこと、言い替えれば、送信と受信の軸を一致させることはレーザレーダ装置にとって不可欠の条件である。 Therefore, keeping the target irradiated with the laser at the center of the field of view of the receiving optical system, in other words, is an essential condition for the laser radar device to match the axes of transmission and reception. 送信と受信の軸を一致させるには軸ずれ検出および軸ずれ補正が必要である。 To match the axes of transmission and reception is required axial deviation detection and axis deviation correction.

【0003】図5は従来の軸ずれ検出方式を示す図である。 [0003] FIG. 5 is a diagram showing a conventional axial deviation detection method. 図5において、1はレーザ、2はダブルウェッジのような、レーザビームの方向を調節する調節装置、3はカセグレイン光学系のような受信望遠鏡、4はピンホールのような視野絞り、5はリレー光学系、6は狭帯域フィルタ、7は検出器、8は信号処理回路、10は半透鏡、16はレンズ、17は4象限検出器である。 5, 1 denotes a laser, 2 is like a double wedge, adjustment device for adjusting the direction of the laser beam, 3 receive telescope like Cassegrain optical system, 4 is a field stop, such as a pin hole, 5 Relay optics, narrow band filter 6, 7 detector, 8 is a signal processing circuit, 10 is a semi-transparent mirror, 16 is a lens, 17 is a four-quadrant detector.

【0004】次に動作について説明する。 [0004] Next, the operation will be described. レーザ1から発生されたレーザビームは調節装置2および半透鏡10 The laser beam adjusting device 2 and a semi-transparent mirror 10 from the laser 1 is generated
を介して目標に向けて送出される。 It is sent to the target through. 目標からの反射光はカセグレイン主鏡3aおよびカセグレイン副鏡3bからなる受信望遠鏡3により集光されて視野絞り4を通る。 Light reflected from the target passes through the diaphragm 4 is focused field by the receiving telescope 3 consisting of a Cassegrainian primary mirror 3a and Cassegrain secondary mirror 3b.
視野絞り4を通過した光はレンズ5aおよびレンズ5b The light passing through the field stop 4 lenses 5a and lens 5b
からなるリレー光学系5の内部に置かれた狭帯域フィルタ6を通過して検出器7に集められる。 Passing through the narrow band filter 6 placed inside the relay optical system 5 consisting collected to the detector 7. 光は検出器7で電気信号に変換され、信号処理回路8により増幅、デジタル化され目標情報が抽出される。 The light is converted into an electrical signal by the detector 7, amplified by the signal processing circuit 8, the target information is digitized is extracted. このようなレーザレーダ装置において軸ずれ検出を次のように行う。 Performing axial misalignment detection as follows in such a laser radar apparatus. 半透鏡10によりレーザビームの一部は反射して、レンズ16 Part of the laser beam is reflected by a half mirror 10, lens 16
を経て4象限検出器17に入る。 Entering the four-quadrant detector 17 via. 4象限検出器17はレンズ16の焦点に置かれているので、4象限検出器17 Since the four-quadrant detector 17 are placed in the focal point of the lens 16, a four-quadrant detector 17
面上でレーザビームは小さなスポットになる。 The laser beam on the surface becomes small spot. スポットが4象限検出器17の中心にあれば4象限検出器17の出力は0であり、中心からずれていれば、ずれに比例した出力が得られる。 The output of the four-quadrant detector 17 if the spot is in the center of the four-quadrant detector 17 is zero, if the off-center, output proportional to the deviation is obtained. このようにスポットの位置を検出することによりレーザビームの方向を知ることができる。 Thus it is possible to know the direction of the laser beam by detecting the position of the spot.
ずれが発生すれば、4象限検出器17の出力を監視しながら調節装置2により修正する。 If misalignment occurs, it modified by adjusting device 2 while monitoring the output of the four-quadrant detector 17.

【0005】 [0005]

【発明が解決しようとする課題】レーザレーダ装置における従来の軸ずれ検出装置は以上のように送信軸ずれを検出するものである。 [0007] conventional axial deviation detection apparatus in the laser radar apparatus detects a transmission axis shift as described above. 大きな電力を消費し従って発熱量が大きいレーザ装置に起因する送信軸ずれに比べて、発熱量が遥かに小さい受信側の軸ずれは小さいので、地上における通常環境で使う限り、送信軸ずれにより送受信の相対軸ずれを代用しても支障ない。 Compared to the transmission axis shift due to the consumption and thus heat generation amount is large laser device a large amount of power, since the axial displacement of the heating value is much smaller recipient is small, as long as used in the normal environment in the ground, receiving the transmission axis shift no problem be substituted by the relative axial displacement. ところが、内部発熱が無くても熱的なアンバランスが生じる人工衛星搭載機器においては受信軸ずれを無視できなくなるので、送信軸ずれの検出のみを行う従来の方法では送受信の相対軸ずれを正当に評価できないという問題点がある。 However, since not negligible reception axis shift in spaceborne equipment thermal imbalance even without the internal heat is generated, duly relative misalignment of the transceiver in the conventional method of performing only the detection of the transmission axis offset there is a problem that can not be evaluated.

【0006】この発明は上記のような問題点を解消するためになされたもので、送信軸ずれと同時に受信軸ずれも検出することにより送受信の相対軸ずれ検出可能な装置を得ることを目的とする。 [0006] and aims the present invention has been made to solve the above problems, to obtain a relative axial displacement detecting device capable of transmitting and receiving by detecting simultaneously received axis misalignment and transmission axis shift to.

【0007】 [0007]

【課題を解決するための手段】第1の発明に係る装置は、受信視野を決める視野絞りを照明することにより光を受信光学系から逆向きに出し、この光軸と送信レーザビームの光軸の相対軸ずれを検出するようにしたものである。 Apparatus according to the SUMMARY OF THE INVENTION The first invention is put into reverse light from the receiving optical system by illuminating the field stop for determining the reception field, the optical axes of the transmitting laser beam optical axis the relative axial displacement is obtained so as to detect. 軸ずれ検出は次のように行う。 Axis deviation detection is performed as follows. 受信光学系から出る光の一部を反射鏡により折曲げ、また、送信レーザビームの一部を半透鏡により折曲げ、両方のビームを重ね合わせてイメージセンサに結像させる。 A portion of the light exiting from the receiving optical system bent by the reflecting mirror, also bending the semi-transparent mirror part of the transmission laser beam, by overlapping both beams is formed on the image sensor. 軸が合っていれば1点で結像するが、軸ずれが起これば、スポットは分かれる。 Axis is imaged at one point if correct but, If there 'axis deviation, the spot is divided. 2つのスポットの距離は2つの軸の方向ずれに対応するので軸ずれが分かる。 Distance between the two spots axial deviation is found because it corresponds to the direction deviation of the two axes. また、反射鏡と半透鏡を相対変化が起きないように一体化構造にすることにより周囲の変化により反射鏡/半透鏡の向きが変わっても、 Moreover, it changes the orientation of the reflector / semitransparent mirror by changes in ambient by the integrated structure so that the relative change of the reflecting mirror and the semitransparent mirror does not occur,
相対的な軸ずれは正確に測定可能である。 Relative axial displacement is accurately measurable.

【0008】第2の発明に係る装置は、第1の発明における反射鏡を半透鏡に置き換えて適用した場合である。 [0008] device according to the second invention, a case of applying replacing reflector in the first aspect of the present invention to the semi-transparent mirror.

【0009】第3の発明に係る装置は、受信光学系の中心からレーザ光が出射する形式、即ち、同軸型のレーザレーダ装置に適用した場合である。 [0009] device according to the third invention, the format in which the laser beam is emitted from the center of the receiving optical system, i.e., is applied to a coaxial type laser radar apparatus.

【0010】第4の発明に係る装置は、出射レーザビームの一部を光ファイバにより受信検出器に照射して、軸ずれだけでなく検出器のずれも検出可能にするものである。 [0010] device according to the fourth invention, a portion of the emitted laser beam is irradiated to the receiver detector by an optical fiber, displacement of the detector as well as the axial deviation also is intended to allow detection.

【0011】第5の発明に係る装置は、照明を視野絞りの裏から行って視野中心を光らすことにより観測を容易にするものである。 [0011] device according to a fifth aspect of the present invention is to facilitate observation by Hikarasu the center of the visual field by performing the illumination from the back of the field stop.

【0012】 [0012]

【発明の実施の形態】実施の形態1. DETAILED DESCRIPTION OF THE INVENTION Embodiment 1. 以下、この発明の実施の形態1を図について説明する。 Hereinafter will be described the first embodiment of the present invention with reference to FIG. 図1において、1 In Figure 1, 1
はレーザ、2はダブルウェッジのような、レーザビームの方向を調節する調節装置、3はカセグレイン光学系のような受信望遠鏡、4はピンホールのような視野絞り、 Laser, 2 such as a double wedge, adjustment device for adjusting the direction of the laser beam, 3 receive telescope like Cassegrain optical system, 4 is a field stop, such as a pin hole,
5はリレー光学系、6は狭帯域フィルタ、7は検出器、 5 relay optical system, the narrowband filter 6, 7 detector,
8は信号処理回路であり、これらは通常のレーザレーダ装置の構成要素である。 8 is a signal processing circuit, which are components of a conventional laser radar apparatus. 9は反射鏡、10は半透鏡、1 9 reflector 10 half mirror, 1
1は反射鏡9と半透鏡10を一体化して支持する支持枠、12はイメージセンサ、13は照明光源である。 1 is a support frame for supporting and integrating the reflector 9 and the semitransparent mirror 10, 12 is an image sensor, 13 denotes an illumination light source.

【0013】次に動作について説明する。 [0013] Next, the operation will be described. レーザ1から発生されたレーザビームは調節装置2および半透鏡10 The laser beam adjusting device 2 and a semi-transparent mirror 10 from the laser 1 is generated
を介して目標に向けて送出される。 It is sent to the target through. 目標からの反射光はカセグレイン主鏡3aおよびカセグレイン副鏡3bからなる受信望遠鏡3により集光されて視野絞り4を通る。 Light reflected from the target passes through the diaphragm 4 is focused field by the receiving telescope 3 consisting of a Cassegrainian primary mirror 3a and Cassegrain secondary mirror 3b.
視野絞り4を通過した光はレンズ5aおよびレンズ5b The light passing through the field stop 4 lenses 5a and lens 5b
からなるリレー光学系5の内部に置かれた狭帯域フィルタ6を通過して検出器7に集められる。 Passing through the narrow band filter 6 placed inside the relay optical system 5 consisting collected to the detector 7. 光は検出器7で電気信号に変換され、信号処理回路8により増幅、デジタル化され目標情報が抽出される。 The light is converted into an electrical signal by the detector 7, amplified by the signal processing circuit 8, the target information is digitized is extracted. このようなレーザレーダ装置において軸ずれ検出を次のように行う。 Performing axial misalignment detection as follows in such a laser radar apparatus. 照明光源13は視野絞り4を前方から照明する。 Illumination light source 13 illuminates the field stop 4 from the front. 視野絞り4は通常ピンホールであり、基板に小穴が開いている。 Field stop 4 is generally pinhole eyelet on the substrate are open. 照明すると、基板から光が拡散反射される。 When illuminated, the light from the substrate is diffused reflected. 小穴からの光は皆無ではないが基板からの拡散反射光に対して遥かに小さいので、小穴は黒く見える。 Since light is not nil from the small holes is much smaller relative to the diffuse reflected light from the substrate, the small hole appears black. 基板からの拡散反射光はレーザレーダ装置の入射光とは反対方向に、カセグレイン副鏡3bおよびカセグレイン主鏡3aを経て外へ向かって出る。 Diffuse reflected light from the substrate in the opposite direction to the incident light of the laser radar apparatus, out towards the outside via the Cassegrain secondary mirror 3b and Cassegrainian primary mirror 3a. カセグレイン主鏡3aから外へ向かって出る光束の一部を反射鏡9により遮り、折曲げて取り出す。 Cassegrainian primary mirror 3a the part of the light beam exiting toward outside interception by the reflecting mirror 9, taken by bending.
レーザ1からのレーザビームの一部も半透鏡10により折曲げて取り出す。 Taken by bending the laser beam the semi-transparent mirror 10 a part of the laser 1. 折曲げて取り出した2つのビームは半透鏡10で合体し、イメージセンサ12に入る。 Two beams extracted by bending coalesce with semitransparent mirror 10 and enters the image sensor 12. この像の観測により、スポットが重なれば光軸は合っており、スポットが分離すれば光軸がずれていることが分かる。 By observation of the image, the spot has an optical axis matches if they overlap, it can be seen that the optical axis is displaced when spot separation. 光軸がずれていればビーム方向調節装置2により修正することができる。 If deviated optical axis can be corrected by the beam direction adjusting device 2. 周囲の変形があっても反射鏡9と半透鏡10がおのおの独立に動かないように一体化されているので、光線の方向に関しては1枚の平面鏡と同じであり、送受信軸ずれを正確に測定することができる。 Since the reflecting mirror 9 and the semitransparent mirror 10 even deformation of the surrounding are integrated so as not to move each independently, with respect to the direction of light is the same as the one of the plane mirrors, accurately measure the reception axis deviation can do.

【0014】図1において、反射鏡9の代わりに半透鏡を使ってもよい。 [0014] In FIG. 1, may use translucent mirror in place of the reflecting mirror 9.

【0015】実施の形態2. [0015] Embodiment 2. 他の実施の形態を図2に示す。 The other embodiments shown in FIG. 図2においてレーザ1から発生されたレーザビームは調節装置2を通り、2個の直角プリズム18aおよび18bによりカセグレイン副鏡3bの裏側に平行移動された後、半透鏡14を介して目標に向けて送出される。 The laser beam generated from the laser 1 in FIG. 2 passes through the regulating device 2, after being moved parallel to the back side of the Cassegrain secondary mirror 3b by two rectangular prisms 18a and 18b, toward the target through the half mirror 14 It is sent.
目標からの反射光はカセグレイン主鏡3aおよびカセグレイン副鏡3bからなる受信望遠鏡3により集光されて視野絞り4を通る。 Light reflected from the target passes through the diaphragm 4 is focused field by the receiving telescope 3 consisting of a Cassegrainian primary mirror 3a and Cassegrain secondary mirror 3b. 視野絞り4を通過した光はレンズ5 The light passing through the field stop 4 lens 5
aおよびレンズ5bからなるリレー光学系5の内部に置かれた狭帯域フィルタ6を通過して検出器7に集められる。 It is converged on the detector 7 pass through the narrow band filter 6 placed inside the relay optical system 5 consisting of a and lens 5b. 光は検出器7で電気信号に変換され、信号処理回路8により増幅、デジタル化され目標情報が抽出される。 The light is converted into an electrical signal by the detector 7, amplified by the signal processing circuit 8, the target information is digitized is extracted.
このような同軸型のレーザレーダ装置において軸じれ検出を次のように行う。 Performing axial Gillet detected as follows in such a coaxial type laser radar apparatus. レーザビームの一部を半透鏡14 Semi-transparent mirror a portion of the laser beam 14
により反射させて取り出す。 Take out is reflected by. 受信望遠鏡から出る光の一部も半透鏡10により折曲げて取り出す。 The semi-transparent mirror 10 a part of the light emanating from the receiving telescope taken by bending. 折曲げて取り出した2つのビームは半透鏡10で合体し、イメージセンサ12に結像される。 Two beams extracted by bending coalesce with semitransparent mirror 10 is imaged on the image sensor 12.

【0016】実施の形態3. [0016] Embodiment 3. 他の実施の形態を図3に示す。 The other embodiments shown in FIG. 図3において、15は一端をレーザビームの端に置き、他端を検出器近傍に置く光ファイバである。 3, 15 placed at one end to an end of the laser beam, an optical fiber placed at the other end to the detector vicinity. 光ファイバ15によりレーザビームの一部を取り出し、検出器7に照射する。 Taking out a part of the laser beam by the optical fiber 15 and irradiates the detector 7. 検出器面で拡散反射された光はリレー光学系5および視野絞り4を通過して受信望遠鏡3から出る。 Light diffused and reflected by the detector surface exits the receive telescope 3 passes through the relay optical system 5 and the field stop 4. リレー光学系5内にはレーザ波長のみ通過させる狭帯域フィルタ6があるので、リレー光学系5を通すためにレーザ光そのものの一部を使用する。 Since the relay optical system 5 is narrowband filter 6 passing only the laser wavelength, to use a portion of the laser beam itself to pass through the relay optical system 5. この構成で、視野絞り4から出る光は実施の形態1と同じように使うことができる。 In this configuration, the light from the field stop 4 can be used in the same way as the first embodiment. また、検出器7がずれれば一様な検出器面から外れた光が視野絞り4を通って受信望遠鏡3から出るのでスポットの形状を観測することにより検出器7のずれが分かる。 Further, the deviation of the detector 7 is found by observing the shape of the spot because the detector 7 exits the receive telescope 3 through 4 light field stop that deviates from uniform detector plane if Zurere.

【0017】実施の形態4. [0017] Embodiment 4. 他の実施の形態を図4に示す。 The other embodiments shown in FIG. 図4において、照明は視野絞り4の裏から行う。 4, the illumination is carried out from the back of the field stop 4. このように照明すれば、基板からの拡散反射光でなく、基板に開けた穴を通過する光のみがイメージセンサに入るので像が観測し易い。 In this way the illumination, rather than diffuse reflection light from the substrate, easily observed image because only light passing through the hole made in the substrate enters the image sensor.

【0018】 [0018]

【発明の効果】このように、この発明によれば、レーザレーダ装置の送信軸と受信軸の相対軸ずれを測定可能になるので、送信軸だけでなく、受信軸の変化も無視できない人工衛星軌道上のレーザレーダ装置の測定精度を高める。 [Effect of the Invention] Thus, according to the present invention, since a relative axial displacement of the receiving shaft and the transmission axis of the laser radar apparatus allows measurement not only transmission shaft, not negligible change in the reception shaft satellites improve the measurement accuracy of the laser radar device on the track.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 この発明の実施の形態1によるレーザレーダ装置を示す図である。 1 is a diagram showing a laser radar apparatus according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態2を示す図である。 2 is a diagram showing a second embodiment of the present invention.

【図3】 この発明の実施の形態3を示す図である。 3 is a diagram showing a third embodiment of the present invention.

【図4】 この発明の実施の形態4を示す図である。 4 is a diagram showing a fourth embodiment of the present invention.

【図5】 従来のレーザレーダ装置を示す図である。 5 is a diagram showing a conventional laser radar apparatus.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 レーザ、2 レーザビーム方向調節装置、3 受信望遠鏡、3a カセグレイン主鏡、3b カセグレイン副鏡、4 視野絞り、5 リレー光学系、5a,5b 1 laser, 2 laser beam direction adjusting device, 3 receive telescope, 3a Cassegrain primary mirror, 3b Cassegrain secondary mirror, 4 field stop, 5 relay optical system, 5a, 5b
レンズ、6 狭帯域フィルタ、7 検出器、8 信号処理回路、9 反射鏡、10 半透鏡、11 支持枠、1 Lens, 6 narrowband filter, 7 the detector, 8 signal processing circuit 9 reflector 10 semitransparent mirror, 11 the support frame, 1
2 イメージセンサ、13 照明光源、14 半透鏡、 Second image sensor, 13 illumination source 14 half mirror,
15 光ファイバ、16 レンズ、17 4象限検出器、18a,18b 直角プリズム。 15 optical fiber, 16 a lens, 17 four-quadrant detector, 18a, 18b right-angle prism.

Claims (5)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 レーザビームを発生するレーザ、上記レーザビームで照射された目標からの反射光を受ける受信望遠鏡、この受信望遠鏡の視野を調節する視野絞り、この視野絞りから出た光を検出器に集めるリレー光学系、 1. A laser for generating a laser beam, receiving telescope for receiving the reflected light from the target irradiated by the laser beam, a field stop to adjust the field of view of the receiving telescope, detector light exiting from the field stop relay optical system to collect in,
    このリレー光学系で集光された光を電気信号に変換する検出器および上記電気信号から目標情報を抽出する信号処理回路とを備えたレーザレーダ装置において、上記視野絞りを照明する光源、上記視野絞りから上記受信望遠鏡を経て出射する上記レーザビームの一部を折曲げる反射鏡、上記反射鏡で折曲げられたレーザビームに重なり、かつ、上記反射鏡と平行に配置され、上記レーザビームの一部を折曲げる半透鏡、上記反射鏡と上記半透鏡を一体化して支える支持枠、上記半透鏡から出る光を撮影するイメージセンサとを備えたことを特徴とするレーザレーダ装置。 In the laser radar apparatus and a signal processing circuit for extracting the detector and the target information from the electrical signal for converting the light condensed by the relay optical system into an electrical signal, a light source for illuminating the field stop, the field of view reflector bending a part of the laser beam emitted through the reception telescope aperture, overlaps the folded laser beam at the reflecting mirror, and, arranged in parallel with the reflecting mirror, the laser beam one part of the bending semitransparent mirror, a support frame for supporting and integrating the reflector and the semi Torukyo, laser radar apparatus characterized by comprising an image sensor for capturing the light emitted from the semi-Torukyo.
  2. 【請求項2】 レーザビームを発生するレーザ、上記レーザビームで照射された目標からの反射光を受ける受信望遠鏡、この受信望遠鏡の視野を調節する視野絞り、この視野絞りから出た光を検出器に集めるリレー光学系、 2. A laser for generating a laser beam, receiving telescope for receiving the reflected light from the target irradiated by the laser beam, a field stop to adjust the field of view of the receiving telescope, detector light exiting from the field stop relay optical system to collect in,
    このリレー光学系で集光された光を電気信号に変換する検出器および上記電気信号から目標情報を抽出する信号処理回路とを備えたレーザレーダ装置において、上記視野絞りを照明する光源、上記視野絞りから上記受信望遠鏡を経て出射する上記レーザビームの一部を折曲げる半透鏡、上記反射鏡で折曲げられたレーザビームに重なり、かつ、上記反射鏡と平行に配置され、上記レーザビームの一部を折曲げる半透鏡、上記2個の半透鏡を一体化して支える支持枠、上記半透鏡から出る光を撮影するイメージセンサとを備えたことを特徴とするレーザレーダ装置。 In the laser radar apparatus and a signal processing circuit for extracting the detector and the target information from the electrical signal for converting the light condensed by the relay optical system into an electrical signal, a light source for illuminating the field stop, the field of view overlapping a portion from the stop of the laser beam emitted through the receive telescope folding bending semitransparent mirror, the folded laser beam at the reflecting mirror, and, arranged in parallel with the reflecting mirror, the laser beam one part of the bending semitransparent mirror, a support frame for supporting and integrating the two semitransparent mirror, the laser radar apparatus characterized by comprising an image sensor for capturing the light emitted from the semi-Torukyo.
  3. 【請求項3】 レーザビームを発生するレーザ、上記レーザビームで照射された目標からの反射光を受ける受信望遠鏡、この受信望遠鏡の視野を調節する視野絞り、この視野絞りから出た光を検出器に集めるリレー光学系、 3. A laser for generating a laser beam, receiving telescope for receiving the reflected light from the target irradiated by the laser beam, a field stop to adjust the field of view of the receiving telescope, detector light exiting from the field stop relay optical system to collect in,
    このリレー光学系で集光された光を電気信号に変換する検出器および上記電気信号から目標情報を抽出する信号処理回路とを備えたレーザレーダ装置において、上記視野絞りを照明する光源、上記レーザビームの一部を折曲げる半透鏡、上記半透鏡で折曲げられた上記レーザビームに重なり、かつ、上記半透鏡と平行に配置され、上記視野絞りから上記受信望遠鏡を経て出射する上記レーザビームの一部を折曲げる半透鏡、上記2個の半透鏡を一体化して支える支持枠と、上記半透鏡から出る光を撮影するイメージセンサとを備えたことを特徴とするレーザレーダ装置。 In the laser radar apparatus and a signal processing circuit for extracting the detector and the target information from the electrical signal for converting the light condensed by the relay optical system into an electrical signal, a light source for illuminating the field stop, the laser overlapping a portion of the beam folding bending semitransparent mirror, the folded the laser beam in the semi Torukyo and arranged in parallel with the semi Torukyo, from the field stop of the laser beam emitted through the receive telescope partially folding semitransparent mirror, the laser radar apparatus characterized by comprising: a support frame for supporting and integrating the two semitransparent mirror, and an image sensor for capturing the light emitted from the semi-Torukyo.
  4. 【請求項4】 レーザビームを発生するレーザ、上記レーザビームで照射された目標からの反射光を受ける受信望遠鏡、この受信望遠鏡の視野を調節する視野絞り、この視野絞りから出た光を検出器に集めるリレー光学系、 4. A laser for generating a laser beam, receiving telescope for receiving the reflected light from the target irradiated by the laser beam, a field stop to adjust the field of view of the receiving telescope, detector light exiting from the field stop relay optical system to collect in,
    このリレー光学系で集光された光を電気信号に変換する検出器および上記電気信号から目標情報を抽出する信号処理回路とを備えたレーザレーダ装置において、上記レーザビームの一部を光ファイバで取り出し上記検出器を照明する光源、上記視野絞りから上記受信望遠鏡を経て出射する上記レーザビームの一部を折曲げる反射鏡、上記反射鏡で折曲げられた上記レーザビームに重なり、かつ、上記反射鏡と平行に配置され、上記レーザビームの一部を折曲げる半透鏡、上記反射鏡と上記半透鏡を一体化して支える支持枠、上記半透鏡から出る光を撮影するイメージセンサとを備えたことを特徴とするレーザレーダ装置。 In the laser radar apparatus and a signal processing circuit for extracting the detector and the target information from the electrical signal for converting the light condensed by the relay optical system into an electrical signal, a portion of the laser beam with the optical fiber extraction the light source illuminating the detector, the reflection mirror bending a part of the laser beam emitted through the receive telescope from the field stop, overlap folded the laser beam at the reflecting mirror, and the reflection arranged parallel to the mirror, it has an image sensor for capturing bending a part of the laser beam semitransparent mirror, a support frame for supporting and integrating the reflector and the semi Torukyo, the light emitted from the semi-Torukyo the laser radar apparatus according to claim.
  5. 【請求項5】 レーザビームを発生するレーザ、上記レーザビームで照射された目標からの反射光を受ける受信望遠鏡、この受信望遠鏡の視野を調節する視野絞り、この視野絞りから出た光を検出器に集めるリレー光学系、 5. A laser for generating a laser beam, receiving telescope for receiving the reflected light from the target irradiated by the laser beam, a field stop to adjust the field of view of the receiving telescope, detector light exiting from the field stop relay optical system to collect in,
    このリレー光学系で集光された光を電気信号に変換する検出器および上記電気信号から目標情報を抽出する信号処理回路とを備えたレーザレーダ装置において、上記視野絞りを裏側から照明する光源、上記視野絞りから上記受信望遠鏡を経て出射する上記レーザビームの一部を折曲げる反射鏡、上記反射鏡で折曲げられた上記レーザビームに重なり、かつ、上記反射鏡と平行に配置され、上記レーザビームの一部を折曲げる半透鏡、上記反射鏡と上記半透鏡を一体化して支える支持枠、上記半透鏡から出る光を撮影するイメージセンサとを備えたことを特徴とするレーザレーダ装置。 In the laser radar apparatus and a signal processing circuit for extracting the detector and the target information from the electrical signal for converting the light condensed by the relay optical system into an electrical signal, a light source for illuminating the field stop from the rear side, reflector bending a part of the laser beam emitted through the receive telescope from the field stop, folded overlap the laser beam at the reflecting mirror, and, arranged in parallel with the reflecting mirror, the laser bending a portion of the beam semi-transparent mirror, a support frame for supporting and integrating the reflector and the semi Torukyo, laser radar apparatus characterized by comprising an image sensor for capturing the light emitted from the semi-Torukyo.
JP29478998A 1998-10-16 1998-10-16 Laser radar device Expired - Fee Related JP3835016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29478998A JP3835016B2 (en) 1998-10-16 1998-10-16 Laser radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29478998A JP3835016B2 (en) 1998-10-16 1998-10-16 Laser radar device

Publications (2)

Publication Number Publication Date
JP2000121724A true JP2000121724A (en) 2000-04-28
JP3835016B2 JP3835016B2 (en) 2006-10-18

Family

ID=17812306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29478998A Expired - Fee Related JP3835016B2 (en) 1998-10-16 1998-10-16 Laser radar device

Country Status (1)

Country Link
JP (1) JP3835016B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041307A1 (en) 2007-09-25 2009-04-02 Nikon Corporation Alignment device and method for optical system
JP2013508693A (en) * 2009-11-20 2013-03-07 ファロ テクノロジーズ インコーポレーテッド Environmental optically scanned to measure an apparatus for
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
CN104898108A (en) * 2015-05-19 2015-09-09 浙江大学 Atmosphere remote sensing laser radar optical receiving device based on telescope arrays
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
JP6250197B1 (en) * 2016-07-14 2017-12-20 三菱電機株式会社 Laser radar device
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US8085400B2 (en) 2007-09-25 2011-12-27 Nikon Corporation Alignment device and method for optical system
WO2009041307A1 (en) 2007-09-25 2009-04-02 Nikon Corporation Alignment device and method for optical system
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
JP2013508693A (en) * 2009-11-20 2013-03-07 ファロ テクノロジーズ インコーポレーテッド Environmental optically scanned to measure an apparatus for
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
CN104898108A (en) * 2015-05-19 2015-09-09 浙江大学 Atmosphere remote sensing laser radar optical receiving device based on telescope arrays
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
WO2018011945A1 (en) * 2016-07-14 2018-01-18 三菱電機株式会社 Laser radar device
JP6250197B1 (en) * 2016-07-14 2017-12-20 三菱電機株式会社 Laser radar device

Also Published As

Publication number Publication date
JP3835016B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
US5517312A (en) Device for measuring the thickness of thin films
US4653880A (en) Reflective beam splitting objective
US5517297A (en) Rangefinder with transmitter, receiver, and viewfinder on a single common optical axis
AU2007204542B2 (en) Coordinate measurement instrument
EP0291394B1 (en) Displacement sensor with recessed optical fibres
US4711999A (en) Apparatus for photometrically detecting an optically focused condition of an optical system
US4251129A (en) Photoelectric detecting device
US4395117A (en) Printing apparatus having an in-focus detector
CN100368764C (en) Measuring machine
US4432640A (en) Adjustment and testing device for a laser ranging system
US4165936A (en) Coaxial transmitting and receiving optics for an electro-optic range finder
EP0383244A1 (en) Fiber optic scatterometer
JP2012530908A (en) Coordinate measuring device
US5141302A (en) Intraocular length measuring instrument
JP2781987B2 (en) Wavelength detector
US3500048A (en) Sighting device and method for determining a line of sight to a target and the position of an object relative to the line of sight
US5836694A (en) Laser and scope aiming mechanism for a hand-held temperature measuring unit
US3658426A (en) Alignment telescope
ES2370471T3 (en) Light detection system and distance determination.
US6075591A (en) Optical method and apparatus for detecting low frequency defects
US7064817B1 (en) Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system
CN1071890C (en) Distance determination device
US4686360A (en) Device for the automatic focussing of optical instruments with complementary measuring and detecting diaphragms
JP2000506970A (en) Three-dimensional color imaging
US4087689A (en) Boresighting system for infrared optical receiver and transmitter

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

LAPS Cancellation because of no payment of annual fees